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This paper studies the performance evaluation of a power transmission system in terms of its network
topology, where edges represent transmission lines and nodes represent subsidiary stations. The power
transmission network is modeled as a stochastic-flow network (SFN) due to the possibility of failure, par-
tial failure, and maintenance of edges (transmission lines). Furthermore, correlation poses a particular
concern for such an SFN because the simultaneous failure of multiple components can dangerously
degrade performance. We develop a method to measure the impact of correlated failures on network reli-
ability, which is defined as the probability of demand satisfaction. Experimental results show that corre-
lation may produce a significantly negative impact on network reliability, especially when there is a high
level of network demand. Thus, the proposed approach captures the influence of correlation on network
reliability and offers a method to quantify the utility of reducing correlation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the possibility of failure, partial failure, and mainte-
nance, a power transmission system may be characterized as a sto-
chastic-flow network (SFN), which exhibits multiple levels of
performance. In the context of power transmission networks, each
edge models a transmission line, while each node represents a sub-
sidiary station of an electric power generation and distribution sys-
tem. This infrastructure serves as the foundation for electric power
transmission. The reliability and stability of power transmission
networks are indispensable to modern society [1]. Thus, measuring
the capability of power transmission networks is a crucial task.
Several works [2–7] have characterized power transmission sys-
tems in terms of a binary-state network, consisting of edges and
nodes to evaluate network reliability. More recently, Lin and Yeh
[8,9] suggested a more detailed approach, where the power trans-
mission network is stochastic because each edge (transmission
line) is a combination of several physical lines and is therefore
more aptly modeled by multi-state components. For instance, the
ith edge ei in the power transmission network contains wi identical
physical lines, suggesting that wi + 1 capacity levels are possible.
The lowest level (0) corresponds to complete malfunction, while
wi denotes the highest level of operation. Thus, a power transmis-
sion network characterized by such multi-state edges also demon-
strates stochastic capacities and is suitable for modeling as an SFN.
ll rights reserved.
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).
Lin’s works [10,11] formulated an SFN problem with multi-state
edges, computing network reliability in terms of minimal paths
(MPs), where an MP is a path whose proper subsets are no longer
paths. A great many studies have also devoted a considerable
amount of research [8–20] to evaluate the network reliability of
SFN. These studies define the network reliability as the probability
that the SFN can send a requested demand d from the source to sink,
which requires that the transmission capacity of the SFN be mea-
sured in terms of its ability to satisfy this demand. Despite the sig-
nificant amount of research on the topic of SFN, virtually all of the
previous research assumes that the capacity of each edge is stochas-
tic with a given probability distribution [10–17]. A smaller amount
of research [8,9,18,19] derives probability distributions for the
capacities, assuming each physical line of an edge is binary state,
reliable or failed. This latter approach characterizes the capacity
probability distribution of each edge ei as an independent binomial
distribution with parameters ri for the reliability of each physical
line and wi to denote the maximal capacity of each edge. These pre-
vious works fail to consider the possibility of correlated failures,
where two or more physical lines comprising an edge of the net-
work fail simultaneously. Thus, previous SFN models fail to consider
the impact correlated failures could have on the network reliability.

A technique to explicitly integrate correlation into stochastic-
flow network reliability models is broadly needed because several
real-world scenarios can lead to correlated failure. One commonly
occurring example of a correlated failure specific to power trans-
mission networks is a large tree limb falling on a power line during
stormy weather. Another less common but equally dangerous
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example is a car accident that damages a telephone pole so se-
verely that the wires for transmitting electricity are torn during
the collapse of the pole. Given that these serious failures can lead
to severely degraded network reliability, enhanced stochastic-flow
network models incorporating correlated failures are needed to
quantify the impact such events could have on network reliability.
This modeling technique will also be useful for measuring the reli-
ability benefits obtainable through reductions in the occurrence of
correlated failures with strategies such as physically shielding vul-
nerable portions of the network. The approach should also prove
effective for conducting tradeoff studies to compare alternative
network topologies, which can identify designs that will be more
resilient to correlated failures.

Following the reliability evaluation model proposed by Lin [10],
this paper develops a method to evaluate the network reliability of
an SFN, where the failure of the physical lines comprising the edges
of the network may experience correlated failures. The network
reliability is defined as the probability that the network can trans-
mit d units of electric power from a power generator (source) to a
specific area (sink). We employ a correlated binomial distribution
[21] to characterize the performance distribution of the edges. This
distribution assumes that the reliability of the physical lines are
identically distributed, but share a common failure correlation
parameter q. The assumption of identically distributed reliabilities
is justifiable because the wires comprising power transmission
networks are typically homogeneous in nature, but deployed with
different degrees of redundancy to enable a desired level of capac-
ity. We restrict our consideration of correlation to the physical
lines in a single edge. Thus, we do not consider the case where
the physical lines in two adjacent edges may be correlated. This
more general case will be necessary for larger scale events such
as hurricanes and earthquakes that can cause widespread damage
to the edges comprising the network.
2. Notations and assumptions

Let G = (N, E, W) denote an SFN with source node s and sink node t,
where N is the set of nodes, E = {ei|i = 1, 2, . . . ,n} represents the set of
edges, and W = {wi|i = 1, 2, . . . ,n} the vector of the maximal capacities
wi of ei. Each edge ei consists of wi physical lines of reliability ri. Let qi

denote the correlation between the failures of the physical lines in
edge ei. The capacity vector X = (x1, x2, . . . ,xn) is defined as the system
state of G, where xi represents the current capacity of edge ei. Such a G
is assumed to further satisfy the following assumptions:

1. Each node is perfectly reliable. The case where nodes are
unreliable can also be solved in terms of MPs, redefined
to be ordered sequences of edges and nodes.

2. The capacities of different edges are statistically independent.
3. Flow in G has to satisfy the so-called flow-conservation law

[22].

Assumption 3 indicates that flow in such a G satisfies Kirchhoff’s
current law. That is, the sum of flow at a node is equal to the sum of
flow out of another node during transmission. Such an assumption
is necessary to be considered for a power transmission system
while evaluating its network reliability [8,9,23]. Same as the previ-
ous studies [8,9] not addressing Kirchhoff’s voltage law, we pri-
marily focus on the capacity of the power transmission network
to satisfy a certain demand for electric power.
3. Stochastic-flow network model with correlated failures

This section presents a method to assess the network reliability
of an SFN, considering correlated failures. The development is
conducted in a hierarchical manner. We first formalize concepts
including network reliability in terms of the minimal paths as a
function of the flows in the edges of the network. Next, an efficient
algorithm to generate all minimal capacity vectors of an SFN is gi-
ven. Finally, a correlated binomial distribution is discussed. This
latter approach quantifies the impact correlation will have on the
performance distribution of each edge of the network. These per-
formance distributions may then be used to evaluate the probabil-
ity that the minimal capacity vectors are satisfied. The subsequent
network reliability estimate is then formed from these minimal
capacity vectors, directly providing an assessment that incorpo-
rates the impact of correlated failures in the edges on the overall
network reliability.

We construct a power transmission system as an SFN to com-
pute the network reliability as follows. Let P1, P2, . . . ,Pk be the k
minimal paths of the SFN. This SFN can be described with capacity
vector X = (x1, x2, . . . ,xn) and a flow vector F = (f1, f2, . . . , fk), where xi

represents the capacity of ei and fj the flow on the jth MP. There-
fore, the capacity of ei may be determined in terms of flow vectors
[10] by

xi ¼
Xk

j¼1

ffjjei 2 Pjg; ð1Þ

Subject to:

Xk

j¼1

ffjjei 2 Pjg 6 wi; where wi is the maximal capacity of edge ei:

ð2Þ
3.1. Network reliability evaluation

Given demand d, the network reliability Rd is the probability
that the network capacity is sufficient to transmit the requested
electric power from source to sink. Thus, the network reliability
is Pr{X|V(X) P d}, where V(X) is defined to be the maximum de-
mand that can be sent given network state X. It is computationally
inefficient to find all X such that V(X) P d and then sum their prob-
abilities to obtain Rd. The minimal capacity vectors Y1, Y2, . . . ,Yh in
the set {X|V(X) P d} constitute a more effective approach to com-
pute the reliability of the network under demand d. A capacity vec-
tor Y is said to be minimal for d if and only if (i) V(Y) P d and (ii)
V(Y0) < d for any capacity vectors Y0 such that Y0 < Y. Given, Y1,
Y2, . . . ,Yh, the set of minimal capacity vectors capable of satisfying
demand d, the network reliability Rd is

Rd ¼ Pr
[h
v¼1

Dv

( )
; ð3Þ

where Dv = {X|X P Yv}, v = 1, 2, . . . ,h. Several methods such as the
Recursive Sum of Disjoint Products (RSDP) algorithm [8,9,18–20],
inclusion–exclusion method [10,11,16,17], disjoint-event method
[13,14], and state-space decomposition [12,15] may be applied to
compute Pr

Sh
v¼1Dv

n o
. The inclusion–exclusion method is often

intractable, especially for large networks. In practice, the RSDP algo-
rithm demonstrates better computational efficiency than the state-
space decomposition approach for large networks [20]. Hence, the
RSDP algorithm is chosen as the method to derive the network reli-
ability herein.

3.2. Algorithm to generate all minimal capacity vectors

Given k minimal paths (MPs) P1, P2, . . . ,Pk, with flow on the jth
MP fj, the minimal capacity vectors for d can be generated with
the following steps [10].



Table 2
Impact of correlation for different system types.

System type Reliability
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Step 1. Find all feasible solutions of flow vector F = (f1, f2, . . . , fk)
satisfying

Pk
j¼1fj ¼ d subject to
q = 0 q = 0.1 q = 0.5 q = 0.9 q = 1.0

Parallel 0.999 0.98829 0.94725 0.90909 0.9

Table 1
Impact of correla

Edge perform

0
1
2
3

Xk

j¼1

ffjjei 2 Pjg 6 wi: ð4Þ
2-out-of-3 0.972 0.96642 0.94050 0.90882 0.9
Series 0.729 0.74529 0.81225 0.88209 0.9
Step 2. Transform each flow vector F into capacity vector X = (x1,

x2, . . . ,xn) according to
xi ¼
Xk

j¼1

ffjjei 2 Pjg for i ¼ 1;2; . . . ; n: ð5Þ
0.860

0.855

ili
ty

Fig. 1. Benchmark network.

Table 3
Edges data for example 1.

Edge (ei) # Of physical lines (wi) Reliability (ri)

1 2 0.950
2 3 0.969
3 2 0.994
4 3 0.968
5 3 0.984
6 3 0.951
Step 3. Find minimal capacity vectors among the X obtained in
Step 2. Suppose Y1, Y2, . . . ,Yh are the minimal capacity vectors
for d.
Using these minimal capacity vectors obtained from the algo-

rithm, the network reliability may be computed according to the
capacity probability distribution for edges considering the corre-
lated failures.

3.3. Reliability of edges with correlated failures

Consider an edge ei consisting of wi physical lines of reliability ri,
and let qi represent the correlation between the failures of the
physical lines. The probability that c (1 6 c 6wi) or more lines
are reliable [21] is

Prfxi P cg ¼ 1
bi

Xwi

a¼c

wi

a

� �
ðribiÞ

að1� ribiÞ
wi�a

; ð6Þ

where bi ¼ 1þ qð1�riÞ
ri

� �
, while the probability that edge i exhibits

performance level a (1 6 a 6 wi) is simply

Prfxi ¼ ag ¼ 1
bi

wi

a

� �
ðribiÞ

að1� ribiÞ
wi�a

; ð7Þ

and the probability that all wi physical lines fail is

Prfxi ¼ 0g ¼ 1� 1
bi

Xwi

a¼1

wi

a

� �
ðribiÞ

að1� ribiÞ
wi�a

: ð8Þ

The following numerical example illustrates these equations in
the context of an edge of a stochastic flow network consisting of
three physical lines (wi = 3), where each physical line delivers
one unit of performance with probability ri = 0.9. Table 1 shows
how correlation alters the performance distribution of the edge.

Note that increasing the correlation between the failures of the
physical lines increases the probability that the edge exhibits the
lowest (0) and highest (3) performance levels. This occurs because
higher levels of correlation result in simultaneous failure and reli-
ability more often. Thus, correlation can increase the probability of
the highest performance level. This will improve network reliabil-
ity when the edge performance must equal its full capacity. For
example, when q = 0 the probability that the edge performance is
3 is only 0.729, but increases to 0.9 for q = 1.0. When the required
performance is less than the full capacity, however, correlation
lowers the probability that the minimum performance level is
met. For example, when the edge capacity must be two or greater
tion on edge performance.

ance Correlation (q)

0 0.1 0.5 0.9 1.0

0.001 0.01171 0.05275 0.09091 0.1
0.027 0.02187 0.00675 0.00027 0.0
0.243 0.22113 0.12825 0.02673 0.0
0.729 0.74529 0.81225 0.88209 0.9
the probability is 0.972 for q = 0, but decreases to 0.9 when q = 1.0.
This second situation is undesirable because it reduces SFN reli-
ability because lower edge performances render the network inca-
pable of delivering the specified demand.

In the general case, correlation improves the reliability of a ser-
ies system and lowers the reliability of a k-out-of-n system when k
is close to n [21]. When all physical lines must be reliable to deliver
the required performance this is equivalent to a series system.
Edges that do not need all of the physical lines to satisfy a minimal
capacity vector can be viewed as k-out-of-n systems, explaining
why correlation can improve the performance distribution of some
edges, but lower the performance of others. Table 2 illustrates this
by computing the reliability of the series, parallel, and 2-out-of-3
system for each correlation.

Note that in practice, correlations between the failures of the
physical lines may be estimated from historical data. For example,
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Fig. 2. Impact of correlation on network reliability.



Table 4
Sensitivity analysis for correlations.

Edge (ei) Change in network reliability Ranking

1 0.02214 6
2 �0.00672 2
3 0.00000 4
4 �0.00169 3
5 0.01379 5
6 �0.01218 1
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many regional power distribution companies monitor the perfor-
mance of their network to measure safety and quality of service
as well as identify strategies to improve reliability and availability.
The accuracy of these estimates will be specific to different provid-
ers and the amount of data and details recorded by their monitor-
ing infrastructure. Consider the situation where a power
distribution company records outage statistics on the physical
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lines of their network. These logs can then be processed to estimate
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4. Numerical examples

4.1. Benchmark network

The benchmark network, shown in Fig. 1, was originally given
by Lin [10] to demonstrate his solution procedure to obtain a set
of minimal capacity vectors satisfying demand d. This network
illustrates a power transmission system composed of two areas
[24]. However, this previous study assumed arbitrary probability
distributions for the performance of the edges to illustrate the net-
work reliability evaluation process. Similar to this earlier work, we
utilize the network topology and potential capacity levels of each
edge, but quantify the reliability of each physical line and the
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Table 5
Edges data for example 2.

Edge (ei) # Of physical lines (wi) Reliability (ri) Edge (ei) # Of physical lines (wi) Reliability (ri)

1 3 0.943 30 4 0.975
2 5 0.959 31 3 0.958
3 3 0.957 32 4 0.965
4 4 0.956 33 2 0.973
5 3 0.953 34 2 0.995
6 3 0.958 35 4 0.961
7 5 0.975 36 3 0.971
8 5 0.983 37 4 0.954
9 4 0.965 38 2 0.981
10 2 0.951 39 5 0.990
11 2 0.982 40 4 0.989
12 3 0.977 41 4 0.987
13 3 0.955 42 3 0.978
14 5 0.979 43 2 0.985
15 4 0.964 44 5 0.968
16 2 0.983 45 4 0.964
17 2 0.951 46 3 0.981
18 3 0.956 47 2 0.968
19 3 0.966 48 3 0.981
20 5 0.945 49 3 0.983
21 5 0.972 50 2 0.953
22 4 0.960 51 3 0.962
23 4 0.967 52 4 0.968
24 3 0.985 53 3 0.951
25 5 0.956 54 4 0.976
26 2 0.982 55 2 0.964
27 3 0.957 56 3 0.951
28 3 0.972 57 3 0.975
29 5 0.952 58 2 0.958

Table 6
Network reliability at different demand levels and correlations.

Demanda Network reliability

q = 0.0 q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9 q = 1.0

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
100 0.9999999 0.9999963 0.9999126 0.9996099 0.9989561 0.9978312 0.9970584
200 0.9999999 0.9999686 0.9997255 0.9992481 0.9985431 0.9976114 0.9970584
300 0.9999996 0.9996702 0.9972951 0.9926298 0.9857809 0.9769445 0.9718593
400 0.9999827 0.9984209 0.9921753 0.9821794 0.9687980 0.9523009 0.9429533
500 0.9995044 0.9898441 0.9675948 0.9428994 0.9172252 0.8917339 0.8793425
600 0.9913773 0.9560463 0.8906593 0.8307138 0.7747121 0.7215562 0.6957938
700 0.9134448 0.8597414 0.7634304 0.6806366 0.6098297 0.5495032 0.5228116
800 0.5544850 0.5354672 0.4969611 0.4581122 0.4192718 0.3807976 0.3618101
900 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

a The unit of demand is MW (megawatt).

958 Y.-K. Lin et al. / Electrical Power and Energy Systems 43 (2012) 954–960
correlation between them with the method discussed in Sec-
tion 3.3. Table 3 provides the number of physical lines wi in ei,
and the reliability of these physical lines ri.

When the demand is five units (d = 5), and the correlation
parameter qi for each set of physical lines is set to zero, the net-
work reliability, calculated in terms of the minimal capacity vec-
tors Y1 = (2, 2, 0, 0, 3, 3) and Y2 = (2, 3, 0, 1, 3, 2), is 0.841481.
Larger values of correlation increase network reliability because
e1 and e5 must operate at their highest performance level to satisfy
the specified demand. This requires that all of the physical lines in
these edges are reliable. Thus, positive correlation among the fail-
ures also increases the probability that these physical lines are reli-
able simultaneously. For these larger values of correlation, the
negative impact of correlation on the performance distribution of
the other edges is small. Hence, the benefit to reliability provided
by correlation between the failures of the edges requiring high per-
formance outweighs the negative impact of correlation in the other
edges raising the overall network reliability. The network reliabil-
ity increases to 0.861436 when the value of correlation is 1.0. Thus,
the proposed approach can quantify the impact of correlated fail-
ures on network reliability. Fig. 2 illustrates this influence of corre-
lated failures in the physical lines on the network reliability.

To illustrate the flexibility of the approach to identify the corre-
lations lowering network reliability most significantly [25], we set
the correlation qi for the physical lines in edge ei to 0.5, while hold-
ing all the other correlations constant at 0, (qj = 0, j – i). These sen-
sitivity analyses, shown in Table 4, indicate the change in the
network reliability and rank the edges according to their criticality
from a network reliability standpoint. Increasing the correlation in
edges e1 and e5 improves network reliability. These improvements
occur because the minimal capacity vector requires that all physi-
cal lines in these edges are reliable. Furthermore, Table 1 demon-
strated that correlation increases the probability of the high
performance level. Thus, positive correlation improves the proba-
bility that the minimum performance is satisfied. However, Table 1
also showed that increasing correlation lowers the probability of
the performance levels 2 through wi – 1. Since the minimal capac-
ity vector for the other edges do not require all wi physical lines to
be reliable to satisfy demand d, correlation lowers the probability
that these other edges satisfy their respective minimum
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performance requirements. This decrease in probability lowers the
network reliability.

4.2. Case study for TPTN

We employ the TPTN with 58 edges, shown in Fig. 3 [8,9], to
demonstrate the utility of the approach for assessing larger SFN.
In the TPTN, the voltage is transformed from high to low or the re-
verse using transformers. The first and the second nuclear power
stations located at north Taiwan mainly supply electric power to
Taipei City. However, the third nuclear power plant at Pingtung
County in south Taiwan is needed to transmit the electric power
to Taipei City due to high regional demand [8,9]. The Taiwan Power
Company thus pays close attention to evaluate the network reli-
ability of the TPTN to transmit electric power from Pingtung
County to Taipei City. In this example, each edge is composed of
several physical lines and each physical line provides two possible
capacities, 100 MW (megawatt) and 0 MW. Since the lines are pro-
vided by different suppliers, the capacity of each edge follows a
distinct probability distribution. For each edge ei, Table 5 provides
the number of physical lines wi in ei and the reliability of these
physical lines ri. Note that the reliabilities of physical lines in this
example have been lowered to more clearly illustrate the impact
of correlated failures under different demand levels. In most real-
world systems, however, physical lines are highly reliable, often
demonstrating reliability 0.9999 or higher. Nevertheless, the pro-
posed network reliability evaluation procedure can be applied to
networks composed of physical lines demonstrating any level of
reliability, including such highly reliable lines.

Table 6 summarizes the results of network reliability assess-
ment for different levels of demand and correlation. Increasing de-
mand or correlation lowers the network reliability of TPTN. Fig. 4
illustrates the impact of correlated failures in the physical lines
on the network reliability for several levels of demand. This figure
clearly shows that larger values of correlation can lower SFN reli-
ability noticeably. It is also apparent that this negative impact of
correlation becomes even more significant for higher levels of
demand.
5. Conclusion

This paper models power transmission system as a stochastic-
flow network, rather than a binary-state network because the
capacity of transmission lines is typically multi-state. The network
reliability, probability of demand satisfaction, is evaluated to
assess the capability of the power transmission network. Following
the reliability evaluation model proposed by Lin [10], we treat the
power transmission network as an SFN and develop a method to
measure the impact of correlated failures on the reliability of
SFN. We first find the minimal capacity vectors, which form the
combinations of edge performances that can satisfy a given level
of demand. Correlation in the failures of the physical lines was
modeled with a correlated binomial distribution. Two experiments
were performed, including a large-scale case study of the Taiwan
Power Transmission Network (TPTN). Our results reveal that corre-
lated failures can exert a substantially negative impact on the net-
work reliability of large SFN, especially for higher levels of demand.
Thus, this modeling technique is more detailed than the traditional
approaches, which assume physical lines in the edges fail indepen-
dently. This greater detail will allow network designers to explic-
itly consider the problems posed by correlation when designing
networks to ensure that user demands can be satisfied with high
probability.

Several problems for future research exist. The first is to con-
sider correlation between the physical lines of different edges
and nodes. Further design-oriented studies should conduct de-
tailed sensitivity analysis to identify the most important edge
improvements, which would significantly improve the network
reliability of large SFN. In addition, this paper assumed that flow
in the power transmission system satisfies the flow-conservation
law [22], where no flow increases or decreases during transmis-
sion. However, loss of load must be considered in future work to
make our approach more applicable to real-world systems
[24,26,27]. Thus, we will extend our approach to evaluate reliabil-
ity indices, including LOLP (Loss of Load Probability), LOLF (Loss of
Load Frequency), and EENS (Expected Energy Not-Supplied).
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