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In this paper a novel nature-inspired optimization paradigm is proposed called Moth-Flame Optimization
(MFO) algorithm. The main inspiration of this optimizer is the navigation method of moths in nature
called transverse orientation. Moths fly in night by maintaining a fixed angle with respect to the moon,
a very effective mechanism for travelling in a straight line for long distances. However, these fancy
insects are trapped in a useless/deadly spiral path around artificial lights. This paper mathematically
models this behaviour to perform optimization. The MFO algorithm is compared with other
well-known nature-inspired algorithms on 29 benchmark and 7 real engineering problems. The statisti-
cal results on the benchmark functions show that this algorithm is able to provide very promising and
competitive results. Additionally, the results of the real problems demonstrate the merits of this
algorithm in solving challenging problems with constrained and unknown search spaces. The paper also
considers the application of the proposed algorithm in the field of marine propeller design to further
investigate its effectiveness in practice. Note that the source codes of the MFO algorithm are publicly
available at http://www.alimirjalili.com/MFO.html.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction individuals is higher than worst individuals, the overall average fit-
Optimization refers to the process of finding the best possible
solution(s) for a particular problem. As the complexity of problems
increases, over the last few decades, the need for new optimization
techniques becomes evident more than before. Mathematical opti-
mization techniques used to be the only tools for optimizing prob-
lems before the proposal of heuristic optimization techniques.
Mathematical optimization methods are mostly deterministic that
suffer from one major problem: local optima entrapment. Some of
them such as gradient-based algorithms require derivation of the
search space as well. This makes them highly inefficient in solving
real problems.

The so-called Genetic Algorithm (GA) [1], which is undoubtedly
the most popular stochastic optimization algorithm, was proposed
to alleviate the aforementioned drawbacks of the deterministic algo-
rithms. The key success of GA algorithm mostly relies on the stochas-
tic components of this algorithm. The selection, re-production, and
mutation have all stochastic behaviours that assist GA to avoid local
optima much more efficient than mathematical optimization algo-
rithms. Since the probability of selection and re-production of best
ness of population is improved over the course of generations. These
two simple concepts are the key reasons of the success of GA in solv-
ing optimization problems. Another fact about this algorithm is that
there is no need to have gradient information of the problems since
GA only evaluates the individuals based on the fitness. This makes
this algorithm highly suitable for solving real problems with
unknown search spaces. Nowadays, the application of the GA algo-
rithm can be found in a wide range of fields.

The years after the proposal of the GA were accompanied by the
highest attention to such algorithms, which resulted in the proposal
of the well-known algorithms like PSO [2] algorithm, Ant Colony
Optimization (ACO) [3], Differential Evolution (DE) [4], Evolutionary
Strategy (ES) [5], and Evolutionary Programming (EP) [6,7]. The
application of these algorithms can be found in different branches
of science and industry as well. Despite the merits of these
optimizers, there is a fundamental question here as if there is any
optimizer for solving all optimization problems. According to the
No-Free-Lunch (NFL) theorem [8], there is no algorithm for solving
all optimization problems. This means that an optimizer may
perform well in a set of problems and fail to solve a different set
of problems. In other words, the average performance of optimizes
is equal when considering all optimization problems. Therefore,
there are still problems that can be solved by new optimizers better
than the current optimizers.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.07.006&domain=pdf
http://www.alimirjalili.com/MFO.html
http://dx.doi.org/10.1016/j.knosys.2015.07.006
mailto:seyedali.mirjalili@griffithuni.edu.au
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://www.sciencedirect.com/science/journal/09507051
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This is the motivation of this work, in which a novel
nature-inspired algorithm is proposed to compete with the current
optimization algorithms. The main inspiration of the proposed
algorithm is the navigating mechanism of moths in nature called
transverse orientation. The paper first proposes the mathematical
model of spiral flying path of moths around artificial lights
(flames). An optimization algorithm is then proposed using the
mathematical model to solve optimization problems in different
fields. The rest of the paper is organized as follows.

Section 2 reviews the literature of stochastic and heuristic opti-
mization algorithms. Section 3 presents the inspiration of this
work and proposes the MFO algorithm. The experimental setup,
results, discussion, and analysis are provided in Section 4. Section 5
investigates the effectiveness of the proposed MFO algorithm in
solving nine constrained engineering design problems: welded
beam, gear train, three-bar truss, pressure vessel, cantilever beam,
I-beam, tension/compression spring, 15-bar truss, and 52-bar truss
design problems. In addition, Section 6 demonstrates the applica-
tion of MFO in the field of marine propeller design. Eventually,
Section 7 concludes the work and suggests several directions for
future studies.
2. Literature review

This section first reviews the state-of-the-art and then discusses
the motivations of this work.

A brief history of stochastic optimization techniques was pro-
vided in the introduction. A general classification of the algorithms
in this field is based on the number of candidate solutions that is
improved during optimization. An algorithm may start and
perform the optimization process by single or multiple random
solution(s). In the former case the optimization process begins
with a single random solution, and it is iteratively improved over
the iterations. In the latter case a set of solutions (more than
one) is created and improved during optimization. These two fam-
ilies are called individual-based and population-based algorithms.

There are several advantages and disadvantages for each of
these families. Individual-based algorithms need less computa-
tional cost and function evaluation but suffer from premature
convergence. Premature convergence refers to the stagnation of
an optimization technique in local optima, which prevents it
from convergence towards the global optimum. In contrary,
population-based algorithms have high ability to avoid local
optima since a set of solutions are involved during optimization.
In addition, information can be exchanged between the candidate
solutions, which assist them to overcome different difficulties of
search spaces. However, high computational cost and the need
for more function evaluation are two major drawbacks of
population-based algorithms.

The well-known algorithms in the individual-based family are:
Tabu Search (TS) [6,9], hill climbing [10], Iterated Local Search (ILS)
[11], and Simulated Annealing (SA) [12]. TS is an improved local
search technique that utilizes short-term, intermediate-term, and
long-term memories to ban and truncate unpromising/repeated
solutions. Hill climbing is also another local search and
individual-based technique that starts optimization by a single
solution. This algorithm then iteratively attempts to improve the
solution by changing its variables. ILS is an improved hill climbing
algorithm to decrease the probability of trapping in local optima. In
this algorithm, the obtained optimum at the end of each run is
perturbed and considered as the starting point in the next itera-
tion. Eventually, the SA algorithm tends to accept worse solutions
proportional to a variable called cooling factor. This assists SA to
promote exploration of the search space and consequently avoid
local optima.
Although different improvements of individual-based algo-
rithms promote local optima avoidance, the literature shows that
population-based algorithms are better in handling this issue.
Regardless of the differences between population-based algo-
rithms, the common is the division of optimization process to
two conflicting milestones: exploration versus exploitation [13].
The exploration milestone encourages candidate solutions to
change abruptly and stochastically. This mechanism improves
the diversity of the solutions and causes high exploration of the
search space. In PSO, for instance, the inertia weight maintains
the tendency of particles toward their previous directions and
emphasizes exploration. In GA, high probability of crossover causes
more combination of individuals and is the main mechanism for
the exploration milestone.

In contrast, the exploitation milestone aims for improving the
quality of solutions by searching locally around the obtained
promising solutions in the exploration milestone. In this milestone,
candidate solutions are obliged to change less suddenly and search
locally. In PSO, for instance, low inertia rate causes low exploration
and high tendency toward to best personal/global solutions
obtained. Therefore, the particles converge toward best points
instead of churning around the search space. The mechanism that
brings GA exploitation is the mutation operators. Mutation causes
slight random changes in the individuals and local search around
the candidate solutions.

Exploration and exploitation are two conflicting milestones
where promoting one results in degrading the other [14]. A right
balance between these two milestones can guarantee a very accu-
rate approximation of the global optimum using population-based
algorithms. On one hand, mere exploration of the search space pre-
vents an algorithm from finding an accurate approximation of the
global optimum. On the other hand, mere exploitation results in
local optima stagnation and again low quality of the approximated
optimum. Due to the unknown shape of the search space for
optimization problems, in addition, there is no clear accurate
timing for transition between these two milestones. Therefore,
population-based algorithms balance exploration and exploitation
milestones to firstly find a rough approximation of the global opti-
mum, and then improve its accuracy.

The general framework of population-based algorithms is
almost identical. The first step is to generate a set of random initial

solutions ðX!Þ ¼ f X1
�!

; X2
�!

; . . . ; Xn
�!g. Each of these solutions is

considered as a candidate solution for a given problem, assessed

by the objective function, and assigned an objective value: ðO!Þ ¼
fO1;O2; . . . ;Ong. The algorithm then combines/moves/updates the
candidate solutions based on their fitness values with the hope
to improve them. The created solutions are again assessed by the
objective function and assigned their relevant fitness values. This
process is iterated until the satisfaction of an end condition. At
the end of this process, the best solution obtained is reported as
the best approximation for the global optimum.

Recently, many population-based algorithms have been pro-
posed. They can be classified to three main categories based on
the source of inspiration: evolution, physic, or swarm. Evolutionary
algorithms are those who mimic the evolutionary processes in nat-
ure. Some of the recently proposed evolutionary algorithms are
Biogeography-based Optimization (BBO) algorithm [15], evolution-
ary membrane algorithm [16], human evolutionary model [17],
and Asexual Reproduction Optimization (ARO) [18].

The number of recently proposed swarm-based algorithms is
larger than evolutionary algorithms. Some of the most recent ones
are Glowworm Swarm Optimization (GSO) [19], Bees Algorithm
(BA) [20], Artificial Bee Colony (ABC) algorithm [21], Bat Algorithm
(BA) [22], Firefly Algorithm (FA) [23], Cuckoo Search (CS) algorithm
[24], Cuckoo Optimization Algorithm (COA) [25], Grey Wolf Opti-



Fig. 1. Transverse orientation.
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mizer (GWO) [26]. Dolphin Echolocation (DE) [27], Hunting Search
(HS) [28], and Fruit Fly Optimization Algorithm (FFOA) [29].

The third class of algorithms is inspired from physical phenom-
ena in nature. The most recent algorithms in this category are:
Gravitational Search Algorithm (GSA) [30], Chemical Reaction
Optimization (CRO) [31], Artificial Chemical Reaction Optimization
Algorithm (ACROA) [32], Charged System Search (CSS) algorithm
[33], Ray Optimization (RO) [34], Black Hole (BH) algorithm [35],
Central Force Optimization (CFO) [36], Kinetic Gas Molecules Opti-
mization algorithm (KGMO) [37], and Gases Brownian Motion
Optimization (GBMO) [38].

In addition the above-mentioned algorithms, there are also
other population-based algorithms with different source of
inspirations. The most recent ones are: Harmony Search (HS)
optimization algorithm [39], Mine Blast Algorithm (MBA) [40],
Symbiotic Organisms Search (SOS) [41], Soccer League Competition
(SLC) algorithm [42], Seeker Optimization Algorithm (SOA) [43],
Coral Reef Optimization (CRO) algorithm [44], Flower Pollination
Algorithm (FPA) [45], and State of Mater Search (SMS) [46].

As the above paragraphs shows, there are many algorithms in
this field, which indicates the popularity of these techniques in
the literature. If we consider the hybrid, multi-objective, discrete,
and constrained methods, the number of publications will be
increased dramatically. The reputation of these algorithms is due
to several reasons. Firstly, simplicity is the main advantage of the
population-based algorithm. The majority of algorithms in this
field follows a simple framework and have been inspired from
simple concepts. Secondly, these algorithms consider problems as
black boxes, so they do not need derivative information of the
search space in contrast to mathematical optimization algorithms.
Thirdly, the local optima avoidance of population-based stochastic
optimization algorithms is very high, making them suitable for
practical applications. Lastly, population-based algorithms are
highly flexible, meaning that they are readily applicable for solving
different optimization problems without structural modifications.
In fact, the problem representation becomes more important than
the optimizer when using population-based algorithms.

Despite the high number of new algorithms and their applica-
tions in science and industry, there is a question here that if we
need more algorithms in this field. The answer to this questions
is positive according to the No-Free-Lunch (NFL) [8] theorem for
optimization. This theorem logically proves that there is no
optimization algorithm for solving all optimization problems. This
means that an algorithm can be useful for a set of problems but
useless of other types of problems. In other words, the algorithms
perform similar in average over all the possible optimization
problems. This theorem allows the proposal of new algorithms
with the hope to solve a wider range of problems or specific types
of unsolved problems. This is also the motivation of this study
where it is tried to get inspiration from the navigation of moths
in nature and design an optimization algorithm.
Fig. 2. Spiral flying path around close light sources.
3. Moth-flame optimiser

3.1. Inspiration

Moths are fancy insects, which are highly similar to the family
of butterflies. Basically, there are over 160,000 various species of
this insect in nature. They have two main milestones in their life-
time: larvae and adult. The larvae is converted to moth in cocoons.

The most interesting fact about moths is their special naviga-
tion methods in night. They have been evolved to fly in night using
the moon light. They utilized a mechanism called transverse orien-
tation for navigation. In this method, a moth flies by maintaining a
fixed angle with respect to the moon, a very effective mechanism
for travelling long distances in a straight path [47,48]. Fig. 1 shows
a conceptual model of transverse orientation. Since the moon is far
away from the moth, this mechanism guarantees flying in straight
line. The same navigation method can be done by humans. Suppose
that the moon is in the south side of the sky and a human wants to
go the east. If he keeps moon of his left side when walking, he
would be able to move towards the east on a straight line.

Despite the effectiveness of transverse orientation, we usually
observe that moths fly spirally around the lights. In fact, moths
are tricked by artificial lights and show such behaviours. This is
due to the inefficiency of the transverse orientation, in which it
is only helpful for moving in straight line when the light source
is very far. When moths see a human-made artificial light, they
try to maintain a similar angle with the light to fly in straight line.
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Since such a light is extremely close compared to the moon,
however, maintaining a similar angle to the light source causes a
useless or deadly spiral fly path for moths [48]. A conceptual model
of this behaviour is illustrated in Fig. 2.

It may be observed in Fig. 2 that the moth eventually converges
towards the light. This behaviour is modeled mathematically to
propose an optimizer called Moth-Flame Optimization (MFO)
algorithm in the following subsection.

3.2. MFO algorithm

In the proposed MFO algorithm, it is assumed that the candidate
solutions are moths and the problem’s variables are the position of
moths in the space. Therefore, the moths can fly in 1-D, 2-D, 3-D, or
hyper dimensional space with changing their position vectors.
Since the MFO algorithm is a population-based algorithm, the set
of moths is represented in a matrix as follows:

M ¼

m1;1 m1;2 � � � � � � m1;d

m2;1 m2;2 � � � � � � m2;d

..

. ..
. ..

. ..
. ..

.

mn;1 mn;2 � � � � � � mn;d

2
66664

3
77775 ð3:1Þ

where n is the number of moths and d is the number of variables
(dimension).

For all the moths, we also assume that there is an array for
storing the corresponding fitness values as follows:

OM ¼

OM1

OM2

..

.

OMn

2
66664

3
77775 ð3:2Þ

where n is the number of moths.
Note that the fitness value is the return value of the fitness

(objective) function for each moth. The position vector (first row
in the matrix M for instance) of each moth is passed to the fitness
function and the output of the fitness function is assigned to the
corresponding moth as its fitness value (OM1 in the matrix OM
for instance).

Another key components in the proposed algorithm are flames.
A matrix similar to the moth matrix is considered as follows:

F ¼

F1;1 F1;2 � � � � � � F1;d

F2;1 F2;2 � � � � � � F2;d

..

. ..
. ..

. ..
. ..

.

Fn;1 mn;2 � � � � � � Fn;d

2
66664

3
77775 ð3:3Þ

where n is the number of moths and d is the number of variables
(dimension).

It may be seen in Eq. (3.3) that the dimensions of M and F arrays
are equal. For the flames, it is also assumed that there is an array
for storing the corresponding fitness values as follows:

OF ¼

OF1

OF2

..

.

OFn

2
66664

3
77775 ð3:4Þ

where n is the number of moths.
It should be noted here that moths and flames are both solu-

tions. The difference between them is the way we treat and update
them in each iteration. The moths are actual search agents that
move around the search space, whereas flames are the best
position of moths that obtains so far. In other words, flames can
be considered as flags or pins that are dropped by moths when
searching the search space. Therefore, each moth searches around
a flag (flame) and updates it in case of finding a better solution.
With this mechanism, a moth never loses its best solution.

The MFO algorithm is a three-tuple that approximates the glo-
bal optimal of the optimization problems and defined as follows:

MFO ¼ ðI; P; TÞ ð3:5Þ

I is a function that generates a random population of moths and
corresponding fitness values. The methodical model of this func-
tion is as follows:

I : ; ! fM;OMg ð3:6Þ

The P function, which is the main function, moves the moths
around the search space. This function received the matrix of M
and returns its updated one eventually.

P : M ! M ð3:7Þ

The T function returns true if the termination criterion is satis-
fied and false if the termination criterion is not satisfied:

T : M ! ftrue; falseg ð3:8Þ

With I; P, and T, the general framework of the MFO algorithm is
defined as follows:

M = I();
while T(M) is equal to false

M = P(M);
end

The function I has to generate initial solutions and calculate the
objective function values. Any random distribution can be used in
this function. The following method is utilized as the default:

for i = 1: n
for j = 1: d

M(i, j) = (ub(i) � lb(i)) ⁄ rand() + lb(i);
end

end
OM = FitnessFunction(M);

As can be seen, there are two other arrays called ub and lb.
These matrixes define the upper and lower bounds of the variables
as follows:

ub ¼ ½ub1;ub2;ub3; . . . ;ubn�1;ubn� ð3:9Þ

where ubi indicates the upper bound of the i-th variable.

lb ¼ ½lb1; lb2; lb3; . . . ; lbn�1; lbn� ð3:10Þ

where lbi indicates the lower bound of the i-th variable.
After the initialization, the P function is iteratively run until the

T function returns true. The P function is the main function that
moves the moths around the search space. As mentioned above
the inspiration of this algorithm is the transverse orientation. In
order to mathematically model this behaviour, the position of each
moth is updated with respect to a flame using the following
equation:

Mi ¼ SðMi; FjÞ ð3:11Þ

where Mi indicate the i-th moth, Fj indicates the j-th flame, and S is
the spiral function.
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Fig. 3. Logarithmic spiral, space around a flame, and the position with respect to t.
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Fig. 4. Some of the possible positions that can be reached by a moth with respect to
a flame using the logarithmic spiral.
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A logarithmic spiral is chosen as the main update mechanism of
moths in this paper. However, any types of spiral can be utilized
here subject to the following conditions:

� Spiral’s initial point should start from the moth.
� Spiral’s final point should be the position of the flame.
� Fluctuation of the range of spiral should not exceed from the

search space.

Considering these points, a logarithmic spiral is defined for the
MFO algorithm as follows:

SðMi; FjÞ ¼ Di � ebt � cosð2ptÞ þ Fj ð3:12Þ

where Di indicates the distance of the i-th moth for the j-th flame, b
is a constant for defining the shape of the logarithmic spiral, and t is
a random number in [�1,1].

D is calculated as follows:

Di ¼ jFj �Mij ð3:13Þ

where Mi indicate the i-th moth, Fj indicates the j-th flame, and Di

indicates the distance of the i-th moth for the j-th flame.
Eq. (3.12) is where the spiral flying path of moths is simulated.

As may be seen in this equation, the next position of a moth is
defined with respect to a flame. The t parameter in the spiral equa-
tion defines how much the next position of the moth should be
close to the flame (t ¼ �1 is the closest position to the flame, while
t ¼ 1 shows the farthest). Therefore, a hyper ellipse can be
assumed around the flame in all directions and the next position
of the moth would be within this space. The spiral movement is
the main component of the proposed method because it dictates
how the moths update their positions around flames. The spiral
equation allows a moth to fly ‘‘around’’ a flame and not necessarily
in the space between them. Therefore, the exploration and
exploitation of the search space can be guaranteed. The logarithmic
spiral, space around the flame, and the position considering differ-
ent t on the curve are illustrated in Fig. 3.

Fig. 4 shows a conceptual model of position updating of a moth
around a flame. Note that the vertical axis shows only one dimen-
sion (1 variable/parameter of a given problem), but the proposed
method can be utilized for changing all the variables of the prob-
lem. The possible positions (dashed black lines) that can be chosen
as the next position of the moth (blue horizontal line) around the
flame (green horizontal line) in Fig. 41 clearly show that a moth
can explore and exploit the search space around the flame in one
dimension. Exploration occurs when the next position is outside
the space between the moth and flam as can be seen in the arrows
labelled by 1, 3, and 4. Exploitation happens when the next position
lies inside the space between the moth and flame as can be observed
in the arrow labelled by 2. There are some interesting observations
for this model as follow:

� A moth can converge to any point in the neighbourhood of the
flame by changing t.
� The lower t, the closer distance to the flame.
� The frequency of position updating on both sides of the flame is

increased as the moth get closer to the flame.

The proposed position updating procedure can guarantee the
exploitation around the flames. In order to improve the probability
of finding better solutions, the best solutions obtained so far are
considered as the flames. So, the matrix F in Eq. (3.3) always
includes n recent best solutions obtained so far. The moths are
required to update their positions with respect to this matrix
1 For interpretation of color in ‘Fig. 4’, the reader is referred to the web version of
this article.
during optimization. In order to further emphasize exploitation,
it is assumed that t is a random number in ½r;1� where r is linearly
decreased from �1 to �2 over the course of iteration. Note that r is
named as the convergence constant. With this method, moths tend
to exploit their corresponding flames more accurately proportional
to the number of iterations.

A question that may rise here is that the position updating in
Eq. (3.12) only requires the moths to move towards a flame, yet
it causes the MFO algorithm to be trapped in local optima quickly.
In order to prevent this, each moth is obliged to update its position
using only one of the flames in Eq. (3.12). It each iteration and after
updating the list of flames, the flames are sorted based on their fit-
ness values. The moths then update their positions with respect to
their corresponding flames. The first moth always updates its posi-
tion with respect to the best flame, whereas the last moth updates
its position with respect to the worst flame in the list. Fig. 5 shows
how each moth is assigned to a flame in the list of flames.

It should be noted that this assumption is done for designing
the MFO algorithm, while possibly it is not the actual behaviour
of moths in nature. However, the transverse orientation is still
done by the artificial moths. The reason that why a specific flame
is assigned to each moth is to prevent local optimum stagnation.
If all of the moths get attracted to a single flame, all of them
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converge to a point in the search spaces because they can only fly
towards a flame and not outwards. Requiring them to move around
different flames, however, causes higher exploration of the search
space and lower probability of local optima stagnation.

Therefore, the exploration of the search space around the best
locations obtained so far is guaranteed with this method due to
the following reasons:

� Moths update their positions in hyper spheres around the best
solutions obtained so far.
� The sequence of flames is changed based on the best solutions

in each iteration, and the moths are required to update their
positions with respect to the updated flames. Therefore, the
position updating of moths may occur around different flames,
a mechanism that causes sudden movement of moths in the
search space and promotes exploration.

Another concern here is that the position updating of moths
with respect to n different locations in the search space may
degrade the exploitation of the best promising solutions. To resolve
this concern, an adaptive mechanism is proposed for the number of
flames. Fig. 6 shows that how the number of flames is decreased
adaptively over the course of iterations. The following formula is
utilized in this regard:

flame no ¼ round N � l � N � 1
T

� �
ð3:14Þ
 0 T/2 T

1

N/2

N

Iteration

N
um

be
r o

f f
la

m
es

Fig. 6. Number of flame is decreased adaptively over the course of iterations.
where l is the current number of iteration, N is the maximum num-
ber of flames, and T indicates the maximum number of iterations.

Fig. 6 shows that there is N number of flames in the initial steps
of iterations. However, the moths update their positions only with
respect to the best flame in the final steps of iterations. The gradual
decrement in number of flames balances exploration and exploita-
tion of the search space. After all, the general steps of the P function
are as follows.

Update flame no using Eq. (3.14)
OM = FitnessFunction(M);
if iteration == 1

F = sort(M);
OF = sort(OM);

else
F = sort(Mt�1, Mt);
OF = sort(Mt�1, Mt);

end
for i = 1: n

for j = 1: d
Update r and t
Calculate D using Eq. (3.13) with respect to the

corresponding moth
Update M(i,j) using Eqs. (3.11) and (3.12) with respect to

the corresponding moth
end

end

As discussed above, the P function is executed until the T func-
tion returns true. After termination the P function, the best moth is
returned as the best obtained approximation of the optimum.
3.3. Computational complexity of the MFO algorithm

Computation complexity of an algorithm is a key metric for
evaluating its run time, which can be defined based on the struc-
ture and implementation of the algorithm. The computational
complexity of the MFO algorithm depends on the number of
moths, number of variables, maximum number of iterations, and
sorting mechanism of flames in each iteration. Since the Quicksort
algorithm is utilized, the sort’s computational complexity is of
OðnlognÞ and Oðn2Þ in the best and worst case, respectively. Consid-
ering the P function, therefore, the overall computational complex-
ity is defined as follows:

OðMFOÞ ¼ OðtðOðQuick sortÞ þ Oðposition updateÞÞÞ ð3:15Þ

OðMFOÞ ¼ Oðtðn2 þ n� dÞÞ ¼ Oðtn2 þ tndÞ ð3:16Þ

where n is the number of moths, t is the maximum number of iter-
ations, and d is the number of variables.

To see how the MFO algorithm can theoretically be effective in
solving optimization problems some observations are:

� Procedure of updating positions allows obtaining neighbouring
solutions around the flames, a mechanism for mostly promoting
exploitation.
� Since MFO utilizes a population of moths, local optima avoid-

ance is high.
� Assigning each moth a flame and updating the sequence of

flames in each iteration increase exploration of the search space
and decreases the probability of local optima stagnation.
� Considering recent best solutions obtained so far as the flames

saves the promising solutions as the guides for moths.



234 S. Mirjalili / Knowledge-Based Systems 89 (2015) 228–249
� The best solutions are saved in the F matrix so they never get
lost.
� Adaptive number of flames balances exploration and

exploitation.
� Adaptive convergence constant ðrÞ causes accelerated conver-

gence around the flames over the course of iterations.

These observations make the MFO algorithm potentially able to
improve the initial random solutions and convergence to a better
point in the search space. The next section investigates the effec-
tiveness of MFO in practice.

4. Results and discussion

It is a common in this field to benchmark the performance of
algorithms on a set of mathematical functions with known global
optima. The same process is followed, in which 19 benchmark
functions are employed from the literature as test beds for
comparison [7,49–51]. The test functions are divided to three
groups: unimodal, multi-modal, and composite. The unimodal
functions ðF1—F7Þ are suitable for benchmarking the exploitation
of algorithms since they have one global optimum and no local
optima. In contrary, multi-modal functions (F8—F13Þ have a mas-
sive number of local optima and are helpful to examine exploration
and local optima avoidance of algorithms. Eventually, composite
functions (F14—F19Þ are the combination of different rotated,
shifted, and biased multi-modal test functions. Since the search
space of these functions is very challenging, as illustrated in
Fig. 7, they are highly similar to the real search spaces and useful
for benchmarking the performance of algorithms in terms of
balanced exploration and exploitation.

The mathematical formulation of the employed test functions
are presented in Tables 1–3. Since the original version of unimodal
Fig. 7. Search space of compos

Table 1
Unimodal benchmark functions.

Function Dim

f 1ðxÞ ¼
Pn

i¼1x2
i

100

f 2ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij 100

f 3ðxÞ ¼
Pn

i¼1
Pi

j�1xj

� �2 100

f 4ðxÞ ¼maxifjxij;1 6 i 6 ng 100

f 5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2� 100

f 6ðxÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 100

f 7ðxÞ ¼
Pn

i¼1ix4
i þ random½0;1Þ 100
and multi-modal test functions are too simple, they are shifted to
increase the difficulty of these functions. The shifted positions of
global optima are provided in the Tables 1 and 2 as well. Hundred
variables are also considered for unimodal and multi-modal test
functions for further improving their difficulties. Note that the
composite test functions are taken from CEC 2005 special session
[52,53].

Since heuristic algorithms are stochastic optimization tech-
niques, they have to be run at least more than 10 times for gener-
ating meaningful statistical results. It is again a common that an
algorithm is run on a problem m times and average/standard devi-
ation/median of the best obtained solution in the last iteration are
calculated as the metrics of performance. The same method is
selected to generate and report the results over 30 independent
runs. However, average and standard deviation only compare the
overall performance of algorithms. In addition to average and
standard deviation, statistical tests should be done to confirm the
significance of the results based on every single runs [54]. With
the statistical test, we can make sure that the results are not
generated by chance. The non-parametric Wilcoxon statistical test
is conducted and the calculated p-values are reported as metrics of
significance as well.

In order to verify the performance of the proposed MFO
algorithm, some of the well-known and recent algorithms in the
literature are chosen: PSO [55], GSA [30], BA [22], FPA [45], SMS
[46], FA [23], and GA [56]. Note that 30 number search agents and
1000 iterations are utilized for each of the algorithms. It should be
noted that selection of the number of moths (or other candidate
solutions in other algorithms) should be done experimentally. The
larger the number of artificial moths, the higher probability of
determining the global optimum. However, it is observed that 30
is a reasonable number of moths for solving optimization problems.
For expensive problems, this number can be reduced to 20 or 10.
ite benchmark functions.

Range Shift position fmin

[�100, 100] [�30, �30, . . ., �30] 0

[�10, 10] [�3, �3, . . ., �3] 0
[�100, 100] [�30, �30, . . ., �30] 0

[�100, 100] [�30, �30, . . ., �30] 0
[�30, 30] [�15, �15, . . ., �15] 0

[�100, 100] [�750, . . ., �750] 0

[�1.28, 1.28] [�0.25, . . ., �0.25] 0



Table 2
Multimodal benchmark functions.

Function Dim Range Shift position fmin

F8ðxÞ ¼
Pn

i¼1 � xisin
ffiffiffiffiffiffiffi
jxij

p� �
100 [�500, 500] [�300, . . ., �300] �418.9829 � 5

F9ðxÞ ¼
Pn

i¼1½x2
i � 10cosð2pxiÞ þ 10� 100 [�5.12, 5.12] [�2, �2, . . ., �2] 0

F10ðxÞ ¼ �20exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q� �
� exp 1

n

Pn
i¼1cosð2pxiÞ

� 	
þ 20þ e 100 [�32, 32] 0

F11ðxÞ ¼ 1
4000

Pn
i¼1x2

i �
Qn

i¼1cos xiffi
i
p
� �

þ 1 100 [�600, 600] [�400, . . ., �400] 0

F12ðxÞ ¼ p
n 10sinðpy1Þ þ

Pn�1
i¼1 ðyi � 1Þ2½1þ 10sin2ðpyiþ1Þ� þ ðyn � 1Þ2

n o
þ
Pn

i¼1uðxi;10;100;4Þ 100 [�50, 50] [�30, �30, . . ., �30] 0

yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi > a
0 �a < xi < a
kð�xi � aÞm xi < �a

8<
:

F13ðxÞ ¼ 0:1 sin2ð3px1Þ þ
Pn

i¼1ðxi � 1Þ2½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�
n o

þ
Pn

i¼1uðxi;5;100;4Þ

100 [�50, 50] [�100, . . ., �100] 0

Table 3
Composite benchmark functions.

Function Dim Range fmin

F14 (CF1): 30 [�5, 5] 0
f 1; f 2; f 3; . . . ; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3 . . . ; k10� ¼ ½5=100;5=100;5=100; . . . ;5=100�

F15 (CF2): 30 [�5, 5] 0
f 1; f 2; f 3; . . . ; f 10 ¼ Griewank0s Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3; . . . ; k10� ¼ ½5=100;5=100;5=100; . . . ;5=100�

F16 (CF3): 30 [�5, 5] 0
f 1; f 2; f 3; . . . ; f 10 ¼ Griewank0s Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3; . . . ; k10� ¼ ½1;1;1; . . . ;1�

f 17 (CF4): 30 [�5, 5] 0
f 1; f 2 ¼ Ackley0s Function
f 3; f 4 ¼ Rastrigin0s Function
f 5; f 6 ¼Weierstrass Function
f 7; f 8 ¼ Griewank0s Function
f 9; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3; . . . ; k10� ¼ ½5=32;5=32;1;1;5=0:5;5=0:5;5=100;5=100;5=100;5=100�

f 18 (CF5): 30 [�5, 5] 0
f 1; f 2 ¼ Rastrigin0s Function
f 3; f 4 ¼Weierstrass Function
f 5; f 6 ¼ Griewank0s Function
f 7; f 8 ¼ Ackley0s Function
f 9; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½1;1;1; . . . ;1�
½k1; k2; k3; . . . ; k10� ¼ ½1=5;1=5;5=0:5;5=0:5;5=100;5=100;5=32;5=32;5=100;5=100�

f 19 (CF6): 30 [�5, 5] 0
f 1; f 2 ¼ Rastrigin0s Function
f 3; f 4 ¼Weierstrass Function
f 5; f 6 ¼ Griewank0s Function
f 7; f 8 ¼ Ackley0s Function
f 9; f 10 ¼ Sphere Function
½,1; ,2; ,3; . . . ; ,10� ¼ ½0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1�
½k1; k2; k3; . . . ; k10� ¼ ½0:1 � 1=5;0:2 � 1=5;0:3 � 5=0:5;0:4 � 5=0:5;0:5 � 5=100;0:6 � 5=100;0:7 � 5=32;0:8 � 5=32;0:9 � 5=100;1 � 5=100�
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As Table 4 shows, the MFO algorithm provides the best results
on four of test functions. The results are followed by the FPA,
PSO, and SMS algorithms. The p-values in Table 5, in addition, show
that the superiority of the MFO algorithm is statistically significant.
The MFO algorithm also provide very competitive results com-
pared to GSA on F3, F4, and F7. The reason why the MFO algorithm
does not provide superior results on three of the unimodal test
functions is due to the selection of different flames for updating
the position of moths. This mechanism mostly promotes explo-
ration, so the search agents spend a large number of iterations to
explore the search spaces and avoid local solutions. Since there is
no local solution in unimodal test functions, this mechanism slows
down the exploitation of MFO and prevents the algorithm from
finding a very accurate approximation of the global optimum.
Since the MFO algorithm shows the best results in 4 out of 7 uni-
modal test functions, it seems that this behaviour is not a major
concern. It is evident that requiring moths to update their positions
with respect to only the best flame will accelerate convergence and
improves the accuracy of the results, but it also has negative
impacts of the exploration of the algorithm, which is a very



Table 4
Results of unimodal benchmark functions.

F ave std ave std ave std ave std

MFO PSO GSA BA
F1 0.000117 0.00015 1.321152 1.153887 608.2328 464.6545 20792.44 5892.402
F2 0.000639 0.000877 7.715564 4.132128 22.75268 3.365135 89.78561 41.95771
F3 696.7309 188.5279 736.3931 361.7818 135760.8 48652.63 62481.35 29769.17
F4 70.68646 5.275051 12.97281 2.634432 78.78198 2.814108 49.74324 10.14363
F5 139.1487 120.2607 77360.83 51156.15 741.003 781.2393 1995125 1252388
F6 0.000113 9.87E-05 286.6518 107.0796 3080.964 898.6345 17053.41 4917.567
F7 0.091155 0.04642 1.037316 0.310315 0.112975 0.037607 6.045055 3.045277

FPA SMS FA GA
F1 203.6389 78.39843 120 0 7480.746 894.8491 21886.03 2879.58
F2 11.1687 2.919591 0.020531 0.004718 39.32533 2.465865 56.51757 5.660857
F3 237.5681 136.6463 37820 0 17357.32 1740.111 37010.29 5572.212
F4 12.57284 2.29 69.17001 3.876667 33.95356 1.86966 59.14331 4.648526
F5 10974.95 12057.29 6382246 729967 3795009 759030.3 31321418 5264496
F6 175.3808 63.45257 41439.39 3295.23 7828.726 975.2106 20964.83 3868.109
F7 0.135944 0.061212 0.04952 0.024015 1.906313 0.460056 13.37504 3.08149

Table 5
P-values of the Wilcoxon ranksum test over all runs (p P 0:05 have been underlined).

F MFO PSO GSA BA FPA SMS FA GA

F1 N/A 0.000183 0.000183 0.000183 0.000183 6.39E�05 0.000183 0.000183
F2 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F3 0.000583 0.002202 0.000183 0.000183 N/A 6.39E�05 0.000183 0.000183
F4 0.000183 0.791337 0.000183 0.000183 N/A 0.000183 0.000183 0.000183

F5 N/A 0.000183 0.005795 0.000183 0.000183 0.000183 0.000183 0.000183
F6 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F7 0.014019 0.000183 0.000583 0.000183 0.001008 N/A 0.000183 0.000183
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important mechanism to avoid local solutions. As discussed above,
unimodal functions are suitable for benchmarking exploitation of
the algorithms. Therefore, these results evidence high exploitation
capability of the MFO algorithm.

The statistical results of the algorithms on multimodal test
function are presented in Table 6. It may be seen that the MFO
algorithm highly outperforms other algorithms on F8, F10, F11,
and F13. Table 7 suggests that this superiority is statistically signif-
icant. The MFO algorithm failed to show the best results on F10 and
F12. As per the p-values in Table 7, the MFO algorithm is the only
algorithm that provides a p-value greater than 0.05 on F12, which
means that the superiority of the GSA algorithm is not statistically
significant. In other words, MFO and GSA perform very similar and
can be considered as the best algorithms when solving F12. In F9,
however, the superiority of the GSA algorithm is statistically signif-
icant. It should be noted that the MFO algorithm outperforms other
algorithms on this test function except GSA. Due to the low
Table 6
Results of multimodal benchmark functions.

F ave std ave std

MFO PSO
F8 �8496.78 725.8737 �3571 430.7989
F9 84.60009 16.16658 124.2973 14.25096
F10 1.260383 0.72956 9.167938 1.568982
F11 0.01908 0.021732 12.41865 4.165835
F12 0.894006 0.88127 13.87378 5.85373
F13 0.115824 0.193042 11813.5 30701.9

FPA SMS
F8 �8086.74 155.3466 �3942.82 404.1603
F9 92.69172 14.22398 152.8442 18.55352
F10 6.844839 1.249984 19.13259 0.238525
F11 2.716079 0.727717 420.5251 25.25612
F12 4.105339 1.043492 8742814 1405679
F13 62.3985 94.84298 1E+08 0
discrepancy of the results of MFO and GSA, it is evident that both
algorithms determined the optimum, but it seems that MFO failed
to exploit the obtained optimum and improve its accuracy. This is
again due to the higher exploration of the MFO algorithm, which
prevents this algorithm from finding an accurate approximation
of the F9’s global optimum. Despite this behaviour on only one
function, the results of other multi-modal test functions strongly
prove that high exploration of the MFO algorithm is fruitful for
avoiding local solutions.

Since the multi-modal functions have an exponential number of
local solutions, there results show that the MFO algorithm is able
to explore the search space extensively and find promising regions
of the search space. In addition, high local optima avoidance of this
algorithm is another finding that can be inferred from these
results.

The rest of the results, which belong to F14–F19, are provided in
Tables 8 and 9. The results are consistent with those of other test
ave std ave std

GSA BA
�2352.32 382.167 65535 0
31.00014 13.66054 96.21527 19.58755
3.740988 0.171265 15.94609 0.774952
0.486826 0.049785 220.2812 54.70668
0.46344 0.137598 28934354 2178683
7.617114 1.22532 1.09E+08 1.05E+08

FA GA
�3662.05 214.1636 �6331.19 332.5668
214.8951 17.21912 236.8264 19.03359
14.56769 0.467512 17.84619 0.531147
69.65755 12.11393 179.9046 32.43956
368400.8 172132.9 34131682 1893429
5557661 1689995 1.08E+08 3849748
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functions, in which the MFO shows very competitive results
compared to other algorithms. The p-values also prove that the
superiorities are statistically significant occasionally. Although
the MFO algorithm does not provide better results on half of the
composite test functions (F15, F17, and F19), the p-values in Table 9
show that the results of this algorithm are very competitive. The
composite functions have very difficult search spaces, so the accu-
rate approximation of their global optima needs high exploration
and exploitation combined. The results evidence that the MFO
algorithm properly balances these two conflicting milestones.

So far, the results are discussed in terms of exploration and
exploitation. Although these results indirectly show that the MFO
algorithm convergences to a point in a search space and improves
the initial solutions, the convergence of the MFO algorithm is
investigated further in the following paragraphs. To confirm the
convergence of the MFO algorithm, four metrics are employed as
follows:

� Search history.
� Trajectory of the first moth in its first dimension.
� Average fitness of all moths.
� Convergence rate.

The experiments are re-done on some of the test functions with
2 variables and using 5 moths over 100 iterations. Tue results are
provided in Fig. 8.
Table 7
P-values of the Wilcoxon ranksum test over all runs (p P 0:05 have been underlined).

F MFO PSO GSA BA

F8 N/A 0.000183 0.000183 6.39E�05
F9 0.000181 0.000181 N/A 0.000181
F10 N/A 0.000183 0.000183 0.000183
F11 N/A 0.000183 0.000183 0.000183
F12 0.472676 0.000183 N/A 0.000183

F13 N/A 0.000183 0.000183 0.000183

Table 8
Results of composite benchmark functions.

F ave std ave std

MFO PSO
F14 8.25E�31 1.08E�30 137.7789 116.3128
F15 66.73272 53.22555 166.6643 164.3894
F16 119.0146 28.3318 394.507 121.949
F17 345.4688 43.11578 486.3534 67.31685
F18 10.4086 3.747669 256.5258 200.3816
F19 706.9953 194.9068 790.1284 189.4915

FPA SMS
F14 10.09454 31.59138 105.7572 26.8788
F15 11.41158 3.380957 156.463 68.24926
F16 234.9341 39.60663 406.9962 65.39732
F17 355.3807 20.61705 518.6931 42.74199
F18 54.78722 42.05824 153.6984 96.91419
F19 573.0955 149.1538 611.5401 154.8529

Table 9
P-values of the Wilcoxon ranksum test over all runs (p P 0:05 have been underlined).

F MFO PSO GSA BA

F14 N/A 0.000172 0.000172 0.000172
F15 0.000583 0.002202 0.002786 0.000183
F16 N/A 0.000183 0.000183 0.000183
F17 0.004586 0.002202 N/A 0.00033
F18 N/A 0.000183 0.140465 0.000183

F19 0.241322 0.088973 0.000183 0.000183
The first metric is a qualitative metric that show the history of
sampled points over the course of iterations. The sampled points
during optimization are illustrated using black points in Fig. 8. It
seems that the MFO algorithm follows a similar pattern on all of
the test functions, in which the moths tend to explore promising
regions of the search space and exploit very accurately around
the global optima. These observations prove that the MFO algo-
rithm can be very effective in approximating the global optimum
of optimization problems.

The second metric, which is another qualitative metric, shows
the changes in the first dimension of the first moth during
optimization. This metric assists us to observe if the first moth
(as a representative of all moths) faces abrupt movements in the
initial iterations and gradual changes in the final iterations.
According to Berg et al. [57], this behaviour can guarantee that a
population-based algorithm eventually convergences to a point
and searches locally in a search space. The trajectories in Fig. 8
show that the first moth starts the optimization with sudden
changes (more than 50% of the search space). This behaviour can
guarantee the exploration of the search space. It may also be
observed that the fluctuations are decreased gradually over the
course of iteration, a behaviour that guarantees transition between
exploration and exploitation. Eventually, the movement of moth
becomes very gradual which causes the exploitation of the search
space.
FPA SMS FA GA

0.161972 0.000183 0.000183 0.000183
0.000181 0.000181 0.000181 0.000181
0.000183 0.000183 0.000183 0.000183
0.000183 0.000183 0.000183 0.000183
0.000183 0.000182 0.000183 0.000183

0.000183 6.39E�05 0.000183 0.000183

ave std ave std

GSA BA
5.43E�19 1.35E�19 130.3125 118.8206
20.35852 63.12427 544.1045 149.381
245.3021 49.05264 696.9752 190.5441
315.2086 100.7477 745.1403 143.1577
70 48.30459 543.8894 198.8883
881.6392 45.17728 896.355 86.29955

FA GA
175.9715 86.928 92.13909 27.90131
353.6269 103.423 96.70927 9.703147
308.0516 37.435 369.1036 42.84275
548.5276 162.8993 450.829 31.54446
175.1975 83.15078 95.92017 53.79146
829.5929 157.2787 523.7037 22.92001

FPA SMS FA GA

0.000172 0.000172 0.000172 0.000172
N/A 0.000183 0.000183 0.000183
0.000246 0.000183 0.000183 0.000183
0.002827 0.002827 0.001008 0.002827
0.002827 0.000183 0.000183 0.000183

0.10411 0.014019 0.001315 N/A



Fig. 8. Search history, trajectory in first dimension, average fitness of all moths, and convergence rate.
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Fig. 9. Design parameters of the welded beam design problem.
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The third metric is a quantitative measure and averages the fit-
ness of all moths in each iteration. If an algorithm improves its can-
didate solutions, obviously, the average of fitness should be
improved over the course of iterations. As the average fitness
curves in Fig. 8 suggest, the MFO algorithm shows degrading
fitness on all of the test functions. Another fact worth mentioning
here is the accelerated decrease in the average fitness curves,
which shows that the improvement of the candidate solutions
becomes faster and better over the course of iterations. This is
due to the fact that the MFO algorithm is required to adaptively
decrease the number of flames, so the moths tend to converge
and fly around fewer flames as the iteration counter increases. In
addition, the adaptive convergence constraint ðrÞ promotes this
behaviour.

The last quantitative comparison metric here is the convergence
rate of the MFO algorithm. The fitness of the best flame in each
iteration is saved and drawn as the convergence curves in Fig. 8.
The reduction of fitness over the iterations proves the convergence
of the MFO algorithm. It is also interesting that the accelerated
degrade can also be observed in the convergence curves as well,
which is due the above-discussed reason.
Table 10
Comparison results of the welded beam design problem.

Algorithm Optimal values for variables Optimal
cost

h l t b

MFO 0.2057 3.4703 9.0364 0.2057 1.72452
GSA 0.182129 3.856979 10.0000 0.202376 1.87995
CPSO [66] 0.202369 3.544214 9.048210 0.205723 1.73148
GA [60] 0.1829 4.0483 9.3666 0.2059 1.82420
GA [62] 0.2489 6.1730 8.1789 0.2533 2.43312
Coello [58] 0.208800 3.420500 8.997500 0.2100 1.74831
Coello and

Montes [67]
0.205986 3.471328 9.020224 0.206480 1.72822

Siddall [68] 0.2444 6.2189 8.2915 0.2444 2.38154
Ragsdell [65] 0.2455 6.1960 8.2730 0.2455 2.38594
Random [65] 0.4575 4.7313 5.0853 0.6600 4.11856
Simplex [65] 0.2792 5.6256 7.7512 0.2796 2.53073
David [65] 0.2434 6.2552 8.2915 0.2444 2.38411
APPROX [65] 0.2444 6.2189 8.2915 0.2444 2.38154

Fig. 10. Gear train d
As a summary, the results of this section experimentally proved
that he MFO algorithm is able to show very competitive results and
occasionally outperforms other well-known algorithms on the test
functions. In addition, the convergence of the MFO algorithm was
experimentally proved by two qualitative and two quantitative
measures. Therefore, it can be stated that the MFO algorithm is
able to be effective in solving real problem as well. Since con-
straints are one of the major challenges in solving real problems
and the main objective of designing the MFO algorithm is to solve
real problems, nine constrained real engineering problems are
employed in the next section to further investigate the perfor-
mance of the MFO algorithm and provide a comprehensive study.
5. Constrained optimization using the MFO algorithm

Constraints handling refers to the process of considering both
inequality and equality constraints during optimization. Con-
straints divide the candidate solutions of heuristic algorithms into
two groups: feasible and infeasible. According to Coello Coello [58],
there are different methods of handling constraints: penalty func-
tions, special operators, repair algorithms, separation of objectives
and constraints, and hybrid methods. Among these techniques,
the most straightforward method is the penalty function. Such
methods penalize the infeasible candidate solutions and convert
constrained optimization to an unconstrained optimization. There
are different types of penalty functions as well [58]: static,
dynamic, annealing, adaptive, co-evolutionary, and death penalty.
The last penalty function, death penalty, is the simplest method,
which assigns a big objective function (in case of minimiza-
tion). This process automatically causes discarding the infeasible
solutions by the heuristic algorithms during optimization. The
advantages of this method are simplicity and low computational
cost. However, this method does not utilize the information of
infeasible solutions that might be helpful when solving problems
with dominated infeasible regions. For the sake of simplicity, the
MFO algorithm is equipped with a death penalty function in this
section to handle constraints. Therefore, a moth would be assigned
a big objective had it violates any of the constraints.
A

B

C D

esign problem.
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5.1. Welded beam design problem

This problem is a well-known problem in the field of structural
optimization [59], in which the fabrication cost of a welded beam
should be minimized. As can be seen in Fig. 9 and Appendix A,
there are four parameters for this problem and seven constraints.
Table 11
Comparison results of the gear train design problem.

Algorithm Optimal values for variables f

nA nB nC nD

MFO 43 19 16 49 2.7009e-012
ABC [40] 49 16 19 43 2.7009e�012
MBA [40] 43 16 19 49 2.7009e�012
GA [71] 49 16 19 43 2.701 9e�012
CS [72] 43 16 19 49 2.7009e�012
ISA [69] N/A N/A N/A N/A 2.7009e�012
Kannan and Kramer [73] 33 15 13 41 2.1469e�08

Fig. 11. Three-bar truss design problem.

Table 12
Comparison results of the three-bar truss design problem.

Algorithm Optimal values for variables Optimal weight

x1 x2

MFO 0.788244770931922 0.409466905784741 263.895979682
DEDS [74] 0.78867513 0.40824828 263.8958434
PSO-DE

[75]
0.7886751 0.4082482 263.8958433

MBA [40] 0.7885650 0.4085597 263.8958522
Ray and

Sain [76]
0.795 0.395 264.3

Tsa [77] 0.788 0.408 263.68
CS [72] 0.78867 0.40902 263.9716

Fig. 12. Pressure vesse
This problem is solved by the MFO algorithm and compared to
GSA, GA [60–62], CPSO [63], HS [64], Richardson’s random method,
Simplex method, Davidon–Fletcher–Powell, and Griffith and Ste-
wart’s successive linear approximation [65]. Table 10 shows the
best obtained results.

The results of Table 10 show that the MFO algorithm is able to
find the best optimal design compared to other algorithms. The
results of MFO are closely followed by the CPSO algorithm.
5.2. Gear train design problem

This is a mechanical engineering problem which aims for the

minimization of gear ratio Gear ratio ¼ angular velocity of output shaft
angular velocity of input shaft

� �
for a given set of four gears of a train [69,70]. The parameters are
the number of teeth of the gears, so there is a total of 4 variables
for this problem. There is no constraint in this problem, but the
range of variables are considered as constraints. The overall sche-
matic of the system is illustrated in Fig. 10.

This problem is solved with MFO and the results are compared
to ABC, MBA, GA, CS, and ISA in Table 11.

The gear train is a discrete problem, so the position of moths is
rounded in each iteration for solving this problem. Table 11 shows
that the MFO algorithm finds the same optimal gear ratio value
compared to ABC, MBA, CS, and ISA. This proves that MFO can be
effective in solving discrete problems as well. It is also worth notic-
ing here that although the gear ratio is equal, the obtained optimal
design parameters are different. So, MFO finds a new optimal
design for this problem.
5.3. Three-bar truss design problem

Three-bas truss design problem is another structural optimiza-
tion problem in the field of civil engineering, in which two param-
eters should be manipulated in order to achieve the least weight
subject to stress, deflection, and buckling constraints. This problem
has been mostly utilized because of its difficult constrained search
space [40,72]. Different components of this problem can be seen in
Fig. 11. The formulation of this problem is also available in Appen-
dix A.

This problem is again solved using MFO and compared to DEDS,
PSO-DE, MBA, Tsa, and CS algorithms in the literature. Table 12
includes the optimal values for the variables and the optimal
weights obtained.

The results of the algorithms in three-bar truss design problem
show that MFO outperforms three of the algorithms.
5.4. Pressure vessel design problem

This problem, which is very popular in the literature, has four
parameters and four constraints. The objective is to obtain a design
l design problem.
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for a pressure vessel with the least fabrication cost. Fig. 12 shows
the pressure vessel and parameters involved in the design [72,78].

The structure of the pressure vessel is optimized with MFO and
the results are compared to GSA, PSO [66], GA [67,79,80], ES [81],
DE [82], and ACO [83], augmented Lagrangian Multiplier [84],
and branch-and-bound [85] in Table 13.

This table shows that the MFO algorithm finds the second
low-cost design. The problem formulation in Appendix A shows
that this problem is highly constrained, so the results evidence
the merits of MFO in solving such problems.
Table 13
Comparison results for pressure vessel design problem.

Algorithm Optimal values for variables Optimum
cost

Ts Th R L

MFO 0.8125 0.4375 42.098445 176.636596 6059.7143
GSA 1.1250 0.6250 55.988659 84.4542025 8538.8359
PSO [66] 0.8125 0.4375 42.091266 176.746500 6061.0777
GA [79] 0.8125 0.4345 40.323900 200.000000 6288.7445
GA [67] 0.8125 0.4375 42.097398 176.654050 6059.9463
GA [80] 0.9375 0.5000 48.329000 112.679000 6410.3811
ES [81] 0.8125 0.4375 42.098087 176.640518 6059.7456
DE [82] 0.8125 0.4375 42.098411 176.637690 6059.7340
ACO [83] 0.8125 0.4375 42.103624 176.572656 6059.0888
Lagrangian

multiplier
[84]

1.1250 0.6250 58.291000 43.6900000 7198.0428

Branch-bound
[85]

1.1250 0.6250 47.700000 117.701000 8129.1036

Fig. 13. Cantilever beam

Table 14
Comparison results for cantilever design problem.

Algorithm Optimal values for variables

x1 x2 x3

MFO 5.9848717732166 5.31672692429783 4.497332585830
MMA [86] 6.0100 5.3000 4.4900
GCA_I [86] 6.0100 5.3000 4.4900
GCA_II [86] 6.0100 5.3000 4.4900
CS [72] 6.0089 5.3049 4.5023
SOS [41] 6.01878 5.30344 4.49587

Fig. 14. I-beam de
5.5. Cantilever beam design problem

Cantilever beam consists of five hollow blocks. Fig. 13 and the
problem formulation in Appendix A show that the blocks are
square so the number of parameters is five. There is also one con-
straint that should not be violated by the final optimal design. The
comparison results between MFO and MMA, GCA_I, GCA_II, CS, and
SOS are provided in Table 14.

The problem formulation for this case study in Appendix A
shows that the constraints are only applied to the variables ranges.
This problem is different from other employed problems in this
section, so it can mimic another characteristic of real problems.
The results in Table 14 testify that the MFO algorithm is able to
solve these types of problems efficiently as well. The results
evidence that the design with minimum weight belongs to the
proposed algorithm.

5.6. I-beam design problem

Another structural optimization problem employed in this
section is the I-beam design problem. This problem deals with
designing of an I-shaped beam (as shown in Fig. 14) for achieving
minimal vertical deflection. Length, height, and two thicknesses
are the structural parameters for this problem. Formulation of this
problem in Appendix A shows that this problem has a constraint as
well.

The results of MFO on this problem are compared to those of
adaptive response surface method (ARSM), Improved ARSM
(IARSM), CS, and SOS in the literature. Table 15 shows the
experimental results on this problem.
design problem.

Optimum weight

x4 x5

62 3.51361646768954 2.16162029338550 1.33998808597181
3.4900 2.1500 1.3400
3.4900 2.1500 1.3400
3.4900 2.1500 1.3400
3.5077 2.1504 1.33999
3.49896 2.15564 1.33996

sign problem.
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This table shows that the MFO algorithm is able to find a design
with minimal vertical deflection compared to other algorithms. It
is worth mentioning here that the improved vertical deflection is
very significant in this case study.
5.7. Tension/compression spring design

The other utilized engineering test problem is the tension/com-
pression spring design problem. The objective is again the mini-
mization of the fabrication cost of a spring with three structural
parameters [67,88,89]: wire diameter ðdÞ, mean coil diameter
ðDÞ, and the number of active coils ðNÞ. Fig. 15 shows the spring
and its parameters.

There are several solutions for this problem in the literature.
This problem was solved using meta-heuristics such as PSO [66],
ES [81], GA [79], HS [78], and DE [82]. The mathematical
approaches are the numerical optimization technique (constraints
Table 15
Comparison results for I-beam design problem.

Algorithm Optimal values for variables Optimum vertical
deflection

b h tw tf

MFO 50 80 1.7647 5.0000 0.0066259
ARSM [87] 37.05 80 1.71 2.31 0.0157
IARSM [87] 48.42 79.99 0.90 2.40 0.131
CS [72] 50 80 0.9 2.321675 0.0130747
SOS [41] 50 80 0.9 2.32179 0.0130741

Fig. 15. Tension/compression
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Fig. 16. Structure of
correction at constant cost) [88] and mathematical optimization
technique [89]. The best results of MFO are compared with those
of all the above-mentioned methods in Table 16. Note that a sim-
ilar penalty function in [90] is used for MFO to perform a fair
comparison.

Table 16 shows that MFO performs very effectively when solv-
ing this problem and provides the best design. The results of MFO
are very close to those of HS and DE, and PSO.
5.8. 15-bar truss design

This problem is a structural design problem, in which the objec-
tive is to minimize the weight of a 15-bar truss. The final optimal
design for this problem should satisfy 46 constraints such as 15
tension, 15 compression, and 16 displacement constraints. There
are also 8 nodes and 15 bars as shown in Fig. 16, so there is the
total number of 15 variables. It also may be seen in this figure that
three loads are applied to the nodes P1; P2, and P3. Other assump-
tions for this problem are as follows:

� q ¼ 7800 kg/m3

� E ¼ 200 MPa
� Stress limitation ¼ �120 MPa
� Displacement in both directions ¼ �10 mm
� Design variabe set ¼

113:2;143:2;145:9;174:9;185:9;235:9;265:9;297:1
308:6;334:3;338:2;497:8;507:6;736:7;791:2;1063:7
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Table 18
Available cross-section areas of the AISC norm (valid values for the parameters).

No. in.2 mm2 No. in.2 mm2

1 0.111 71.613 33 3.84 2477.414
2 0.141 90.968 34 3.87 2496.769
3 0.196 126.451 35 3.88 2503.221
4 0.25 161.29 36 4.18 2696.769
5 0.307 198.064 37 4.22 2722.575
6 0.391 252.258 38 4.49 2896.768
7 0.442 285.161 39 4.59 2961.284
8 0.563 363.225 40 4.8 3096.768
9 0.602 388.386 41 4.97 3206.445

10 0.766 494.193 42 5.12 3303.219
11 0.785 506.451 43 5.74 3703.218
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This problem has been solved widely in the literature with con-
sidering P1 ¼ 35 kN; P2 ¼ 35 kN; P3 ¼ 35 kN as the loads [91,92]:

These three cases are solved using 30 search agents over 500
iterations and the results are presented in Table 17. Since this
problem is a discrete problem, the search agents of MFO were sim-
ply rounded to the nearest integer number during optimization.

Table 17 shows that the MFO algorithm is able to find a similar
structure compared to those of HPSO, SOS, and MBA. This is the
best obtained optimum so far in the literature for this problem.
Therefore, these results show that MFO is able to provide very
competitive results in solving this problem as well.

5.9. 52-bar truss design

The last case study is another popular truss design problem. As
may be seen in Fig. 17, there are 52 bars and 20 nodes of which
four are fixed. The truss has 52 bars, which are classified in the
following 12 groups:

� Group1 : A1; A2; A3; A4

� Group2 : A5; A6; A7; A8; A9; A10

� Group3 : A11; A12; A13

� Group4 : A14; A15; A16; A17

� Group5 : A18; A19; A20; A21; A22; A23

� Group6 : A24; A25; A26

� Group7 : A27; A28; A29; A30

� Group8 : A31; A32; A33; A34; A35; A36

� Group9 : A37; A38; A39
Table 17
Comparison of MFO optimization results with literature for the 15-bar truss design proble

Variables (mm2) GA [30] PSO [31] PSOPC [31]

A1 308.6 185.9 113.2
A2 174.9 113.2 113.2
A3 338.2 143.2 113.2
A4 143.2 113.2 113.2
A5 736.7 736.7 736.7
A6 185.9 143.2 113.2
A7 265.9 113.2 113.2
A8 507.6 736.7 736.7
A9 143.2 113.2 113.2
A10 507.6 113.2 113.2
A11 279.1 113.2 113.2
A12 174.9 113.2 113.2
A13 297.1 113.2 185.9
A14 235.9 334.3 334.3
A15 265.9 334.3 334.3

Optimal weight (kg) 142.117 108.84 108.96

Table 16
Comparison of results for tension/compression spring design problem.

Algorithm Optimum variables Optimum
weight

d D N

MFO 0.051994457 0.36410932 10.868421862 0.0126669
GSA 0.050276 0.323680 13.525410 0.0127022
PSO [66] 0.051728 0.357644 11.244543 0.0126747
ES [81] 0.051989 0.363965 10.890522 0.0126810
GA [79] 0.051480 0.351661 11.632201 0.0127048
HS [78] 0.051154 0.349871 12.076432 0.0126706
DE [82] 0.051609 0.354714 11.410831 0.0126702
Mathematical

optimization
[89]

0.053396 0.399180 9.1854000 0.0127303

Constraint
correction
[88]

0.050000 0.315900 14.250000 0.0128334
� Group10 : A40; A41; A42; A43

� Group11 : A44; A45; A46; A47; A48; A49

� Group12 : A50; A51; A52

Therefore, this problem has 12 parameters to be optimized.
Other assumptions for this problem are as follows:

� q ¼ 7860:0 kg/m3

� E ¼ 2:07e5 MPa
� Stress limitation ¼ �180 MPa
� Design variabe set are chosen from Table 16
� Pk ¼ 100 kN; Py ¼ 200 kN

Available cross-section areas of the AISC norm for this problem
are available in Table 18. Again, 30 search agents are employed
m.

HPSO [31] MBA [92] SOS [41] MFO

113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
736.7 736.7 736.7 736.7
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
736.7 736.7 736.7 736.7
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
113.2 113.2 113.2 113.2
334.3 334.3 334.3 334.3
334.3 334.3 334.3 334.3

105.735 105.735 105.735 105.735

12 0.994 641.289 44 7.22 4658.055
13 1 645.16 45 7.97 5141.925
14 1.228 792.256 46 8.53 5503.215
15 1.266 816.773 47 9.3 5999.988
16 1.457 939.998 48 10.85 6999.986
17 1.563 1008.385 49 11.5 7419.34
18 1.62 1045.159 50 13.5 8709.66
19 1.8 1161.288 51 13.9 8967.724
20 1.99 1283.868 52 14.2 9161.272
21 2.13 1374.191 53 15.5 9999.98
22 2.38 1535.481 54 16 10322.56
23 2.62 1690.319 55 16.9 10903.2
24 2.63 1696.771 56 18.8 12129.01
25 2.88 1858.061 57 19.9 12838.68
26 2.93 1890.319 58 22 14193.52
27 3.09 1993.544 59 22.9 14774.16
28 3.13 2019.351 60 24.5 15806.42
29 3.38 2180.641 61 26.5 17096.74
30 3.47 2238.705 62 28 18064.48
31 3.55 2290.318 63 30 19354.8
32 3.63 2341.931 64 33.5 21612.86
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over 500 iterations for solving this problem. Similarly to 15-bar
truss design, the search agents of MFO were rounded to the nearest
integer number during optimization since this problem is discrete
B 
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Fig. 17. Structure of a 52-bar truss.

Fig. 18. Fixed pitch ship propeller w
as well. The results are presented and compared to several algo-
rithms in the literature in Table 19.

As per the results in Table 19, the best optimal weight obtained
by MFO is 1902.605, which is identical to the optimal weights
found by SOS and MBA. It is evident from the results that MFO,
SOS, and MBA significantly outperformed PSO, PSOPC, HPSO, and
DHPSACO.

As a summary, the results of this section show that MFO out-
performs other algorithms in the majority of real case studies.
Since the search space of these problems is unknown, these
results are strong evidences for the applicability of MFO in
solving real problems. Due to the constrained nature of the case
studies, in addition, it can be stated that the MFO algorithm is
able to optimize search spaces with infeasible regions as well.
This is due to the update mechanism of moths, in which they
are required to update their positions with respect to the best
recent feasible flames. Therefore, this approach promotes explo-
ration of promising feasible regions and is the main reason of
the superiority of the MFO algorithm.
ith 4 blades and 2 m diameter.
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Fig. 20. Convergence of the MFO algorithm when solving the propeller design
problem.
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Fig. 19. Airfoils MFOng the blade define the shape of the propeller [95].



Fig. 21. 2D airfoils of the obtained optimal design using MFO.
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To further demonstrate the performance of the proposed MFO
algorithm, next section is devoted to the real application of MFO
in the field of Computational Fluid Dynamics (CFD) problems.
6. Marine propeller design using MFO

In this section the shape of a marine propeller is optimized by
MFO. The selected propeller is a ship propeller with the diameter
of two meters. The shape of the propeller is illustrated in Fig. 18.

Generally speaking, the efficiency of a marine propeller is a crit-
ical performance metric because of the density of water. The ulti-
mate goal when designing a marine propeller is to convert the
rotation power of motor to thrust with the least loss. Note that
there is always 1–5% intrinsic loss due to swirl for marine pro-
pellers. The efficiency of marine propellers is calculated as follows
[94]:

g ¼ Va

2pnD
� KTðxÞ

KQ ðxÞ
ð6:1Þ

where V is axial velocity, D is the diameter of the propeller, n is the
rotation speed of the propeller, KT indicates the thrust coefficient,
and KQ shows that torque coefficient.

KT is calculated as follows:

KTðxÞ ¼
T

qn2D2 ð6:2Þ

where q shows the fluid density, T is the thrust, n indicates the rota-
tion speed of the propeller, and D is the diameter length.
     MFO 

Fig. 22. Improved design from initial infeas
In order to mathematically model the shape of the blades,
Bézier curves can be chosen. In this method, a set of controlling
points define the shape of the airfoils along the blades. Another
method of designing a propeller is to select and define the type
and shape of airfoils along the blades. Due to the simplicity, the
second method is utilized in this work. In the employed propeller,
the blade’s arifoils are determined by NACA a = 0.8 meanline and
NACA 65A010 thickness sections. The shape of airfoils across the
blade define the final shape of the propeller.

As shown in Fig. 19, the blades are divided into 10 cross
sections, and each cross section has two parameters: chord length
and thickness. Therefore, there are 20 parameters for this problem.

After all, the problem of propeller design is formulated as a
maximization problem as follows:

Suppose : Xi

!
¼ ðxi

0; x
i
0:1R; . . . ; xi

RÞ; i ¼ 1;2;3;4;5;6;7;8;9;10

ð6:3Þ
Maximize : gðxÞ ð6:4Þ
Subject to : wake friction and thrust deduction ð6:5Þ
Parameter range : 0 < x1 � x10 6 1 ð6:6Þ

The CFD problems are usually very challenging with dominated
infeasible regions. Therefore, this problem is a very hard test bed
for the proposed MFO algorithm. It is also worth mentioning here
that propeller design is an expensive problem because each func-
tion evaluation takes around 2–4 min. Note that a freeware called
Openprop is utilized as the simulator for calculating efficiency
[96]. The constant parameters of the propeller during optimization
are as follows:

� Ship speed: 5 m/s (9.7192 knots).
� Rotation speed: 170 RPM.
� Diameter: 2 m.
� Number of blades: 6.
� Thrust: 40,000 N.
� Torque: 16183.1936 Nm.
� Power: 288099.0115 W.
� Density of water: 999.97 kg/m3.

Sixty moths are employed over 500 iterations to solve this
problem. The best obtained design parameters are presented in
Table 20.

The best efficiency obtained by the MFO algorithm was 0.6942.
Other characteristics of the obtained optimal design are presented
in Table 21.
ible design to feasible optimal design.



Table 19
Comparison of MFO optimization results with literature for the 52-bar truss design problem.

Variables (mm2) PSO [91] PSOPC [91] HPSO [91] DHPSACO [93] MBA [92] SOS [41] MFO

A1–A4 4658.055 5999.988 4658.055 4658.055 4658.055 4658.055 4658.055
A5–A10 1374.19 1008.38 1161.288 1161.288 1161.288 1161.288 1161.288
A11–A13 1858.06 2696.77 363.225 494.193 494.193 494.193 494.193
A14–A17 3206.44 3206.44 3303.219 3303.219 3303.219 3303.219 3303.219
A18–A23 1283.87 1161.29 940 1008.385 940 940 940
A24–A26 252.26 729.03 494.193 285.161 494.193 494.193 494.193
A27–A30 3303.22 2238.71 2238.705 2290.318 2238.705 2238.705 2238.705
A31–A36 1045.16 1008.38 1008.385 1008.385 1008.385 1008.385 1008.385
A37–A39 126.45 494.19 388.386 388.386 494.193 494.193 494.193
A40–A43 2341.93 1283.87 1283.868 1283.868 1283.868 1283.868 1283.868
A44–A49 1008.38 1161.29 1161.288 1161.288 1161.288 1161.288 1161.288
A50–A52 1045.16 494.19 792.256 506.451 494.193 494.193 494.193

Optimal weight (kg) 2230.16 2146.63 1905.495 1904.83 1902.605 1902.605 1902.605

Table 20
Obtained best design parameters using MFO.

Chord1 Thickness1 Chord2 Thickness2 Chord3 Thickness3 Chord4 Thickness4 Chord5 Thickness5

0.13 0.14 0.160036 0.175114 0.184335 0.185283 0.174 0.144001 0.11 0.0008

Chord6 Thickness6 Chord7 Thickness7 Chord8 Thickness8 Chord9 Thickness9 Chord10 Thickness10

0.03998 0.031706 0.018 0.016645 0.013051 0.010043 0.007164 0.006201 0.003 1.00E-05

Table 21
Performance of the obtained optimal design.

Name Value

J 0.88235
KT 0.30382
KQ 0.06146
Effy 0.6942
AdEffy 0.82919
CT 0.99374
CQ 0.40205
CP 1.4315
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The convergence of MFO when solving this problem is illus-
trated in Fig. 20. Note that the convergence between iterations
214 to 500 is just shown since there was no feasible solutions dur-
ing iterations 1–213.

The 2D images of the obtained optimal airfoils along five cross
sections of the blade are illustrated in Fig. 21.

To see how the MFO algorithm found the optimal shape for the
propeller, Fig. 22 illustrates the initial infeasible random design
created in the first iteration and the final feasible optimal design
obtained in the last iteration. It may be observed that how the pro-
posed algorithm effectively and efficiently found a smooth shape
for the blades to maximize the overall efficiency of the propeller.

As discussed above, the propeller design is a CFD problem with
dominated infeasible regions. The results of this section highly
demonstrate the applicability of the proposed algorithm in solving
challenging real problems with unknown and constrained search
spaces. Therefore, it can be stated that the MFO algorithm has mer-
its in solving similar challenging problems.
7. Conclusion

In this paper the transverse orientation of moths was modelled
to propose a new stochastic population-based algorithm. In fact,
the spiral convergence toward artificial lights was the main inspi-
ration of the MFO algorithm. The algorithm was equipped with
several operators to explore and exploit the search spaces. In order
to benchmark the performance of MFO, three phases of test were
conducted: test functions, classical engineering problems, and a
CFD problem. In addition the results were compared to a wide range
of algorithms for verification. In the first test phase, 19 test functions
were employed to benchmark the performance of MFO from differ-
ent perspectives. It was observed that the MFO algorithm is able
show high and competitive exploration in multi-modal functions
and exploitation in unimodal functions. Moreover, the results of
the composite test functions prove the MFO balances exploration
and exploitation properly. The first test phase also considered the
observation and investigation of MFO’s convergence.

In the second test phase, seven classical engineering test prob-
lem were employed to further investigate the effectiveness of MFO
in practice. The problems were welded beam design, gear train
design, three-bar truss design, pressure vessel design, cantilever
design, I-beam design, and tension/compression spring , 15-bar
truss, and 52-bar truss design problems. The results proved that
the MFO algorithm can also be effective in solving challenging
problems with unknown search spaces. The results of this algo-
rithm were compared to a variety of algorithms in the literature.
The second test phase also considered the constrained and discrete
problems to observe the performance of the MFO algorithm in
solving problems with different characteristics. Eventually, the last
test phase demonstrated the application of the MFO algorithm in
the field of propeller design. The employed problem was a highly
constrained and expensive problem. However, the MFO algorithm
easily managed to optimize the structure of the employed pro-
peller and improve its efficiency.

According to this comprehensive comparative study, the follow-
ing conclusion remarks can be made:

� Procedure of updating positions allows obtaining neighbouring
solutions around the flames, a mechanism for mostly promoting
exploitation.
� Adaptive convergence constant ðrÞ towards the flame causes

accelerated exploitation around the flames over the course of
iterations.
� Local optima avoidance is high since MFO employs a population

of moths to perform optimization.
� Assigning each moth a flame increases exploration of the search

space and decreases the probability of local optima stagnation.
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� Decreasing the number of flames balances exploration and
exploitation of the search space.
� Considering recent best solution obtained so far as the flames

save the promising solutions as the guides for moths.
� The best solutions are saved so they never get lost.
� The convergence of the MFO algorithm is guaranteed because

the moths always tend to update their positions with respect
to flames who are the most promising solutions obtained so
far over the course of iterations.
� The MFO algorithm is able to solve real challenging problems

with unknown and constrained search spaces.
� According to the NFL theorem, there is no optimization algo-

rithm for solving all optimization problems. Since the MFO
algorithm was able to outperform other algorithms on the
majority of test cases in this study, it can be considered as an
alternate optimizer for solving optimization problems among
the current famous algorithms.

For future works, several research directions can be recom-
mended. Firstly, the effect of different spirals in improving the per-
formance of the MFO is worth researching. Secondly, the binary
version of the MFO algorithm can be another interesting future
work. Last but not least, the proposal of specific operators to solve
multi-objective algorithms using MFO is recommended.

Appendix A

I – Welded beam design problem

Consider ~x¼ ½x1 x2 x3 x4� ¼ ½h l t b�;

Minimize f ð~xÞ ¼ 1:10471x2
1x2þ0:04811x3x4ð14:0þ x2Þ;

Subject to g1ð~xÞ ¼ sð~xÞ�smax 6 0;

g2ð~xÞ ¼rð~xÞ�rmax 6 0;

g3ð~xÞ ¼ x1� x4 6 0;

g4ð~xÞ ¼ 1:10471x2
1þ0:04811x3x4ð14:0þ x2Þ�5:06 0;

g5ð~xÞ ¼ 0:125� x1 6 0;

g6ð~xÞ ¼ dð~xÞ� dmax 6 0;

g7ð~xÞ ¼ P�Pcð~xÞ6 0;

Variable range 0:16 x1 6 2;

0:16 x2 6 10;

0:16 x3 6 10;

0:16 x4 6 2;

where sð~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2þ2s0s00 x2

2R
þðs00Þ2

r
;

s0 ¼ Pffiffiffi
2
p

x1x2
; s00 ¼MR

J
; M¼ P Lþ x2

2

� �
;

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ x1þ x3

2

� �2
r

;

J¼ 2
ffiffiffi
2
p

x1x2
x2

2

4
þ x1þ x3

2

� �2
� 

 �

;

rð~xÞ ¼ 6PL
x4x2

3

; dð~xÞ ¼ 6PL3

Ex2
3x4

;

Pcð~xÞ ¼
4:013E

ffiffiffiffiffiffiffi
x2

3x6
4

36

q
L2 1� x3

2L

ffiffiffiffiffiffi
E

4G

r !
;

P¼ 6000 lb; L¼ 14 in:; E¼ 30�16 psi; G¼ 12�106 psi;

smax ¼ 13;600 psi; rmax ¼ 30;000 psi; dmax ¼ 0:25 in:

II – Gear train design problem
Consider ~x ¼ ½x1 x2 x3 x4� ¼ ½nA nB nC nD�;

Minimize f ð~xÞ ¼ 1
6:931

� x3x2

x1x4

� �2

;

Subject to 12 6 x1; x2; x3; x4 6 60:

III – Three-bar truss design problem

Consider ~x ¼ ½x1 x2� ¼ ½A1 A2�;

Minimize f ð~xÞ ¼ 2
ffiffiffi
2
p

x1 þ x2

� �
� l;

Subject to g1ð~xÞ ¼
ffiffiffi
2
p

x1 þ x2ffiffiffi
2
p

x2
1 þ 2x1x2

P � r 6 0;

g2ð~xÞ ¼
x2ffiffiffi

2
p

x2
1 þ 2x1x2

P � r 	 0;

g3ð~xÞ ¼
1ffiffiffi

2
p

x2 þ x1
P � r 6 0;

Variable range 0 6 x1; x2 6 1;

where l ¼ 100 cm; P ¼ 2 KN=cm2; r ¼ 2 KN=cm2:

IV – Pressure vessel design problem

Consider ~x ¼ ½x1 x2 x3 x4� ¼ ½Ts Th R L�;

Minimize f ð~xÞ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3 þ 3:1661x2

1x4

þ 19:84x2
1x3;

Subject to g1ð~xÞ ¼ �x1 þ 0:0193x3 6 0;

g2ð~xÞ ¼ �x3 þ 0:00954x3 6 0;

g3ð~xÞ ¼ �px2
3x4 �

4
3
px3

3 þ 1;296;000 6 0;

g4ð~xÞ ¼ x4 � 240 6 0;

Variable range 0 6 x1 6 99;

0 6 x2 6 99;

10 6 x3 6 200;

10 6 x4 6 200:

V – Cantilever design

Consider ~x ¼ ½x1 x2 x3 x4 x5�

Minimize f ð~xÞ ¼ 0:6224ðx1 þ x2 þ x3 þ x4 þ x5Þ;

Subject to gð~xÞ ¼ 61
x3

1

þ 27
x3

2

þ 19
x3

3

þ 7
x3

4

þ 1
x3

5

� 1 6 0;

Variable range 0:01 6 x1; x2; x3; x4; x5 6 100:

VI – I-beam design

Consider ~x ¼ ½x1 x2 x3 x4 x5� ¼ ½b h tw tf �;

Minimize f ð~xÞ ¼ 5000
twðh�2tf Þ

3

12 þ bt3
f

6 þ 2btf
h�tf

2

� �2 ;

Subject to gð~xÞ ¼ 2btw þ twðh� 2tfÞ 6 0;

Variable range 10 6 x1 6 50;

10 6 x2 6 80;

0:9 6 x3 6 5;

0:9 6 x4 6 5:
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VII – Tension/compression spring design

Consider ~x ¼ ½x1 x2 x3� ¼ ½d D N�;
Minimize f ð~xÞ ¼ ðx3 þ 2Þx2x2

1;

Subject to g1ð~xÞ ¼ 1� x3
2x3

71;785x4
1

6 0;

g2ð~xÞ ¼
4x2

2 � x1x2

12;566ðx2x3
1 � x4

1Þ
þ 1

5108x2
1

6 0;

g3ð~xÞ ¼ 1� 140:45x1

x2
2x3

6 0;

g4ð~xÞ ¼
x1 þ x2

1:5
� 1 6 0;

Variable range 0:05 6 x1 6 2:00;
0:25 6 x2 6 1:30;
2:00 6 x3 6 15:0:
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.knosys.2015.07.
006.
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