
2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

1



Abstract—Smart cities are becoming a reality. Various aspects

of modern cities are being automated and integrated with

information and communication technologies (ICT) to achieve

higher functionality, optimized resources utilization and

management and improved quality of life for the residents. Smart

cities rely heavily on utilizing various software, hardware and

communication technologies to improve the operations in areas ike

healthcare, transportation, energy, education, logistics and many

others, while reducing costs and resources consumption. One of

the promising technologies to support such efforts is the Cloud of

Things (CoT). CoT provides a platform for linking the cyber parts

of a smart city that are executed on the cloud with the physical

parts of the smart city including residents, vehicles, power grids,

buildings, water networks, hospitals and other resources. Another

useful technology is Fog Computing, which extends the traditional

Cloud Computing paradigm to the edge of the network to enable

localized and real time support for operating enhanced smart city

services. However, proper integration and efficient utilization of

CoT and Fog Computing is not an easy task. The paper discusses

how the service-oriented middleware (SOM) approach can help

resolve some of the challenges of developing and operating smart

city services using CoT and Fog Computing. We propose a SOM

called SmartCityWare for effective integration and utilization of

CoT and Fog Computing. SmartCityWare abstracts services and

components involved in smart city applications as services

accessible through the service-oriented model. This enhances

integration and allows for flexible inclusion and utilization of the

various services needed in a smart city application. In addition, we

discuss the implementation and experimental issues of

SmartCityWare and demonstrate its use through examples of

smart city applications.

Index Terms— Smart City, Cloud of Things, Internet of Things,

Cyber Physical Systems, Middleware, Service-Oriented

Middleware, Cloud Computing, Fog Computing

I. INTRODUCTION

MART cities are the promising future of high quality living

for the increasing population of cities in the world. Urban

population increased from 746 million in 1950 to almost 4

billion in 2014 and the projections show further increases in

these numbers reaching around 6 billion by 2050. Mega cities,

accommodating 10 or more million people are increasing in

numbers and large cities are also growing rapidly. To achieve

Nader Mohamed is with Middleware Technologies Lab., Pittsburgh,

Pennsylvania, USA (e-mail: nader@middleware-tech.net).

Jameela Al-Jaroodi is with Department of Engineering, Robert Morris

University, Moon, Pennsylvania, USA (e-mail: aljaroodi@rmu.edu).

Imad Jawhar is with Midcomp Research Center, Saida, Lebanon (e-mail:

imad@midcomp.net).

high quality living and manage and operate these large cities,

innovative solutions are needed, leading to the development of

the smart city concept.

In a smart city, various aspects of living, operations, and

management are automated and streamlined through effective

and usually intelligent computing systems. The base unit in a

smart city system is the sensors. Sensors of various types,

capabilities and functionalities are deployed to monitor and

record city parameters. These sensors need to be integrated with

other devices and computing facilities to achieve their goals for

monitoring and control of the smart city functions.

Various technologies and computational approaches provide

the basic capabilities to integrate the sensors, actuators and

other devices in a city’s physical environment to create a smart

city. Advances in Cyber-Physical Systems (CPS), Internet of

Things (IoT), Cloud Computing (CC), Fog Computing and other

software technologies have positively contributed to this goal. These

new technologies offer an unprecedented opportunity to create a

wide array of applications that optimize smart cities’ services. These

technologies are integrated into the Cloud of Things (CoT) [1]. In

CoT, all objects of a smart city like the residents, vehicles, streets,

buildings, hospitals, and energy and water plants are interconnected

through the IoT, which is integrated with CC systems, running

intelligent software to optimize the smart city’s services. In addition,

Fog Computing can offer extension features for CC systems to better

support low latency requirements, location awareness, scalability,

and mobility for these services [2].

Smart city applications can be developed to effectively and

efficiently use the available and emerging technologies to continue

enhancing the living quality of the residents, while optimizing the

utilization of the city’s resources and reducing the negative impact

on the environment. One of these is Cloud Computing Systems,

which provide large scale computational and data storage services to

smart cities [3][4][5]. Another technology is Fog Computing

Systems, which augment the functions of cloud services by

providing services closer to the physical city environment. As a

result, it can support the low latency, location awareness, mobility,

streaming, and real-time requirements of the smart city applications

[6][7]. Another very useful technology is the Wireless Sensor

Networks (WSN), which are used to connect sensors for monitoring

the different resources, components, residents and operations of a

Sanja Lazarova-Molnar is with Center for Energy Informatics, University of

Southern Denmark, Denmark (e-mail: slmo@mmmi.sdu.dk).

Sara Mahmoud is with College of Information Technology, UAE

University, UAE (e-mail: 201370014@uaeu.ac.ae).

SmartCityWare: A Service-Oriented Middleware

for Cloud and Fog Enabled Smart City Services

Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar, Sanja Lazarova-Molnar, and Sara Mahmoud

S

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

2

smart city [8][9]. The Internet of Things (IoT) is another technology

being developed for various applications; however, it is very useful

for integrating the physical objects of a smart city in a well-defined

network [10][11]. Cyber Physical systems further extend the IoT

concept to facilitate the interaction between the cyber world and the

physical world in a smart city [12]. Other relevant technologies for a

smart city include robotics, to provide different ground actions and

physical controls [13]; Unmanned Aerial Vehicles (UAV), to

enhance delivery of services, traffic monitoring, security and safety

controls, and telecommunication services [14][15]; and Big Data

Analytics (BDA), to provide smart decisions based on collected data

[16][17].

Integrating technologies like WSN, IoT, CPS, robotics, and

UAVs in addition to other technologies that will be available in the

future with Cloud Computing will create the Cloud of Things (CoT).

CoT can support the operations in a smart city, which can also be

further enhanced by utilizing Fog Computing [18]. CoT and Fog

computing will provide a powerful environment for supporting the

operations of smart city applications. However, developing,

implementing, maintaining, and operating these applications in an

effective manner are major challenges. This paper introduces a

service-oriented middleware approach to relax these challenges. We

propose SmartCityWare, a SOM for integrating CoT and Fog

Computing to support the development and execution of smart city

applications. This approach will provide a meaningful representation

and utilities to design and implement such services.

This paper is organized as follows. Section II provides

background information about smart city applications, CoT, and Fog

Computing. Section III discusses using service-oriented middleware

for smart city applications. A conceptual design and the functions

and services of SmartCityWare are discussed in Section IV while

SmartCityWare runtime environment is discussed in Section V.

Section VI illustrates some examples for smart city applications

using SmartCityWare. Some experimental evaluations are discussed

in Section VII, Section VIII is an overview of some related work,

and Section IX concludes the paper.

II. BACKGROUND

Creating and sustaining a smart city requires the integration

of various technologies and the collaboration of many entities.

City administration, city officials, emergency response teams,

workers and residents all need to be involved in the process. In

addition, the infrastructure, buildings, transportation systems,

spaces and all physical aspects of the city are involved. To tie

all of this together a sophisticated network of sensor devices,

actuators, computing facilities and smart devices must be put in

place. The general smart city concept involves monitoring,

controlling, and managing the conditions of all of the city’s

infrastructures and physical components to optimize operations

and use of resources, while providing high quality services to

the citizens [19][20]. These include critical components like

hospitals, power and water plants, communication networks,

airports, seaports and transportation infrastructures. In addition,

there are residential and commercial buildings, parks,

recreational facilities, vehicles, and all types of electronic and

mechanical devices used by people.

The major contributor to the emergence of smart cities is the

development in sensor technologies. These include specialized

sensors devised for specific purposes and also the use of smart

devices to provide sensing and data collection features like

smart phones capable of sensing the location, temperature and

other aspects of an environment. However, sensing devices also

require networks and computing facilities that allow for

accurate data collection, aggregation and dissemination. This

requires using Information and Communication Technologies

(ICT) to facilitate and optimize the services provided in a smart

city. It is often stated that the goal of utilizing ICT is to improve

existing services by making them more efficient, more user-

friendly or, in general, more citizen-centric. With the recent

advances in ICT, all city components and critical infrastructures

can be integrated, monitored, and controlled for the benefit of

the citizens.

One of the emerging technologies that effectively can be used

for smart cities is the CoT. Having an IoT in place that includes

sensing and actuating devices within a smart city can help

provide specific enhancements. However, integrating this IoT

with the cloud opens up a larger set of capabilities to facilitate

large scale computation and decision making for the smart city.

It will also allow for the integration of multiple IoTs and

physical environments to create a larger view of the smart city’s

operations, leading to enhanced decisions and optimizations.

The CoT helps connect, monitor, and apply enhancements in all

aspects of a smart city through the IoT and Cloud services as

shown in Figure 1. Cloud computing provides a flexible virtual

execution system and on-demand services for a smart city. It

can process and store huge data sets and offer dynamic

computing capabilities that can be scaled in or out based on the

varying demands of the smart city services. The CoT can be

implemented with a multiple-layer model. One of the most

important layers is the CoT platform as a service. This layer

links the IoT and the CC infrastructure and services and provide

services to implement and operate optimization applications for

smart city services.

Another emerging technology that could be of great benefit

to smart city applications is Fog computing as it can enhance

the CoT paradigm by providing small platforms located at the

network edges in a smart city. These fog platforms can operate

localized cloud-like services to support IoT operations. The

services can be control, storage, communication, processing,

configuration, monitoring, measurement, and management

services to support a certain IoT smart city application. Using

Fog Computing, an application in a certain area in a smart city

can utilize an architecture that uses a dedicated computer

available locally, or one or more end-user devices or nearby

edge devices. The Fog platform will allow executing services

geographically close to the IoT applications. This offers several

advantages for IoT applications including [2]:

• Providing low latency services, as fog devices are located

closer to the actual IoT components and can react faster

than the cloud.

• Offering location aware services based on the location of

the IoT components in use and the connected fog nodes.

• Providing better scalability support for widely

geographical distributed applications. This is enabled due

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

3

to the availability of multiple fog nodes within the different

geographic locations, thus the need to centralize the tasks

is minimized as the fog nodes can handle many

requirements locally.

• Supporting better mobility and access control for different

types of mobile devices as they travel around the city. As a

result, these devices can have access to the required

services through the nearest fog nodes.

• Offering better Quality of Services (QoS) support. Some

services have strict QoS requirements and the fog nodes

will be able to help support these requirements locally.

• Providing more efficient communication with other

systems. Fog nodes are structured and designed like cloud

nodes thus they can communicate with different system

through the cloud or other fogs to achieve certain goals.

 These advantages help create solutions to many challenges

that smart city applications face and enable the creation of

higher quality and more controllable services to perfectly

achieve the vision of a smart city. The architecture of

integrating Fog computing into CoT for a smart city is shown

in Figure 2. In this architecture, the fogs will provide more

localized real-time monitoring, control, and optimization for the

smart city applications while the cloud will provide global

monitoring, control, optimization, and future planning for these

applications.

Various types of smart city applications can be designed and

implemented with the support of COT and Fog computing.

These include applications for intelligent transportation

systems, smart energy systems, infrastructure and environment

monitoring, and public safety applications. Table 1 lists some

examples of smart city applications and how they can benefit

from both the CoT and fog computing. More discussion on how

CoT and fog computing can support these applications is

available in [41]. These applications have specific requirements

and may pose several challenges for their developers. Some of

these challenges include:

• Support for real time operations and responses.

• The ability to seamlessly handle heterogeneous devices

and components.

• The ability to accommodate for devices with limited

resources and operational capabilities.

• The ability to support highly distributed systems spanning

large geographic areas.

• Support for security and privacy measures.

• Support for reliability and fault tolerance.

• Support for device mobility.

• The ability to integrate and interoperate with other systems.

 The integration of CoT and Fog computing along with the

right software architectures can leverage many of these

challenges leading to more effective and efficient smart city

applications.

III. SERVICE-ORIENTED MIDDLEWARE

Middleware technologies have become a necessary part of

any distributed environment [21]. Middleware offers essential

enabling features and functionalities for facilitating the

integration of the distributed environment components and the

operations of the whole distributed and heterogeneous

applications. It simplifies the development and execution of

distributed applications and hides their complexity. It also

provides common services for recurring challenges in the

distributed environment. Middleware also connects any set of

components in a distributed environment to provide better

functionalities. These components could be hardware devices

such sensors, actuators, robots, UAVs, communication devices,

microcontrollers, cloud servers; or software components

including control modules, monitoring applications, analytics

services, and application specific software modules. Better

functionalities can be defined in terms of communication,

integration, operations, reliability, availability, scalability,

security, and other value-added functions.

Smart cities are complex and very large distributed systems

that share with other distributed environments their

heterogeneity, security, and reliability challenges. In addition,

they also have their own unique challenges to provide and

support high scalability, efficiency, safety, real-time responses,

and smartness (intelligence) requirements. These are common

challenges facing most smart city applications including smart

grids, smart water networks, intelligent transportation systems,

infrastructures monitoring and protection, and several others.

Designing and building applications meeting all these

challenges is extremely complex. As a result, it is almost

impossible to develop and operate smart city applications

without relying on advanced middleware technologies to

simplify and facilitate the development and operations

processes.

Figure 1. The CoT Model for Smart Cities.

Figure 2. Integrating Fog Computing and CoT for Smart City
applications.

IoT Network Layer

Perception & Action Layer

Cloud Infrastructure as a Service

CoT Platform as a Service

Smart City Applications

Cloud

Fog Fog

Cloud

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

4

Table 1. Examples of smart city applications that can benefit from CoT and Fog computing.
Smart City
Application

Sub-applications Fog Roles Cloud Roles

Intelligent
transportation

• Route planning and congestion
avoidance

• Intelligent traffic light controls
• Intelligent parking services
• Accident avoidance
• Self-driving buses/cars

Fogs in the form of Road Side
Units (RSUs) or other
computerized units provide low-
cost relays among vehicles’, roads’
and parks’ sensors, traffic lights,
and the cloud. They provide fast
response and control services.

Cloud collects, filters, and stores traffic
information. It helps in coordinating
city traffic and parking optimizations.
It also helps in planning for enhancing
traffic systems.

Smart energy • Smart grid
• Smart buildings
• Renewable energy plants
• Smart meters
• Wind farms
• Hydropower plants

Fogs provide local controls for
energy systems, distribution units,
and consumer locations. They also
enable smooth integration of
different energy systems.

Cloud collects, filters, and stores
energy information. It supports
decision making for utilizing smart
grids and renewable energy features
based on collected and analyzed data
for consumers’ needs and renewable
energy productions.

Smart water • Leakage detections
• Water leakage reduction
• Water quality monitoring
• Smart water meters
• Smart irrigation

Fogs provide better and faster local
monitoring and controls for smart
water networks. They also offer
real-time monitoring for faults and
leakages and support repair and
maintenance operations.

Smart water networks information is
collected, stored, and utilized by cloud
services to enhance the water networks,
production, and quality and to reduce
water losses.

City structure
health
monitoring

Health monitoring for
• Bridges
• Large public buildings
• Tunnels
• Train and subway rails
• Oil and gas pipelines

Fogs help reduce data traffic
between the sensors monitoring the
structures and their main control
stations. In addition, they provide
fast safety controls for some
applications.

Cloud collects, filters, and stores
structure health information. The cloud
can help analyze collected data to
enhance the maintenance processes and
improve the health of the city
structures.

Environmental
monitoring

• Air quality monitoring
• Noise monitoring
• River monitoring
• Coastal monitoring

Fogs help enhance environmental
monitoring processes by providing
smart environmental monitoring
closer to the monitored areas.

Cloud provides processes to
collectively analyze city environmental
and health status.

Public safety
and security

• Crowd control for large events
(sports games, parades, and outdoor
celebrations)

• City crime watch and alerts
• Large-scale emergency response

services (e.g. floods, earthquakes,
terrorist attacks, volcanoes, and wars)

Fogs help reduce the
communication traffic between
these places and the main security
monitoring stations.

Cloud provides a powerful platform for
analyzing the collected data about the
current situation to help in providing
possible actions for better controls and
emergency relief.

A new and advanced approach in middleware technologies is

the use of service-oriented middleware (SOM). This approach

has been proven to simplify the implementation and operations

of many applications in diverse industrial domains [22]. The

approach was used to reduce the effort and cost of development,

testing, and operations. Similarly, SOM can play an important

role for developing, operating, and supporting smart city

applications. Accordingly, we anticipate a successful migration

of the SOM model to utilize the concept of IoT to support smart

city applications and provide a generic middleware platform

that will highly increase productivity and widen the range of

applications that can be designed and built for smart cities.

SOM extends the capabilities of middleware and provides

high flexibility for adding new and advanced functions to smart

city applications. SOM logically views smart city cyber and

physical components as providers of services for smart city

applications. With SOM, all hardware devices such as sensors,

actuators, storage devices, communication devices, and

processors can be viewed and utilized as services. The

implementation of this SOM is usually achieved through web

services standards, wrapper technologies to map different

devices’ interfaces to web service interfaces, and middleware

services to enable the integration among both services clients

and services providers [22]. Furthermore, it can integrate these

services with other services provided by Cloud Computing and

Fog Computing Thus, allowing application developers to view

everything as a single large system that provides basic and

advanced services to smart city applications. Advanced

services, such data aggregation, adaptation, security, self-

organization, reliability, and management, can be designed,

implemented, and integrated in a SOM framework through a

more flexible and easy to use development and execution

environment. SOM for smart cities is necessary to support

several, otherwise hard to incorporate, functionalities in the

service-oriented computing (SOC) model. These functionalities

include the functional and non-functional requirements that

different services may need. For any service-oriented

application, there are common functionalities such as service

registry, discovery, communication, reliability and security that

are needed by any of these applications. These can be easily

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

5

generalized and made available via the SOM platform to be

used by the applications’ developers to easily implement smart

city applications. Generally, SOM for smart cities should

support several requirements, some of which (e.g. the first three

in the list) are common for any SOC application, while the rest

are enforced by the characteristics of the smart city environment

and the challenges of implementing and operating applications

on CoT and Fog Computing. These requirements include:

1. Runtime support for services deployment and execution:

as all devices in a smart city including components of

supported cloud computing and fog computing are viewed

as a set of services available to support the applications,

SOM should provide mechanisms to link, load, deploy,

and execute these services as needed.

2. Support for different communication methods among

service consumers, services, service registries and brokers

that enable reliable and efficient local and remote services

utilization.

3. Support for consumers to discover and use registered

services: SOM should enable client applications to

discover and use registered services when needed. SOM

should also support run-time integration between

applications and registered services.

4. Support for service transparency to client applications:

SOM should allow client applications to transparently use

available services without exposing services

implementation details or, in some situations, their

detailed components locations.

5. Suitable abstractions to hide the heterogeneity of the

underlying environments: all heterogeneity details of a

smart city’s physical devices and networks should be

hidden from the applications. SOM should provide high-

level interfaces to utilize cyber and physical smart city

resources without requiring application developers to deal

directly with the heterogeneity.

6. Support for configurable services: SOM should provide

mechanisms for client applications to configure smart city

services to meet specific applications’ requirements such

as QoS, security or reliability. Configuring smart city

services usually requires dealing with details and

parameters of some hardware, network components,

cloud and fog configurations. Doing this for configuring

QoS requirements, for example, will be a complex task

for regular users. However, SOM can provide

mechanisms to be used easily by client applications to

configure smart city resources for their specific

requirements.

7. Support for self-organization mechanisms: this includes

self-x properties such self-management, self-healing, self-

configuration, auto-discovery, self-adaptation, and self-

optimization of service providers. Smart cities are

dynamic distributed environments where resources can be

added, changed, or removed anytime. In addition, some

resources may be mobile like the UAVs. The availability

of services for such devices is also dynamic. Therefore,

SOM should support self-management, auto-discovery,

self-optimization and auto-change mechanisms for

efficient utilization of all available services. For example,

when a sensor provides a service for sensing a certain

attribute, the SOM should discover that service and allow

the client applications to use it when they need it. When

that senor fails, SOM should automatically switch the

application to a similar service currently available in the

area. Furthermore, the SOM should be able to notify the

application if nothing matching their needs is currently

available. This helps solve the scalability, heterogeneity,

and network organization challenges.

8. Support for interoperability with a variety of devices: This

requirement helps solve the heterogeneity challenge in

smart cities by supporting different interoperability

mechanisms to match available devices. Some smart city

applications require a variety of devices to be operated.

SOM for smart cities can be designed to be interoperable

with different devices such as devices with different types

of sensors, RFID, vehicles, UAVs, cloud and fog services

to enable easy application development and operations.

9. Efficient handling of large volumes of data and high

communication loads: many smart city applications

involve large volumes of data and high communication

loads as they operate in data-rich environments and

handle a large amount of data generating services. As

some of the used systems and devices may have limited

resources, SOM should efficiently and carefully deal with

that load through trade-offs between smart city

applications requirements in terms of accuracy,

bandwidth, delay, and energy consumption. SOM should

also be capable of reallocating data as necessary while

maintaining proper access to the applications using it.

10. Support for secure communication and execution: as most

smart city applications involve sensitive and critical

information, secure communication and execution

becomes a very important aspect in SOM for smart cities.

SOM should provide mechanisms to secure the utilization

and operations of both CoT and Fog Computing services.

All communications and execution for supporting these

services should be also secured.

11. Support for QoS requirements: some smart city

applications have specific QoS requirements.

Mechanisms are needed to configure and satisfy these

requirements in the CoT and Fog computing systems

utilized by these applications. An example of QoS

requirements in a smart city can be observing and

reporting a current traffic situation in a certain road

intersect within a given time frame and within a specific

error margin. In some situations, the QoS requirements

can come from multiple applications such as safety and

collaborative sensing. SOM for smart cities should

provide uniform interfaces to configure the QoS

requirements for these applications and ensure achieving

these requirements.

12. Support for integration with other systems: smart city

applications usually do not operate in isolation thus the

SOM should enable the integration of smart city

applications with other systems such as enterprise or web

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

6

systems. For example, some web applications rely on

smart city applications for their current information such

as information on traffic conditions. In this case, SOM

should enable that integration such that these applications

can fulfill their goals.

In addition to these requirements, there are other advanced

and specialized requirements that are needed for some smart

city applications. Examples are support for context awareness

and location-based services. Generally, SOM is designed to

best suit the underlying environments it will serve. Therefore,

many of the existing SOM designs may provide some of the

requirements described above, but most do not support all smart

city applications requirements and do not provide complete

solutions for their challenges.

IV. SMARTCITYWARE

SmartCityWare is a service-oriented middleware platform

designed specifically to utilize CoT and Fog Computing to

support developing and operating smart city applications. The

main purpose of SmartCityWare is to provide a virtual

environment to be used to develop and deploy smart city

applications. SmartCityWare consists of a set of services and a

multi-agent runtime environment. In this section, we discuss the

services of SmartCityWare while in Section V we will discuss

the multi-agent runtime environment of SmartCityWare.

In SmartCityWare, all functions are viewed as a set of

services that can be used to build and support the execution of

different smart city applications. These services are classified

into core services and environmental services. Core services are

those developed specifically for the core operations of

SmartCityWare, such as the broker, security, service

invocation, and location aware services. These services provide

overall control for the whole system. Environmental services

provide access to services provided by one or more cloud

service provider, services provided by multiple distributed fogs,

and services provided by multiple IoT devices including

sensors, WSN, actuators, cameras, cars, UAVs, robots, etc.

Cloud services can be Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software a Service (SaaS),

which can define different services for smart city applications

including data mining, big data analytics, optimization, and

simulation services. Fog services can be control, processing,

storage, communication, streaming, configuration, monitoring,

measurement, and management services. The IoT devices

services provide interfaces to utilize device functionalities like

sensing, action, or other services. The environmental services

can either provide direct interfaces to access the original

services, provided by a cloud, a fog, or IoT device or they

introduce some added-value for the original services such as

adding reliability and security features. While some IoT devices

can execute on-board code to implement and provide some

services, other IoT devices will be controlled mainly by a fog

that will have services that provide interfaces to utilize these

devices’ functionalities. SmartCityWare services can be used

by smart city applications available on the cloud, fog, or IoT

devices such as a car asking for a certain service from a smart

city application available on the cloud.

The main functions of SmartCityWare are to enable smooth

integration and operations among all these units to effectively

support smart city applications. The SmartCityWare services

will be distributed among multiple clouds, fogs, and IoT

devices as shown in Figure 3. Each service defines a few simple

interfaces that make it available to other services. Using SOM

concepts for SmartCityWare provides mechanisms to link

available services to build new services. A specific subset of the

available distributed services in SmartCityWare can be

integrated and deployed for the accomplishment of a specific

application in a smart city. In addition, any service can be a

client or consumer of other services. The required services for

a certain application are integrated using SmartCityWare that

aims to achieve loose coupling among interacting services.

SmartCityWare manages service advertisement and discovery,

communications, and invocations. In addition, it can be used to

implement collaborative services across multiple smart city

applications and with other SOC type systems.

Figure 3. SmartCityWare Supporting Smart City Applications.

Although SmartCityWare can include many core services,

the main mandatory services are the broker services, invocation

services, location-based service, and security services. These

four services are essential to ensure effective utilization of other

available services and to facilitate the main functions it offers.

A. Broker Services

Broker services are responsible for CoT, fog computing, and

IoT services advertisement, discovery, and registration. All

services in all participating platforms and devices are

advertised, registered, and discovered using the broker services.

There are two types of broker services: a global broker that is

available on the cloud, and local broker services that are

available in each fog in the environment. While the global

broker service maintains information about all services in the

environment, the local broker service in each fog only

maintains information about the current available services

within the fog and information about services provided by IoT

devices currently associated with the fog. This approach is used

to allow applications and services within a fog to utilize

available services and resources and provide low latency

responses. As a result, the time needed to discover services is

Fog Fog

Cloud

Smart City Applications

SmartCityWare Runtime Environment

SmartCityWare Services

SmartCityWare

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

7

minimized to efficiently and accurately utilize the services. The

global broker service maintains services information for the

whole environment including services available in all fogs. The

local fog brokers regularly update the global broker about the

availability and status of their services. The fog service brokers

maintain description information about local services. The

service description information includes the standard

information using Web Service Description Language (WSDL)

for each defined service. Each service information includes the

operations that the service can perform, the specific types and

formats of the message it expects between the service provider

and service consumer, and where the service can be located on

the network.

B. Invocation Services

When an application discovers a service it needs, it will

require that service to be invoked with the proper interfaces.

The invocation services, local and remote, are used by

consumers with SmartCityWare support to start executing the

required services. Local invocation services are limited within

a single system where services needed exist in the same

location. Remote service invocation can be between a fog

service and another fog service, between an IoT device service

and a fog service, between a fog service and a cloud service, or

between a cloud service and a fog service. SmartCityWare

handles message addressing, establishing communication

connections between service consumers and producers, data

marshaling and demarshalling, delivering requests and

responses, and executing services. All these steps in the

invocation process are achieved based on web services

standards.

C. Location Based Services

SmartCityWare can provide location-based services. Unlike

regular service brokers that are used over the Internet,

SmartCityWare service brokers for fogs maintain additional

information about the current positions of currently connected

IoT mobile devices. The main reason for maintaining current

positions is that some of their services can be considered useful

and may be utilized only if the provider device is in a specific

location; otherwise, there is no usefulness in utilizing these

services. One example is using a sensor service on a robot if the

robot is available within a specific location. A service consumer

in a fog can look up a certain service within a specific location

through its fog service broker. If this service is available within

the fog’s range then WSDL information about the service is

sent to the service consumer to utilize the service using a local

service invocation. Otherwise, the fog service broker will

forward the lookup request to the global service broker on the

cloud and if the service is available then the service consumer

utilizes the service using a remote service invocation.

D. Security Services

Various security mechanisms can be used by various clouds,

fogs, and IoT devices in smart city applications. The main

functions of security services in SmartCityWare are to integrate

and regulate security mechanisms among all these components

and ensure that the required security measures are applied

appropriately to protect the smart city applications, provided

services, and the physical environments. The security services

include authorization and authentication services and access

control services for the smart city applications, SmartCityWare

services, and the physical environment. These services can be

provided with varying levels of protection measures, such that

different applications can use the suitable set for their security

requirements.

E. Other Core Services

SmartCityWare is comprised of a collection of services, thus

it becomes possible to introduce other specialized services that

implement common solutions for smart city applications to the

SmartCityWare platform. These specialized services can cover

additional requirements from those discussed in Section III.

One example is adding reliability and fault tolerance features.

For example, Alho and Mattila [42] proposed, developed, and

evaluated a service-oriented approach to address reliability and

fault tolerance in cyber-physical systems. This approach can be

employed as a collection of services and added to

SmartCityWare. Furthermore, additional core features and

services can be added to further customize SmartCityWare for

specific smart city applications like the ones listed in Section II.

Some examples can be services to support high mobility for

vehicular applications or distributed resource management

services for large-scale smart applications such as smart grids.

In addition, SmartCityWare services can use advanced

functions provided by the network used for connecting the

smart city’s distributed components. One example is to utilize

Software Defined Networking (SDN) features which provide

abstractions for the underlying networks and systems to

programmatically control and configure the networks to

achieve the required network performance [43]. This requires

integrating SmartCityWare with SDN controllers such as

OpenDaylight [44]. The details of this option are left for future

investigation. Generally, SmartCityWare offers a middleware

infrastructure where services and resources provided by Cloud

Computing and Fog Computing can be added to help in solving

the diverse issues of smart city applications.

V. SMARTCITYWARE MULTI-AGENT RUNTIME

ENVIRONMENT

The main function of SmartCityWare multi-agent runtime

environment is to manage the Smart city’s IoT, fogs and cloud

distributed services. It provides a distributed run-time

environment to securely execute these services as shown in

Figure 3 earlier. This runtime environment is based on our

earlier implementation of a multi-agent middleware

infrastructure environment developed for heterogeneous

systems [34][35]. We customized that middleware to support

the SOC model of SmartCityWare. This SmartCityWare multi-

agent runtime environment is a pure Java infrastructure based

on a distributed memory model. This makes it portable, secure,

and capable of handling different heterogonous environments

that consist of heterogeneous fogs, clouds, and IoT devices. The

agents are deployed in the participating fogs and cloud

machines to support SmartCityWare services runtime

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

8

requirements. The infrastructure has various components that

collectively provide the runtime support for both the core and

environmental services of SmartCityWare.

A. Agents

Software agents’ technology has been used in many systems

to enhance the performance and quality of their services [47].

Our middleware infrastructure utilizes software agents to

provide flexible and expandable middleware services for high-

performance distributed service-oriented environments. The

main functions of the agents are to deploy, schedule, and

support the execution of the service codes in different fogs, in

addition to managing, controlling, monitoring, and scheduling

the available resources on a single fog or on a set of related

distributed heterogeneous fogs. When a smart city application

is executed, an agent performs the following tasks:

1. Examine available fog resources and schedule the

services for execution.

2. Convert scheduled user services into threads, then

remotely upload and execute them directly from the

main memories on the remote fog machines.

3. Monitor and control resources and provide monitoring

and control functions to the user.

For high throughput, the agents are designed to be

multithreaded, where each thread serves a client’s service

request. Once user threads are deployed, they directly

communicate with one another to perform their distributed

tasks, thus freeing the agents and reducing the overhead on the

user programs. Agents’ communication mechanisms are

employed using sockets and each agent consists of several

components that implement different functions:

1. The Request Manager handles user job requests such as

deploying services’ classes, starting/stopping a service,

and checking agents/services/threads status. Requests

come from client services or from agents of other fogs

or clouds.

2. The Resource Manager provides methods to manage,

schedule, and maintain the resources of the machine

where the agent resides. It keeps records of executing

threads, machine and communication resources’

utilization, and performance information. In addition, it

is responsible for reclaiming system resources after

each service’s completion or termination.

3. The Security Manager provides security measures for

the system (see next subsection for details).

4. The Service Class Loader remotely loads user service

classes on the remote machines preparing for execution.

5. The Scheduler selects the fogs/cloud machines to

execute a user service based on the its requirements.

B. Multiuser and Security Issues

 The multi-agent middleware infrastructure allows multiple

users to execute multiple services simultaneously. To properly

manage these services, each service has multiple levels of

identification, starting with a unique service ID assigned by the

system. The user ID and the program name further distinguish

different services. Within each service, thread IDs are used to

identify the remote threads of the service. Executing user

threads on remote fog machines exposes these fogs to many

“alien” threats, raising security and integrity worries.

Therefore, these machines must be protected to ensure safe

execution. Java’s default security manager offers some security

mechanisms of protection by checking executions against

certain defined security policies before execution. However, the

security manager in Java has some limitations, thus many

features were updated for our middleware infrastructure. More

specifically, two modes of operation are used to offer a secure

and reliable environment:

1. The Agent Mode, in which no limitations are enforced.

A thread running in this mode has full access and

control of all the operations, services, and resources in

the corresponding fog.

2. The User Mode, in which limitations are enforced to

limit users’ access to the fog operations, services, and

resources. Some operations, such as removing files,

initiating a process, using system calls, and changing

system properties are inactive in this mode.

With the security modes in place, the user services have full

access to operations and resources on their local machines

(where the user job was initiated), but limited and controlled

access to all remote machines’ resources (since they are running

in user mode). Nevertheless, this policy can be adapted to offer

other levels of access control, when needed, on the available

fog machines. For example, a user can be given to access to

certain fogs while he/she is disabled on other fogs.

VI. APPLICATION EXAMPLES

SmartCityWare can be utilized for building and operating

smart city applications. Here we present two potential and

relevant smart city applications for the SmartCityWare: an

intelligent traffic light control system; and smart buildings

collaborative data analytics.

A. Intelligent Traffic Light Control System

Intelligent traffic light controls can be facilitated by

SmartCityWare. This implies that the traffic light controls will

feature monitoring devices at numerous locations to accurately

capture and model traffic patterns and utilize this information

to adjust traffic lights to optimize flow. This type of application

can, furthermore, utilize global positioning, vehicle-to-vehicle

and vehicle-to-infrastructure communication systems to

enhance the granularity of data collection. For example,

individual vehicles can be observed from various perspectives

(road sensors, cameras, on vehicle sensors, neighboring

vehicles, etc.) to create a more accurate models. This enhanced

granularity of data can be utilized to achieve global urban traffic

control optimizations. We expect this application to yield

shorter traffic delays, higher throughput, shorter vehicles travel

times, higher vehicles average velocity, and improved

prioritization of emergency vehicles’ movements in urban

areas. Typical algorithms that can be utilized to enhance urban

traffic control optimization are learning and adaptation

algorithms. Projects that exemplify this are discussed in [23],

[24], and [25].

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

9

SmartCityWare can support the development and operations

of intelligent traffic light control systems. All involved devices

within the reaching area of the traffic light, such as the vehicles,

road sensors, and communication devices, are considered as

services that observe the status of the traffic in that area. These

processes and elements are illustrated in high-level in Figure 4.

In each traffic light, a fog can be used to perform various

services, as well as provide local optimization. The information

gathered through the relevant devices will be utilized by the fog

to make informed optimizing decisions about specific traffic

lights. A collection of services on a cloud can also monitor the

global traffic status within the smart city by observing the status

of the fogs operations and local conditions. This information

will be utilized by the cloud services to provide global

optimizations for decreasing traffic delays, enhancing vehicles’

flow, and prioritizing emergency traffic on a larger scale,

covering urban locations more thoroughly. The status of the

traffic in a smart city can be gathered through these services in

regular periods. This status can then be used to analyze, assess

and enhance the traffic, as well as configure the fog services

correspondingly. Furthermore, cloud services can facilitate

synchronization mechanisms among multiple fogs to organize

multiple traffic lights available within a short distance of each

other or positioned at a significant street in a smart city. With

the change in traffic conditions, all fogs will fine-tune their

operations using the locally collected information along with

the global view delivered by the cloud services.

B. Smart Buildings Data Analytics

Another potential application of SmartCityWare is enabling

collaborative data analytics for optimizing smart buildings

energy performance. As it has been stated repeatedly, buildings

in urban areas account for around 40% of the overall energy

consumption [45]. Thus, their energy performance optimization

represents a significant opportunity to reduce the overall energy

consumption. A large part of commercial buildings is run by

Building Management Systems (BMS), and the utilization of

Information and Communication Technologies (ICT) enables

for utilization of sophisticated algorithms and methods to

enhance buildings’ performance. Furthermore, smart buildings

encompass many sensing and monitoring devices, as well as

various types of actuators. As it has been demonstrated in [46],

that collaborative data analytics of smart buildings can

positively impact the accuracy and quality of results, decisions

and actions, as compared to isolated buildings data analytics, in

which cases it would need long times of data collection before

their data becomes useful. SmartCityWare can be utilized to

enhance the collaborative data analytics among large numbers

of smart buildings.

The availability and quality of security services would be

highly relevant for participating buildings’ owners, as we are

talking about commonly confidential data. Therefore,

SmartCityWare will be responsible for providing adequate

mechanisms for anonymizing and protecting data. It will also

provide mechanisms to transfer data to the cloud, as well as

machine learning algorithms for development of models. The

cloud will be providing these learning algorithms and it will

perform global optimization, also taking into consideration

information from the smart grid power generation.

Furthermore, SmartCityWare will offer mechanisms for

transferring decisions and recommendations to smart buildings,

which can then act upon them to enhance their performances.

These processes and main participants are illustrated in Figure

5. Here, as shown in the figure, a fog can be used for each

building to execute many recommendations and to provide

local optimization. SmartCityWare will enable development of

much more accurate models, as yielded by the collaborative

data analytics. These models can serve different purposes, such

as: timely and accurate fault detection and diagnosis (cloud

services), generation of (nearly) optimal preventive

maintenance schedules (fog services), optimization of matching

of demand and response (cloud services), generation of optimal

set points for each building (fog services), etc.

Figure 5. SmartCityWare application for collaborative data
analytics for smart buildings.

Using SmartCityWare to enable utilizing cloud computing

for collaborative data analytics for smart building can provide

faster mechanisms to discover faults. As shown in [46], energy

Figure 4. SmartCityWare application for intelligent traffic light
control systems.

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

10

savings can be achieved with connecting two or more smart

buildings to the cloud. The savings can be increased by

connecting more buildings as faults can be discovered faster

and energy losses will be discovered and avoided earlier.

Although, some overhead and extra cost will be involved in this

connection, energy savings from experiences collected from

multiple buildings can significantly exceed the extra costs

specially with multiple buildings. More analysis and

information on this approach can be found in [46].

VII. IMPLEMENTATION AND EXPERIMENTS

A SmartCityWare prototype was implemented including the

multi-agent runtime environment discussed in Section V. In

addition, most of the core services of SmartCityWare

mentioned in Section IV were implemented. These include the

broker services, invocation services, and location-based

services. Two types of broker services were implemented: the

global broker that will be deployed on the cloud and the local

brokers that will be deployed on all fogs. A distributed process

to update the global broker, with new information from the local

brokers, is executed periodically every 30 seconds. This update

may include adding a new service, removing a service, or

changing the location of a service. A mechanism is also

implemented to allow a local broker to forward a service lookup

request to the global broker if it does not have the requested

service. Both local and remote service invocations were also

implemented and added to the prototype implementation.

For the IoT side, we used the Arduino board [36] which is

open source hardware for embedded systems. For this prototype

implementation, the Arduino was used as the IoT payload

subsystem that is the onboard device requesting services. Some

sensors were connected to the Arduino such as DHT11 sensor

[37] for temperature and humidity measurements. Furthermore,

some LEDs and a buzz were installed to represent actuators. In

addition, we installed an Adafruit CC3000 Wi-Fi board [38] to

connect the Arduino to a local area network that has a fog. The

Arduino code was developed using the Arduino IDE [39] with

the Adafruit CC3000 library [40]. Each IoT service was

implemented with a RESTful API.

At the fog side, there is a service that represents each sensor

or actuator attached to the Arduino. The main function of these

services is to map and bridge a call from the SOAP APIs to

RESTful APIs. All sensor and actuator services are registered

with the local broker. In addition, the global broker is

periodically updated with these services.

For the experiments, we used three computers; one represents

the cloud and two represent two fogs. In addition, we used

WAN emulators among the machines to introduce the effects of

using long distances and/or the Internet to connect them.

Experiments were conducted with different configurations:

• LSC: a local IoT service call within the corresponding fog.

• RSCCF: a remote IoT service call from the cloud.

• RSCFF: a remote IoT service call to another fog where

both fogs are connected using a WAN and not involving

the cloud.

• RSCFCF: a remote IoT service call to another fog through

the cloud.

The experiment was repeated for two types of services. The

first service is to get the current temperature (CurTemp) while

the second is to turn on the LED (LEDon). The average results

of 10 runs of multiple service calls are shown in Figure 6. These

recoded times for these calls do not include the service lookup

times. The response time for a service call from fog to another

fog and from cloud to fog is similar as the service call that is

directly done between the client fog and the server fog without

involving the cloud.

The average service lookup time for local services (Local),

remote services between a fog and the cloud or between a fog

and another fog where they are connected by a WAN (Remote-

direct), and remote services between a fog and another fog

through the cloud (Remote-cloud) as there is no direct network

between both fogs are shown in Figure 7. As shown, there is a

big difference between local and remote service lookup times.

The local services can look for and utilize the local fog services

and local IoT device services faster. This enables having low

latency services supported by the available fogs for IoT

applications. At the same time, local services can utilize

services at the cloud or at other fogs including their IoT device

services. Any cloud service can also utilize any services

available at any fog.

Figure 6. IoT device service calls response times.

Figure 7. Service lookup times.

0

500

1000

1500

2000

2500

3000

3500

LSC RSCCF RSCFF RSCFCF

M
ill

is
e

co
n

d
s

IoT Device Service Call

CurTemp

LEDon

0

500

1000

1500

2000

2500

3000

Local Remote-direct Remote-cloud

M
ill

is
e

co
n

d
s

Type of Service Lookup

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

11

VIII. RELATED WORK

Several middleware platforms were proposed and developed

to solve different challenges in smart cities. Some examples of

these middleware platforms are Civitas [26], SOFIA [8],

VITAL [27], SmartUM [28], SMArc [29], GAMBAS [30], and

CityHub [31]. One of the main differences between

SmartCityWare and other proposed middleware platforms is

that SmartCityWare is a completely service-oriented

middleware that utilizes both emerging CoT and Fog

Computing to provide different services for smart cities. The

representation of all components and tools as services allow for

a smooth integration of services using a common integration

and deployment mechanism. An advantage of using SOM is

allowing the middleware to be open for unlimited extensions

including utilizing services provided by other systems as well

as integrating and utilizing future developed technologies as

part of the middleware.

Different engineering issues such as developing generic

computational models for smart city platforms and the

difficulty of developing a common platform for smart cities

were discussed in [32][33]. Our work in this paper utilizes the

flexibility and extensibility of the service-oriented architecture

to add the needed flexibility and extensibility to the

SmartCityWare middleware platform. As a result,

SmartCityWare can be built using current available

technologies, yet it can evolve over time to include more

services and utilize state-of-the-art algorithms, tools and

models as they are developed.

IX. CONCLUSION

Smart city applications provide numerous enhancements to

the smart city features and capabilities leading to enhanced

operations, optimized resources utilization and ultimately a

better quality of life for the residents. These applications often

require using multiple ICT components and the integration of

various systems and services. IoT, Fog and Cloud computing

can be integrated to support these applications, yet this imposes

multiple challenges on the development and operations of these

applications. Middleware support is essential for such

applications to meet the challenges imposed such as

heterogeneity, mobility, and real-time support. In this paper, we

outlined the functions and features needed in a middleware

infrastructure to support smart city applications. Based on these

functions, a service-oriented middleware that integrates and

utilizes the cloud of things (CoT) and fog computing and

provides a set of services to support smart city applications was

proposed. This middleware is named SmartCityWare, where all

system resources are viewed as a set of services to be used to

develop smart city applications. One of the main advantages of

this approach is the flexibility of extending the middleware

itself to include new and more advanced services to support

smart city applications as they develop. In addition, it provides

the flexibility to add more devices, components, and services as

the city grows or more services are needed. In addition, the

proposed middleware can be easily extended to utilize

emerging technologies, other than Cloud of Things and Fog

Computing, for supporting smart city applications in the future.

In addition, we discussed the design and architecture of

SmartCityWare and its runtime environment. We also offered

some implementation details and experimental results showing

the validity of the approach. In the future, we plan to enhance

the implementation of SmartCityWare, include more features

and services common to many smart city applications and

demonstrate its features through actual implementations of

specific smart city applications.

REFERENCES

[1] P. Parwekar, “From internet of things towards cloud of things,” In 2nd

International Conference on Computer and Communication Technology

(ICCCT), pp. 329-333, IEEE, 2011.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” In Proceedings of the first edition of the MCC workshop

on Mobile cloud computing, pp. 13-16, ACM, 2012.

[3] T. Clohessy, T. Acton, and L. Morgan, “Smart City as a Service (SCaaS): a future

roadmap for e-government smart city cloud computing initiatives,” In proc. of the

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,

pp. 836-841, 2014.

[4] S. Yamamoto, S. Matsumoto, and M. Nakamura, “Using cloud technologies for

large-scale house data in smart city,” In IEEE 4th International Conference on

Cloud Computing Technology and Science (CloudCom), pp. 141-148, 2012.

[5] Z. Khan, and S.L. Kiani, “A cloud-based architecture for citizen services in smart

cities.” In Proceedings of the 2012 IEEE/ACM fifth international conference on

utility and cloud computing, pp. 315-320, IEEE, 2012.

[6] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, Q. and Yang, “A hierarchical

distributed fog computing architecture for big data analysis in smart cities,”

In proc. of the ASE BigData & SocialInformatics, 2015.

[7] A. Giordano, G. Spezzano, A. and Vinci, “Smart Agents and Fog Computing for

Smart City Applications,” In International Conference on Smart Cities, pp. 137-

146, Springer International Publishing, 2016.

[8] L. Filipponi, A. Vitaletti, G. Landi, V. Memeo, G. Laura,and P. Pucci, “Smart

city: An event driven architecture for monitoring public spaces with

heterogeneous sensors,” In 4th International Conference on Sensor Technologies

and Applications (SENSORCOMM), pp. 281-286, 2010.

[9] T. Watteyne and K.S. Pister, “Smarter cities through standards-based wireless

sensor networks,” IBM Journal of Research and Development, 55(1.2), pp.7-1,

2011.

[10] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things

for smart cities,” IEEE Internet of Things journal, 1(1), pp.22-32, 2014.

[11] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework

for creating a smart city through internet of things,” IEEE Internet of Things

Journal, 1(2), pp.112-121, 2014.

[12] L. Gurgen, O. Gunalp, Y. Benazzouz, and M. Gallissot, “Self-aware cyber-

physical systems and applications in smart buildings and cities,” In Proceedings

of the Conference on Design, Automation and Test in Europe, pp. 1149-1154,

EDA Consortium, 2013.

[13] G. Ermacora, S. Rosa, and B. Bona, B., “Sliding autonomy in cloud robotics

services for smart city applications,” In Proceedings of the Tenth Annual

ACM/IEEE International Conference on Human-Robot Interaction, pp. 155-156,

ACM, 2015.

[14] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, I. Jawhar “UAVs for

Smart Cities: Opportunities and Challenges,” in proc. Int’l Conference on

Unmanned Aircraft Systems (ICUAS'14), IEEE, pp. 267-273, 2014.

[15] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar

“Opportunities and Challenges of Using UAVs for Dubai Smart City,” in proc.

1st Int’l Workshop on Architectures and Technologies for Smart Cities

(SmartCity’2014), IEEE Communications, 2014.

[16] R. Kitchin, “The real-time city? Big data and smart urbanism,” GeoJournal,

79(1):1–14, 2014.

[17] E. Al Nuaimi, H. Al Neyadi, H., N. Mohamed, and J. Al-Jaroodi, “Applications

of big data to smart cities,” Journal of Internet Services and Applications, 6(1),

p.1., 2015.

2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access<

12

[18] M. Aazam and E.N. Huh, “Fog computing and smart gateway based

communication for cloud of things,” In International Conference on Future

Internet of Things and Cloud (FiCloud), pp. 464-470, IEEE, 2014.

[19] S. Dirks, C. Gurdgiev, and M. Keeling, "Smarter cities for smarter growth: How

cities can optimize their systems for the talent-based economy," IBM Institute for

Business Value, 2010.

[20] T. Bhattasali, et al,.”Secure and trusted cloud of things,” In 2013 NDICON, pp.

1-6, IEEE, 2013.

[21] J. Al-Jaroodi and N. Mohamed, “Middleware is STILL Everywhere!!!,” in

Concurrency and Computation: Practice and Experience, Wiley, 24(16): 1919-

1926, Nov. 2012.

[22] J. Al-Jaroodi and N. Mohamed, “Service-Oriented Middleware: A Survey,” in

The Journal of Network and Computer Applications, Elsevier, Vol. 35, No. 1, pp.

211-220, Jan. 2012.

[23] A.A. Salkham, R. Cunningham, A. Garg, A. and V. Cahill, “A collaborative

reinforcement learning approach to urban traffic control optimization,” In proc.

of the IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology, Volume 02, pp. 560-566, , 2008.

[24] I. Arel, C. Liu, T. Urbanik, and A.G. Kohls, “Reinforcement learning-based

multi-agent system for network traffic signal control,” IET Intelligent Transport

Systems, 4(2), pp.128-135, 2010.

[25] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement

learning for integrated network of adaptive traffic signal controllers (MARLIN-

ATSC): methodology and large-scale application on downtown Toronto,” IEEE

Transactions on Intelligent Transportation Systems, 14(3), pp.1140-1150, 2013.

[26] F.J. Villanueva, M.J. Santofimia, D. Villa, J. Barba, and J.C. López, “Civitas: the

smart city middleware, from sensors to big data,” In 7th International Conference

on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp.

445-450, IEEE, 2013.

[27] R. Petrolo, V. Loscrì, and N. Mitton, “Towards a smart city based on cloud of

things, a survey on the smart city vision and paradigms,” Transactions on

Emerging Telecommunications Technologies, 2015.

[28] H.S. Jung, C.S. Jeong, CY.W. Lee, and P.D. Hong, “An Intelligent Ubiquitous

Middleware for U-City: SmartUM,” Journal of Information Science &

Engineering, 25(2), 2009.

[29] J. Rodríguez-Molina, J.F. Martínez, P. Castillejo, and R. de Diego, “SMArc: a

proposal for a smart, semantic middleware architecture focused on smart city

energy management,” International Journal of Distributed Sensor

Networks, 9(12), p.560418, 2013.

[30] W. Apolinarski, U. Iqbal, and J.X. Parreira, “The GAMBAS middleware and

SDK for smart city applications,” In IEEE International Conference on Pervasive

Computing and Communications Workshops (PERCOM Workshops), pp. 117-

122, IEEE, 2014.

[31] R. Lea and M. Blackstock, “City hub: A cloud-based iot platform for smart

cities,” In 2014 IEEE 6th International Conference on Cloud Computing

Technology and Science (CloudCom), pp. 799-804, IEEE, 2014.

[32] S. Pradhan, A. Dubey, S. Neema, and A. Gokhale, “Towards a generic

computation model for smart city platforms,” In 1st International Workshop on

Science of Smart City Operations and Platforms Engineering (SCOPE), 2016.

[33] M. Lehofer, M. Heiss, S. Rogenhofer, C.W. Weng, M. Sturm, S. Rusitschka, and

S. Dippl, “Platforms for Smart Cities–connecting humans, infrastructure and

industrial IT,” In 1st International Workshop on Science of Smart City

Operations and Platforms Engineering (SCOPE), 2016.

[34] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, “Middleware

Infrastructure for Parallel and Distributed Programming Models on

Heterogeneous Systems,” in IEEE Transactions on Parallel and Distributed

Systems, Special Issue on Middleware Infrastructures, Volume 14, No. 11, pp.

1100-1111, Nov. 2003.

[35] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, “An Agent-Based

Infrastructure for Parallel Java on Heterogeneous Clusters,” in proc. 4th IEEE

Int’l Conference on Cluster Computing (CLUSTER 2002), IEEE, pp. 19-27, Sep.

2002.

[36] Arduino website, https://www.arduino.cc/, viewed March 17, 2017.

[37] DHT Sensor Library Website, https://github.com/adafruit/DHT-sensor-library,

viewed March 17, 2017.

[38] CC3000 Wi-Fi board Website,

https://www.adafruit.com/products/1469, viewed March 17, 2017.

[39] Arduino IDE Website, http://arduino.cc/en/main/software, viewed

March 17, 2017.

[40] Adafruit CC3000 library Website,

https://github.com/adafruit/Adafruit_CC3000_Library, viewed March

17, 2017.

[41] N. Mohamed, S. Lazarova-Molnar, and J. Al-Jaroodi, “Cloud of Things:

Optimizing Smart City Services,” in proc. 7th Int’l Conference on Modeling,

Simulation and Applied Optimization, IEEE, April 4-6, 2017.

[42] P. Alho and J. Mattila, “Service-oriented approach to fault tolerance in
CPSs,” Journal of Systems and Software, 105, pp.1-17, 2015.

[43] D. Kreutz, et al. “Software-defined networking: A comprehensive survey,”
Proceedings of the IEEE, 103(1), pp.14-76, 2015.

[44] J. Medved, et al. “Opendaylight: Towards a model-driven sdn controller
architecture,” IEEE 15th International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2014.

[45] C. A. Balaras, A. G. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis,
and D. P. Lalas, “European residential buildings and empirical assessment
of the Hellenic building stock, energy consumption, emissions and potential
energy savings,” Building and Environment, vol. 42, pp. 1298-1314, 2007.

[46] S. Lazarova-Molnar and N. Mohamed, “Towards Collaborative Data
Analytics for Smart Buildings,” in International Conference on Information
Science and Applications, pp. 459-466, 2017.

[47] F.D. Ahmed, M.A. Majid, M. Sharifuddin, and A.N. Jaber, A.N., “Software
Agent and Cloud Computing: A Brief Review,” International Journal of
Software Engineering and Computer Systems, 2(1), 2016.

https://www.arduino.cc/
https://github.com/adafruit/DHT-sensor-library
https://www.adafruit.com/products/1469
http://arduino.cc/en/main/software
https://github.com/adafruit/Adafruit_CC3000_Library

