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A Cross-Entropy-Based Three-Stage Sequential
Importance Sampling for Composite Power System

Short-Term Reliability Evaluation
Yue Wang, Chuangxin Guo, Member, IEEE, and Q. H. Wu, Fellow, IEEE

Abstract—Regarding short-term reliability of composite power
system, probability of critical event resulting in system failure
within a short lead time is extremely low, which renders classical
sequential Monte Carlo simulation method inefficient. In this
paper, a cross-entropy-based three-stage sequential importance
sampling (TSSIS) method is proposed to solve the low efficiency
problem resulted from the low rate of component state transition
during a fixed lead time. First, by assuming the system state
transition process conforms to continuous time Markov chain, an
analytical solution to optimal distorted component state transition
rate to be used for sequential importance sampling is found by
means of cross-entropy method. Second, TSSIS for a fixed lead
time is constructed as follows: 1) acceleration of producing system
state transitions; 2) enhanced learning to give optimal distorted
transition rate; 3) compensation to the cost function. Case studies
based on a reinforced Roy Billinton reliability test system and
RTS-79 are carried out respectively for illustration of parameter
settings of TSSIS as well as efficiency gain in comparison with the
classical sequential Monte Carlo simulation method. The results
demonstrate that given rational setting of parameters, TSSIS is
of relatively high efficiency for sequential short-term reliability
evaluation of composite power system.

Index Terms—Cross-entropy, importance sampling, risk assess-
ment, sequential Monte Carlo, short-term reliability evaluation.

NOMENCLATURE

CSMCS Classical sequential Monte Carlo simulation.

CE Cross-entropy.

CTMC Continuous time Markov chain.

EENS Expected energy not supplied.

LOLE Lost of load expectation.

LOLD Lost of load duration.

LOLF Lost of load frequency.
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MCS Monte Carlo simulation.

PDF Probability density function.

R-RBTS Reinforced Roy Billinton reliability test system.

TSSIS Cross-entropy-based three-stage sequential
importance sampling.

Lead time.

Number of components.

State transition path of continuous time Markov
chain within .

Number of state transitions in .

Conditional likelihood of conditioned on .

Real-valued cost as function of .

Defined cost as function of in Stage One of
TSSIS.

Total number of sample realization in Stage One
of TSSIS.

Defined cost as function of in Stage Two of
TSSIS.

Total number of sample realization in Stage Two
of TSSIS.

Set of original component transition rates.

Efficiency gain.

Coefficient of variance.

I. INTRODUCTION

M ODERN power systems are experiencing a worldwide
trend of deregulation in the light of energy crisis and en-

vironmental issues. Electric power utilities are faced with great
challenges to balance trade off between investment profits and
operational reliability. In lack of unified regulations, present op-
erational strategies formulated to represent individual interests
will undoubtedly drive power systems further to or even beyond
operating limits [1]. Both independent system organizers and
electric power entities need to be adequately aware of system
operating pressures during a short interval in the future in a
precise and uninterrupted manner, which could be achieved by
employing short-term reliability evaluation techniques for com-
posite power systems.
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The short-term reliability evaluation for a composite power
system can measure the ability of the whole system to withstand
unexpected interruptions resulted from imminent probabilistic
disturbances to both the generation and the transmission sub-
systems within a short span in the near future, so-called lead
time. Distinct from short-term generation capacity evaluation
[2]–[6] used to assess spinning reserve of a fleet of generators,
transmission system contingencies should be additionally taken
into account in composite short-term reliability evaluation. In
addition, the effects of remedial actions, such as load shedding,
transformer tap changing and/or re-dispatching generator out-
puts, on estimation of reliability indices can not be neglected.
Generally, composite system reliability evaluation can be clas-
sified into adequacy analysis and security analysis depending
on the primary aspect of concern in case of a contingency. In
the adequacy evaluation which we pay attention to, we should
investigate whether there exist enough both sufficient genera-
tion capacity for the energy demand and the associated transmis-
sion facilities required to transmit energy to major system load
points [7]. It is conventionally assumed that a disturbed system
can automatically recover or be manually restored to be stable,
that is to say, such dynamic responses as time-dependent bus
voltage collapse and generator rotor angle instability, would not
be considered after a disturbance, and remedial actions can be,
if needed, thereof effectively conducted to bring the abnormal
state back into a new equilibrium operating point. Due to the
short time scale considered in the short-term reliability evalua-
tion, such events as scheduled outages, deratings, plannedmain-
tenance, and postponed failures should not be considered [3].
Moreover, the forecasted load level could be considered as con-
stant, or random but complying with a certain distribution [7],
e.g., Gaussian distribution. In addition, the failure rate of a com-
ponent is not a steady-state value as used in long-term evalua-
tion, but a function of the environment it is exposed to [8], for
instance, the failure rate of an overhead transmission line can
be much higher in adverse climatic conditions than that in fair
ones. The time-specific or environment-dependent system op-
erating pressure can be reflected by reliability indices released
by short-term composite adequacy evaluation. This information
is useful to assist power system operators in decision making to
timely avoid hazard event such as cascading outage [9], or in
reward/penalty analysis [1].
The methodologies used for the short-term reliability evalua-

tion of composite power system have been studied in [8]–[12].
As the volume of possible operational states of composite
power system is huge, the Monte Carlo simulation (MCS)
method [9]–[12] is much more preferred in terms of its advan-
tage of easy implementation, ergodicity and robustness to the
dimension of the problem compared with analytical methods
[8]. There exist two well-known frameworks of MCS methods,
namely sequential MCS method and nonsequential MCS
method. One important advantage of sequential MCS method
over the others is that the chronological probabilistic nature
of system behavior and component failures can be simulated
sequentially, as a result, indices relevant to state duration, e.g.,
failure cost as a function of state duration, loss of load duration
(LOLD) and loss of load expectation (LOLE), etc., can be
calculated directly and unbiased results are obtained. However,

since a contingency of composite power system, such as load
shedding, is often triggered by several components failing
together within a relatively short lead time, the probability of
such event is extremely low with respect to modern highly
reliable components. For instance, it is a common practice to
assume the time to failure of a component to be exponentially
distributed, and annual average failure rates are commonly of
magnitudes between /yr and 10/yr in normal operating
conditions, whereas, in short-term reliability evaluation, be-
tween /h and /h or even lower when only several
hours considered. That is, in average a single component may
fail one time over hrs such that it is very difficult for the
CSMCS method to sample sufficient failure events in a short
lead time. The simulation efficiency decreases consequently.
From this point of view, it is meaningful to develop an effec-
tive algorithm to improve the CSMCS method for short-term
reliability evaluation.
Various researches endeavoring to improve CSMCS ef-

ficiency for power system reliability evaluation have been
reported. Reference [13] contributed by reducing time con-
sumption for contingency loss calculation associated with each
sampled state.
A pseudo-chronologicalMCS tool [14] was proposed to over-

come computational burden of the CSMCS method. Recently,
an algorithm for reliability simulation of equipment and systems
using a parallel computing environment based on the CSMCS
framework has been developed [15]. It improves the efficiency
by sampling states sequences in parallel, however, it requires
huge hardware support once state transition rate is extremely
low.
The efficiency of the CSMCS method in generating capacity

reliability evaluation has been prominently improved [6] on the
basis of cross-entropy (CE) technique [16], [17]. It is achieved
through iterative selection, in low generation capacity, of sam-
pled system states which are used for optimal distortion of com-
ponent failure rate. As a result, system failure events, such as
deficit of energy, can be effectively sampled with the optimal
distorted failure rate. The same concept can be employed in se-
quential composite short-term reliability evaluation. However,
in the light of transmission system constraints, selection of the
best sampled system sequences used for component state transi-
tion rate optimization is not so straightforward because it is de-
termined by both generation capacity and transmission capacity
combined with system load level. On the other hand, identifica-
tion of a failure event usually involves time-consuming reme-
dial action analysis including power flow and or optimal power
flow analysis, thus, a huge volume of sampled system states
should be avoided as much as possible to ensure evaluation ef-
ficiency.
Inspired by [6], [16], and [17] in this paper, a novel cross-en-

tropy-based three-stage sequential importance sampling
(TSSIS) method is proposed to improve sequential composite
short-term reliability evaluation within a fixed lead time con-
fronted with relatively low component state transition rate.
First, by assuming the system state transition process conforms
to continuous time Markov chain (CTMC), an optimal distorted
component state transition rate used for sequential importance
sampling within a fixed lead time is derived by minimizing the
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Kullback-Leibler distance between the zero-variance proba-
bility density function (PDF) and a parametric PDF. A method
is proposed to solve the optimal distorted transition rate based
on which the short-term likelihood ratio compensator for im-
portance sampling is derived. The proposed TSSIS procedure
as a whole consists of three distinct stages. At the first stage,
the generation of sequential transition path leading to system
failure is accelerated; At the second stage, enhanced learning
for optimal component state transition rate for sequential impor-
tance sampling is conducted by utilizing the samples obtained
from the first stage; At the last stage, the distorted sequential
transition path is simulated, resulting in a pre-defined cost
which is compensated according to the short-term likelihood
ratio compensator. In the final section of the paper, we explain
parameter settings of the proposed method through case studies
on a reinforced Roy Billinton reliability test system [18] along
with efficiency gain in comparison with the CSMCS method
through tests on RTS-79 [19].

II. CLASSICAL SEQUENTIAL MCS WITHIN FIXED LEAD TIME

A system state transition sampling method proposed in [20]
is utilized in this paper to develop the proposed TSSIS method.
Simulation philosophy is briefly reviewed as follows: Given a
multi-state system complying with CTMC assumption and pro-
vided there is no absorbing state, let denote its state space,

is a subset space in which each state is associated with
by one-step transition. Obviously, cardinality of satisfies

. Denote , then the probability of one-step
transition from to within a fixed time interval can be ex-
pressed as follows [20]:

(1)

where represents transition rate from to
represents transition rate of departing out of

which is sum of transition rates from to any other states in .
If we assign each state in a natural number, and let

represent a visited state at time ,
then, as shown in Fig. 1, starting from an original state ,
a sequential transition path within a fixed time interval can be
denoted by:
with denoted as time span. The last term means
that once sampled goes beyond , only the
transition time span for the state is considered
into likelihood irrespective of the visited state . Based on
the above conditions, likelihood for the sampled [21] can be
expressed as follows:

(2)

where represents the probability of departure of state
within for and
.

Fig. 1. Formation of a sequential transition path.

According to (1) and (2), the sequential simulation steps
based on the system state transition sampling method to form
can be constructed as follows:
1) Given the present state , find all the states associated with

by one-step transition to form and denote the states
in by where represents the cardi-
nality of . Then, the steps of selecting the next visited
state from are as follows: if ,
then there is no need of additional calculations as is
the only possible state to be visited, i.e., ; oth-
erwise, randomly produce a number, , from the uniform
distribution defined on to determine the next state,

, where natural number is determined by the
following equation:

(3)

2) Once again produce a random number, , from the uniform
distribution defined on , then the sojourn time of
is determined by

(4)

3) Calculate the one-step transition cost which is a defined
function of and . The cost may be energy not
supplied, economic loss or outage duration for instance.

4) Repeat 1)–3) until is satisfied, then, add
all of the one-step transition costs to form a total cost of
the sequential transition path.

5) Repeat 1)–4) until the coefficient of variation [22] or a pre-
defined size of pool of sequential transition path costs is
satisfied.

III. CROSS-ENTROPY-BASED THREE-STAGE
SEQUENTIAL IMPORTANCE SAMPLING METHOD

This section first introduces basic idea of CE, then followed
by the analytical solution to the optimal distorted transition rate
used for sequential importance sampling simulation method
within a fixed lead time. The transition rates to be distorted
are in fact parameters of the PDF of sequential transition path
which is selected out from a parametric family from which the
perfect zero-variance PDF comes. The parametric PDF has a
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merit of not influencing the system original CTMC character-
istics. Based on this parametric PDF, in Section III-C, it will be
seen that the derived analytical solution is very convenient to
be embedded into the traditional CE-based sampling simulation
procedure [16], [17] to form the TSSIS method.

A. Basic Idea on CE-Based Importance Sampling

First, the zero-variance PDF for the importance sampling
simulation method applied to general problems can be ex-
pressed as:

(5)

where is the zero-variance PDF, is a random variable,
is a vector of parameters, is the original problem-spe-

cific PDF and is the corresponding original parameter vector.
denotes a real-valued function of , such as energy not

supplied. represents the expected quantity to be esti-
mated under . From (5), it can be noted that if is
given, we need nothing but only one simulation to get ;
however, the exact cannot be known before simulation.
Obviously, and is a pair of interdependent
variables, and an efficient way to decouple the interdependence
is to estimate preliminarily, and simulate to iter-
atively update .
The CEmethod is a kind of stochastic simulationmethodwith

iterative sample learning. The basic idea of CE is to find a surro-
gate PDF for by minimizing the Kullback-Leibler dis-
tance between zero-variance PDF and a parametric PDF with
the same family as . Compared with other metrics quan-
tifying the distance between the two PDFs [23], CE is more ap-
plicable to deal with the exponential distribution family.
Let represent a PDF stemming from the same dis-

tribution family from which comes, then, the parameter
vector can be iteratively obtained as (6) by minimizing the
Kullback-Leibler distance between and [16],
[17]:

(6)

where the superscript denotes number of the iterations,
is an iteratively distorted parameter vector of and generally

is a pre-defined total number of simulations, and
is a sample from . In most of practical problems,

, thus, as long as is convex and differen-
tiable with respect to , the problem of solving (6) will equiv-
alently be reduced to solve the following (7):

(7)

The th iterative solution to (7) is just the general estimator for
optimal distorted parameters of PDF from the viewpoint of CE.
In common practices, may be adequate.

B. Optimal Distorted State Transition Rate From CE
Perspective

Considering a multi-state Markov system, the system state
can be adequately determined by a combina-

tion of states of its components , where is
the number of components and represents
a state level of component , and specifically, level 0 repre-
sents total loss of function and represents normal operation,
and the other numbers between 0 and represent intermediate
states respectively. Take a transmission line with two Markov
states for instance, represents the operating (up) state
and otherwise. The state transition rate of component
is denoted as , which is determined by the state of the com-
ponent in system state , specifically, if represents
failure rate, otherwise, repair rate.
Given components operate mutually independently and si-

multaneous failures of two or more components are neglected,
and given two-state Markov model for each component for sim-
plicity, system state transition from to is totally deter-
mined by component , which leads the transition by changing
its own up or down state in to the other in while leaving other
component states unchanged. Therefore, the system state transi-
tion rate in (2) is equal to the leading component tran-
sition rate at the th transition where and is de-
termined by the component state in , hence .
We denote the system state transition rate of by
for clarity. Given these conditions, we can get the likelihood of
system sequential transition path for a fixed time interval from
(2) as (8):

(8)

Herein, it is worth underlining that (8) can be regarded as a
conditional likelihood of conditioned on a given . Provided

where represents the probability mass func-
tion of . Then, the full PDF of within the time interval can
be expressed as . Every drawn
definitely yields , by employing the system state transition

sampling method. Then

(9)

If is not to be distorted, let represent the th iteratively
distorted version of , then substituting (9) into (7) results in

(10)

Bearing in mind that can be simulated with the system
state transition sampling method and is readily known, thus,
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in the following parts, will not be explicitly written in
for conciseness.
By substituting (8) into (10), the iterative estimator for

CE-based distorted transition rate can be derived as

(11)

where and are respectively total occurrence times of
and amount of sojourn span of system states whose

transition rates are partially contributed by in , and
the elements of is assigned to original transition rates of
components.

C. Proposed Simulation Procedure

When simulating the expected cost of sequential transi-
tion path in a multi-state highly reliable system, generally

results that , e.g., energy not supplied,
is a rare contingency event as mentioned in the Introduction.
Consequently, it is rather time-consuming to obtain enough
sequential transition paths to update in terms of (11). One
could argue that the associated with low generating capacity
will be used to update , however, it has been found in
[26] that, the importance sampling efficiency and robust is
essentially related to the likelihood of each sampled sequential
transition path which in our concerned problem is determined
by both generation capacity and transmission lines in composite
power system. It is obvious that if a certain group of sequen-
tial transition paths, e.g., generation state transition without
transmission line state transition or the reverse, are inordinately
preferred, the system transition path could be overbiased,
consequently, the resulting expected value of concern will be
unavoidably smaller than the real value unless a huge number
of sequential transition paths are sampled which however must
be avoided in complex composite power system. From this
point of view, the TSSIS method is devised as follows:
First, define a first-stage cost function as (12)

(12)

where is a preset integer, and is the max-
imum number of components failing together in .
means that we first select simulation goal to select the with at
least components failing together in . In another word,
the first stage of the TSSIS method is meant to prefer the se-
quential transition path with more components failing in a short
lead time, whereas importancemeasurement is not conducted on
any component to avoid the above-mentioned inordinate favor
in the case that no prior knowledge about the system is given.
Afterwards, the combined with (11) can be used to estimate
the first-stage distorted transition rate which after several it-
erations can be utilized in subsequent stage to produce re-
sulting in higher likelihood of where is

Fig. 2. Flow chart of the TSSIS method.

a defined real-valued cost function. At the second stage, tra-
ditional CE method is utilized to deliver the parameter ac-
cording to . At the last stage, the desired is
given by sampling from to compute which
is then multiplied by short-term likelihood ratio compensator
referring to (8). A complete flowchart of the TSSIS algorithm
is shown in Fig. 2 and each step is explained exhaustively as
follows:
First Stage: Accelerated generation of sequential transition

path
1) Assign as lead time, initiate , first-stage sam-
pling number , iteration number and smoothing factor

. Read original transition rate vector . Let
.

2) According to , randomly produce sam-
ples of via the system state transition sampling method,

, calculate and according
to (11). Update
and . If , repeat step 2).

Second Stage: Enhanced learning of sequential transition
path

3) Set the number of simulation for the second stage.
4) According to , randomly produce and
gather samples of satisfying

, then, is calculated according to (11).
Third Stage: Revision of biased cost of sequential transition

path under sampling simulation
5) According to , randomly produce set of dis-
torted sequential transition paths and revise each
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with a short-term likelihood ratio compensator defined as
(13) to compose a set denoted by

, until the convergence condition associated with
is satisfied.

(13)

IV. NUMERICAL RESULTS

In this section, parameter settings for the TSSIS method and
its efficiency in comparison with the CSMCS method are re-
spectively studied by calculating EENS, LOLE and LOLF [7].
It is worth noting that there is a diversity of denotations for

. In order to study the parameter settings, we first denote
as a consequent cost of , which is the energy not sup-

plied within the corresponding lead time. A small test system is
utilized to investigate impacts of critical parameter settings of
the TSSIS method on its efficiency in Section IV-A, afterwards,
performance studies with different detonations for are
carried out on RTS-79 in Section IV-B in comparison with the
CSMCS method.
All calculations are conducted with MATLAB 2010b oper-

ating in the PC environment of AMD Athlon II X4 640 at 3.00
GHz. AC power flow and AC optimal power flow based on the
Matpower are utilized to compute the indices. Considering the
impacts of algorithm, rated operating constraint of components,
coding platform as well as hardware conditions on simulation
performance, a direct comparison of CPU times between the
two different methods is rather difficult that we use the ratio of
figures of merit [24] of the CSMCS method against the TSSIS
with respect to the number of simulation runs to illustrate effi-
ciency gain of the TSSIS method. The ratio of figures of merit
denoted by is computed by (14):

(14)

where and are CPU times and and are variances
of reliability indices under the CSMCS method and the TSSIS
method respectively. For the sake of impartial comparison, each
of the following results is obtained by averaging 10 replicas
under exactly same setting of conditions.

A. R-RBTS

A reinforced Roy Billinton reliability test system (R-RBTS)
[18] is utilized for analysis in this subsection. The system con-
sists of six buses connected by ten lines. System peak load is
185 MW with a total generation capacity of 240 MW. Failure
and repair rate as well as operating constraints associated with
each component can be found in [25]. The lead time studied is
set to one hour.
We will investigate settings of the three critical parameters,

by applying the TSSIS method to different scenarios
of R-RBTS. It is worth mentioning that the first stage simula-
tion, even with several iterations , consumes trivial time
(at second level) compared with the subsequent two stages (at
minute level). Thanks to this feature, a large can be desig-
nated with regard to the number of system components to secure

TABLE I
SIMULATED INDICES AND CPU TIMES WITH DIFFERENT VALUES OF UNDER
CONDITIONS OF AND UNDER PEAK LOAD FOR R-RBTS

TABLE II
SIMULATED INDICES AND CPU TIMES WITH DIFFERENT VALUES OF UNDER
CONDITIONS OF AND UNDER PEAK LOAD FOR R-RBTS

that can be otherwise set as small as possible so as to reduce
the simulation cost at the second stage, considering failure state
analysis is relatively time-consuming; in the meanwhile, the in-
ordinate favor must not be triggered.
Accordingly, we first investigate the relation between and

inordinate favor by assigning with a sufficiently large value.
Given a fixed coefficient of variance denoted by of an index,
the inordinate favor is triggered when the simulated index is less
than its real value. Table I lists the simulated indices and CPU
times with different settings of . The stop criterion for the
third-stage simulation of the TSSIS method is .
The other conditions for these experiments are: set to 3000,

and the load level at 185 MW. It is clearly shown in
Table I that when , the indices are the smallest and
the CPU time the lowest. The reason can be given as follows:
small implicitly favors a small portion of paths stochasti-
cally at the first stage, which are further optimized at the second
stage. As a result, the condition of is satisfied without
ergodically sampling all the possible paths with relative high
probabilities leading to system failures at the third stage. That
is why we should not solely select those sampled paths by lower
generation capacity without consideration of transmission line
constraints or the reverse. Obviously, the larger is, the more
likely inordinate favor could be avoided. In this scenario the safe
setting is .
From Table I, it can be also noted that the CPU time changes

lightly with respect to , however, according to the following
tests, it is not the case with respect to . With different values
assigned to , Table II shows the effect of N2 on CPU time,
while setting and for the purpose of elimi-
nating the impact of . When is too small , the
third-stage simulations in most of the replicated experiments
are found to incur time-consuming convergence of the indices,
which we regard as “Fail”( min). It should
also be noted that is credibly adequate in this sce-
nario. From Tables I and II, it is interesting to find that inordi-
nate favor is primarily caused by and difficult convergence
by . Moreover, a larger value of resulting in considerable
time-consuming is unnecessary. Therefore, the values of and
need to be carefully chosen to achieve high efficiency. Ac-
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TABLE III
RESULTS UNDER THE TSSIS METHOD APPLIED ON R-RBTS WITH DIFFERENT

VALUES OF AND LOAD LEVELS.

cording to our experiments with other combinations of and
, the best efficiency (without inadequate favor, CPU time is

6.27 min) can be achieved with
and it seems that and qualifies as
a safe and efficient setting.
Iteration parameter contributes by overcoming rareness re-

sulted from low load level combined with high reliability of
component. That means the more reliable the component and
the smaller ratio of load level to generation capacity is, the more
iterations, which can effectively result in much more failures of
components in a short lead time, are required to ensure high
efficiency of the second-stage sampling against rareness. The
CPU times and indices under different load levels and values
of are listed in Table III. In these experiments,

is set according to the proceeding conclusions, and
is still selected as the stop criterion for the third-

stage simulation. The effectiveness of to overcome rareness
is validated by the following results: with as reference,
CPU time is saved by 94.49% in the scenario of peak
load; in the scenario of 80% peak load, CPU time by the TSSIS
method is 2131.28 seconds while the CSMCS method failed
( sec), which demonstrates a much higher
efficiency improvement. In the scenario of 80% peak load, the
slightest time consumption is obtained with , as the setting
of does not overcome the rareness sufficiently and
results in more failed components in each sampled system state,
in which case many more iterations are required by AC (op-
timal) power flow to find a solution. Therefore, an inordinately
large value of with respect to system scale is not recommended
if AC (optimal) power flow is called for analysis. Moreover,
as indicated by our tests for other cases of prominent rareness
where is necessarily set large, should also be increased
to avoid inordinate favor. By combing the proceeding conclu-
sions, crude but safe estimations of the three parameters are rep-
resented as follows: and . It is
also noted that the indices under the peak load are about 1000
time larger than that under the 80% of peak load, indicating that
short-term reliability is quite sensitive to the load level.
The relationship of the three parameters discussed above

are difficult to be generalized due to different execution envi-
ronments associated with real-size power systems, however,
through the investigations above, it can be concluded that setting
of the parameters is strongly related to two aspects, that is the
system scale and the rareness of concerned critical failure events.
As these two aspects seldom fluctuate sharply in short-term
reliability evaluation, these parameters can be regulated offline
before the TSSIS method is called for online application.

Fig. 3. Relationships between and the number of simulation runs under the
CSMCS method and the TSSIS method respectively applied to IEEE-RTS79
with logarithmic ordinate axis. The TSSIS method is conducted with the deno-
tation (a) for .

Fig. 4. Relationships between and the number of simulation runs under the
CSMCS method and the TSSIS method respectively applied to IEEE-RTS79
with logarithmic ordinate axis. The TSSIS method is conducted with the deno-
tation (b) for .

B. RTS-79

In this subsection, the TSSIS method is tested on the RTS-79,
the lead time is set to one hour. According to the conclusions
made in above subsection, parameters are set as follows:

. We report simulation performance
by considering constant peak load and random load respectively,
nevertheless, time-varying load can be easily incorporated into
the TSSIS method by introducing a load curve discretized to be
constant in each small time interval which can be incorporated
into step 3 presented in Section II. However, the time-varying
load is seldom considered in such a short interval for the short-
term reliability study. If the lead time is set longer, the rareness
problem of failure event may not be prominent any more, which
is out of scope of our discussion. In addition, three candidate
denotations of are selected as follows for comparison:
a) denotes a consequent cost of concerning the en-
ergy not supplied.

b) denotes a consequent cost of concerning the
outage duration.

c) denotes a consequent cost of concerning a
number of outages.

1) Constant Load: The relations between and the number
of simulation runs under the CSMCS method and that under
the TSSIS method are plotted together in Figs. 3–5 for compar-
ison. It is obvious that the CSMCS method is inefficient with
the curve showing that there is no outage event sampled until
16 232nd run, consequently, and do not
exist within the initial 16 232 runs and merely drop to 0.3086,
0.3122 and 0.2773 respectively after 100 000 simulations. By
comparison, under the TSSIS method with the three different
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Fig. 5. Relationships between and the number of simulation runs under the
CSMCS method and the TSSIS method respectively applied to IEEE-RTS79
with logarithmic ordinate axis. The TSSIS method is conducted with denotation
(c) for .

TABLE IV
INDICES OBTAINED BY TSSIS METHOD WITH DIFFERENT DETONATIONS FOR

Fig. 6. The associated with indices. The TSSIS method is conducted with
denotation (a) for .

Fig. 7. The associated with indices. The TSSIS method is conducted with
denotation (b) for .

detonations for are much smaller. The numerical results
of the indices listed in Table IV are similar to the published re-
sults in [10], which indicates that the TSSIS method with any of
the three denotations for is able to approximate the same
values of the indices with discrepancy of . We do not specify
the exact computing time hereafter because our program has not
been optimized.
With respect to simulation efficiency, it is easy to observe

from Figs. 6–8 that different denotations for have dif-
ferent effects. in the case of denotation (c) shown in Fig. 8
is the highest of all, followed by that in the case of denotation (b)
in Fig. 7, and under denotation (a) in Fig. 6 is the lowest.
It can also be noted that a significant increment of comes

Fig. 8. The associated with indices. The TSSIS method is conducted with
denotation (c) for .

Fig. 9. and of indices. The TSSIS method is conducted with denotation
(c) for and load levels are independently Gaussian distributed.

TABLE V
INDICES OBTAINED BY THE TSSIS METHOD APPLIED TO RTS-79 WITH
DIFFERENT DENOTATIONS OF AND THE LOAD LEVELS ARE

INDEPENDENTLY GAUSSIAN DISTRIBUTED

forth at the 16 232nd simulation for all the three different deno-
tations as there is no for comparison before that. As a matter
of fact, and under denotation (c) drop to
0.0252, 0.0185 and 0.0189 respectively at the 16 232nd simula-
tion in Fig. 5. The results suggest that the TSSIS method with
denotation (c) for is of the highest efficiency.
2) Random Load: In this subsection, load levels for load

buses are modeled as mutually independent random variables,
each of which is randomly sampled at the beginning of each
simulated lead time. Gaussian distribution as
is assumed for the load level of load bus and is assigned to
annual peak value with % for load bus for concise-
ness. The samples of load below zero are discarded.
The optimal distorted and from the viewpoint of CE are

derived in the Appendix. The highest is still obtained with
detonation (c) for , and the and are shown together
in Fig. 9. It can be noted that has a significant increment
of 21.81 at the 7357th run and stabilizes to approximate 100
after 60 000 runs. The numerical results of indices are listed in
Table V which are proximately equal to that in Table IV as the
mean load level of each load bus is assumed equal to its constant
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value, respectively. The results suggest that the TSSIS method
performs equally efficiently in composite short-term reliability
evaluation with random load considered.

V. CONCLUSION

In this paper, a novel TSSIS method has been proposed to
improve the efficiency of the CSMCS method applied for short-
term reliability evaluation of composite power system in terms
of relatively low component state transition rate with respect to
a fixed short lead time.
We have reported the simulation results of EENS, LOLE and

LOLF by applying the proposed method to short-term reliability
evaluation of a reinforced Roy Billinton reliability test system
with suggestions on the critical parameter setting of the TSSIS
method. By carrying out tests on RTS-79 with different denota-
tions for the second-stage cost function of the TSSIS method
in comparison with the CSMCS method, it suggests that the
TSSIS method with denoting number of outage which is
a consequent cost of system state transition path will achieve the
highest efficiency gain in both constant and random load level
situation. In addition, the short-term reliability indices change
remarkably along with the load level. The proposed method is
useful for online monitoring of system operating reliability so
as to assist operators in timely decision making.
With respect to requirement of storage space in terms of ap-

plication in real size system, total storage space for the TSSIS
method application is proportional to the number of components
as well as number of state transitions in the studied lead time.
As the lead time is usually short in a short-term reliability eval-
uation, the overall storage space for intermediate data is trivial
with respect to modern computers.

APPENDIX

When load is modeled as random variable, the PDF of se-
quential transition path with independent stochastic load con-
sidered can be constructed by multiplying (8) with PDFs of
Gaussian distributions of all random load considered, which can
be expressed as

(15)

where and represent respectively the set of and .
represents a realization of load level of bus . is the set of load
buses. Applying (10) to , it is easy to solve the
optimal distorted parameters as follows:

(16)

(17)

where
.

From (16) and (17), it can be noted that the CE-based op-
timal distorted parameter counting for random load is easy to
be solved analytically, as the parameter has no relationship with

other parameters associated with component state transitions in
the same iteration step. In fact, in terms of the convenience pro-
vided by CE to deal with exponential distribution family, it is
feasible to take other independent random factors, such as wind
power and photovoltaic, into consideration in lead time, and
the optimal distorted parameters related with these PDFs can
be easily solved analytically.
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