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a b s t r a c t

Influence maximization problem aims to select a subset of k most influential nodes from a given
network such that the spread of influence triggered by the seed set will be maximum. Greedy based
algorithms are time-consuming to approximate the expected influence spread of given node set
accurately and not well scalable to large-scale networks especially when the propagation probability
is large. Conventional heuristics based on network topology or confined diffusion paths tend to suffer
from the problem of low solution accuracy or huge memory cost. In this paper an effective discrete
shuffled frog-leaping algorithm (DSFLA) is proposed to solve influence maximization problem in a
more efficient way. Novel encoding mechanism and discrete evolutionary rules are conceived based
on network topology structure for virtual frog population. To facilitate the global exploratory solution, a
novel local exploitation mechanism combining deterministic and random walk strategies is put forward
to improve the suboptimal meme of each memeplex in the frog population. The experimental results of
influence spread in six real-world networks and statistical tests show that DSFLA performs effectively
in selecting targeted influential seed nodes for influence maximization and is superior than several
state-of-the-art alternatives.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Social networks have become powerful platforms for informa-
tion diffusion and viral marketing by expanding billions of loyal
users. An underlying cause fostering the capabilities is the social
influence, which maps the interactions between individuals in the
network and can be evaluated based on trust and reputation [1].
One of the typical applications promoted by social network is
the viral marketing [2], which appreciates the important effect
of ‘word-of-mouth’ that indwells the interpersonal influence re-
lationship of consumers and can reshape consumers’ attitudes
and behaviors [3]. Influence maximization problem is targeted to
select a subset of k influential seed nodes that can maximize the
spread of influence into the network. The problem was coined by
Domingos and Richardson [4] firstly in terms of network perspec-
tive through which the most potential customers are identified to
maximize the expected profit of a product promotion activity.

As emphasized in [5,6], there are two challenges in tackling
influence maximization problem. The first difficulty is to estimate
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the influence spread of given node set accurately, which was
proved to be ♯P-hard. The second one is to provide effective and
efficient algorithms for the selection of a subset influential nodes
which can maximize the spread of influence into the network.
Kempe et al. [7] firstly formulated influence maximization as a
discrete optimization problem and proposed a greedy approach
with guaranteed solution accuracy. However, experimental re-
sults [8,9] showed that greedy algorithm is time-consuming es-
pecially in large-scale networks. This is because the algorithm has
to run k rounds to select the targeted seed nodes. In each round,
the algorithm needs to carry out R (R ≥ 10, 000) Monte-Carlo
simulations to evaluate the marginal gain of each of the N nodes
in the network approximately, and for each simulation the M
edges of the network will be traversed inevitably. Consequently,
the time complexity of the original greedy algorithm is O(kNMR).

Following up on the seminal work, novel influence estima-
tors and influential node selecting approaches have emerged to
solve influence maximization problem in a more efficient way.
Chen [10] proposed an improved greedy algorithm by pruning
the edges that hardly take part in influence spread in the network.
Jiang et al. [11] proposed an expected diffusion value estimator to
evaluate the spread of influence within the one-hop area of given
candidate nodes. However, it performs less effective than the
local influence estimator that optimizes the expected influence
spread within the two-hop area of given candidate nodes [12].
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Kimura et al. [13] assumed that influence only spreads along
the shortest and second shortest paths, and proposed a shortest
path-based influence maximization algorithm. Further more, by
assuming that influence spreads on the paths independent of each
other, Kim et al. [14] proposed a parallel influence path-based
algorithm to identify the seed nodes in a faster way. Cao et al. [15]
systematically studied the influence maximization problem based
on community detection. They transformed influence maximiza-
tion to an optimal resource allocation problem and proposed
an optimal dynamic programming algorithm to find an opti-
mal seed allocation. As demonstrated in [16], community-based
influence maximization algorithms are generally faster than tra-
ditional greedy algorithms, but the accuracy and the scalability of
the community-based algorithms need improved. Compared with
the original simple greedy algorithm, those methods are more
efficient by reducing or avoiding the number of Monte-Carlo
simulations. However, sacrifices in solution accuracy and memory
cost have to be made to compensate these novel influence maxi-
mization algorithms. Therefore, developing effective and efficient
methods for influence maximization in large-scale networks still
remains as an open research topic of social network analysis
and is of great significance due to its promising applications
in the spread of information, such as innovation diffusion, viral
marketing, etc.

The effectiveness and robustness of meta-heuristic algorithms
based on swarm intelligence have been widely validated by many
applications on complex optimization problems such as symbolic
regression problem [17], feature selection in data mining and
machine learning [18], sports training sessions [19] as well as
influence maximization problem [20,21], etc. In this paper, a dis-
crete shuffled frog-leaping algorithm (DSFLA) is proposed based
on network topology characteristic to identify influential nodes
for influence maximization. The main contributions of our paper
are as follows.
• Encoding mechanism for virtual frog individual and dis-

crete evolutionary rules for frog population are conceived based
on network topology structure, respectively. Then the frame-
work of discrete shuffled frog-leaping algorithm for influence
maximization problem is presented.
• To facilitate the global exploratory solution during the evo-

lutionary process, a local exploitation mechanism combining de-
terministic and random walk strategies is put forward to improve
the suboptimal meme of each memeplex in the frog population.
• The orthogonal experimental design method is adopted to

optimize the parameter settings of DSFLA, and the experimen-
tal results and statistical tests in six real-world networks show
that the proposed DSFLA is effective and efficient for influence
maximization, and can be scalable to large-scale networks.

The remainder of this paper is organized as follows: Section 2
reviews related works. Influence maximization problem, the in-
dependent cascade model and an effective influence estimator
used in this paper are introduced in Section 3. Section 4 gives
the proposed discrete shuffled frog-leaping algorithm and the
framework of DSFLA for influence maximization. Performance
validation of DSFLA and statistical tests are provided in Section 5.
Section 6 concludes this paper with future works.

2. Related works

Since the seminal work by Domingos and Richardson [4], great
attention has been paid to the interesting problem. In general,
the existing majority of influence maximization algorithms can be
mainly categorized into the following three aspects: greedy based
algorithms, reverse influence sampling algorithms and advanced
heuristic algorithms.

2.1. Greedy based algorithms

Kempe and Kleinberg [7] firstly formulated influence maxi-
mization as a discrete optimization problem and proved it to be
NP-hard under the independent cascade (IC) model and linear
threshold (LT) model. Meanwhile, a hill-climbing greedy algo-
rithm, which can achieve a guarantee with errors bounded at
(1−1/e−ϵ) to the optimal solution approximately, was proposed
to select the most influential nodes. However, the simple greedy
algorithm is time-consuming because tens of thousands Monte-
Carlo simulations have to be conducted in each round to select
the seed node with the maximal marginal gain. By further explor-
ing the property of submodularity, Leskovec et al. [8] proposed
the CELF algorithm to improve the efficiency of the simple greedy
algorithm by leveraging an influence estimation priority queue
and a lazy-forward strategy. Based on the fact that the spread of
individual’s influence tends to be localized in a numbered friends
of local area and one’s social communication is always clustered
into several steady groups [22], Kundu and Pal [9] proposed
a deprecation based greedy strategy (DGS) for community net-
works. The influence of each candidate node is approximated by
an integrated centrality metric in its appurtenant community and
nodes with lower influence spread are marked to be deprecated,
yet DGS is still time-consuming in large-scale networks. Shang
et al. [16] adopted the seed nodes expansion strategy to approxi-
mate the expected influence of a node within its own community
and proposed a community-based framework CoFIM for influence
maximization. To improve the efficiency of the expansion strat-
egy in large-scale networks, Shang et al. [23] further promoted
the algorithm and derived a novel influence estimator based on
multi-neighbor potential of node in community networks. To re-
lieve the huge time consumption of the natural greedy algorithm,
Lu et al. [24] proposed a CascadeDiscount algorithm to estimate
node’s marginal gain by removing its influence loss on neighbors
from its initial influence evaluated by a ScoreCumulate model,
then the most influential seed nodes are selected into the seed
set based on greedy strategy.

Compared with the original greedy algorithm, improved
greedy algorithms can show good performance on pruned net-
works at small propagation probabilities. However, they suffer
from the problem of highly time consumption easily when the
network scale or the propagation probability is large.

2.2. Reverse influence sampling algorithms

Random sampling theory has found its applications in influ-
ence maximization problem in the last few years. Borgs et al. [25]
firstly proposed a fast reverse influence sampling (RIS) method
based on random sampling theory to estimate the expected in-
fluence spread of an influential node. According to the ideology
of RIS, if a node appears often as an ‘‘influencer’’, then it is likely a
good candidate for the most influential node. Theoretical analysis
proved that the method can obtain a near-optimal approximation
factor of (1− 1/e− ϵ) in nearly optimal time.

To optimize the number of generated subgraphs and sampling
scheme, modified methods were proposed to alleviate the defi-
ciencies of the basic RIS algorithm. TIM+ [26] and SKIM [27] were
proposed to select seed nodes incrementally using a concept of
combined reachability sketch, but they need huge amounts of
memory cost for the generated subgraphs. Two novel sampling
frameworks naming SSA and D-SSA were proposed by Nguyen
et al. [28] recently, which are up to 1200 times faster than the
IMM method [29] while providing the same (1−1/e−ϵ) approx-
imation guarantee according to the experimental results. Though
the sampling-based algorithms can select the k influential seed
nodes efficiently in large-scale networks, they suffer the problem
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of huge memory cost inevitably because large amounts of RIS
samples have to be generated to provide an approximately guar-
antee especially in large-scale networks. In addition, experiments
showed that the method tends to achieve suboptimal solutions
with the increase of the targeted seed set size [30].

2.3. Advanced heuristic algorithms

Conventional heuristic methods, including high degree cen-
trality [31], betweenness centrality [32], VoteRank [33], K -core
decomposition [34] and diffusion degree [35,36], etc., are efficient
in identifying the most influential nodes based on network topol-
ogy or integrated centrality measures. However, these methods
are always trapped into suboptimal influence spread for the rea-
son that the selected influential nodes in the seed set are always
clustered neighbors, of which the influence spread tends to be
overlapped easily.

Meta-heuristic algorithms, which mimic the cooperative be-
havior of biotic population or the evolutionary processes of phys-
ical phenomena, were validated to be effective and efficient in
solving influence maximization problem. Jiang et al. [11] pro-
posed an expected diffusion value (EDV) metric to measure the
influence approximately of potential candidate nodes and adopted
the simulated annealing algorithm to optimize and identify in-
fluential nodes. This is the first time meta-heuristic optimization
algorithm was employed to solve influence maximization prob-
lem. The experimental results showed the algorithm runs faster
by 2∼3 orders of magnitude than the simple greedy algorithm.
Sankar et al. [37] proposed a bee algorithm for influence maxi-
mization by exploring the waggle dance behavior of bee colony
and verified the performance of the proposed algorithm on the
Twitter dataset. Gong et al. [12] formulated a local influence
estimator to evaluate node influence within its two-hop areas
and proposed a discrete particle swarm optimization (DPSO)
to identify the top-k influential nodes. In addition, a memetic
algorithm termed as CMA-IM [20] was put forwarded for influ-
ence maximization in community-based networks. Cui et al. [21]
proposed the DDSE algorithm based on degree descending search
evolutionary rules for the selection of targeted seed nodes. Exper-
imental results demonstrated that it is a promising way to solve
influence maximization problem using meta-heuristic algorithms.
Besides the notable advantage that meta-heuristic algorithms
can avoid generating Monte-Carlo simulations to estimate the
expected influence spread of given node set, another one is
that the running time of meta-heuristic algorithms for influence
maximization is insensitive to different propagation probabilities,
but not the greedy-based algorithms.

The major challenge faced by influence maximization algo-
rithms is how to well balance the solution accuracy against rea-
sonable time consumption and even the memory cost when tack-
ling the influence maximization problem especially in large-scale
networks. Therefore, developing effective and efficient algorithms
for influence maximization is still filled with challenging research
topics.

3. Preliminaries

3.1. Influence maximization problem

Definition 1. Let G = (V , E) be a network, where V is the node
set and E is the edge set of the network. Influence maximization
problem aims to select targeted k (1 ≤ k < |V |) influential nodes
as seed set S such that the number of influenced nodes triggered
by the seed set S, denoted as influence spread σ (S), is maximum
under a given propagation model.

S∗ = argmax
S⊆V , |S|=k

σ (S) (1)

where S is a candidate seed set, σ (S) is the expected number of
influenced nodes that are triggered by S, and S∗ is the best seed
set that can maximize the spread of influence. As proved in [7],
the influence maximization shown in Eq. (1) is an optimization
problem.

3.2. Influence estimator model

Besides the subject of developing efficient methods to se-
lect a targeted seed set that can maximize the spread of influ-
ence, constructing effective mechanisms to estimate the expected
influence spread accurately of a given node set is the second
challenge of influence maximization. Ureña et al. [38] pointed
out that it is hard to assess the agents’ influence in real world
social networks, especially when the whole network topology and
related information is not given for granted.

Studies [39] on influence spreading dynamics in social net-
work show that influence decays with one’s friendship delimi-
tation. More precisely, it was stated that the sum of the nearest
neighbors’ degree is a reliable local proxy for node’s influence
especially when the global network structure is unavailable and
suggested to estimate the expected local influence spread within
the two-hop area of a node. Based on the suggestion, the local
influence estimator LIE can be formulated as in Eq. (2)[12].

LIE(S) = σ0(S)+ σ ∗1 (S)+ σ̃2(S) (2)

where σ0(S) is the size of seed set S, σ ∗1 (S) and σ̃2(S) are the
expected influence spread of one-hop and two-hop area of set
S, respectively. For the LIE of one-hop area and two-hop area can
be expressed based the adjacency matrix of the nodes in S, then
the LIE can be calculated according to Eq. (3)

LIE(S) = k+ σ ∗1 (S)+
σ ∗1 (S)

|N (1)
S \S|

∑
u∈N(2)

S \S

p∗ud
∗

u

= k+
(
1+

1

|N (1)
S \S|

∑
u∈N(2)

S \S

p∗ud
∗

u

)

×

∑
i∈N(1)

S \S

(
1−

∏
(i,j)∈E, j∈S

(1− pi,j)
) (3)

where N (1)
S and N (2)

S represent the one-hop and two-hop area of
candidate set S, respectively. p∗u is a small constant probability of
a propagation cascade model. d∗u is the number of edges of node
u within N (1)

S and N (2)
S .

Therefore the selection of k influential nodes is transformed
into an optimization problem which aims at selecting a seed
set to maximize the fitness value of Eq. (2). In this paper, we
focus on providing an effective discrete frog-leaping algorithm to
optimize the LIE function and explore the most influential nodes
for influence maximization.

3.3. Influence propagation model

Based on the influence estimator, we employ the classical IC
model [7] to simulate the spread of influence in given networks.

IC model is a probability model which mimics the spread
process of information in social networks. In the IC model, each
node has only two states, either active or inactive, and nodes can
be allowed to switch from inactive to active ones, but not vice
versa. Propagation probability p in the cascade model describes
the tendency of inactive individuals to be affected by its adjacent
active neighbors. Given an active node u at step t , it has only one
chance to activate each of its adjacent inactive neighbors v and
successes with a probability puv , which is associated with edge
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(u, v) ∈ E. Whether the activation is succeed or not, u will no
more attempt to activate v in the following steps. If node v is
activated by u, then v will remain active and has one chance
to activate each of its adjacent inactive neighbors in step t + 1.
The diffusion process terminates if no node is activated at step T
and returns the influence spread σ (S) comprising all of the active
nodes.

4. Proposed method

As discussed above, the expected influence spread of given
candidate nodes can be evaluated according to the local influ-
ence estimator, so optimization algorithms can be utilized to
maximize the fitness value of the LIE function. Shuffled frog-
leaping algorithm [40] is an advanced meta-heuristic algorithm,
and its effectiveness on optimization problems has been validated
in many studies [41,42]. Inspired by the efficient evolutionary
mechanism based on swarm intelligence, we try to make further
study on the algorithm and propose a discrete shuffled frog-
leaping algorithm specially for influence maximization problem
in this paper. In the following subsections, the basic memetic
evolutionary ideology is introduced firstly, then discrete encoding
mechanism and evolutionary rules are conceived for the virtual
frog population based on the network topology characteristic, and
then the framework of DSFLA for influence maximization is given
consequently.

4.1. Memetic ideology and shuffled frog-leaping algorithm

Memetic algorithm (MA) is conceptualized to describe the
population based meta-heuristic optimization algorithm. The term
‘meme’ in MA comes from [43], in which Dawkins considered the
meme as a simple unit of intellectual or cultural information that
survives long enough to be recognized and passed from mind to
another. The components of a meme are called memetypes, such
as an idea or information pattern, etc., which can cause someone
to replace it or to repeat it to someone else.

As an important member of memetic algorithms, shuffled
frog-leaping algorithm (SFLA), which was proposed by Eusuff
et al. [40] for water distribution system design problem, is a
population based cooperative search metaphor inspired by nature
memetics. It has been validated to be simple and effective by
many applications [41], in which Sarkheyli et al. reviewed the
previous efforts from 89 researchers on SFLA and validated its
effectiveness and robustness by comparing SFLA with widely
used algorithms including particle swarm optimization (PSO),
genetic algorithm (GA) and differential evolution (DE), etc., based
on quantitative statistical results. To identify the main driving
factors and define the contribution rate of the main factors to
the net ecosystem exchange of carbon between the temperate
forests and the atmosphere, Xue et al. [42] proposed a fuzzy
rough set algorithm with binary shuffled frog leaping algorithm
to optimize the objective function. To improve the performance of
SFLA in dealing with multi-objective optimization problems, Luo
et al. [44] proposed a modified evaluation strategy and a novel
global optimal selection measure to diversify the flog population.
Meanwhile, a multi-objective extremal optimization procedure
was presented to enhance the evolution of the algorithm. Mao
et al. [45] took advantage of the grouping concept of SFLA to
improve the exploitation of PSO, and the experimental results
on optimizing the power extraction problem proved that the
modified SFLA outperforms PSO.

By idealizing the behavior rules of frogs, SFLA mimics a group
of frogs leaping in a swamp, in which a number of stones locate
at different positions, to find the stone that has the maximum
amount of available food. Frogs in the group are partitioned

into a number of memeplexes that are permitted to evolve in-
dependently. During the leaping process, frogs are allowed to
communicate with each other so that they can improve their
memes by learning from others’ information. In each memeplex,
the virtual frogs act as hosts of memes, and the meme carried
by a frog is consisted of at least one memotype. The update of
memotypes of a meme results in the improvement of the host
frog’s position approaching to the optimum.

As far as the influence maximization problem is concerned,
the propagation process of node influence in the network is anal-
ogous to the evolution of memes in the frog population. Social
individuals incline to profit from the sharing of promotional infor-
mation and generalized behaviors of other interactive members
and reshape their behavior as the influence propagates in the
network. Therefore, the evolutionary mechanism of SFLA lends
itself to be utilized to tackle influence maximization problem.

4.2. Discrete shuffled frog-leaping algorithm for influence maximiza-
tion

4.2.1. Discrete encoding mechanism
To solve the influence maximization problem using SFLA, a

reasonable encoding mechanism for the meme carried by frog
individual is conceived based on the representation pattern of
network topology structure. Given that each node in the network
is identified by an unique nonnegative integer, then k different
nodes can be drawn from the network to represent a meme
individual, i.e., an arbitrary node represents one memetype of the
meme. Fig. 1 shows the illustration of a virtual frog population.

4.2.2. Framework of DSFLA for influence maximization
According to the memetic ideology, the proposed framework

of DSFLA is comprised of two phases including global exploration
and local exploitation, which are detailed as follows. Meanwhile,
novel discrete evolutionary rules are conceived based on network
topology structure characteristics for the memes in the virtual
frog population, which will be described in the following two
evolutionary stages.

(1) Global exploration on the frog population.
In this first stage, global exploration for seed nodes is imple-

mented on the m memeplexes, as shown in Fig. 2(A).
To generate the virtual frog population F , where F = m× n, k

different candidate nodes are drawn randomly from the network
at a time to initialize the ith (i = 1, . . . , F ) meme, denoted as
U(i) = (U1

i , U2
i , . . . , Uk

i ). Consequently, the frog population can
be formulated as F = {U(1), U(2), . . . , U(F )}. Meanwhile, the
expected influence spread, denoted as LIE(i), of meme U(i) is cal-
culated according to the local influence estimator as introduced
in Section 3.2. Once the initialization is finished, sort the F memes
in descending order according to their LIE fitness value and put
the ordered combination (U(i), f (i)) into an array X , so that
U(1) represents the best frog with the maximal influence spread
estimation value, U(F ) represents the worst frog, and the best frog
of the entire population is recorded in PX . Then the ordered array
X are partitioned into m memeplexes Y 1, Y 2, . . . , Ym according
to Eq. (4), so that each memeplex contains n ordered memes.

Y i
= [U(j)i, f (j)i|U(j)i = U(i+m(j− 1)), f (j)i = f (i+m(j− 1))]

(4)

where i = 1, 2, . . . , m and j = 1, 2, . . . , n.
A superiority of the partition mechanism is the influence

spread estimation of each memeplex is uniformly distributed,
so that the initial memeplexes located in the population are
diversity.

(2) Local exploitation on each memeplex.
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Fig. 1. Illustration of the virtual frog population F composed by mindependent memeplexes. There are n memes in a memeplex, and each meme is consisted of k
memetypes, i.e., k candidate nodes.

Fig. 2. The flowchart of the proposed DSFLA for influence maximization problem (where im is the index of memeplex, and in counts the number of local exploitation
iterations on the current memeplex).
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Following the partition operation, the local exploitation, as
shown in Fig. 2(B), is adopted to improve the suboptimal meme
of each memeplex independently according to a topology-based
local exploitation strategy in this second stage. After the local
exploitation is finished, shuffle the m memeplexes and put the
ordered memes into X again for the next partition until the
convergence criterion is satisfied.

As the target of discrete shuffled frog-leaping algorithm is
to select k most influential nodes to maximize the expected
influence spread, so the goal of each meme in the frog population
is to find k most influential nodes that can maximize the fitness
value of the local influence estimator. According to the memetic
ideology, each meme in memeplex Y i can improve its memo-
types through an interactive local exploitation operation with the
best meme within the same memeplex or with the global best
solution PX . In this paper, the property of network topology is
further explored and a topology-based local exploitation strategy
containing three schemes is presented to improve the suboptimal
meme of each memeplex.

As stated in [40], it is not always a good idea to use the best
frog to improve the worst one because the frogs’ tendency would
be to concentrate around that temporary best frog which may
be a local optimal. Therefore, a subset of the memeplex called
submemeplex, denoted as Z , is considered to be constructed from
each memeplex according to the triangular probability distribu-
tion to improve the worst meme in the submemeplex. According
to the construction strategy, frogs with larger influence spread
estimation value will be given higher weights, and frogs with
smaller influence spread estimation value will be given lower
weights according to Eq. (5).

wj =
2(n+ 1− j)
n(n+ 1)

(5)

where n is the number of meme in each memeplex, and j =
1, 2, . . . , n. Once the extraction is finished, the memes in sub-
memeplex Z are sorted according to the influence spread estima-
tion value, meanwhile, the best meme and the worst meme are
recorded as Pb and Pw , respectively.

To improve the worst meme in the submemeplex Zi (i =
1, 2, . . . ,m), a local degree-based replacement (LDR) method, as
shown in Algorithm 1, is presented based on network topology
for the improvement operation of the first two schemes in the
local exploitation strategy. In Algorithm 1, the job of Onehop(·)
is to get the direct neighbors of each memotype from the given
meme. Function Sort(·) is utilized to rank the one-hop area nodes
N (1) in decreasing order according to the degree centrality metric.
In terms of the method, the one-hop area neighbors of each
memotype from the best meme Pb (PX ) are obtained firstly, then k
neighbors with the highest degree centrality from the k different
one-hop areas are selected separately to make up a new meme to
replace the worst meme Pw , meanwhile, it is essential to ensure
that there is no overlapped nodes in the new meme. If the new
memes generated based on Pb and PX by the first two schemes
are either infeasible or not better than the current meme Pw , then
k nodes will be drawn randomly from the network to generate a
newmeme to replace Pw as well as its LIE value with the influence
spread estimation value of the new generated meme.

As we can see that the local exploitation procedure plays an
important role in promoting the proposed algorithm converges to
global optimal solution. The worst meme in each submemeplex
tends to return k more influential candidate nodes after given
iterations. A foreseeable seed set with k most influential nodes
will be returned by the proposed algorithm after predefined
evolutionary generations.

Algorithm 1: Local degree-based replacement method.

Input: Pb of submemeplex Zi or PX of the entire population.
1: new_meme← Φ

2: for each memetype ∈ Pb (PX ) do
3: N (1)

← Onehop(memetype)
4: SN (1)

← Sort(N (1))
5: for each node ∈ SN (1) do
6: if node /∈ new_meme then
7: new_meme← new_meme ∪ {node}
8: break
9: end if

10: end for
11: end for
12: return new_meme

4.3. Time complexity of DSFLA

The asymptotic time complexity of the proposed DSFLA is
analyzed in this subsection to check whether the algorithm is
effective in selecting the targeted seed nodes for influence maxi-
mization.

Proposition 4.1. Given the proposed framework of DSFLA for
influence maximization problem, the frog population initialization,
memeplex partition and Shuffling the m memeplexes have a com-
plexity of O(mn), respectively.

Proof. If the virtual frog population F is divided into m meme-
plexes, and there are n memes in each memeplex, then it needs
O(n) basic operations to initialize one meme based on random
candidate node generation, therefore, the asymptotic time com-
plexity of the initialization is O(mn). Meanwhile, according to
the partitioning rules, the fast way to partition the F ordered
frogs into m memeplexes needs O(mn) basic operations. In addi-
tion, after the independent local improvement evolution, all the
memes need to be shuffled into the population array again for
the next generation, for there are m memeplexes and n memes
in each memeplex, therefore, the time complexity of the shuffling
operation is O(mn). □

Proposition 4.2. Evaluating the expected influence spread LIE of a
meme needs O(kD̄) basic operations.

Proof. Let D̄ is the average node degree of the network. When
evaluating the expected local influence spread of a given candi-
date node, we can obtain the number of its direct neighbors, then
it requires O(D̄) basic operations to obtain the number of edges
between its direct neighbors and two-hop area neighbors. There-
fore, it requires O(kD̄) basic operations to evaluate the expected
influence spread of the candidate seed set S. □

Proposition 4.3. Ranking the F frogs requires O(mn · log(mn)).

Proof. There are m × n frogs in the virtual population, so the
worst case to rank the m× n frogs according to the fitness value
based on the merging sort method is O(mn log(mn)). □

Proposition 4.4. The asymptotic time complexity of the local ex-
ploitation is O(mn+mkD̄).

Proof. Firstly, it needs O(n) to calculate a weight vector for
the n memes according to Eq. (5). Constructing a submemeplex
requires O(n) basic operations, the improve the worst meme Pw

of each memeplex needs O(kD̄). Therefore, the total asymptotic
time complexity is O(mn+mkD̄). □
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Table 1
Statistical characteristics of the six social networks. |V | and |E| represent the
number of nodes and edges, respectively. ⟨k⟩ is the average node degree, d̄ is the
average shortest path distance, C represents the average clustering coefficient,
AC represents the assortativity coefficient.
Networks |V | |E| ⟨k⟩ d̄ C AC Type

AstroPh 18772 198110 21.107 4.194 0.677 0.205 Undirected
CondMat 23133 186936 16.162 5.352 0.055 0.135 Undirected
Slashdot 77360 905468 23.409 4.024 0.087 −0.046 Undirected
Epinions 75879 508837 13.412 4.755 0.261 −0.041 Directed
Eu-Email 265214 420045 3.168 4.206 0.456 −0.210 Directed
Stanford 281903 2312497 16.406 6.824 0.598 −0.122 Directed

Proposition 4.5. The asymptotic time complexity of the pro-
posed DSFLA for influence maximization problem is O(mnkD̄ +
(mnlog(mn)+mkD̄)gmax).

Proof. Based on the propositions given above, let the other
operations need one unit cost separately and gmax is the maximal
number of evolutionary generations of DSFLA, the upper bound
computational complexity of DSFLA is O(mnkD̄ + (mnlog(mn) +
mkD̄)gmax). □

Compared with the time complexity O(kNMR) of the simple
greedy algorithm (where the size of N and M is much larger
than the size of m and n), we can see that the proposed DSFLA
algorithm is more efficient.

5. Experiments and statistical tests

5.1. Datasets and baseline algorithms

To validate the performance of the proposed DSFLA on in-
fluence maximization problem, experiments are carried out on
six real-world social networks, as shown in Table 1. AstroPh
and CondMat [46] are two undirected collaboration networks
which cover scientific collaborations between authors of papers
submitted to Arxiv Astro Physics and Condensed Matter, respec-
tively. Slashdot [47] is a technology-related news social network
known for its specific user community, and it is treated as an
undirected network. Epinions [48] is a who-trust-whom online
social network of a general consumer review site Epinions.com.
Members of the site can decide whether to ‘‘trust’’ each other,
and the trust relationships are represented by directed edges.
Eu-Email [46] network is generated from a large European re-
search institution, in which each node corresponds to an email
address and each sent or received email message corresponds
to an interactive edge. Stanford [47] is a large-scale web graph
extracted from Stanford University (stanford.edu), in which nodes
represent pages from the web and directed edges represent hy-
perlinks between the nodes. The node degree distribution of the
six networks is given in Fig. 3.

The experiments on the performance of DSFLA consist of two
separate phases. In the first phase, experiments on parameters
setting strategy for DSFLA are carried out, and an optimal set of
combinational parameters setting is selected so that the proposed
DSFLA can converge to global optimization efficiently. Then, per-
formance of DSFLA on influence spread is validated by comparing
with four other state-of-the-art algorithms under IC model at
propagation probability p = 0.01 on the six social networks.
Statistical hypothesis tests according to two significance levels
are also performed based on the experimental results.
• CELF [8] (Cost-Effective Lazy Forward) is a notable greedy-

based algorithm with a ‘‘lazy-forward’’ strategy by exploiting the
submodularity property. CELF runs k rounds to select the targeted
k seed nodes. At each round, the algorithm performs at least

10,000 Monte-Carlo simulations under the given IC model to
estimate the marginal gain of each node in the network. Then the
node with the largest marginal gain is to be selected as the cur-
rent best seed node and the total influence spread accumulates
by the seed node’s marginal gain.
• DPSO[12] (Discrete Particle Swarm Optimization) is an effec-

tive meta-heuristic algorithm that selects the candidate node set
with the best LIE fitness value as the targeted k seed nodes after a
given number of optimizing iterations. Then the average influence
spread is calculated after simulating the spreading process of the
seed set in the network by a predefined number of times.
• DDSE[21] (Degree-Descending Search Evolution) is a novel

memetic algorithm originated from Differential Evolutionary (DE)
algorithm based on degree-descending search strategy for influ-
ence maximization, and the calculation of influence spread is
similar to DPSO.
• SSA[28] (Stop-and-Stare Algorithm) is an optimal sampling

framework based on reverse influence sampling ideology. The
algorithm selects the top k nodes that appear the most times in
the generated subgraphs as the optimal seed set, then the aver-
age influence spread is calculated after simulating the spreading
process of the seed set in the network by a predefined number of
times.

5.2. Parameters setting of DSFLA

Parameters including the number of frog individual F , the
number of memeplexes m as well as the related number of
memes n within each memeplex need to be settled firstly for
the proposed DSFLA. In addition, it needs to determine the evo-
lution iterations Iter of the local exploitation, the submemeplex
size q, and the maximum generation number gmax allowed for
the algorithm. Conventional numerical test or set value to the
parameters empirically is inefficient, and it is hard to conduct all
the experiments in enumerations of all possible scenarios. Take
the parameter F for example, smaller F always indicates DSFLA
cannot explore sufficiently in the solution space and tends to
lead the algorithm to local optimal solution especially in large-
scale networks, while larger F may result in extra and verbose
computation. As emphasized by Eusuff et al. [40], parameters
setting strategy is critical to SFLA’s performance, but no clear
theoretical basis is available to dictate parameters setting.

In this paper, the orthogonal experimental design method is
employed to optimize the parameters setting strategy of DSFLA.
The method provides a highly efficient way of dealing with multi-
factor experiments and screening optimum levels by using an
orthogonal design table. To make an orthogonal design table,
reasonable and representative levels of factors need to be deter-
mined at first according to theories or experiments. We mainly
choose four factors including F , m, q and Iter and set three
alternative scenarios for each factor respectively to represent all
the level groups of the experimental factors. Then an orthogonal
design table L9[34

], as shown in Table 2, is constructed and the
orthogonal test is implemented on the CondMat network in this
paper. From the results shown in Table 2, we can see that DSFLA
achieves the best and robust performance under the third param-
eter setting pattern, where the average expected local influence
estimation is AveLIE = 105.147, 6 and the standard difference is
SD = 0.417, 5 when the targeted seed size is k = 100. Therefore,
the following parameter setting pattern where F = 100, m = 20,
n = 5, q = 3 ∗ n/4 and Iter = 30 is fixed for DSFLA to solve the
influence maximization on the six networks.
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Fig. 3. Node degree distribution of the six different social networks.

Table 2
The orthogonal tests on the four key parameters of DSFLA based on CondMat
network (AveLIE is the average expected local influence estimation, SD is the
standard difference of AveLIE after DSFLA runs 50 times independently).

Tests Orthogonal test Running time(s) AveLIE SD
F m q Iter

test1 100 5 n/3 10 50.890,0 102.976,8 2.517,2
test2 100 10 2∗n/3 20 254.425,0 104.214,4 0.908,7
test3 100 20 3∗n/4 30 129.748,0 105.147,6 0.417,5
test4 200 5 2∗n/3 30 108.416,0 104.272,0 0.830,4
test5 200 10 3∗n/4 10 140.353,3 103.908,8 0.949,9
test6 200 20 n/3 20 506.200,0 104.663,8 0.723,6
test7 300 5 3∗n/4 20 271.968,0 104.219,1 0.976,5
test8 300 10 n/3 30 354.496,5 103.774,0 1.112,1
test9 300 20 2∗n/3 10 252.612,0 104.421,5 0.793,2

5.3. Influence spread comparison

It is important to note that all related parameters value are
fixed according to the suggestions in the original literature when
we implement the procedures of the four baseline algorithms. We
run the Monte-Carlo simulation 10,000 times for CELF to estimate
the marginal influence spread of each node. The maximal evolu-
tionary generation gmax for DSFLA, DPSO and DDSE is set to 100
respectively, and the simulation times for the three algorithms
is set to 1,000 separately to obtain the average influence spread.
The learning factors c1 and c2 in PSO are set to 2, and the inertia
weight ω is set to 0.8. The probabilities of mutation, crossover
and diversity operations in DDSE are set to 0.1, 0.4 and 0.6,
respectively. For the SSA algorithm, parameters ϵ and δ are set
to 0.1 and 0.01, respectively.
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Fig. 4. Comparison on influence spread of the five algorithms under IC model at propagation probability p = 0.01 on the six social networks.

Fig. 4 shows the performance of DSFLA and other four baseline
algorithms on influence spread under IC model at propagation
probability p = 0.01 on the six networks. As shown in Fig. 4(A)-
(F), DSFLA achieves satisfying influence spread at given seed
size in the six large-scale networks, and the smooth marginal
gains with the increment of targeted seed size show that DSFLA
is robust in identifying the targeted seed nodes for influence
maximization. Comparing with the four other state-of-the-art
algorithms, DSFLA achieves comparable influence spread to CELF
and even better solutions than CELF on the CondMat network, as
shown in Fig. 4(B). Meanwhile, DSFLA outperforms DPSO, DDSE
and SSA under all of the scenarios except on the Epinions net-
work, as shown in Fig. 4(D). In other words, the proposed DSFLA
is effective in identifying influential nodes due to its memetic
evolutionary rules.

As to the DPSO, it achieves less influence spread compared to
CELF and DSFLA in most scenarios except the one in Fig. 4(D).

The evolutionary rules of DPSO are efficient, but the local search
strategy, which always terminates once the local search opera-
tion fails to find a better influential node to replace the current
candidate node, employed in DPSO tends to lead the algorithm to
be trapped into local optimal solution easily. As shown in Fig. 4,
DDSE acts itself as the worst one among the three meta-heuristic
algorithms, this is because the algorithm suffers from the problem
of rough estimation of node’s influence spread, which estimates
the expected diffusion value of a node within its one-hop area.
Among the five algorithms, SSA performs as the worst one in
identifying the most influential nodes for influence maximization.
As shown in Fig. 4(A), (B) and (D)∼(F), SSA is effective when the
targeted seed set size is small, such as k ≤ 10, however, the
algorithm tends to fail to identify the most influential nodes with
the increment of the targeted seed set size k, especially in Fig. 4(C)
and (D).
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Table 3
Statistical results of the multiple-problem Wilcoxon’s test for the five algorithms at α = 0.05 and α = 0.1 significance levels.
DSFLA k N+ N- Z p-value Adjusted p-value

α = 0.1 α = 0.05
vs Holm Hochberg

CELF 1 1 5 −1.363 0.173 1 0.753 NO NO
10 1 5 −1.363 0.173 1 0.753 NO NO
20 1 5 −1.992 0.046 0.128 0.128 YES YES
30 2 4 −1.572 0.116 0.232 0.232 NO NO
40 2 4 −1.572 0.116 0.232 0.232 NO NO
50 0 6 −2.201 0.028 0.112 0.056 YES YES
60 1 5 −1.572 0.116 0.232 0.232 NO NO
70 1 5 −1.992 0.046 0.128 0.128 YES YES
80 1 5 −1.992 0.046 0.128 0.128 YES YES
90 0 6 −2.201 0.028 0.112 0.056 YES YES
100 0 6 −2.201 0.028 0.112 0.056 YES YES

DPSO 1 3 3 −0.674 0.500 1 0.753 NO NO
10 3 3 −0.314 0.753 1 0.753 NO NO
20 4 2 −0.105 0.917 0.917 0.917 NO NO
30 5 1 −0.943 0.345 0.345 0.345 NO NO
40 5 1 −0.943 0.345 0.345 0.345 NO NO
50 4 2 −0.524 0.600 0.6 0.6 NO NO
60 5 1 −0.943 0.345 0.345 0.345 NO NO
70 5 1 −0.943 0.345 0.345 0.345 NO NO
80 5 1 −0.943 0.345 0.345 0.345 NO NO
90 5 1 −0.943 0.345 0.345 0.345 NO NO
100 5 1 −0.943 0.345 0.345 0.345 NO NO

DDSE 1 2 4 −0.524 0.600 1 0.753 NO NO
10 6 0 −2.201 0.028 0.112 0.112 YES YES
20 6 0 −2.201 0.028 0.112 0.084 YES YES
30 6 0 −2.201 0.028 0.112 0.084 YES YES
40 6 0 −2.201 0.028 0.112 0.084 YES YES
50 6 0 −2.201 0.028 0.112 0.056 YES YES
60 6 0 −2.201 0.028 0.112 0.084 YES YES
70 6 0 −2.201 0.028 0.112 0.084 YES YES
80 6 0 −2.201 0.028 0.112 0.084 YES YES
90 6 0 −2.201 0.028 0.112 0.056 YES YES
100 6 0 −2.201 0.028 0.112 0.056 YES YES

SSA 1 3 3 −0.314 0.753 1 0.753 NO NO
10 5 1 −1.992 0.046 0.138 0.138 YES YES
20 6 0 −2.201 0.028 0.112 0.084 YES YES
30 6 0 −2.201 0.028 0.112 0.084 YES YES
40 6 0 −2.201 0.028 0.112 0.084 YES YES
50 6 0 −2.201 0.028 0.112 0.056 YES YES
60 6 0 −2.201 0.028 0.112 0.084 YES YES
70 6 0 −2.201 0.028 0.112 0.084 YES YES
80 6 0 −2.201 0.028 0.112 0.084 YES YES
90 6 0 −2.201 0.028 0.112 0.056 YES YES
100 6 0 −2.201 0.028 0.112 0.056 YES YES

5.4. Running time comparison

To show the efficiency of DSFLA in identifying influential
nodes for influence maximization, comparison on running time
of the five algorithms at targeted seed set size k = 100 on the six
networks is given in Fig. 5.

The bar charts in Fig. 5 show that both SSA and DDSE need
merely tens of seconds to identify the targeted seed nodes on
the six large-scale networks. However, in consideration of the
influence spread shown in Fig. 4, SSA and DDSE tend to be the
less effective than other three algorithms. Conversely, the bar
charts illustrate that the greedy-based CELF is the most time
consuming one, where it even needs 31 h to select the targeted
seed set in the network Slashdot, though it performs as the most
effective method compared with other algorithms. Comparing
with DPSO and CELF, the proposed DSFLA performs more efficient
at identifying influential nodes and can be scalable to large-scale
networks, as shown in Fig. 5, where the time consumed by DSFLA
is only half of DPSO in the largest Stanford network and almost
2432 times faster than CELF on the Slashdot network.

5.5. Statistical tests

To verify the effectiveness of DSFLA independently, we also
carry out rigorous statistical hypothesis tests in terms of quartile

statistics to check whether there is a high level of statistical sig-
nificance in the results of the five algorithms on the six networks.
In each of the networks, 11 scenarios (k = 1, 10, . . . , 100) are
considered as independent problems, moreover, the parameter-
free hypothesis tests on each k scenario on the six networks are
carried out separately. The multiple-problemWilcoxon’s tests [49]
are performed to check the behaviors of the five algorithms,
in which Holm procedure and Hochberg procedure are used as
post-hoc procedures.

Table 3 summarizes the statistical analysis results by taking
the proposed DSFLA as the baseline. According to the statistical
results, we can see that DSFLA is significantly better than DDSE
and SSA, but there is no significant difference between DSFLA and
DPSO.

The experimental comparison on influence spread and the
independent statistical tests show that the proposed DSFLA is
an advanced and effective algorithm for influence maximization
problem. In general, there are always many parameters and fac-
tors need to be adjusted in meta-heuristic algorithms, reasonable
parameters setting strategy involves the convergence ability and
the performance of these algorithms. We can see that shuf-
fling and partitioning the frog population into m memeplexes
alternatively contributes to diversify the solutions, and the local
exploitation strategy on the worst meme within each submeme-
plex is able to exploit the most influential nodes with the help
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Fig. 5. Comparison on running time of the five algorithms at the targeted seed
set size k = 100 on the six networks (where the running time of CELF in the six
networks is measured in minutes, while the other four are measure in seconds).

of collective evolution. Comparing with DDSE, it shows us that
an effective influence estimator makes it easier to identify influ-
ential nodes accurately. Meanwhile, the comparison on running
time shows that time complexity is a major factor in evaluat-
ing an algorithm whether it can be scalable to the influence
maximization problem in large-scale social networks. Therefore,
developing meta-heuristic algorithms based on memetic ideology
is a promising way to solve influence maximization problem in
large-scale networks.

6. Conclusions and future works

The shuffled frog-leaping algorithm which combines deter-
ministic and random search strategies shows excellent perfor-
mance on various complex optimization problems. In this paper,
a discrete shuffled frog-leaping algorithm is proposed specially
to identify influential nodes for influence maximization. In the
proposed framework, discrete encoding mechanism and evolu-
tionary rules are conceived based on network topology, and a
local degree-based replacement strategy is presented to cooper-
ate with the local exploitation to improve the suboptimal meme
of each memeplex. Meanwhile, the orthogonal experimental de-
sign method is employed to optimize the parameters setting
strategy of DSFLA so that the algorithm evolutes effectively.

The experimental results on various cases demonstrate that
the proposed method can successfully identify the influential
nodes in networks. Compared with the methods that identi-
fies the influential nodes based on Monte-Carlo simulations or
reversed influence sampling ideology, the evolutionary mecha-
nisms which take the local spreading of influence in the net-
work into consideration are more reasonable and efficient. The
excellent performance and the independent statistical tests of
the proposed algorithm supports the claim that meta-heuristics
based on swarm intelligence are promising tools to solve in-
fluence maximization problem in large-scale networks. As a fu-
ture work, developing effective influence spread estimators and
more advanced evolutionary rules that are scalable to large-scale
networks is one of the main focus of our further research on
influence maximization problem.
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