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The photovoltaic (PV) panels currently existed on market are laminated plate structures, which are
composed of two stiff glass skins and a soft interlayer. Some panels are installed on the buildings and
integrated as the components of the structures, such as wall and roof. In different locations, the in-
stallations of PV panels are different and the boundary conditions are not always simply supported. In
this paper, the bending behaviour of PV panels with various boundary conditions is analysed and the
influence of boundary condition is studied carefully. The Kirchhoff theory is adopted to build governing
equations of PV panels under static force. A Rayleigh-Rita method is modified to solve the governing
equations and calculate the static deformation and stress. Different boundary conditions usually require
different assumptions of the deflection function, but a modified general function is developed in here to
solve that problem. A theoretical solution is derived out and used to do the numerical calculation. The
bending experiments of PV panels with two boundary conditions are used to verify the accuracy of the
proposed solutions. Finally, the influence of different boundary condition is stated by comparing the
numerical results and some guides for the PV panel installation are proposed.
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those tries is building integrated photovoltaic (BIPV), which has
attracted much attention from the engineers and researchers.

1. Introduction

In a report from China Association of Building Energy Efficiency,
it consumes 40%—50% of the total energy each year in building
structures in P.R. China [1]. It’s almost the same in U.S. since U.S.
Department of Energy stated that building consumes more than
40% of the electricity produced in U.S. every year [2]. The huge
demand of energy brings plenty of non-renewable and non-
recyclable wastes. Meanwhile, several green and renewable en-
ergies are developed fast in recent decades, such as solar energy,
wind energy and geothermal energy. If those green energies could
be utilized in the building, the energy consumption could be
reduced and less wastes will be made to the environment. One of
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Different from traditional building attached photovoltaic (BAPV)
technology, the photovoltaic (PV) module in BIPV must be a func-
tional part of the building. It requires that the PV component must
generate electricity for the building to reduce the energy needs, and
at the same time, to bear external loads and keep the safety and
integrality of the building.

In 1970s, it is the first time for PV modules to be applied in civil
engineering and they were usually mounted on buildings skin,
which is just BAPV [3]. Two decades later and in 1990s, PV module
started to be integrated into building, and some relative research
works were promoted [3,4]. In several review papers [4—9], the
history, development and future opportunities of BIPV are stated
carefully. However, it denotes that the mechanical behaviour of the
BIPV products are studied much less than energy efficiency [10],
thermal behaviour [11—13] and other properties [14,15]. Peng etc.
[16] pointed out that the building loads and PV module damages
should be considered in design work.


mailto:xielingzhi@scu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2019.05.121&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2019.05.121
https://doi.org/10.1016/j.renene.2019.05.121
https://doi.org/10.1016/j.renene.2019.05.121

Y. Li et al. / Renewable Energy 145 (2020) 242—260 243

There are several different types of PV modules in the com-
mercial market right now, including monocrystalline silicon mod-
ule, polycrystalline silicon module, cadmium telluride module, Cu
indium gallium selenide module and amorphous silicon module.
All of them utilize glass to be the cover plate since the sunlight must
be transmitted though the cover plate to PV cell layer. But the
bottom plate has different choices. The single glass PV module uses
opaque TPT and double glass PV module adopts the transparent
glass. In BIPV, the double glass PV module with better photo-
permeability are more suitable and acceptable in the real struc-
tures. Therefore, the PV panels studied in the present paper are
double glass PV panel which consists of two glasses and an inter-
layer in where the cells are sealed by ethylene vinyl acetate (EVA) or
polyvinyl butyral (PVB).

Among the requirements to double glass PV panels in BIPV,
generating electricity is the nature function and all the normal
commercial products could satisfy that requirement. Therefore, the
difficult problem is whether those PV panels are qualified as the
building component to bear different external loads. Until now,
only in the standards of PV module itself, such as IEC 61215 (2005)
[17], there are several codes about the mechanical properties and
the corresponding test methods [4]. It is lack of specific codes about
PV modules applied in BIPV. As to the mechanical analysis, the main
of them are just bending behaviour and impact behaviour, which
represent the static property and dynamic property, respectively. In
the present paper, it focuses on the bending behaviour of double
glass PV panels, and it can supply the foundation to the further
safety research and design codes of PV panel under wind load or
snow load in buildings.

In studies about bending behaviour of double glass PV panel,
Naumenko and Eremeyev [18] used layer-wise theory and they
treated the PV panel as a layered composite with two relatively stiff
skin layers and a relatively soft core, since the ratio of shear moduli
U = G¢/G; for core material to skin glass is in the range between
107> and 1072 But only the plate strip with simply supported
boundary condition is solved in their paper. Eisentrager etc. [19]
presented a finite element formulation and a user-defined quad-
rilateral serendipity element with quadratic shape functions and
nine degrees of freedom. They are based on layer-wise theory and
used to analyze the bending behaviour of PV module with two
boundary conditions. Eisentrager etc. [20] also tried another
method, first order shear deformation theories (FSDT), to study the
PV panel with weak shear stiffness. They developed a user-defined
element and integrate it into ABAQUS. Weps [21] chose unsym-
metrical laminated beam to study and they used layer-wise theory
to build the constitutive equations. The proposed equations and
finite element analysis are verified by the three-point bending test.
Besides, symmetrical laminated glass beam for PV application were
completed by Schulze etc. [22]. They firstly simulate PV module as
laminated structure with relatively soft core. In the authors’ pre-
vious work [23], the double glass PV panel with a special boundary
condition, two opposite edges simply supported and the other two
edges free, is studied theoretically and experimentally. Hoff model
is adopted to simulate the panel, and Rayleigh-Rita method is
modified to obtain static deformation. But the influence of
boundary condition is not discussed carefully, and the differences
between proposed method and classical method are not stated.

Since double glass PV panel is actually a laminate composite, the
theories and mechanic models of that composite could be applied
in this research. Vedrtnam and Pawar [24] made a review work on
laminate composite, and laminate glass plate which is very like
double glass PV panel is mainly introduced. First order shear
deformation theory (FSDT) is a theory for laminate composite, and
the principle assumption of it is that the normal variables to the
middle surface of plate behave like rigid bodies during the bending

test. Those variables are defined as constants, including displace-
ment and transverse shear stress. Based on FSDT, some analytical or
semi-analytical solution are derived out and verified by experi-
ments or simulations [25—31]. Zig-zag theory utilizes the piecewise
functions to describe displacements of the plate with respect to the
thickness coordinate, and the governing equations can be simpli-
fied [32—35]. Layer-wise theory (LWT) was chosen by many re-
searchers to study PV panel. In LWT, the constitutive equations are
derived out for each layer, and interaction forces and compatibility
are calculated by some specific models [18,19,21,36—41]. Some
other theories and models were also proposed, such as trigono-
metric shear deformation theory [42], new higher order shear
deformation theory [43,44], and so on. In addition, other re-
searchers did some works on the methods to solve the partial dif-
ferential equations and obtain the final solutions, including closed-
form solutions or approximate analytical solutions [45—47]. How-
ever, in many of those works, the boundary conditions of the plates
are four edges simply-supported since it is easy to get solutions.
And there are very few works discussing the influence of different
boundary conditions.

Actually, the installation ways of double glass PV panel on the
steel frame are very different in the buildings, including four edges
simply supported, two opposite edges simply supported and the
other two edges free, and four points supported. Different instal-
lation ways mean different boundary conditions to the PV panel,
and the mechanical behaviours are also different. It is necessary to
do some studies on the influences of boundary condition, so it will
be helpful to the design and running of double glass PV panel when
it is applied in BIPV.

In present paper, the mechanical properties of double glass PV
panel with two different boundary conditions are analysed by both
experimental and theoretical researches. A classical lamination
theory, Hoff model, is applied to build the constitutive equations of
whole panel under the uniformly distributed force. The specific
boundary equations are given based on two boundary conditions:
four edges are simply supported (annotated as SSSS), two opposite
edge are simply supported and the other two edges are free (an-
notated as SSFF). The Rayleigh-Riata method is modified to derive
the closed form solution. Although boundary conditions are
different, the assumptions of the solutions in modified Rayleigh-
Riata method are same. By using water pressure, the bending
experiment of PV panel was completed. Two boundary conditions
were realized by changing the test frame. Comparing the theoret-
ical results with experimental results, the accuracy of the analytical
solutions are verified. The influences of boundary condition are also
concluded. The theoretical model and solutions obtained in this
paper could be the foundations to the optimal work in future, and
some suggestions for the installation ways of double glass PV panel
can be made based on those works.

2. Theoretical analysis of double glass PV panel with two
boundary conditions

A mechanical model is built to describe the bending behaviour
of the double glass PV panel under uniformly distributed force, and
then, the deflections of whole panel with two different boundary
conditions are solved. Hoff model is used in present paper and the
corresponding governing equations are developed. Then, the
boundary equations are given based on boundary conditions and
internal force formulas of laminate plate. Although the boundary
equations are different, the assumptions of the solutions in present
paper are same as a general assumptions. Rayleigh-Rita method is
modified to solve the deflections of whole double glass PV panel. At
last, the strain and stress are calculated based on those bending
deflections.
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2.1. Mechanical model and basic hypothesis

In Fig. 1, it shows the basic components of PV panel, including
cover glass, ethylene-vinylacetate (EVA), silicon solar cells and back
glass. Silicon solar cells are embedded in the EVA layer to be pro-
tected. Based on Naumenko and Eremeyev [18], the bending
moment and normal force could be negligible in the EVA layer, but
the shear stress should be transmitted by EVA. In order to simplify
the problem, a laminate plate model is applied and several
hypothesises are made same as [23].

(1) The cover and backboard glasses are treated as top and
bottom surfaces of the laminate plate, respectively. And both
of them are simulated as isotropic plates with constant
flexural rigidity.

(2) The silicon solar cells are too thin to bear any shear stress,
and the two EVA layers play the main role of interlayer. The
silicon solar cells layer is ignored and two EVA layers are
merged as one layer which is defined as the interlayer only
made of EVA. The whole PV panel is simplified as a three-
layer composite, including cover plate, interlayer and back
plate. The mechanical model of PV panel under uniformly
distributed force and the corresponding coordinate system
are shown in Fig. 2.

(3) According to the research results summarized by Naumenko
and Eremeyev [18] and Stefan-H. Schulze etc. [22], in PV
module, the ratio of the shear moduli between interlayer and
surface layer is in the range between 10~> and 10~2. The PV
module is a typical soft core laminate plate and the stress of
the interlayer in X-y plan should be ignored.

(4) Only the anti-symmetrical deformation is studied in present
paper, so the stress ¢, and the strain ¢, of interlayer are very
small and can be ignored, which is defined as o, = 0,¢; = 0.

2.2. Hoff model and governing equations

Reissner theory is modified by Hoff [48], and a Hoff model is
developed for the laminated plate. In Hoff model, the flexural ri-
gidities of surface plates must be calculated but the interlayer is a
relative soft layer. According to Hoff model and those hypothesises
in section 2.1, the governing equations of the PV panels can be
derived same as [23] as
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Fig. 1. Structural diagram of monocrystalline silicon double glass photovoltaic panel.
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Fig. 2. Mechanical model of PV panel and corresponding coordinate system.
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C(Vzw—%—aiyy) —2D;V2V2w 4+ q =0 (3)

where ¢y, ¢, and w are unknown variables as cross section rotation
at x-z plane, y-z plane and deflection at z direction, respectively.
Constant variables D, Dy and C are calculated as equation (9) to
equation (11). In order to simplify the governing equations, two
functions w and f are introduced and they are defined as equation
(4) and equation (5).

0w 0
%:&+% “)

_dw  of
Yoy " ax )

With equations (1)—(3) and equations (4) and (5), the modified
governing equations of PV panel under uniformly distributed force
can be written as

w=o - o0 (6)
2DD
<D+2Df)V2V2w— Cfvzvzvzw:q )
1
Z13(1 - vf>V2f—Cf: 0 (8)
with
Ef(h + t)%t
D_ r(h+1) (9)
2(1-2)
Eqt3
Df=—1 (10)
12(1-2)
2
cfcc(h;t) (11)

where E; is the elastic modulus of the cover and the back glass
plate, ; is the Poisson’s ratio of the cover and the back glass plate,
Gc is the shear modulus of EVA, t and h are the thickness of surface
plate and EVA interlayer, respectively.

2.3. Boundary conditions and boundary equations

The installtion ways of PV panel integrated into the building
have different options, depending on the position of building. Two
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boundary conditions which can simulate the usual two installtion
ways are studied in present paper. One of them is SSSS and the
other one is SSFF. As shown in Fig. 3, the whole PV panel is simply
supported at four edges: x=0, a and y = +0.5b. In Fig. 4, the PV
panel is simply supported at the edges x = 0 and a, and free-free at
the edges y = +0.5b.

If the boundary condition is SSSS, it should satisfy the formulas
as follows.

(M;()X:Qa = 07 (W)X:(),a = 07 (q’y)xzoﬂ = O7 (M:()X:O.a = 0 (12)
(My) p=0: W) p=0,(ex) =0, (M;,)yﬁg =0 (13)
y:ii yfiz y:iE +3

If the boundary condition is SSFF, the following formular must
be satisfied.

(M;()X:QG =0, (W)X:O,a =0, (q’y)x:O,a =0, (M:()x:O.a =0 (14)

1. Boundary equations of SSSS
At the edges x=0, a and y = +0.5b, equation (12) and equa-
tion (13) can be derived out as follows.

2w

00 =0,0, =0,w = 0a =0 (16)

ax

b/2

b/2

Vy

Fig. 3. Boundary condition of PV panel: four edges simply supported.

0oy 0w
W*O,(pro,wfo,ay—zfo (17)

Combining with equations (4) and (5) and following the
procedure derived by previous research work [23], we can
obtain equation (18) and equation (19) based on equation (16)
and equation (17).

0= V20 = Vo) — oaf 0 (18)

w=V2w=v4w=0 af =0 (19)

Equation (18) and equation (19) are just the boundary equa-
tions of SSSS, and they will be applied in next section to calcu-
late the deflection of PV panel.

-0 (15)

2

2. Boundary equations of SSFF
At the edges x=0 and a, equation (14) are the same as
equation (12). The boundary equations should be the same as
equation (18) for those two simply supported edges.
At the edges y = +0.5b, the boundary condition is different.
According to the stress-strain relationship of laminated plate
[47], equation (15) could be rewritten as follows.

a(Py a(px .
0w 9w
2Dy (aTZ + %TZ) -0 (21)
1 0y a(py B
a

b/2
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Fig. 4. Boundary condition of PV panel: two edges simply supported, two edges free.
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2
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From derivations made by the authors in Ref. [23], the boundary
equations of two free edges could be as

02w 62f 2w 0%f
S 2
oy2 0xdy f ox2 P axoy oxoy =0 (25)
Po Do o) Py By tey_
ay2  C\ox2oy2 ' ay4) " Tox2 oxd " ax2oy?

(26)
2 4 4
60)79 6w+6w _0 (27)
oxay C \ox30y oxdy3

Pw  w of Pw 0w D
p( 22 T Y Hp | 0
(axZay + ay3) o [axZay ta3C ( axdoy

9w GSw)]
p S
axZoy3  9y°
-0 (28)

Equations (18), and (25) — (28) are the specific boundary
equations of SSFF. They will be applied in the next derivation work
for closed-form solution of deflection.

2.4. Modified Rayleigh-Rita method and closed-form solutions

Rayleigh-Rita method uses the expansion of the unknown
deflection functions in infinite series form. It is possible to approach
or be close to the exact solutions of the equations by taking the
sufficient number of the terms in the series.

2.4.1. Closed-form solutions of SSSS

2.4.1.1. Classical method - Navier method. In previous researches,
the specific assumptions of the solutions to the governing equa-
tions are different due to different boundary conditions. To the
laminate plate with four edges simply supported, the assumption of
solution in equation (7) is usually as

- mi gAmn sin (") sin (") (29)

where Ap;, is unknown variable needed to be solved.

Substituting equation (29) into the governing equation (7), the
partial differential equation is transformed as an algebraic
equation.

M)
() (5) +3(7) (5) +4

22 () () +a () ()

w(y)

and Ay =D+ 2Df' Ay = 2DDf/C

Bending behaviour of PV panel under uniformly distributed
force is studied in present paper, so the force q is a constant. Taking
the Fourier expansion and doing odd continuation on the right
term in equation (30), it can be expressed as follows.

ab
A nmwx mmy
q=_p > Z”[q sstdexdy}sstmT
00
ab

(1 — cos nm)(1 — cos mw)} sm?sm%

(31)

Substituting equation (31) into equation (30) and reorganizing
the terms, so Amn can be solved as

Amn = % ;—b %(1 — cos nm)(1 — cos m) (32)
where
”- () 2 () (5 +m () 4’

() 5 () () )’

(33)

The procedure stated above is just the Navier method and it can
be only used in the plate structure with four edges simply sup-
ported. The assumption of solution, equation (29), is also only
suitable for the boundary condition as SSSS.

2.4.1.2. Modified Rayleigh-Rita method. In present paper, a modified
Rayleigh-Rita method is applied to solve the governing equations
and a modified general assumption is developed for the solutions.
Since the boundary condition is simply supported at edges x =0
and a, the sinusoidal function should be utilized and the unknown
variables w and f are assumed as

00

Z (€Y oy + w*)sin(knx) (34)
n=1

£ =32 ey cos(knx) (35)
n=1

where kn, = nw/a; 3% 1 (€Y wy)sin(knx) and 3% ;eMYf, cos(knX)
are the general solutions; > ; (w*)sin(kxx) is the specific solution;
An, wn, 0*, m, and f, are unknown variables needed to be solved.

The general solution of equation (7) is studied firstly, so the
assumption of general solution, w = "2 ;(e"Ywp)sin(knx), is
substituted into equation (36).

2DD
D+ 2D; ) V2V20 — = Iv2v2v24) = 0 (36)
f C

By merging the same terms, the characteristic equation is
written as

Axdy — (A1 +3A0kG )75 + (241K; + 3A2K3) 47 - (A1 K} + Azkg)
=0
(37)

with
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A1 =D+ 2Df (38)
~ 2DD; 2
2=t (39)

Defining @ = Ay, b = — (Ay + 3A2k%), € = (2A1k% + 3A.k?), d =
- (A]k;l + Azkg), equation (37) is also rewritten as equation (40).

WS +bip+TA2+d=0 (40)

Equation (40) is a sextic equation and there are not extract root
formulas for it. However, it could be solved as following. By defining
a new variable, S = A% + % equation (40) is transformed as

S$+PS+R=0 (41)
with
—2
1/(_ b
1/~ 20> b
Ra<d+ﬁ—%> (43)

The roots of the cubic equation (41) can be solved by

S1=A1+A5,5 =whA, +62A2,S1 :QZA] + WA, (44)

, 2 3 , 2 3
where A; = | -8B+ (§> + (g) c By = | -8 <’23> + (g)

and & = =153,

According to the definition of S, the roots of equation (37) are
finally solved as A,q,An2 = 161, An3, Ang = +if> and Ays,4p6 = + 103,
in where the variables ( could be calculated by

b

The six roots of the characteristic equation (37) has been solved
and the general solution of equation (7) should be written in the
format as equation (46).

o 6
w=> [z ehny wnr} sin(knx) (46)

n=1 r=1

Then, the specific solution of equation (7) should be solved to
satisfy equation (47).

=q (47)

Taking the Fourier expansion and doing odd continuation on the
right term in equation (47), it can be expressed as

. 2DD .
(D+20)v?v?0" - —Av2v2v

,% i”q sm—dx] sin ? = 2{% [1 — cos(nm)]

n=1 0

nmx
}smT (48)

Substituting equation (48) into equation (47), the specific so-
lution can be solved as follows.

00

Z{ [1 — cos(n)]

1

————— ssin(kpx 49
1kg+A2kg} ( " ) ( )

The full solution of equation (7) consists of the general solution
and specific solution, and it could be denoted specifically as

Y 2q, R S O
;{[Ze wn }Jr [1 — cos(nm)) 1k§+A2k§}sm(knx)
(50)

The same procedure could be applied to solve equation (8) with
the solution assumption as shown in equation (35), so the solution
of equation (8) could be denoted by

f= Z(Zennryfm)cos(knx) (51)
n=1

where

A *1D 1 52

s =30(1-7) (52)

C
Mt =\, * K (53)
C
o= = \[as +hn (54)

The full solutions of equation (7) and equation (8) could be
calculated by equation (50) and equation (51), respectively. How-
ever, there are total eight unknown variables in the solutions,
including w,r (r=1 to 6) and f;r (r=1 and 2). The boundary
equations are applied in here to obtain the exact values of those
unknown variables. If the boundary condition is four edges simply
supported, the boundary equation (19) must be satisfied.
Substituting equation (50) and equation (51) into equation (19), the
eight unknown variables must satisfy the following equations.

e Yopr = — 0" (55)

Mo

,
If
—_

6
Z(Aﬁr - kﬁ) MY e = &K (56)
r=1

6
Z(kﬁ L. 21<ﬁxﬁr) Yoy = — Ka' (57)
r=1

2
Z(nnr)enmyfnr =0 (58)

,
—_

Substituting y = +0.5b, there are eight equations for eight un-
known variables based on equations (55)—(58), and all variables
could be solved to get exact values. Once w is solved by equation
(50), the deflection of PV panel under uniformly distributed force
could be calculated based on equation (6) as
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2.4.2. Closed-form solutions of SSFF

The modified Rayleigh-Rita method is also applied to solve a
special boundary condition: SSFF. Since the PV panel is simply
supported at edges x = 0 and a, the sinusoidal function is used for x
axis. The unknown variables w and f are also assumed as equation
(34) and equation (35), respectively.

The derivation procedure is same as the one stated in the so-
lutions of PV panel with SSSS until equation (54) and the authors’
previous work [23]. Due to the different boundary equations, the
eight unknown variables must satisfy the following equations
based on equations (18), and (25) — (28).

S [ 1 g (12 o +

2
r=1 r=

[Ufnnr (—kn)emY
1

— Tnr(—kn)e™ | for
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>_| 20D . . 4D¢D 2D;D Wnr +
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Once the new eight unknown variables are solved and get their
exact values, w could still be obtained by equation (50). The
deflection of PV panel also should be calculated by equation (59).

T
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(59)

—— sin(kpx
A11<;,‘+A2k§} (n¥)

3. Finite element analysis of double glass PV panel with two
boundary conditions

In order to verify the results of Hoff model and modified
Rayleigh-Rita method proposed in present paper, FEM software
ANSYS is applied to perform a finite element analysis. The double
glass PV panels are simplified as five layers composite structure,
including cover glass, ethylene-vinylacetate (EVA), silicon solar
cells, EVA and back glass. Since it’s too thin to make any influence,
the battery layer is assumed as a continuous layer. The material of
each layer is simulated as isotropic material and the mechanical
properties of them are shown in Table 1. Because it could be layered,
SHELL181 composite shell element is used for modeling (as shown
in Fig. 5).

Comparing with SOLID element, the SHELL element has one
more degree of freedom (DOF), rotation. Therefore, the simulation
of boundary condition in PV panel should be very careful. If the
boundary condition is SSSS, the nodal constraints in X, Y and Z
directions are applied on all four edges but the rotation constraint is
used on the two short edges (as shown in Fig. 6). If the boundary
condition is SSFF, two long edges parallel to the Y axis should be
fixed in the Z direction while the other two short edges parallel to
the X axis are completely free. Moreover, the node constraints of
both X and Y directions are applied at the four corners (as shown in
Fig. 7). The finite element analysis model of PV panel under uni-
formly distributed force is shown as Fig. 8.

4. Experimental analysis of double glass PV panel with two
boundary conditions

4.1. Experimental scheme

The bending test of PV panel is performed at room temperature
to verify the structural analysis results aforementioned and detect

2
C(—kn)e™Y for = 0
=1

the real mechanical properties. The 6 specimens are all the double
glass photovoltaic modules (as shown in Fig. 9) which are provided
by Suzhou Tenghui Photovoltaic Technology Co., Ltd (Changshu, P.R.
China). The size of the 6 specimens are 1658 x 995 x 7.4 (unit:
mm), in which the cover and back glasses are 3.2 mm and the
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Table 1
Material parameter values.

Material Parameter values
Modulus of elasticity/MPa Poisson ratio Thickness/mm
Reinforced glass 7.2 x 10* 0.2 3.2
Crystalline silicon battery 1.44 x 10° 0.28 0.2
EVA 35x10 03 0.8

Fig. 5. Finite element analysis model built by SHELL 181 element.

interlayer thickness is 1 mm.

The test was completed in National Photovoltaic Product Quality
Supervision and Inspection Center at Chengdu. The test procedure
is based on current quality inspection certification, [EC 61215 [17]. A
test frame (as shown in Fig. 10) is used to mount the PV panel.
When it studies SSSS, two steel beams are fabricated and fixed on
the two short edges location (as shown in Fig. 11 and Fig. 12). Since
the width of the two steel beams and the frame cannot be ignored
in that modified frame structure, the actual size of the PV panel
under bending should be 1488 x 855 x 7.4 (unit: mm). And the
later calculation and simulation should choose that size value. If the
boundary condition is SSFF, the frame should be set up as original as
shown in Fig. 13 and Fig. 14.

Since it is symmetrical to the shape of PV panel and the loading,

Fig. 6. Boundary condition and mesh of finite element model: SSSS.

the strain measurement points are only set on a quarter part of the
panel with total 20 points, which is shown as Fig. 15. DH3816 static
strain gauge is used to collect the panel strains, and a laser
displacement meter installed under the panel is applied to measure
the central deflection. In order to simulate uniformly distributed
force better, water pressure is adopted in the tests. There are two
loading plans according to the two different boundary conditions.
As to the specimens with SSSS, it adds 1 kPa water pressure at each
level until 5 kPa, then adds 0.5 kPa to reach their ultimate pressure
5.5 kPa. After that, it unloads 0.5 kPa to 5Kpa and 1Kpa each step
until back to 0 kPa (as shown in Fig. 16). When the boundary con-
dition is SSFF, the water pressure is added 1 kPa at each step until
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Fig. 7. Boundary condition and mesh of finite element model: SSFF.

reaching their ultimate pressure 4 kPa, and it is unloaded 1 kPa for
each level until 0 kPa pressure (as shown in Fig. 17). In each stage,
the duration time is same as 8min, so the deformation of bending
panel can be measured precisely. The test site with frame, PV panel
and equipment are just shown as Fig. 18.

4.2. Experiment results

The bending test was completed at 25 °C. The central deflections
of the three specimens with SSSS are shown in Table 2 and Fig. 19,
and the ones with SSFF are summarized in Table 3 and Fig. 20.

As shown in Table 2 and Fig. 19, the central deflections of PV
panels with SSSS are changed nonlinearly with the water pressure.
But the deflections measured during the unloading process are
almost same as the ones in loading process. When the load is
decreased back to 0 kPa, the deflections are very close to 0 mm too
and it means there is no residual deflection. All the specimens were
checked carefully after the test, and there was not any cracks or
breakages on the surface glass. Therefore, the whole deformation of
PV panels under 5.5kPa uniformly distributed force is a safe
nonlinear elastic deformation. Moreover, the maximum load is
5.5 kPa and it is more than 2.4 kPa or 5.4 kPa required by current

Fig. 9. Monocrystalline silicon double glass photovoltaic module.
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Fig. 10. The test frame for mounting photovoltaic module. Fig. 13. Two edges simply supported and two edges free:

original frame without steel
beams at two short edges.

H
|
4

Fig. 11. Four edges simply supported: steel beams at two short edges.

[ e
]

Fig. 14. Two edges simply supported and two edges free: whole panel is mounted on
the frame.

Fig. 15. Arrangement diagram of strain measurement point (unit: mm).

Fig. 12. Four edges simply supported: whole panel is mounted on the frame.
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Fig. 16. Test loading scheme for PV panels with SSSS. Sp ecimen 2
2 —&— Specimen 3
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3 Fig. 19. Test central deflection of PV panels with SSSS.
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Table 3
3 Central deflection of PV panels with SSFF (unit: mm).
16 24 32 40 48 56 i i
Time (min) Water pressure (kPa) 0 1 2 3 4 3 2 1 0
Fig. 17. Test loading scheme for PV panels with SSFF. Specimen 1 0 64 108 144 184 148 112 7.7 3.7
Specimen 2 0 44 79 124 157 12 88 42 10
Specimen 3 0 59 103 141 169 14 106 63 13
20 o
18
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=
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Fig. 18. Test site. =4 Specimen 1
4 Specimen 2
. . . . ~=d—= Specimen 3
certification. It proves that those specimens satisfy the re- 2 ]

. . . . . == Average
quirements from the certification, IEC 61215 [17]. It’s a little 0 ¥ >
different to the PV panels with SSFF, since the central deflections 0 1 P 3 4 5
are changed almost linearly with the water pressure and so the Load(KPa)

whole deformation of those PV panels under 4 kPa is a linear elastic
deformation (as shown in Table 3 and Fig. 20). However, the re-
sidual deflections of those panels are obvious. It is the first group

Fig. 20. Text central deflection of PV panels with SSFF.

Table 2

Central deflection of PV panels with SSSS (unit: mm).
Water pressure (kPa) 0 1 2 3 4 5 5.5 5 4 3 2 1 0
Specimen 1 0 35 6.2 8.2 102 115 12 11.6 104 83 6.3 4.1 0.7
Specimen 2 0 34 5.6 7.6 9.7 11 119 11 9.8 7.7 5.8 35 0.1
Specimen 3 0 3.2 5.4 7.4 9.7 11.1 11.8 11.1 9.7 7.6 5.6 33 0.1
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14 4 that we tried to do the bending test, and we removed the water by
hands in that time. When measuring the central deflections, some
12 /A water were still on the water proof cloth and it brought the residual
deflections. Later, we started to use pumper to remove water from
10 the tank and the residual deflection is much smaller in other group
S tests.
=}
= 8
% . 5. Verifications and discussions
(] 0
A 5.1. PV panel deflection
4
Test average Fig. 21 and Fig. 22 present the central deflections measured by
2 —a— ANSYS tests, calculated by ANSYS and by equations in present paper. In
This paper Table 4 and Table 5, they state the specific values of those
0 > deflections.
0 1 2 3 4 5 6 From Fig. 21 and Table 4, the deflections calculated by both
Load (kPa) AN?YS and equation (59) are changed lipearly with water pressure
while the test results are changed nonlinearly. The errors are also
Fig. 21. Central deflection of PV panels with SSSS. very obvious between the test and simulation results. It is because
the Hoff model theory is based on linear elastic deformation hy-
pothesis, but the real deformation of PV panels with SSSS under the
20 o ultimate pressure is a nonlinear elastic deformation. Although the
simulation results are not so good for that boundary condition,
5 there are two things we can learn from them. Firstly, in order to
16 describe that deformation better, a nonlinear elastic theory is
supposed to be applied in future study. Secondly, since the simu-
P 14 lation results are smaller than test data, it is actually safer to use the
g 12 simulation to do the design work since the real capability of PV
-:/ panel will be better. In Table 4, the errors between experimental
S 10 data and calculation data is much smaller when water pressure is
"_3 bigger, so the proposed equations are suitable to do the limit state
% 8 bearing analysis of the PV panel. Moreover, the data from equation
A 6 Test average (59) are very close to the ones from ANSYS, but the calculation of
proposed equation is much faster. So it’s suitable to be applied in
4 ANSYS future optimal design and research.
Fig. 22 and Table 5 state clearly the linear elastic deformation of
- > This paper PV panel with SSFF in the range of 4 kPa water pressure. The results
0 > from equation (59) are closer to test results than ANSYS, and the
0 ! 2 3 4 5 error is only 5.9% when the water pressure approaches the
Load (kPa) maximum valu_e 4 kl?a. The accuracy of the propo_sed eqyatlons in
present paper is verified by this group test and simulation. How-
Fig. 22. Central deflection of PV panels with SSFF. ever, the error is still obvious when water pressure is small as 1 kPa.
The test operation errors introduced in section 4.2 should be the
Table 4
Central deflection of PV panels with SSSS (unit: mm).
Water pressure (kPa) 0 1 2 3 4 5 5.5 5 4 3 2 1 0
Test average value Results 0 34 5.7 7.7 9.9 11.2 119 11.2 10 7.9 5.9 3.6 0.3
ANSYS Results 0 2.3 45 6.8 9 11.3 12.4 11.3 9 6.8 45 2.3 0
Error (%) 0 324 21.1 11.7 9.1 0.9 42 0.9 10.0 13.9 23.7 36.1 -
This paper Results 0 2.2 43 6.5 8.7 109 11.9 10.9 8.7 6.5 43 2.2 0
Error (%) 0 353 24.6 15.6 12.1 2.7 0 2.7 13 17.7 27.1 389 -
Table 5
Central deflection of PV panels with SSFF (unit: mm).
Water pressure (kPa) 0 1 2 3 4 3 2 1 0
Test average value Results 0 5.6 9.7 13.6 17.0 13.6 10.2 6.1 2
ANSYS Results 0 47 9.5 14.2 19 14.2 9.5 47 0
Error (%) 0 16.1 2.1 44 11.8 44 6.9 23 -
This paper Results 0 4.5 9 135 18 135 9 4.5 0
Error (%) 0 19.6 7.2 0.7 5.9 0.7 11.8 262 -
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Fig. 24. Deflection nephogram of PV panels with SSSS under 5.5 kPa load, calculated by Fig. 26. Deflection nephogram of PV panels with SSFF under 4 kPa load, calculated by
equations in present paper (unit: m). equations in present paper (unit: m).
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Fig. 27. Central 1st principal stress of PV panels with SSSS.

main reason for those inaccurate results.

Figs. 23—26 show the deflection nephogram of PV panels under
the corresponding maximum water pressure. Figs. 23 and 25 are
simulated by ANSYS, and Fig. 24 and Fig. 26 are obtained by a
MATLAB program based on equation (59). Comparing Fig. 23 with
Fig. 24 or Fig. 25 with Fig. 26, the deflection nephogram calculated
by proposed equations are very like the ones analysed by ANSYS.
Although the proposed equations and ANSYS are not so good to the
PV panels with SSSS, the calculation accuracy of them is still all
right when water pressure approaches maximum value. In each
deflection nephogram, the maximum deflection exists in the mid-
dle of the plate and it is O on the edges which are simply supported.
That shape of plate deflection agrees well with the boundary con-
dition. Moreover, it denotes that the maximum deflections of PV
panel with two boundary conditions are both produced at the
middle position of the plate, so it should be considered very care-
fully in future BIPV design work.

5.2. PV panel stress

As shown in Fig. 27 and Table 6, the central 1st principal stress of
test is changed nonlinearly with the water pressure while the ones
calculated by ANSYS and proposed paper are changed linearly. It is
same as the central deflection discussed in section 5.1 and it is
indeed nonlinear elastic deformation for the PV panels with SSSS.
As to the calculation accuracy, the data from proposed equations
are better when the water pressure is small and no more than 3 kPa,
but the ones from ANSYS are better under the large water pressure.
However, both of them have obvious errors comparing with the test
data. In order to describe the nonlinear deformation better and
improve the calculation accuracy, a nonlinear elastic theory is
supposed to be applied in further study.
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Fig. 28. Central 1st principal stress of PV panels with SSFF.
Table 7
Central 1st principal stress values of PV panels with SSFF (unit: mPa).
Water pressure (kPa) 0 1 2 3 4
Test average value Results 0 133 25.8 38.4 49.9
ANSYS Results 0 124 24.8 37.2 49.5
Error (%) 0 6.8 3.9 3.1 0.8
This paper Results 0 12.8 25.7 38.5 51.3
Error (%) 0 3.8 0.4 0.3 2.8

As to the PV panels with SSFF, the test stress data has a linear
relationship to the water pressure just as the data from ANSYS and
proposed equations (as shown in Fig. 28 and Table 7). It proves that
the deformation of those PV panels is indeed a linear elastic
deformation which is also concluded by the deflection data in
section 5.1. Although both proposed equation data and ANSYS date
match the experimental data very well, the errors are smaller in
proposed equation than ANSYS. The accuracy of the proposed
equations on the stress calculation is verified by those comparisons.

Moreover, as shown in both Figs. 27 and 28, the maximum 1st
principal stresses on the surface glass of PV panels are all smaller
than the limit stress of reinforced glass, so it is safe for the PV panels
when they are utilized under those loads.

The 1st principal stress nephogram of PV panels under their
own maximum water pressure are shown in Figs. 29 — 32. Figs. 29
and 31 are also simulated by ANSYS, and Fig. 30 and Fig. 32 are
obtained by a MATLAB program based on equation (59) and the
internal force formulas of laminate plate. Comparing Fig. 29 with
Fig. 30 or Fig. 31 with Fig. 32, the stress nephogram calculated by
proposed equation are also like the ones analysed by ANSYS,
especially to the ones with SSSS. The calculation accuracy of pro-
posed equations on stress is verified by those comparisons. In each
1st principal stress nephogram, the maximum stress exists in the

Table 6
Central 1st principal stress values of PV panels with SSSS (unit: mPa).
Water pressure (kPa) 0 1 2 3 4 5 5.5
Test average value Results 0 10.2 18.8 259 31.6 35.5 38.1
ANSYS Results 0 7.7 15.3 23 30.7 38.3 422
Error (%) 0 242 18.5 11.2 2.8 8.0 10.7
This paper Results 0 8.5 17 25.5 34.1 42.6 46.8
Error (%) 0 16.3 9.5 1.5 8.0 20.2 228
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Fig. 31. 1st principal stress nephogram of PV panels with SSFF under 4kPa load,
calculated by ANSYS (unit: Pa).

Fig. 29. 1st principal stress nephogram of PV panels with SSSS under 5.5 kPa load,
calculated by ANSYS (unit: Pa).
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middle of the plate and it is 0 on the edges which are simply sup-
ported. That shape of plate stress also agrees well with the
boundary condition. Moreover, the maximum stress of PV panel
with two boundary conditions are both produced at the middle
position of the plate. The middle position is a key position to decide
the damage of the whole PV panel. In further study on the safety of
PV panel, the stress in the middle position should be chosen as the
control stress and cannot exceed the limit stress of reinforced glass.

5.3. Influence of boundary condition

Since two different boundary conditions are studied in present
paper, some discussions about the influence of boundary condition
should be made. The central deflection and central 1st principal
stress of PV panels with the two boundary conditions are sum-
marized in Fig. 33 and Fig. 34, respectively. The data from test and
proposed equations are stated together.

In Fig. 33, the deflections of PV panels with two different
boundary conditions are stated clearly and the ones with SSSS are
much better. The ultimate load to the SSSS case is about 5.5 kPa, but
it is only 4 kPa to the PV panel with SSFF. Meanwhile, the maximum
deflection of SSSS case is around 11.9 mm, and it is much less than
17.0 mm produced by SSFF case. It means the SSSS boundary con-
dition can bear a larger uniformly distributed force with a smaller
deflection. The central 1st principal stresses are shown in Fig. 34
and the maximum central stresses of two cases are both close to
50 mPa, which is the limit strength of the reinforced glass. It de-
notes that the final damage of the whole PV panel is due to the
central stress of panel exceeds the limit stress of surface glass.
Under the limit stress of surface glass, SSSS case has a larger ulti-
mate load so its mechanical behaviour is proved better than SSFF
case again.

The central deflection and central 1st principal stress of PV
panels and pure glass panels are summarized in Fig. 35 and Fig. 36,
respectively. The data of PV panels are average values from exper-
iments, and the data of pure glass panels are calculated by ANSYS. If
the connection between two face glasses is removed, the two pure
glasses with 3.2 mm thickness are just put together to bear the
force and the data are marked as 3.2 mm glass panel. On contrary, if
the connection is strong as the glass material itself, it will be a
homogenous glass panel with 7.4 mm thickness and the data are
stated as 7.4 mm glass panel. Both SSSS and SSFF are studied to find
more conclusions.

Deflection (mm)
o0

-+—SSSS by test

SSSS by proposed equation
—+—SSFF by test
=>=SSFF by proposed equation

5 6

2 3
Load (kPa)

Fig. 33. Central deflection of PV panels with two boundary conditions.

60 4

Stress (mPa)
w
o

SSSS by test
SSSS by proposed equation
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0 1 2 4 5 6

3
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Fig. 34. Central 1st principal stress of PV panels with two boundary conditions.

In both central deflection and central 1st principal stress under
the same boundary condition, the data from PV panels are all in a
range built by the data from 3.2 mm to 7.4 mm homogenous glass
panels (as shown in Figs. 35 and 36). It proves that the mechanical
behaviour of double glass PV panel is stronger than two glasses
without any connection, but is weaker than one homogenous glass
panel with same thickness. It is because the connection effects of
interlayer is not strong as glass itself but better than nothing, and
that is verified by many theoretical and experimental works before.
Considering the 3.2 mm glass panel, the deflection of SSSS under
5.5kPa load is 62.1 mm, which is much smaller than 93.7 mm
deformed in SSFF under 4 kPa. It is same to the 7.4 mm glass panel
since SSSS has 10 mm deflection and SSFF has 15.4 mm. The similar
conclusion could be made in central 1st principal stress too (as
shown in Fig. 36). It is 93.7 mPa under 5.5 kPa in SSSS comparing
with 107 mPa under 4 kPa in SSFF if it is 3.2 mm glass panel. In
7.4 mm glass panel, it is 35 mPa versus 40 mPa. Therefore, when the
panels are same, the one with SSSS always bears larger load along
with smaller deflection and stress, in either PV panels or homog-
enous glass panels.

Based on the conclusions aforementioned, SSSS boundary con-
dition is a better choice to engineers to design the glass structure
and BIPV works, but SSFF boundary condition should be designed
very carefully in future.

5.4. Discussions on the proposed method and Navier method

The bending deformation of plate structure with SSSS has been
studied for a long time and there is a lot of methods. Among them,
Navier method is a very classical method and it has been used in
many papers before. In present paper, a modified Rayleigh-Rita
method and a general assumption of solution are proposed to
study the mechanical properties of PV panel. It is necessary to make
some discussions on the results based on different methods. The
central deflection and central stress of PV panels with SSSS are
presented in Fig. 37 and Fig. 38. The corresponding data values are
demonstrated in Table 8 and Table 9. The data from two different
methods and the test are stated together.

As shown in Figs. 37 and 38, the data from both proposed
method and Navier method are a linear deformation while the
test data is a nonlinear deformation. The values of central
deflection and central stress from Navier method are all smaller
than the values from proposed method. So it is more conserva-
tive to choose Navier method to do the design work in BIPV. In
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Fig. 37. Central deflection of PV panels with SSSS. Fig. 38. Central 1st principal stress of PV panels with SSSS.

Fig. 37 and Table 8, the errors of equation (59) are all smaller When water pressure is small, the proposed method is better but
than Navier method and the maximum central deflection is Navier method is better to calculate central stress when water
calculated very accurately by proposed method. It's a little pressure is large. Therefore, the proposed method in present
different for the central 1st principal stress in Fig. 38 and Table 9. paper is better than Navier method to describe the small
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Table 8
Central deflection of PV panels with SSSS (unit: mm).
Water pressure (kPa) 0 1 2 3 4 5 5.5 5 4 3 2 1 0
Test average value Results 0 34 5.7 7.7 9.9 11.2 119 11.2 10 7.9 59 3.6 0.3
This paper Results 0 22 43 6.5 8.7 10.9 11.9 10.9 8.7 6.5 43 2.2 0
Error (%) 0 353 24.6 15.6 121 2.7 0 2.7 13 17.7 27.1 389 -
Navier method Results 0 1.9 3.8 5.7 7.5 9.5 104 9.5 7.5 5.7 3.8 1.9 0
Error (%) 0 441 333 26.0 242 15.2 12.6 15.2 25.0 27.8 35.6 47.2 -
Table 9
Central 1st principal stress values of PV panels with SSSS (unit: mPa).
Water pressure (kPa) 0 1 2 3 4 5 5.5
Test average value Results 0 10.2 18.8 259 31.6 355 38.1
This paper Results 0 8.5 17 255 341 42.6 46.8
Error (%) 0 16.3 9.5 1.5 8.0 20.2 22.8
Navier method Results 0 7.9 15.8 236 315 394 433
Error (%) 0 222 15.8 8.8 0.2 111 13.6

deformation of PV panel with SSSS and predict its maximum
deflection under ultimate load. However, due to the nonlinear
deformation in test, a nonlinear elastic theory is still needed for
the further study and design work.

6. Conclusions and recommendations

The aim of this paper is to study the mechanical properties of
the double glass PV panel with two different boundary conditions.
One of them is four edges simply supported (SSSS), and the other
one is two opposite edge simply supported and the other two edges
free (SSFF). Both experimental and theoretical works are completed
in present paper. The researches in this paper could be a foundation
to the BIPV safety study and design in future.

Based on the results we may conclude as follows:

Hoff model, which is suitable to simulate the laminate plate
with soft core, is applied in this research to describe the bending
behaviour of PV panel. Two sets of boundary equations are
developed based on two different boundary conditions. By using
a modified Rayleigh-Rita method and a general assumption of
solution, the closed form solutions are derived out and calcu-
lation programs are made for the PV panel with two boundary
conditions.

o In experimental works, two boundary conditions are realized by
modifying the steel frame. The water is applied to provide
uniformly distributed force instead of the sand or bricks used in
previous researches. And the better effects of water pressure is
demonstrated by the tests.

As stated in test data, the deformation of PV panels with SSFF is a
linear elastic deformation. But it is a nonlinear elastic defor-
mation to the PV panels with SSSS. A nonlinear elastic theory is
supposed to be applied in further study for that boundary
condition.

As to the PV panel with SSFF, the calculation results from ANSYS
and proposed equations are all close to the experimental results.
The calculation accuracy of the proposed equations is verified by
those comparisons. The deflection and stress calculated by
proposed equations are even more accurate than the ones
simulated by ANSYS. It is also much faster to calculate by
equation (59), so it can be used in the optimal design work of
BIPV component in next stage.

e As to the PV panel with SSSS, the errors between test data and
calculation data are very obvious, since the ANSYS and pro-
posed method are based on linear elastic deformation theory

but the real deformation of PV panels is nonlinear. In central
deflection, the results from proposed equations are very close
to the ones from ANSYS and it is very accurate to calculate the
maximum deflection. In central stress, proposed equations are
suitable to calculate the stress when the PV panel is under
small deformation, but ANSYS is better for the large
deformation.

e Comparing the central deflection and central stress from
different boundary conditions, the PV panels or homogenous
glass panels with SSSS have much better effects. It shows that
the PV panels or glass panels with SSSS can bear a larger uni-
formly distributed force with a smaller deformation. So it should
be considered as the primary choice in the BIPV projects.

e When the four edges of PV panel are simply supported, the data
from proposed method are compared with the ones from Navier
method that is a classical method from laminate plate research.
Both of them belong to the linear elastic deformation theory, but
the data from Navier method are all smaller. The proposed
method is better than Navier method in the small deformation
range and predicting the maximum central deflection.

e When the water pressure is under 2.4Kpa required by current
certification of PV module, there is not any damage on the
surface glass. But further tests are needed to study if they can
satisfy the safety requirements from the building certification
for building component.

e As shown in the deflection nephogram and stress nephogram,

both maximum deflection and maximum stress are located at

the middle location of PV panel. It should be chosen as the key
position and key point in future design work.

The results of this paper provide a foundation for the use of PV

panel as building component in BIPV. The deflection and stress

results can help to make the special certification of PV panel in

BIPV to ensure the safety of the component and the whole

building.
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