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Abstract This paper proposes a multi-objective version of
the recently proposed Ant Lion Optimizer (ALO) called
Multi-Objective Ant Lion Optimizer (MOALO). A reposi-
tory is first employed to store non-dominated Pareto opti-
mal solutions obtained so far. Solutions are then chosen
from this repository using a roulette wheel mechanism
based on the coverage of solutions as antlions to guide
ants towards promising regions of multi-objective search
spaces. To prove the effectiveness of the algorithm pro-
posed, a set of standard unconstrained and constrained
test functions is employed. Also, the algorithm is applied
to a variety of multi-objective engineering design prob-
lems: cantilever beam design, brushless dc wheel motor
design, disk brake design, 4-bar truss design, safety isolat-
ing transformer design, speed reduced design, and welded
beam deign. The results are verified by comparing MOALO
against NSGA-II and MOPSO. The results of the proposed
algorithm on the test functions show that this algorithm ben-
efits from high convergence and coverage. The results of the
algorithm on the engineering design problems demonstrate
its applicability is solving challenging real-world problems
as well.
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1 Introduction

In recent years, computers have become very popular in dif-
ferent fields for solving challenging problems. Computer-
aided design is a field that emphasizes the use of computers
in solving problems and designing systems. In the past,
the design process of a system would have required direct
human involvements. For instance, if a designer wanted to
find an optimal shape for a rocket, he would have to first
create a prototype and then use a wind tunnel to test. Obvi-
ously, such a design approach was very expensive and time
consuming. The more complex the system was, the more
time and cost the entire project required.

The invention of computers speeded up the design pro-
cess significantly a couple of decades ago. This means that
people are now able to use computers to design a system
without even the need for a single prototype. As a result,
not only the cost but also the time of the design process is
substantially less than before. In spite of the fact that the
machine is now a great assistance, designing a system this
way still requires direct human involvements. This results
in a series of trial and errors where the designer tries to
design an efficient system. It is undeniable that a designer
is prone to mistakes, which makes the design process
unreliable.

Another revolutionary approach was the use of machine
to not only simulate a system but also design it. In this case,
a designer mostly set up the system and utilize a computer
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program to find the optimal designs. This automatic design
process is still the current approach in science and industry.
The main advantages are high speed, low cost, and high reli-
ability. However, the main drawback is the complexity of the
design process and the need for finding a suitable approach
for designing a system using computers.

Optimization techniques are considered as one of the
best techniques for finding optimal designs using machines.
Conventional optimization algorithms are mostly depreci-
ated because of their main drawback: local optima stagna-
tion [1, 2]. The main alternatives for designers are stochastic
optimization techniques. Such approaches consider prob-
lems as black boxes and approximate the optimal designs.
They initialize the optimization process with a set of random
candidate solutions for a given problem and improve them
over a pre-defined number of steps. Despite the advantages
of these methods, optimization of real problems require
addressing various difficulties: multiple-objectives [3], con-
straints [4], uncertainties [5], local solutions [6], deceptive
global solutions [7], etc. To address these issues, optimiza-
tion algorithms should be equipped with different operators.

Multi-objective optimization [8], which is the main focus
of this work, deals with finding solutions for problems with
more than one objective. There is more than one solution for
a multi-objective problem due to the nature of such prob-
lems [9]. By contrast, a single-objective problem has only
one global optimum. Addressing multiple objectives, which
are often in conflict, is the main challenge in multi-objective
optimization. The duty of a stochastic multi-objective opti-
mization algorithm is to determine the set of best trade-offs
between the objectives, the so called Pareto optimal set.

There are two main approaches in the literature of multi-
objective optimization using stochastic optimization tech-
niques: a posteriori versus a priori [3, 10]. For a priori
approaches, a multi-objective optimization problem is con-
verted to a single-objective one by aggregating the objec-
tives. A set of weights defines how important the objectives
are and is normally provided by an expert in the problem
domain. After the objective aggregation, a single-objective
optimization algorithm is able to readily solve the problem.
The main drawbacks of such methods is that an algorithm
should be run multiple times to determine the Pareto optimal
set. In addition, there is a need to consult with an expert and
some special Pareto optimal fronts cannot be determined
with this approach [11–13].

A posterior approaches benefit from maintaining multi-
objective formulation of a multi-objective problems and
finding the Pareto optimal set in just one run. Also, another
advantage is that any kind of Pareto front can be deter-
mined with these algorithms. However, they require higher
computational cost and addressing multiple objectives at the
same time. The literature shows that such methods have
been widely used since the invention and are able to solve

real-world problems. The most popular algorithms in the
literature are: Non-dominated Sorting Genetic Algorithm
(NSGA) [14–16] and Multi-objective Particle Swarm Opti-
mization (MOPSO) [17, 18]. The application of these two
algorithms can be found in different fields as the literature
shows [3].

Most of the recently proposed single-objective algo-
rithms have been equipped with operators to solve multi-
objective problems as well. Some of the most recent ones
are Multi-objective Bee Algorithm [19], Multi-objective
Bat Algorithm [20], Multi-objective Grey Wolf Optimizer
(MOGWO) [21], etc.

The No-Free Lunch [22] theorem for optimization allows
researchers to propose new algorithms or improve the cur-
rent ones because it logically proves that there is no opti-
mization algorithm for solving all optimization problems.
This applies to both single- and multi-objective optimization
techniques. In an effort to solve optimization problems with
multiple objectives, this work proposes a multi-objective
version of the recently proposed Ant Lion Optimizer (ALO).
Although the current algorithms in the literature are able to
solve a variety of problems, according to the NFL theorem,
they are not able to solve all optimization problems. This
work proposes the multi-objective ALO with the hope to
better solve some or new problems. The rest of the paper is
organized as follows.

Section 2 provides the literature review. Section 3 pro-
poses the Multi-objective Ant Lion Optimizer. Section 4
presents, discusses, and analyses the results on the test
and engineering problems employed. Finally, Section 5
concludes the work and suggests future works.

2 Literature review

In single-objective optimization, there is only one solu-
tion as the global optimum. This is because of the unary
objective in single-objective problems and the existence of
one best solution. Comparison of solutions is easy when
considering one objective and is done by the relational
operators: >, ≥, <, ≤, or =. The nature of such prob-
lems allows optimization problems to conveniently compare
the candidate solutions and eventually find the best one.
In multi-objective problems, however, solutions should be
compared with more than one objective (criterion). Multi-
objective optimization can be formulated as a minimization
problem as follows:

Minimize : F(�x) = {f1(�x), f2(�x), . . . , fo(�x)} (2.1)

Subject to : gi(�x) ≥ 0, i = 1, 2, . . . , m (2.2)

hi(�x) = 0, i = 1, 2, . . . , p (2.3)

Li ≤ xi ≤ Ui, i = 1, 2, . . . , n (2.4)
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where nis the number of variables, o is the number of objec-
tive functions, m is the number of inequality constraints, p
is the number of equality constraints, gi is the i-th inequal-
ity constraints, hi indicates the i-th equality constraints, and
[Li,Ui] are the boundaries of i-th variable.

Obviously, relational operators are no longer effective
for comparing solutions of a problem with multiple objec-
tives. There should be other operators in this case. Without
the loss of generality, the four main definitions in multi-
objective optimization (minimization) are as follows:

Definition 1 (Pareto Dominance) Assuming two vectors
such as: �x = (x1, x2, . . . , xk) and �y = (y1, y2, . . . , yk).
Vector �x is said to dominate vector �y (denote as �x ≺ �y) if
and only if:

∀i ∈{1, 2, . . . , k} :fi(�x)≤fi(�y)∧∃i ∈ {1, 2, . . . , k} :fi(�x)<fi(�y)

(2.5)

The definition of Pareto optimality is as follows [23–25]:

Definition 2 (Pareto Optimality [23]) A solution �x ∈ X is
called Pareto-optimal if and only if:

{��y ∈ X|�y ≺ �x} (2.6)

Definition 3 (Pareto optimal set) The set all Pareto-optimal
solutions is called Pareto set as follows:

Ps := {�x, �y ∈ X|��y ≺ �x} (2.7)

Definition 4 (Pareto optimal front) A set containing the
value of objective functions for Pareto solutions set:

Pf := {f (�x)|�x ∈ Ps} (2.8)

For solving a multi-objective problem, we have to find
the Pareto optimal set, which is the set of solutions repre-
senting the best trade-offs between objectives.

Over the course of past decade, a significant number of
multi-objective algorithms has been developed. Between the
stochastic population-based algorithms, which is the focus
of this work, the most well-regarded ones are: Strength-
Pareto Evolutionary Algorithm (SPEA) [26, 27], Non-
dominated Sorting Genetic Algorithm [28], Non-dominated
sorting Genetic Algorithm version 2 (NSGA-II) [16], Multi-
Objective Particle Swarm Optimization (MOPSO) [18],
Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D) [29], Pareto Archived Evolution Strat-
egy (PAES) [30], and Pareto-frontier Differential Evolution
(PDE) [31].

The general frameworks of all population-based multi-
objective algorithms are almost identical. They start the
optimization process with multiple candidate solutions.
Such solutions are compared using the Pareto dominance
operator. In each step of optimization, the non-dominated
solutions are stored in a repository and the algorithm tries to
improve them in the next iteration(s). What make an algo-
rithm different from another is the use of different methods
to enhance the non-dominated solutions.

Improving the non-dominated solutions using stochas-
tic algorithms should be done in terms of two perspectives:
convergence (accuracy) and coverage (distribution) [32].
The former refers to the process of improving the accu-
racy of the non-dominated solutions. The ultimate goal is
to find approximations very close to the true Pareto opti-
mal solutions. In the latter case, an algorithm should try
to improve the distribution of the non-dominated solutions
to cover the entire true Pareto optimal front. This is a
very important factor in a posteriori approaches, in which
a wide range of solutions should be found for decision
making.

The main challenge in multi-objective optimization using
stochastic algorithms is that the convergence and cover-
age are in conflict. If an algorithm only concentrates on
improving the accuracy of non-dominated solutions, the
coverage will be poor. By contrast, a mere consideration
of the coverage negatively impacts the accuracy of the
non-dominated solutions. Most of the current algorithms
periodically balance convergence and coverage to find very
accurate approximation of the Pareto optimal solutions with
uniform distribution along all objectives.

For convergence, normally, the main mechanism of con-
vergence in the single-objective version of an algorithm
is sufficient. For instance, in Particle Swarm Optimization
(PSO) [33, 34], the solutions tends towards the global best.
If the global best be replaced with one non-dominated solu-
tion, the particles will be able to improve its accuracy as
they do in a single-objective search space. For improving
coverage, however, the search should be guided towards
different solutions. For instance, the gbet in PSO can be
replaced with a random non-dominated solution so that par-
ticles improve different regions of the Pareto optimal front
obtained. The main challenge here is the selection of non-
dominated solutions to guarantee improving the distribution
of Pareto optimal solutions.

There are different approaches in the literature for
improving the coverage of an algorithm. Archive and
leader selection in MOPSO, non-dominated sorting mech-
anism in NSGA, and niching [35–37] are the most popular
approaches. In the next section, the multi-objective version
of the recently proposed ALO is proposed as an alter-
native approach for finding Pareto optimal solutions of
multi-objective problems.
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3 Multi-objective ant lion optimizer (MOALO)

In order to propose the multi-objective version of the ALO
algorithm [38], the fundamentals of this algorithm should be
discussed first. An algorithm should follow the same search
behaviour to be considered as an extended version of the
same algorithm. The ALO algorithm mimics the hunting
mechanism of antlions and the interaction of their favourite
prey, ants, with them.

Similarly to other population-based algorithms, ALO
approximates the optimal solutions for optimization prob-
lems with employing a set of random solutions. This set is
improved based on the principles inspired from the interac-
tion between antlions and ants. There are two populations
in the ALO algorithm: set of ants and set of antlions. The
general steps of ALO to change these two sets and eventu-
ally estimate the global optimum for a given optimization
problem are as follows:

a) The ant set is initialized with random values and are the
main search agents in the ALO.

b) The fitness value of each ant is evaluated using an
objective function in each iteration.

c) Ants move over the search space using random walks
around the antlions.

d) The population of antlions is never evaluated. In fact,
antlions assumed to be on the location of ants in the first
iteration and relocate to the new positions of ants in the
rest of iterations if the ants become better.

e) There is one antlion assigned to each ant and updates
its position if the ant becomes fitter.

f) There is also an elite antlion which impacts the move-
ment of ants regardless of their distance.

g) If any antlion becomes better than the elite, it will be
replaced with the elite.

h) Steps b to g are repeatedly executed until the satisfac-
tion of an end criterion.

i) The position and fitness value of the elite antlion are
returned as the best estimation for the global optimum.

The main responsibility of ants is to explore the search
space. They are required to move around the search space
using a random walk. The antlions maintain the best posi-
tion obtained by the ants and guide the search of ants
towards the promising regions of the search space. In order
to solve optimization problems, the ALO algorithm mimics
randomwalk of ants, entrapment in an antlion pit, construct-
ing a pit, sliding ant towards antlions, catching prey and
re-constructing the pit, and elitism. The mathematical model
and programming modules proposed for each of these steps
are presented in the following paragraphs.

The original random walk utilized in the ALO algorithm
to simulate the random walk of ants is as follows:

X(t) = [0, cumsum(2r(t1) − 1), cumsum(2r(t2) − 1), . . . ,
cumsum(2r(tn) − 1)] (3.1)

where cumsum calculates the cumulative sum, n is the max-
imum number of iteration, tshows the step of random walk

(iteration in this study), and r (t)=
{
1 if rand > 0.5
0 if rand ≤ 0.5

is

a stochastic function where t shows the step of random
walk (iteration in this study) and rand is a random number
generated with uniform distribution in the interval of [0,1].

In order to keep the random walk in the boundaries of
the search space and prevent the ants from overshooting,
the random walks should be normalized using the following
equation:

Xt
i =

(
Xt

i − ai

) × (
dt
i − ct

i

)
(bi − ai)

+ ct
i (3.2)

where ct
i is the minimum of i-th variable at t-th iteration, dt

i

indicates the maximum of i-th variable at t-th iteration, ai is
the minimum of random walk of i-th variable, and bi is the
maximum of random walk in i-th variable.

ALO simulates the entrapment of ants in antlions pits by
changing the random walks around antlions. The following
equations have been proposed in this regard:

ct
i = Antliont

j + ct (3.3)

dt
i = Antliont

j + dt (3.4)

where ct is the minimum of all variables at t-th iteration, dt

indicates the vector including the maximum of all variables
at t-th iteration, ct

i is the minimum of all variables for i-
th ant, dt

i is the maximum of all variables for i-th ant, and
Antliont

j shows the position of the selected j-th antlion at
t-th iteration.

In nature, bigger antlions construct bigger pits to increase
their chance of survival. In order to simulate this, ALO uti-
lizes a roulette wheel operator that selects antlions based on
their fitness value. The roulette wheel assists fitter antlions
to attract more ants.

For mimicking the sliding ants towards antlions, the
boundaries of random walks should be decreased adaptively
as follows:

ct = ct

I
(3.5)

dt = dt

I
(3.6)
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where I is a ratio, ct is the minimum of all variables at t-th
iteration, dt indicates the vector including the maximum of
all variables at t-th iteration.

In the above equations, I = 1 + 10w t
T

where t is the
current iteration, T is the maximum number of iterations,
and w is defined based on the current iteration (w = 2 when
t > 0.1T , w = 3 when t > 0.5T , w = 4 when t > 0.75T ,
w = 5 when t > 0.9T , and w = 6 when t > 0.95T ).
The parameter w in the equation for I is able to adjust the
accuracy level of exploitation.

The second to last step in ALO is catching the ant and re-
constructing the pit. The following equation simulates this:

Antliont
j = Antti if f

(
Antti

)
< f

(
Antliont

j

)
(3.7)

where t shows the current iteration, Antliont
j shows the

position of selected j-th antlion at t-th iteration, and Antti
indicates the position of i-th ant at t-th iteration.

The last operator in ALO is elitism, in which the fittest
antlion formed during optimization is stored. This is the
only antlion that is able to have an impact on all ants. This
means that the random walks on antlions gravitates toward
a selected antlion (chosen using the roulette wheel) and the
elite antlion. The equation to consider both of them is as
follows:

Antti = Rt
A + Rt

E

2
(3.8)

where Antti indicates the position of i-th ant at t-th iteration,
Rt

A is the random walk around the antlion selected by the
roulette wheel at t-th iteration, and Rt

E is the random walk
around the elite at t-th iteration.

As mentioned in the literature review, there are different
approaches for finding and storing Pareto optimal solu-
tions using heuristic algorithms. In this work, we employ
an archive to store Pareto optimal solutions. Obviously, the
convergence of the MOALO algorithm inherits from the
ALO algorithm. If we pick one solution from the archive,
the ALO algorithm will be able to improve its quality. How-
ever, finding the Pareto optimal solutions set with a high
diversity is challenging.

To overcome this challenge, we have inspired from the
MOPSO algorithm and utilized the leader selection and
archive maintenance. Obviously, there should be a limit for
the archive and solutions should be chosen from the archive
in a way to improve the distribution. For measuring the dis-
tribution of the solutions in the archive, we use niching. In
this approach, the vicinity of each solution is investigated
considering a pre-defined radius. The number of solutions

in the vicinity is then counted and considered as the measure
of distribution. To improve the distribution of the solutions
in the archive, we considered two mechanisms similarly
to those in MOPSO. Firstly, the antlions are selected from
the solutions with the least populated neighbourhood. The
following equation is used in this regard that defines the
probability of choosing a solution in the archive:

Pi = c

Ni

(3.9)

where c is a constant and should be greater than 1 and Ni is
the number of solutions in the vicinity of the i-th solution.

Secondly, when the archive is full, the solutions with
most populated neighbourhood are removed from the
archive to accommodate new solutions. The following equa-
tion is used in this regard that defines the probability of
removing a solution from the archive:

Pi = Ni

c
(3.10)

where c is a constant and should be greater than 1 and Ni is
the number of solutions in the vicinity of the i-th solution.

In order to require ALO to solve multi-objective prob-
lems, (3.7) should be modified due to the nature of multi-
objective problems.

Antliont
j = Antti if f

(
Antti

) ≺ f
(
Antliont

j

)
(3.11)

where t shows the current iteration, Antliont
j shows the

position of selected j-th antlion at t-th iteration, and Antti
indicates the position of i-th ant at t-th iteration.

Another modification is for the selection of random
antlions and elite in (3.8). We utilize a roulette wheel and
(3.8) to select a non-dominated solution from the archive.
The rest of the operators in MOALO are identical to those in
ALO. After all, the pseudocodes of the MOALO algorithm
are shown in Fig. 1.

The computational complexity of the proposed MOALO
algorithm is of O(mn2) where m is the number of objec-
tives and n is the number of individuals. This is identical
to the computational complexity of the well-known multi-
objective algorithms such as MOPSO, NSGA-II, PAES, and
SPEA2. However, the computational complexity of SPEA
and NSGA is of O(mn3), which is worse than that of
MOALO. Regarding the space required for the MOALO, it
needs the same amount of memory compared to MOPSO.
However, both MOALO and MOPSO require more memory
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while the end condition is not met
for every ant

Select a random antlion from the archive
Select the elite using Roulette wheel from the archive
Update c and d using equations Eqs. (3.5) and (3.6)
Create a random walk and normalize it using Eq. (3.1) and Eq. (3.2)
Update the position of ant using (3.8)

end for
Calculate the objective values of all ants 
Update the archive  
if the archive is full

Delete some solutions using Roulette wheel and Eq. (3.10) from the archive 
to accommodate new solutions. 

end

return archive

Fig. 1 Pseudocodes of the MOALO algorithm

compared to NSGA-II due the use of archive to store the
best non-dominated solutions obtained so far.

4 Results on test functions

This section benchmarks the performance of the proposed
algorithm on 17 case studies including 5 unconstrained
functions, 5 constrained functions, 7 and engineering design
problems. The details of case study can be found in
Appendices A, B, and C. It may be observed that test
functions with diverse characteristics (especially different
Pareto optimal front) are chosen to test the performance of
MOALO from different perspectives. Although test func-
tions can be very beneficial in examining an algorithm,

solving real problems is always more challenging. This is
why we have chosen a set of 7 multi-objective engineering
design problems to confirm the applicability of the MOALO
algorithm.

For results verification, two of the most well-regarded
algorithms, such as MOPSO and NSGA-II, are employed.
The results are collected and presented qualitatively and
quantitatively in this section. The MOALO is run 10 times
and the statistical results are reported in the tables below.
The results are collected qualitatively and quantitatively.
Note that we have utilized 100 iterations, 50 search agents,
and an archive size of 100 in the experiments. The results
of the comparative algorithms on some of the test functions
are taken from [43, 45]. For the qualitative results, the best
Pareto optimal front obtained by the algorithms are shown in

Table 1 Results of the multi-objective algorithms (using IGD) on the unconstrained test functions employed

Algorithm ZDT1 ZDT2

Ave Std. Median Best Worst Ave Std. Median Best Worst

MOALO 0.01524 0.005022 0.0166 0.0061 0.0209 0.01751 0.010977 0.0165 0.0050 0.0377

MOPSO 0.00422 0.003103 0.0037 0.0015 0.0101 0.00156 0.000174 0.0017 0.0013 0.0017

NSGA-II 0.05988 0.005436 0.0574 0.0546 0.0702 0.13972 0.026263 0.1258 0.1148 0.1834

Algorithm ZDT3 ZDT1 with linear front

Ave Std. Median Best Worst Ave Std. Median Best Worst

MOALO 0.03032 0.000969 0.0323 0.0303 0.0330 0.01982 0.007545 0.0196 0.0106 0.0330

MOPSO 0.03782 0.006297 0.0362 0.0308 0.0497 0.00922 0.005531 0.0098 0.0012 0.0165

NSGA-II 0.04166 0.008073 0.0403 0.0315 0.0557 0.08274 0.005422 0.0804 0.0773 0.0924

Algorithm ZDT2 with 3 objectives

Ave Std. Median Best Worst

MOALO 0.02629 0.004451 0.0288 0.0191 0.0315

MOPSO 0.02032 0.001278 0.0203 0.0189 0.0225

NSGA-II 0.0626 0.017888 0.0584 0.0371 0.0847
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the following figures. For the quantitative results, it should
be noted that we have employed a wide range of perfor-
mance metrics to quantify the performance of algorithm:
Generational Distance (GD) [39], Inverted Generational
Distance (IGD) [40], metric of spread [8], and metric of
spacing [41]. The results of each set of test functions are
presented and discussed in the following subsections.

4.1 Results on unconstrained test problems

As mentioned above, the first set of test problem consists
of unconstrained test functions. Appendix A shows that
the well-known ZDT test suite is employed [42]. The first
three test functions in this work are identical to those in the

original ZDT suite, but the last two test functions are slightly
different in a same manner similar to [43]. We have delib-
erately modified ZDT1 and ZDT2 to create a linear and
3D front for benchmarking the performance of the MOALO
algorithm proposed. After all, the results are presented in
Table 1, Figs. 2 and 3.

Table 1 shows that the MOALO algorithm managed
to outperform the NSGA-II algorithm significantly on
all unconstrained test functions. The superiority can be
seen in all the columns, showing a higher accuracy
and better robustness of MOALO compared to NSGA-II.
The MOALO algorithm, however, shows very competi-
tive results in comparison with the MOPSO algorithm and
occasionally outperforms it.

Fig. 2 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT1, ZDT2, and ZDT3
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Fig. 3 Best Pareto optimal front obtained by the multi-objective algorithms on ZDT1 with linear front and ZDT2 with 3 objectives

Table 2 Results of the multi-objective algorithms on CONSTR, TNK, SRN, BNH, and OSY constrained test problem

Algorithm GD Metric of spread Metric of spacing IGD

Ave Std. Ave Std. Ave Std. Ave Std.

CONSTR test problem

MOALO 1.7021E-04 4.6424E-05 0.34585 1.0425E-02 0.0214 0.0027 1.4E-04 2.42E-05

MOPSO 4.5437E−03 6.8558E−04 0.94312 3.6719E−01 N/A N/A N/A N/A

NSGA-II 5.1349E−03 2.4753E−04 0.54863 2.7171E−02 0.0437 0.0041 N/A N/A

TNK test problem

MOALO 7.9693E-04 5.4324E-05 0.64273 1.1525E-02 0.002 0.0001 6.2E-04 7.64E-05

MOPSO 5.0877E−03 4.5564E−04 0.79363 5.1029E−02 N/A N/A N/A N/A

NSGA-II 4.0488E−03 4.3465E−04 0.82286 2.8678E−04 N/A N/A N/A N/A

SRN test problem

MOALO 6.8937E-05 3.4958E-06 0.3859 2.5242E-02 0.7030 0.102 0.3E-04 6.69E-06

MOPSO 2.7623E−03 2.0794E−04 0.6655 7.2196E−02 N/A N/A N/A N/A

NSGA-II 3.7069E−03 5.1034E−04 0.3869 2.5115E−02 1.586 0.133 N/A N/A

BNH test problem

MOALO 2.0466E-04 5.6982E-05 0.3716 2.6356E-02 0.3357 0.024 2.4E-04 5.56E-05

MOPSO N/A N/A N/A N/A 0.6941 0.038 N/A N/A

NSGA-II N/A N/A N/A N/A 0.7756 0.072 N/A N/A

OSY test problem

MOALO 3.12E-02 2.58E-02 0.3716 2.6356E-02 0.4959 0.076 2.9E-02 1.17E-02

MOPSO 9.68E−02 7.18e−02 N/A N/A 0.522 0.095 N/A N/A

NSGA-II 9.89E−01 9.78E−01 N/A N/A 1.14 0.275 N/A N/A
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The shape of the best Pareto optimal front obtained by the
three algorithms on ZDT1, ZDT2, and ZDT3 are illustrated
in Fig. 2. Inspecting this figure, it may be observed that
NSGA-II shows the poorest convergence despite its good
coverage in ZDT1 and ZDT3. However, the MOPSO and
MOALO both provide a very good convergence toward all
the true Pareto optimal fronts. The most interesting pattern
is that the Pareto optimal solutions obtained by MOPSO
show higher coverage than MOALO on ZDT1 and ZDT2.

However, the coverage of MOALO on ZDT3 is better than
MOPSO. This shows that MOALO has the potential to
outperform MOPSO in finding Pareto optimal front with
separated regions.

Figure 3 shows the best Pareto optimal front obtained
by the algorithms on the last two unconstrained bench-
mark functions, in which the shape of the fronts are linear
and convex. It is interesting the results are consistent with
those of the first three test functions where the NSGA-II

Fig. 4 Best Pareto optimal front obtained by MOALO for CONSTR, TNK, SRN, BNH, and OSY
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algorithm shows the worst convergence. Comparing the
results of MOPSO and MOALO on these test functions, it
may be seen that the convergence of both algorithms are
almost similar, but the coverage of the MOPSO is slightly
superior.

4.2 Results on constrained test problems

The second set of test function includes constrained bench-
mark functions. Obviously, we need to equip MOALO with
a constraint handling technique to be able to solve such
problems. Finding a suitable constraints handling approach
is out of the scope of this work, and we employ a death
penalty function [44] to penalize search agents that vio-
late any of the constraints at any level. For comparing
algorithms, we have utilized four metrics in this experiment:
GD, IGD, metric of spread, and metric of space. These
performance indicators allow us to quantify and compare

algorithms in terms of convergence and coverage. Note that
the results of MOPSO and NSGA-II are taken from [45].

Table 2 shows that the MOALO outperforms the other
two algorithms on the majority of the constrained test func-
tions employed. The superior convergence can be inferred
from the results of GD and IGD. The results collected by
the GD performance metric clearly shows that the MOALO
algorithm surpasses the MOPSO and NSGA-II algorithm.
The best Pareto optimal fronts in Fig. 3 also support
this claim since all the Pareto optimal solutions found by
MOALO are located on the front.

The results for coverage performance metrics in Table 2
also prove that both MOPSO and MOALO show better
results compared to the NSGA-II algorithm. However, they
tend to be very competitive in comparison to each other.
High coverage of the MOALO algorithm on the constrained
test functions can be observed in Fig. 4. This figure illus-
trates that some of the constrained test functions have very

Table 3 Results of the constrained engineering design problems

Algorithm GD Metric of spread Metric of spacing IGD

Ave Std. Ave Std. Ave Std. Ave Std.

Four-bar truss design problem

MOALO 0.1264 0.0327 0.370 0.00251 1.1805 0.144 0.1062 1.52E-02

MOPSO 0.3741 0.0422 N/A N/A 2.5303 0.227 N/A N/A

NSGA-II 0.3601 0.0470 N/A N/A 2.3635 0.255 N/A N/A

Speed reducer design problem

MOALO 1.1767 0.2327 0.839 0.1267 1.7706 2.769 0.8672 1.49E-01

MOPSO 0.98831 0.1789 N/A N/A 16.685 2.696 N/A N/A

NSGA-II 9.8437 7.0810 N/A N/A 2.7654 3.534 N/A N/A

Disk brake design problem

MOALO 0.0011 0.00245 0.44958 0.05427 0.0421 0.0058 1.94E-2 .78E-3

MOPSO 0.0244 0.12314 0.46041 0.10961 N/A N/A N/A N/A

NSGA-II 3.0771 0.10782 0.79717 0.06608 N/A N/A N/A N/A

Welded beam design problem

MOALO 0.00665 0.00742 0.19784 0.07962 0.0426 0.0077 1.52E-3 4.65E-3

MOPSO 0.04909 0.02821 0.22478 0.09280 N/A N/A N/A N/A

NSGA-II 0.16875 0.08030 0.88987 0.11976 N/A N/A N/A N/A

Cantilever beam design problem

MOALO 2.3442E-4 1.6222E-5 0.76731 0.16853 0.00832 0.0029 1.89E-4 6.96E-5

MOPSO N/A N/A N/A N/A N/A N/A N/A N/A

NSGA-II N/A N/A N/A N/A N/A N/A N/A N/A

Brushless DC Wheel Motor design problem

MOALO 7.75E-3 5.261E-3 0.8211 0.07845 0.00826 0.0007 1.42E-3 1.25E-3

MOPSO 8.78E-2 4.22E-2 N/A N/A N/A N/A N/A N/A

NSGA-II 8.51E-2 1.70E-2 N/A N/A N/A N/A N/A N/A

Safety Isolating Transformer design problem

MOALO 1.41720E-3 1.25426E-4 0.40761 0.06802 0.0558 0.0057 1.22E-3 9.87E-4

MOPSO 6.54731E-2 9.85432E-3 N/A N/A N/A N/A N/A N/A

NSGA-II 2.65719E-2 7.67234E-3 N/A N/A N/A N/A N/A N/A
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Fig. 5 Best Pareto optimal front obtained by the multi-objective algo-
rithms on the engineering design multiobjective problems: 4-bar truss
design, speed reduced design, disk brake design, welded beam deign,

cantilever beam design, brushless dc wheel motor design, and safety
isolating transformer design
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different Pareto fronts compared to the unconstrained test
functions utilized in the preceding sub-section, for instance
CONSTR, BNH, and OSY. It may be seen that CON-
STR has a concave front attached to a linear front. The
results show that MOALO managed to approximate both
parts successfully. However, the TNK test function has a
wave-shaped front, and it was determined completely by the
proposed MOALO. The OSY function is slightly similar
to CONSTR but with multiple linear regions with different
slopes. Again, the results show that these types of fronts are
also achievable by the MOALO algorithm.

4.3 Results on constrained engineering design problems

The last set of test functions is the most challenging
one and includes 7 real engineering design problems. The
Appendix C shows that these problems have diverse charac-
teristics and are all constrained. Therefore, they highly suit
benchmarking the performance of the proposed MOALO
algorithm. A similar set of performance metrics is employed
to compare the results of algorithms quantitativelly, and the
results are presented in Table 3 and Fig. 5.

The results in Table 3 are consistent with those in the
preceding tables, in which the MOALO algorithm mostly
shows better convergence and coverage. Due to the diffi-
culty of these real engineering design problems, the results
highly support the superiority of the MOALO algorithm and
its applicability. The best Pareto optimal fronts in Fig. 5,
however, present different behavior from other test suites.
It may be seen in this figure that the convergence of the
MOALO algorithm is not 100% close to the true Pareto front
in the speed reducer, welded beam, and brushless DC wheel
motor design problems. This is due to the multi-modality
(multiple local fronts) of the search space and existence
of many constraints. In spite of this fact, the convergence
is reasonable and coverage is extremely high and almost
uniform.

4.4 Discussion

The qualitative and quantitative results showed that the
MOALO algorithm benefits from high convergence and
coverage. High convergence of MOALO is inherited from
the ALO algorithm. The main mechanisms that guarantee
convergence in ALO and MOALO are shrinking bound-
aries of random walks in the movement of ants and elitism.
These two mechanisms emphasize exploitation and conver-
gence proportional to the number of iterations. Since we
select two solutions from the archive in every iterations and
require an ant to move around both of them in MOALO,
degraded convergence might be a concern. However, the
results prove that the MOALO algorithm does not suffer
from slow convergence.

It was also observed and proved that high coverage is
another advantage of the MOALO algorithm. The superior
coverage originates from the antlion selection and archive
maintenance methods. Anlions in the regions of the search
space with a less-populated neighbourhood have a lower
chance of being chosen from the archive. This requires
ants to explore and explore the un-covered or less-covered
areas of the search space and front. In addition, the archive
maintenance mechanism is regularly triggered when the
archive becomes full. Since solutions in the most popu-
lated regions have a higher chance to be thrown away, this
mechanism again emphasizes improving the coverage of
the Pareto optimal front obtained during the optimization
process.

5 Conclusion

This paper proposed the multi-objective version of the
recently proposed ALO algorithm called MOALO. With
maintaining the main search mechanism of ALO, MOALO
was designed with equipping ALO with an archive and
antlion selection mechanism based on Pareto optimal dom-
inance. The algorithm was tested on 17 case studies includ-
ing 5 unconstrained functions, 5 constrained functions, 7
and engineering design problems. The quantitative results
were collected using four performance indicators: GD, IGD,
metric of spread, and metric of spacing. Also, qualita-
tive results were reported as the best Pareto optimal front
found in 10 runs. For results verification, the proposed
algorithm was compared to the well-regarded algorithms
in the field: NSGA-II and MOPSO. The results showed
that the MOALO is able to outperform NSGA-II on the
majority of the test functions and provide very competi-
tive resulted compared to the MOPSO algorithm. It was
observed that MOALO benefits from high convergence and
coverage as well. The test functions employed are of dif-
ferent type and have diverse Pareto optimal fronts. The
results showed that MOALO can find Pareto optimal front
of any shape. Finally, the results of constrained engineer-
ing design problems testified that MOALO is capable of
solving challenging problems with many constraints and
unknown search spaces. Therefore, we conclude that the
proposed algorithm has merits among the current multi-
objective algorithms and offer it as an alternative for solving
multi-objective optimization problems. Another conclusion
is made based on the NFL theorem: MOALO outperforms
other algorithms on the test functions, so it has the potential
to provide superior results on other problems as well. Note
that the source codes of the MOALO and ALO algorithms
are publicly available at http://alimirjalili.com/ALO.html.

For future works, it is recommended to apply MOALO
to other engineering design problems. Also, it is worth to

http://alimirjalili.com/ALO.html
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investigate and find the best constrained handling technique
for this algorithm.

Appendix A: Unconstrained multi-objective test
problems utilised in this work

ZDT1:

Minimize: f1(x) = x1 (A.1)

Minimize: f2(x) = g(x) × h(f1(x), g(x)) (A.2)

Where: G(x) = 1 + 9

N − 1

N∑
i=2

xi (A.3)

h(f1(x), g(x)) = 1 −
√

f1(x)

g(x)
(A.4)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT2:

Minimize: f1(x) = x1 (A.5)

Minimize: f2(x) = g(x) × h(f1(x), g(x)) (A.6)

Where: G(x) = 1 + 9

N − 1

N∑
i=2

xi (A.7)

h(f1(x), g(x)) = 1 −
(

f1(x)

g(x)

)2

(A.8)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT3:

Minimize: f1(x) = x1 (A.9)

Minimize: f2(x) = g(x) × h(f1(x), g(x)) (A.10)

Where: G(x) = 1 + 9

29

N∑
i=2

xi (A.11)

h(f1(x), g(x)) = 1 −
√

f1(x)

g(x)
(A.12)

−
(

f1(x)

g(x)

)
sin(10πf1(x))

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT1 with linear PF:

Minimize: f1(x) = x1 (A.13)

Minimize: f2(x) = g(x) × h(f1(x), g(x)) (A.14)

Where: G(x) = 1 + 9

N − 1

N∑
i=2

xi (A.15)

h(f1(x), g(x)) = 1 − f1(x)

g(x)
(A.16)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT2 with three objectives:

Minimize: f1(x) = x1 (A.17)

Minimize: f2(x) = x2 (A.18)

Minimize: f3(x) = g(x) × h(f1(x), g(x)) (A.19)

×h(f2(x), g(x))

Where: G(x) = 1 + 9

N − 1

N∑
i=2

xi (A.20)

h(f1(x), g(x)) = 1 −
(

f1(x)

g(x)

)2

(A.21)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

Appendix B: Constrained multi-objective test
problems utilised in this work

CONSTR:
This problem has a convex Pareto front, and there are two

constraints and two design variables.

Minimize: f1(x) = x1 (B.1)

Minimize: f2(x) = (1 + x2)/(x1) (B.2)

Where: g1(x)=6 − (x2 + 9x1), g2(x)=1 + x2 − 9x1
0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 5

TNK:
The second problem has a discontinuous Pareto optima

front, and there are two constraints and two design
variables.

Minimize: f1(x) = x1 (B.3)
Minimize: f2(x) = x2 (B.4)

Where: g1(x)=−x 2
1 −x 2

2 +1+0.1Cos

(
16arctan

(
x1

x2

))

g2(x) = 0.5 − (x1 − 0.5)2 − (x2 − 0.5)2

0.1 ≤ x1 ≤ π, 0 ≤ x2 ≤ π

SRN:
The third problem has a continuous Pareto optimal front

proposed by Srinivas and Deb [46].

Minimize: f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2 (B.5)

Minimize: f2(x) = 9x1 − (x2 − 1)2 (B.6)

Where: g1(x) = x 2
1 + x 2

2 − 255

g2(x) = x1 − 3x2 + 10

− 20 ≤ x1 ≤ 20,−20 ≤ x2 ≤ 20
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BNH:
This problem was first proposed by Binh and Korn [47]:

Minimize: f1(x) = 4x 2
1 + 4x 2

2 (B.7)

Minimize: f2(x) = (x1 − 5)2 + (x2 − 5)2 (B.8)

Where: g1(x) = (x1 − 5)2 + x 2
2 − 25

g2(x) = 7.7 − (x1 − 8)2 − (x2 + 3)2

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3

OSY:
The OSY test problem has five separated regions pro-

posed by Osyczka and Kundu [48]. Also, there are six
constraints and six design variables.

Minimize: f1(x)=x 2
1 +x 2

2 + x 2
3 + x 2

4 + x 2
5 + x 2

6 (B.9)

Minimize: f2(x)=[25(x1−2)2 + (x2−1)2+(x3 − 1)

+(x4 − 4)2 + (x5 − 1)2] (B.10)

Where: g1(x) = 2 − x1 − x2

g2(x) = −6 + x1 + x2

g3(x) = −2 − x1 + x2

g4(x) = −2 + x1 − 3x2
g5(x) = −4 + x4 + (x3 − 3)2

g6(x) = 4 − x6 − (x5 − 3)2

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5, 0 ≤ x4

≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10

Appendix C: Constrained multi-objective
engineering problems used in this work

Four-bar truss design problem

The 4-bar truss design problem is a well-known problem
in the structural optimization field [49], in which structural
volume (f1) and displacement (f2) of a 4-bar truss should be
minimized. As can be seen in the following equations, there
are four design variables (x1-x4) related to cross sectional
area of members 1, 2, 3, and 4.

Minimize: f1(x) = 200 ∗ (2 ∗ x(1) + sqrt (2 ∗ x(2))

+ sqrt (x(3)) + x(4)) (C.1)

Minimize: f2(x) = 0.01 ∗ (

(
2

x(1)

)
+

(
2 ∗ sqrt (2)

x(2)

)
....

− ((2 ∗ sqrt (2))/x(3)) + (2/x(1))) (C.2)

1≤x1 ≤ 3, 1.4142 ≤ x2≤3, 1.4142 ≤ x3 ≤ 3, 1 ≤ x4 ≤ 3

Speed reducer design problem

The speed reducer design problem is a well-known prob-
lem in the area of mechanical engineering [49, 50], in which
the weight (f1) and stress (f2) of a speed reducer should
be minimized. There are seven design variables: gear face
width (x1), teeth module (x2), number of teeth of pinion
(x3 integer variable), distance between bearings 1 (x4), dis-
tance between bearings 2 (x5), diameter of shaft 1 (x6), and
diameter of shaft 2 (x7) as well as eleven constraints.

Minimize: f1(x) = 0.7854∗x(1)∗x(2)2∗(3.3333 ∗ x(3)2

+14.9334 ∗ x(3))...

− 43.0934) − 1.508 ∗ x(1) ∗ (x(6)2 + x(7)2

+ 7.4777 ∗ (x(6)3 + x(7)3)... (C.3)

+ 0.7854 ∗ (x(4) ∗ x(6)2 + x(5) ∗ x(7)2)

Minimize: f2(x) = ((sqrt (((745 ∗ x(4))/x(2) ∗ x(3)))2

+19.9e6))/(0.1 ∗ x(6)3)) (C.4)

Where: g1(x) = 27/(x(1) ∗ x(2)2 ∗ x(3)) − 1

g2(x) = 397.5/(x(1) ∗ x(2)2 ∗ x(3)2) − 1

g3(x) = (1.93 ∗ (x(4)3)/(x(2) ∗ x(3) ∗ x(6)4) − 1

g4(x) = (1.93 ∗ (x(5)3)/(x(2) ∗ x(3) ∗ x(7)4) − 1

g5(x) = ((sqrt (((745 ∗ x(4))/(x(2) ∗ x(3)))2

+ 16.9e6))/(110 ∗ x(6)3)) − 1

g6(x) = ((sqrt (((745 ∗ x(5))/(x(2) ∗ x(3)))2

+ 157.5e6))/(85 ∗ x(7)3)) − 1

g7(x) = ((x(2) ∗ x(3))/40) − 1

g8(x) = (5 ∗ x(2)/x(1)) − 1

g9(x) = (x(1)/12 ∗ x(2)) − 1

g10(x) = ((1.5 ∗ x(6) + 1.9)/x(4)) − 1

g11(x) = ((1.1 ∗ x(7) + 1.9)/x(5)) − 1

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4

≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

5 ≤ x7 ≤ 5.5

Disk brake design problem

The disk brake design problem has mixed constraints and
was proposed by Ray and Liew [51]. The objectives to be
minimized are: stopping time (f1) and mass of a brake (f2)
of a disk brake. As can be seen in following equations,
there are four design variables: the inner radius of the disk
(x1), the outer radius of the disk (x2), the engaging force
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(x3), and the number of friction surfaces (x4) as well as five
constraints.

Minimize: f1(x) = 4.9 ∗ (10(−5)) ∗ (x(2)2−x(1)2) ∗ (x(4)−1)

(C.5)

Minimize: f2(x) = (9.82 ∗ (10(6))) ∗ (x(2)2

− x(1)2))/((x(2)3 − x(1)3) ∗ x(4) ∗ x(3))

(C.6)

Where: g1(x) = 20 + x(1) − x(2)

g2(x) = 2.5 ∗ (x(4) + 1) − 30

g3(x) = (x(3))/(3.14 ∗ (x(2)2 − x(1)2)2) − 0.4

g4(x) = (2.22 ∗ 10(−3) ∗ x(3) ∗ (x(2)3

− x(1)3))/((x(2)2 − x(1)2)2) − 1

g5(x) = 900 − (2.66 ∗ 10(−2) ∗ x(3) ∗ x(4) ∗ (x(2)3

− x(1)3))/((x(2)2 − x(1)2))

55≤x1≤80, 75≤x2≤110, 1000≤x3≤3000, 2≤x4 ≤ 20

Welded beam design problem

The welded beam design problem has four constraints first
proposed by Ray and Liew [51]. The fabrication cost (f1)
and deflection of the beam (f2) of a welded beam should be
minimized in this problem. There are four design variables:
the thickness of the weld (x1), the length of the clamped
bar (x2), the height of the bar (x3) and the thickness of the
bar (x4).

Minimize: f1(x) = 1.10471 ∗ x(1)2 ∗ x(2)

+ 0.04811 ∗ x(3) ∗ x(4) ∗ (14.0+x(2))

(C.7)

Minimize: f2(x) = 65856000/(30 ∗ 106 ∗ x(4) ∗ x(3)3) (C.8)

Where: g1(x) = τ − 13600

g2(x) = σ − 30000

g3(x) = x(1) − x(4)

g4 = 6000 − P

0.125 ≤ x1 ≤ 5, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.125 ≤ x4 ≤ 5

Where

q = 6000 ∗
(
14 + x(2)

2

)
; D = sqrt

(
x(2)2

4
+ (x(1) + x(3))2

4

)

J = 2 ∗
(

x(1) ∗ x(2) ∗ sqrt (2) ∗
(

x(2)2

12
+ (x(1) + x(3))2

4

))

α = 6000

sqrt (2) ∗ x(1) ∗ x(2)

β = Q ∗ D

J

τ = sqrt

(
α2 + 2 ∗ α ∗ β ∗ x(2)

2 ∗ D
+ β2

)

σ = 504000

x(4) ∗ x(3)2

tmpf = 4.013 ∗ 30 ∗ 106

196

P = tmpf ∗ sqrt

(
x(3)2 ∗ x(4)6

36

)
∗

⎛
⎝1 − x(3) ∗

sqrt
(
30
48

)
28

⎞
⎠

Cantilever beam design problem

The cantilever beam design problem is another well-known
problem in the field of concrete engineering [8], in which
weight (f1) and end deflection (f2) of a cantilever beam
should be minimized. There are two design variables: diam-
eter (x1) and length (x2).

Minimize: f1(x) = 0.25 ∗ ρ ∗ π ∗ x(2) ∗ x(1)2 (C.9)

Minimize: f2(x) = (64 ∗ P ∗ x(2)3)/(3 ∗ E ∗ π ∗ x(1)4)

(C.10)

Where: g1(x) = −Sy + (32 ∗ P ∗ x(2))/(π ∗ x(1)3)

g2(x) = −δmax + (64 ∗ P ∗ x(2)3)/(3 ∗ E ∗ π ∗ x(1)4)

0.01 ≤ x1 ≤ 0.05, 0.20 ≤ x2 ≤ 1

Where

P =1, E=207000000, Sy =300000, δmax =0.005; ρ =7800

Brushless DC wheel motor with two objectives

Brushless DC wheel motor design problem is a constrained
multi-objective problem in the area of electrical engineering
[52]. The objectives are in conflict, and there are five design
variables: stator diameter (Ds), magnetic induction in the
air gap (Be), current density in the conductors (δ), magnetic
induction in the teeth (Bd) and magnetic induction in the
stator back iron (Bcs).

Maximize: f1(x) = Max η (C.11)

Minimize: f2(x) = Min Mtot (C.12)

Dext ≤ 340mm

Where: G(x) = Dint ≥ 76mm, Imax ≥ 125A

Ta ≤ 120◦, discr ≥ 0

150mm ≤ Ds ≤ 330mm, 0.5T ≤ Be ≤0.76T

2A/mm2 ≤ ς ≤5A/mm2, 0.9T ≤ Bd ≤1.8T

0.6T ≤ Bcs ≤ 1.6T
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Safety isolating transformer design with two objectives

Maximize: f1(x) = Max η (C.13)

Maximize: f2(x) = Min Mtot (C.14)

Tcond ≤ 120◦C, Tiron ≤ 100◦C

Where: G(x) = �V2

V20
≤ 0.1,

I10

I1
≤ 0.1

f2 ≤ 1, f1 ≤ 1

residue < 10−6

3mm ≤ a ≤ 30mm, 14mm ≤ b ≤ 95mm

6mm ≤ c ≤ 40mm, 10mm ≤ d ≤ 80mm

200 ≤ n1 ≤ 1200, 0.15mm2 ≤ S1 ≤ 19mm2

0.15mm2 ≤ S2 ≤ 19mm2
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