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 

Abstract—Smart cities are becoming a reality. Various aspects 

of modern cities are being automated and integrated with 

information and communication technologies (ICT) to achieve 

higher functionality, optimized resources utilization and 

management and improved quality of life for the residents. Smart 

cities rely heavily on utilizing various software, hardware and 

communication technologies to improve the operations in areas ike 

healthcare, transportation, energy, education, logistics and many 

others, while reducing costs and resources consumption. One of 

the promising technologies to support such efforts is the Cloud of 

Things (CoT). CoT provides a platform for linking the cyber parts 

of a smart city that are executed on the cloud with the physical 

parts of the smart city including residents, vehicles, power grids, 

buildings, water networks, hospitals and other resources. Another 

useful technology is Fog Computing, which extends the traditional 

Cloud Computing paradigm to the edge of the network to enable 

localized and real time support for operating enhanced smart city 

services. However, proper integration and efficient utilization of 

CoT and Fog Computing is not an easy task. The paper discusses 

how the service-oriented middleware (SOM) approach can help 

resolve some of the challenges of developing and operating smart 

city services using CoT and Fog Computing. We propose a SOM  

called SmartCityWare for effective integration and utilization of 

CoT and Fog Computing. SmartCityWare abstracts services and 

components involved in smart city applications as services 

accessible through the service-oriented model. This enhances 

integration and allows for flexible inclusion and utilization of the 

various services needed in a smart city application. In addition, we 

discuss the implementation and experimental issues of 

SmartCityWare and demonstrate its use through examples of 

smart city applications.   

 
Index Terms— Smart City, Cloud of Things, Internet of Things, 

Cyber Physical Systems, Middleware, Service-Oriented 

Middleware, Cloud Computing, Fog Computing  

I. INTRODUCTION 

MART cities are the promising future of high quality living 

for the increasing population of cities in the world. Urban 

population increased from 746 million in 1950 to almost 4 

billion in 2014 and the projections show further increases in 

these numbers reaching around 6 billion by 2050. Mega cities, 

accommodating 10 or more million people are increasing in 

numbers and large cities are also growing rapidly. To achieve 
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high quality living and manage and operate these large cities, 

innovative solutions are needed, leading to the development of 

the smart city concept.  

In a smart city, various aspects of living, operations, and 

management are automated and streamlined through effective 

and usually intelligent computing systems. The base unit in a 

smart city system is the sensors. Sensors of various types, 

capabilities and functionalities are deployed to monitor and 

record city parameters. These sensors need to be integrated with 

other devices and computing facilities to achieve their goals for 

monitoring and control of the smart city functions.  

Various technologies and computational approaches provide 

the basic capabilities to integrate the sensors, actuators and 

other devices in a city’s physical environment to create a smart 

city. Advances in Cyber-Physical Systems (CPS), Internet of 

Things (IoT), Cloud Computing (CC), Fog Computing and other 

software technologies have positively contributed to this goal. These 

new technologies offer an unprecedented opportunity to create a 

wide array of applications that optimize smart cities’ services. These 

technologies are integrated into the Cloud of Things (CoT) [1]. In 

CoT, all objects of a smart city like the residents, vehicles, streets, 

buildings, hospitals, and energy and water plants are interconnected 

through the IoT, which is integrated with CC systems, running 

intelligent software to optimize the smart city’s services. In addition, 

Fog Computing can offer extension features for CC systems to better 

support low latency requirements, location awareness, scalability, 

and mobility for these services [2].       

Smart city applications can be developed to effectively and 

efficiently use the available and emerging technologies to continue 

enhancing the living quality of the residents, while optimizing the 

utilization of the city’s resources and reducing the negative impact 

on the environment. One of these is Cloud Computing Systems, 

which provide large scale computational and data storage services to 

smart cities [3][4][5]. Another technology is Fog Computing 

Systems, which augment the functions of cloud services by 

providing services closer to the physical city environment. As a 

result, it can support the low latency, location awareness, mobility, 

streaming, and real-time requirements of the smart city applications 

[6][7]. Another very useful technology is the Wireless Sensor 

Networks (WSN), which are used to connect sensors for monitoring 

the different resources, components, residents and operations of a 

Sanja Lazarova-Molnar is with Center for Energy Informatics, University of 

Southern Denmark, Denmark (e-mail: slmo@mmmi.sdu.dk). 

Sara Mahmoud is with College of Information Technology, UAE 

University, UAE (e-mail: 201370014@uaeu.ac.ae). 

SmartCityWare: A Service-Oriented Middleware 

for Cloud and Fog Enabled Smart City Services 

Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar, Sanja Lazarova-Molnar, and Sara Mahmoud 

S 



2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2731382, IEEE Access

> Paper Accepted in the Special Issue on The New Era of Smart Cities of IEEE Access< 

 

2 

smart city [8][9]. The Internet of Things (IoT) is another technology 

being developed for various applications; however, it is very useful 

for integrating the physical objects of a smart city in a well-defined 

network [10][11]. Cyber Physical systems further extend the IoT 

concept to facilitate the interaction between the cyber world and the 

physical world in a smart city [12]. Other relevant technologies for a 

smart city include robotics, to provide different ground actions and 

physical controls [13]; Unmanned Aerial Vehicles (UAV), to 

enhance delivery of services, traffic monitoring, security and safety 

controls, and telecommunication services [14][15]; and Big Data 

Analytics (BDA), to provide smart decisions based on collected data 

[16][17].     

Integrating technologies like WSN, IoT, CPS, robotics, and 

UAVs in addition to other technologies that will be available in the 

future with Cloud Computing will create the Cloud of Things (CoT). 

CoT can support the operations in a smart city, which can also be 

further enhanced by utilizing Fog Computing [18]. CoT and Fog 

computing will provide a powerful environment for supporting the 

operations of smart city applications. However, developing, 

implementing, maintaining, and operating these applications in an 

effective manner are major challenges. This paper introduces a 

service-oriented middleware approach to relax these challenges. We 

propose SmartCityWare, a SOM for integrating CoT and Fog 

Computing to support the development and execution of smart city 

applications. This approach will provide a meaningful representation 

and utilities to design and implement such services.            

This paper is organized as follows. Section II provides 

background information about smart city applications, CoT, and Fog 

Computing. Section III discusses using service-oriented middleware 

for smart city applications. A conceptual design and the functions 

and services of SmartCityWare are discussed in Section IV while 

SmartCityWare runtime environment is discussed in Section V.  

Section VI illustrates some examples for smart city applications 

using SmartCityWare. Some experimental evaluations are discussed 

in Section VII, Section VIII is an overview of some related work, 

and Section IX concludes the paper. 

II. BACKGROUND 

Creating and sustaining a smart city requires the integration 

of various technologies and the collaboration of many entities. 

City administration, city officials, emergency response teams, 

workers and residents all need to be involved in the process. In 

addition, the infrastructure, buildings, transportation systems, 

spaces and all physical aspects of the city are involved. To tie 

all of this together a sophisticated network of sensor devices, 

actuators, computing facilities and smart devices must be put in 

place. The general smart city concept involves monitoring, 

controlling, and managing the conditions of all of the city’s 

infrastructures and physical components to optimize operations 

and use of resources, while providing high quality services to 

the citizens [19][20]. These include critical components like 

hospitals, power and water plants, communication networks, 

airports, seaports and transportation infrastructures. In addition, 

there are residential and commercial buildings, parks, 

recreational facilities, vehicles, and all types of electronic and 

mechanical devices used by people.  

The major contributor to the emergence of smart cities is the 

development in sensor technologies. These include specialized 

sensors devised for specific purposes and also the use of smart 

devices to provide sensing and data collection features like 

smart phones capable of sensing the location, temperature and 

other aspects of an environment. However, sensing devices also 

require networks and computing facilities that allow for 

accurate data collection, aggregation and dissemination. This 

requires using Information and Communication Technologies 

(ICT) to facilitate and optimize the services provided in a smart 

city. It is often stated that the goal of utilizing ICT is to improve 

existing services by making them more efficient, more user-

friendly or, in general, more citizen-centric. With the recent 

advances in ICT, all city components and critical infrastructures 

can be integrated, monitored, and controlled for the benefit of 

the citizens.  

One of the emerging technologies that effectively can be used 

for smart cities is the CoT. Having an IoT in place that includes 

sensing and actuating devices within a smart city can help 

provide specific enhancements. However, integrating this IoT 

with the cloud opens up a larger set of capabilities to facilitate 

large scale computation and decision making for the smart city. 

It will also allow for the integration of multiple IoTs and 

physical environments to create a larger view of the smart city’s 

operations, leading to enhanced decisions and optimizations.  

The CoT helps connect, monitor, and apply enhancements in all 

aspects of a smart city through the IoT and Cloud services as 

shown in Figure 1. Cloud computing provides a flexible virtual 

execution system and on-demand services for a smart city. It 

can process and store huge data sets and offer dynamic 

computing capabilities that can be scaled in or out based on the 

varying demands of the smart city services. The CoT can be 

implemented with a multiple-layer model. One of the most 

important layers is the CoT platform as a service. This layer 

links the IoT and the CC infrastructure and services and provide 

services to implement and operate optimization applications for 

smart city services. 

Another emerging technology that could be of great benefit 

to smart city applications is Fog computing as it can enhance 

the CoT paradigm by providing small platforms located at the 

network edges in a smart city. These fog platforms can operate 

localized cloud-like services to support IoT operations. The 

services can be control, storage, communication, processing, 

configuration, monitoring, measurement, and management 

services to support a certain IoT smart city application. Using 

Fog Computing, an application in a certain area in a smart city 

can utilize an architecture that uses a dedicated computer 

available locally, or one or more end-user devices or nearby 

edge devices. The Fog platform will allow executing services 

geographically close to the IoT applications. This offers several 

advantages for IoT applications including [2]: 

• Providing low latency services, as fog devices are located 

closer to the actual IoT components and can react faster 

than the cloud. 

• Offering location aware services based on the location of 

the IoT components in use and the connected fog nodes.  

• Providing better scalability support for widely 

geographical distributed applications. This is enabled due 
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to the availability of multiple fog nodes within the different 

geographic locations, thus the need to centralize the tasks 

is minimized as the fog nodes can handle many 

requirements locally. 

• Supporting better mobility and access control for different 

types of mobile devices as they travel around the city. As a 

result, these devices can have access to the required 

services through the nearest fog nodes. 

• Offering better Quality of Services (QoS) support. Some 

services have strict QoS requirements and the fog nodes 

will be able to help support these requirements locally. 

• Providing more efficient communication with other 

systems. Fog nodes are structured and designed like cloud 

nodes thus they can communicate with different system 

through the cloud or other fogs to achieve certain goals.    

 These advantages help create solutions to many challenges 

that smart city applications face and enable the creation of 

higher quality and more controllable services to perfectly 

achieve the vision of a smart city. The architecture of 

integrating Fog computing into CoT for a smart city is shown 

in Figure 2. In this architecture, the fogs will provide more 

localized real-time monitoring, control, and optimization for the 

smart city applications while the cloud will provide global 

monitoring, control, optimization, and future planning for these 

applications.  

Various types of smart city applications can be designed and 

implemented with the support of COT and Fog computing. 

These include applications for intelligent transportation 

systems, smart energy systems, infrastructure and environment 

monitoring, and public safety applications. Table 1 lists some 

examples of smart city applications and how they can benefit 

from both the CoT and fog computing. More discussion on how 

CoT and fog computing can support these applications is 

available in [41]. These applications have specific requirements 

and may pose several challenges for their developers. Some of 

these challenges include: 

• Support for real time operations and responses. 

• The ability to seamlessly handle heterogeneous devices 

and components. 

• The ability to accommodate for devices with limited 

resources and operational capabilities. 

• The ability to support highly distributed systems spanning 

large geographic areas. 

• Support for security and privacy measures. 

• Support for reliability and fault tolerance. 

• Support for device mobility. 

• The ability to integrate and interoperate with other systems. 

 The integration of CoT and Fog computing along with the 

right software architectures can leverage many of these 

challenges leading to more effective and efficient smart city 

applications.  

III. SERVICE-ORIENTED MIDDLEWARE 

Middleware technologies have become a necessary part of 

any distributed environment [21]. Middleware offers essential 

enabling features and functionalities for facilitating the 

integration of the distributed environment components and the 

operations of the whole distributed and heterogeneous 

applications. It simplifies the development and execution of 

distributed applications and hides their complexity. It also 

provides common services for recurring challenges in the 

distributed environment. Middleware also connects any set of 

components in a distributed environment to provide better 

functionalities. These components could be hardware devices 

such sensors, actuators, robots, UAVs, communication devices, 

microcontrollers, cloud servers; or software components 

including control modules, monitoring applications, analytics 

services, and application specific software modules. Better 

functionalities can be defined in terms of communication, 

integration, operations, reliability, availability, scalability, 

security, and other value-added functions.   

Smart cities are complex and very large distributed systems 

that share with other distributed environments their 

heterogeneity, security, and reliability challenges. In addition, 

they also have their own unique challenges to provide and 

support high scalability, efficiency, safety, real-time responses, 

and smartness (intelligence) requirements. These are common 

challenges facing most smart city applications including smart 

grids, smart water networks, intelligent transportation systems, 

infrastructures monitoring and protection, and several others. 

Designing and building applications meeting all these 

challenges is extremely complex. As a result, it is almost 

impossible to develop and operate smart city applications 

without relying on advanced middleware technologies to 

simplify and facilitate the development and operations 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The CoT Model for Smart Cities. 

 

 

 

 

 

 

 

 

Figure 2. Integrating Fog Computing and CoT for Smart City 
applications. 
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Table 1. Examples of smart city applications that can benefit from CoT and Fog computing. 
Smart City 
Application 

Sub-applications Fog Roles Cloud Roles 

Intelligent 
transportation 

• Route planning and congestion 
avoidance 

• Intelligent traffic light controls 
• Intelligent parking services 
• Accident avoidance  
• Self-driving buses/cars 

Fogs in the form of Road Side 
Units (RSUs) or other 
computerized units provide low-
cost relays among vehicles’, roads’ 
and parks’ sensors, traffic lights, 
and the cloud. They provide fast 
response and control services.   

Cloud collects, filters, and stores traffic 
information.  It helps in coordinating 
city traffic and parking optimizations. 
It also helps in planning for enhancing 
traffic systems. 

Smart energy • Smart grid 
• Smart buildings 
• Renewable energy plants 
• Smart meters 
• Wind farms 
• Hydropower plants 

Fogs provide local controls for 
energy systems, distribution units, 
and consumer locations. They also 
enable smooth integration of 
different energy systems.   

Cloud collects, filters, and stores 
energy information. It supports 
decision making for utilizing smart 
grids and renewable energy features 
based on collected and analyzed data 
for consumers’ needs and renewable 
energy productions.  

Smart water • Leakage detections 
• Water leakage reduction 
• Water  quality monitoring 
• Smart water meters 
• Smart irrigation 

Fogs provide better and faster local 
monitoring and controls for smart 
water networks. They also offer 
real-time monitoring for faults and 
leakages and support repair and 
maintenance operations. 

Smart water networks information is 
collected, stored, and utilized by cloud 
services to enhance the water networks, 
production, and quality and to reduce 
water losses.  

City structure 
health 
monitoring 

Health monitoring for 
• Bridges 
• Large public buildings   
• Tunnels  
• Train and subway rails  
• Oil and gas pipelines  

Fogs help reduce data traffic 
between the sensors monitoring the 
structures and their main control 
stations. In addition, they provide 
fast safety controls for some 
applications.   

Cloud collects, filters, and stores 
structure health information. The cloud 
can help analyze collected data to 
enhance the maintenance processes and 
improve the health of the city 
structures.   

Environmental 
monitoring 

• Air quality monitoring 
• Noise monitoring 
• River monitoring 
• Coastal monitoring 

Fogs help enhance environmental 
monitoring processes by providing 
smart environmental monitoring 
closer to the monitored areas.   

Cloud provides processes to 
collectively analyze city environmental 
and health status. 

Public safety 
and security 

• Crowd control for large events 
(sports games, parades, and outdoor 
celebrations)  

• City crime watch and alerts 
• Large-scale emergency response 

services (e.g. floods, earthquakes, 
terrorist attacks, volcanoes, and wars) 

Fogs help reduce the 
communication traffic between 
these places and the main security 
monitoring stations.  

Cloud provides a powerful platform for 
analyzing the collected data about the 
current situation to help in providing 
possible actions for better controls and 
emergency relief.   

 

A new and advanced approach in middleware technologies is 

the use of service-oriented middleware (SOM). This approach 

has been proven to simplify the implementation and operations 

of many applications in diverse industrial domains [22]. The 

approach was used to reduce the effort and cost of development, 

testing, and operations. Similarly, SOM can play an important 

role for developing, operating, and supporting smart city 

applications.  Accordingly, we anticipate a successful migration 

of the SOM model to utilize the concept of IoT to support smart 

city applications and provide a generic middleware platform 

that will highly increase productivity and widen the range of 

applications that can be designed and built for smart cities.  

SOM extends the capabilities of middleware and provides 

high flexibility for adding new and advanced functions to smart 

city applications. SOM logically views smart city cyber and 

physical components as providers of services for smart city 

applications. With SOM, all hardware devices such as sensors, 

actuators, storage devices, communication devices, and 

processors can be viewed and utilized as services. The 

implementation of this SOM is usually achieved through web 

services standards, wrapper technologies to map different 

devices’ interfaces to web service interfaces, and middleware 

services to enable the integration among both services clients 

and services providers [22].  Furthermore, it can integrate these 

services with other services provided by Cloud Computing and 

Fog Computing Thus, allowing application developers to view 

everything as a single large system that provides basic and 

advanced services to smart city applications. Advanced 

services, such data aggregation, adaptation, security, self-

organization, reliability, and management, can be designed, 

implemented, and integrated in a SOM framework through a 

more flexible and easy to use development and execution 

environment. SOM for smart cities is necessary to support 

several, otherwise hard to incorporate, functionalities in the 

service-oriented computing (SOC) model. These functionalities 

include the functional and non-functional requirements that 

different services may need. For any service-oriented 

application, there are common functionalities such as service 

registry, discovery, communication, reliability and security that 

are needed by any of these applications. These can be easily 
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generalized and made available via the SOM platform to be 

used by the applications’ developers to easily implement smart 

city applications. Generally, SOM for smart cities should 

support several requirements, some of which (e.g. the first three 

in the list) are common for any SOC application, while the rest 

are enforced by the characteristics of the smart city environment 

and the challenges of implementing and operating applications 

on CoT and Fog Computing. These requirements include: 

1. Runtime support for services deployment and execution: 

as all devices in a smart city including components of 

supported cloud computing and fog computing are viewed 

as a set of services available to support the applications, 

SOM should provide mechanisms to link, load, deploy, 

and execute these services as needed. 

2. Support for different communication methods among 

service consumers, services, service registries and brokers 

that enable reliable and efficient local and remote services 

utilization.  

3. Support for consumers to discover and use registered 

services: SOM should enable client applications to 

discover and use registered services when needed. SOM 

should also support run-time integration between 

applications and registered services.  

4. Support for service transparency to client applications: 

SOM should allow client applications to transparently use 

available services without exposing services 

implementation details or, in some situations, their 

detailed components locations.  

5. Suitable abstractions to hide the heterogeneity of the 

underlying environments: all heterogeneity details of a 

smart city’s physical devices and networks should be 

hidden from the applications. SOM should provide high-

level interfaces to utilize cyber and physical smart city 

resources without requiring application developers to deal 

directly with the heterogeneity.  

6. Support for configurable services: SOM should provide 

mechanisms for client applications to configure smart city 

services to meet specific applications’ requirements such 

as QoS, security or reliability. Configuring smart city 

services usually requires dealing with details and 

parameters of some hardware, network components, 

cloud and fog configurations. Doing this for configuring 

QoS requirements, for example, will be a complex task 

for regular users. However, SOM can provide 

mechanisms to be used easily by client applications to 

configure smart city resources for their specific 

requirements.  

7. Support for self-organization mechanisms: this includes 

self-x properties such self-management, self-healing, self-

configuration, auto-discovery, self-adaptation, and self-

optimization of service providers. Smart cities are 

dynamic distributed environments where resources can be 

added, changed, or removed anytime. In addition, some 

resources may be mobile like the UAVs. The availability 

of services for such devices is also dynamic. Therefore, 

SOM should support self-management, auto-discovery, 

self-optimization and auto-change mechanisms for 

efficient utilization of all available services. For example, 

when a sensor provides a service for sensing a certain 

attribute, the SOM should discover that service and allow 

the client applications to use it when they need it. When 

that senor fails, SOM should automatically switch the 

application to a similar service currently available in the 

area. Furthermore, the SOM should be able to notify the 

application if nothing matching their needs is currently 

available. This helps solve the scalability, heterogeneity, 

and network organization challenges.  

8. Support for interoperability with a variety of devices: This 

requirement helps solve the heterogeneity challenge in 

smart cities by supporting different interoperability 

mechanisms to match available devices. Some smart city 

applications require a variety of devices to be operated. 

SOM for smart cities can be designed to be interoperable 

with different devices such as devices with different types 

of sensors, RFID, vehicles, UAVs, cloud and fog services 

to enable easy application development and operations.  

9. Efficient handling of large volumes of data and high 

communication loads: many smart city applications 

involve large volumes of data and high communication 

loads as they operate in data-rich environments and 

handle a large amount of data generating services. As 

some of the used systems and devices may have limited 

resources, SOM should efficiently and carefully deal with 

that load through trade-offs between smart city 

applications requirements in terms of accuracy, 

bandwidth, delay, and energy consumption. SOM should 

also be capable of reallocating data as necessary while 

maintaining proper access to the applications using it. 

10. Support for secure communication and execution: as most 

smart city applications involve sensitive and critical 

information, secure communication and execution 

becomes a very important aspect in SOM for smart cities. 

SOM should provide mechanisms to secure the utilization 

and operations of both CoT and Fog Computing services. 

All communications and execution for supporting these 

services should be also secured.  

11. Support for QoS requirements: some smart city 

applications have specific QoS requirements. 

Mechanisms are needed to configure and satisfy these 

requirements in the CoT and Fog computing systems 

utilized by these applications. An example of QoS 

requirements in a smart city can be observing and 

reporting a current traffic situation in a certain road 

intersect within a given time frame and within a specific 

error margin. In some situations, the QoS requirements 

can come from multiple applications such as safety and 

collaborative sensing. SOM for smart cities should 

provide uniform interfaces to configure the QoS 

requirements for these applications and ensure achieving 

these requirements.  

12. Support for integration with other systems: smart city 

applications usually do not operate in isolation thus the 

SOM should enable the integration of smart city 

applications with other systems such as enterprise or web 
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systems. For example, some web applications rely on 

smart city applications for their current information such 

as information on traffic conditions. In this case, SOM 

should enable that integration such that these applications 

can fulfill their goals.  

In addition to these requirements, there are other advanced 

and specialized requirements that are needed for some smart 

city applications. Examples are support for context awareness 

and location-based services. Generally, SOM is designed to 

best suit the underlying environments it will serve. Therefore, 

many of the existing SOM designs may provide some of the 

requirements described above, but most do not support all smart 

city applications requirements and do not provide complete 

solutions for their challenges. 

IV. SMARTCITYWARE 

SmartCityWare is a service-oriented middleware platform 

designed specifically to utilize CoT and Fog Computing to 

support developing and operating smart city applications. The 

main purpose of SmartCityWare is to provide a virtual 

environment to be used to develop and deploy smart city 

applications. SmartCityWare consists of a set of services and a 

multi-agent runtime environment. In this section, we discuss the 

services of SmartCityWare while in Section V we will discuss 

the multi-agent runtime environment of SmartCityWare.  

In SmartCityWare, all functions are viewed as a set of 

services that can be used to build and support the execution of 

different smart city applications. These services are classified 

into core services and environmental services. Core services are 

those developed specifically for the core operations of 

SmartCityWare, such as the broker, security, service 

invocation, and location aware services. These services provide 

overall control for the whole system. Environmental services 

provide access to services provided by one or more cloud 

service provider, services provided by multiple distributed fogs, 

and services provided by multiple IoT devices including 

sensors, WSN, actuators, cameras, cars, UAVs, robots, etc.  

Cloud services can be Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software a Service (SaaS), 

which can define different services for smart city applications 

including data mining, big data analytics, optimization, and 

simulation services. Fog services can be control, processing, 

storage, communication, streaming, configuration, monitoring, 

measurement, and management services. The IoT devices 

services provide interfaces to utilize device functionalities like 

sensing, action, or other services. The environmental services 

can either provide direct interfaces to access the original 

services, provided by a cloud, a fog, or IoT device or they 

introduce some added-value for the original services such as 

adding reliability and security features. While some IoT devices 

can execute on-board code to implement and provide some 

services, other IoT devices will be controlled mainly by a fog 

that will have services that provide interfaces to utilize these 

devices’ functionalities. SmartCityWare services can be used 

by smart city applications available on the cloud, fog, or IoT 

devices such as a car asking for a certain service from a smart 

city application available on the cloud.  

The main functions of SmartCityWare are to enable smooth 

integration and operations among all these units to effectively 

support smart city applications. The SmartCityWare services 

will be distributed among multiple clouds, fogs, and IoT 

devices as shown in Figure 3. Each service defines a few simple 

interfaces that make it available to other services. Using SOM 

concepts for SmartCityWare provides mechanisms to link 

available services to build new services. A specific subset of the 

available distributed services in SmartCityWare can be 

integrated and deployed for the accomplishment of a specific 

application in a smart city. In addition, any service can be a 

client or consumer of other services. The required services for 

a certain application are integrated using SmartCityWare that 

aims to achieve loose coupling among interacting services. 

SmartCityWare manages service advertisement and discovery, 

communications, and invocations. In addition, it can be used to 

implement collaborative services across multiple smart city 

applications and with other SOC type systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SmartCityWare Supporting Smart City Applications. 

 

Although SmartCityWare can include many core services, 

the main mandatory services are the broker services, invocation 

services, location-based service, and security services. These 

four services are essential to ensure effective utilization of other 

available services and to facilitate the main functions it offers. 

A. Broker Services 

Broker services are responsible for CoT, fog computing, and 

IoT services advertisement, discovery, and registration. All 

services in all participating platforms and devices are 

advertised, registered, and discovered using the broker services. 

There are two types of broker services: a global broker that is 

available on the cloud, and local broker services that are 

available in each fog in the environment. While the global 

broker service maintains information about all services in the 

environment, the local broker service in each fog only 

maintains information about the current available services 

within the fog and information about services provided by IoT 

devices currently associated with the fog. This approach is used 

to allow applications and services within a fog to utilize 

available services and resources and provide low latency 

responses. As a result, the time needed to discover services is 
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minimized to efficiently and accurately utilize the services. The 

global broker service maintains services information for the 

whole environment including services available in all fogs. The 

local fog brokers regularly update the global broker about the 

availability and status of their services. The fog service brokers 

maintain description information about local services. The 

service description information includes the standard 

information using Web Service Description Language (WSDL) 

for each defined service. Each service information includes the 

operations that the service can perform, the specific types and 

formats of the message it expects between the service provider 

and service consumer, and where the service can be located on 

the network.  

B. Invocation Services 

When an application discovers a service it needs, it will 

require that service to be invoked with the proper interfaces. 

The invocation services, local and remote, are used by 

consumers with SmartCityWare support to start executing the 

required services. Local invocation services are limited within 

a single system where services needed exist in the same 

location. Remote service invocation can be between a fog 

service and another fog service, between an IoT device service 

and a fog service, between a fog service and a cloud service, or 

between a cloud service and a fog service. SmartCityWare 

handles message addressing, establishing communication 

connections between service consumers and producers, data 

marshaling and demarshalling, delivering requests and 

responses, and executing services. All these steps in the 

invocation process are achieved based on web services 

standards.  

C. Location Based Services 

SmartCityWare can provide location-based services. Unlike 

regular service brokers that are used over the Internet, 

SmartCityWare service brokers for fogs maintain additional 

information about the current positions of currently connected 

IoT mobile devices. The main reason for maintaining current 

positions is that some of their services can be considered useful 

and may be utilized only if the provider device is in a specific 

location; otherwise, there is no usefulness in utilizing these 

services. One example is using a sensor service on a robot if the 

robot is available within a specific location. A service consumer 

in a fog can look up a certain service within a specific location 

through its fog service broker. If this service is available within 

the fog’s range then WSDL information about the service is 

sent to the service consumer to utilize the service using a local 

service invocation. Otherwise, the fog service broker will 

forward the lookup request to the global service broker on the 

cloud and if the service is available then the service consumer 

utilizes the service using a remote service invocation.      

D. Security Services 

Various security mechanisms can be used by various clouds, 

fogs, and IoT devices in smart city applications. The main 

functions of security services in SmartCityWare are to integrate 

and regulate security mechanisms among all these components 

and ensure that the required security measures are applied 

appropriately to protect the smart city applications, provided 

services, and the physical environments.  The security services 

include authorization and authentication services and access 

control services for the smart city applications, SmartCityWare 

services, and the physical environment. These services can be 

provided with varying levels of protection measures, such that 

different applications can use the suitable set for their security 

requirements.     

E. Other Core Services 

SmartCityWare is comprised of a collection of services, thus 

it becomes possible to introduce other specialized services that 

implement common solutions for smart city applications to the 

SmartCityWare platform. These specialized services can cover 

additional requirements from those discussed in Section III. 

One example is adding reliability and fault tolerance features. 

For example, Alho and Mattila [42] proposed, developed, and 

evaluated a service-oriented approach to address reliability and 

fault tolerance in cyber-physical systems.  This approach can be 

employed as a collection of services and added to 

SmartCityWare. Furthermore, additional core features and 

services can be added to further customize SmartCityWare for 

specific smart city applications like the ones listed in Section II. 

Some examples can be services to support high mobility for 

vehicular applications or distributed resource management 

services for large-scale smart applications such as smart grids. 

In addition, SmartCityWare services can use advanced 

functions provided by the network used for connecting the 

smart city’s distributed components. One example is to utilize 

Software Defined Networking (SDN) features which provide 

abstractions for the underlying networks and systems to 

programmatically control and configure the networks to 

achieve the required network performance [43]. This requires 

integrating SmartCityWare with SDN controllers such as 

OpenDaylight [44].  The details of this option are left for future 

investigation. Generally, SmartCityWare offers a middleware 

infrastructure where services and resources provided by Cloud 

Computing and Fog Computing can be added to help in solving 

the diverse issues of smart city applications.    

V. SMARTCITYWARE MULTI-AGENT RUNTIME 

ENVIRONMENT  

The main function of SmartCityWare multi-agent runtime 

environment is to manage the Smart city’s IoT, fogs and cloud 

distributed services. It provides a distributed run-time 

environment to securely execute these services as shown in 

Figure 3 earlier. This runtime environment is based on our 

earlier implementation of a multi-agent middleware 

infrastructure environment developed for heterogeneous 

systems [34][35]. We customized that middleware to support 

the SOC model of SmartCityWare. This SmartCityWare multi-

agent runtime environment is a pure Java infrastructure based 

on a distributed memory model. This makes it portable, secure, 

and capable of handling different heterogonous environments 

that consist of heterogeneous fogs, clouds, and IoT devices. The 

agents are deployed in the participating fogs and cloud 

machines to support SmartCityWare services runtime 
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requirements. The infrastructure has various components that 

collectively provide the runtime support for both the core and 

environmental services of SmartCityWare.  

A. Agents  

Software agents’ technology has been used in many systems 

to enhance the performance and quality of their services [47]. 

Our middleware infrastructure utilizes software agents to 

provide flexible and expandable middleware services for high-

performance distributed service-oriented environments. The 

main functions of the agents are to deploy, schedule, and 

support the execution of the service codes in different fogs, in 

addition to managing, controlling, monitoring, and scheduling 

the available resources on a single fog or on a set of related 

distributed heterogeneous fogs. When a smart city application 

is executed, an agent performs the following tasks:  

1. Examine available fog resources and schedule the 

services for execution.  

2. Convert scheduled user services into threads, then 

remotely upload and execute them directly from the 

main memories on the remote fog machines.  

3. Monitor and control resources and provide monitoring 

and control functions to the user.  

For high throughput, the agents are designed to be 

multithreaded, where each thread serves a client’s service 

request. Once user threads are deployed, they directly 

communicate with one another to perform their distributed 

tasks, thus freeing the agents and reducing the overhead on the 

user programs. Agents’ communication mechanisms are 

employed using sockets and each agent consists of several 

components that implement different functions:  

1. The Request Manager handles user job requests such as 

deploying services’ classes, starting/stopping a service, 

and checking agents/services/threads status. Requests 

come from client services or from agents of other fogs 

or clouds.  

2. The Resource Manager provides methods to manage, 

schedule, and maintain the resources of the machine 

where the agent resides. It keeps records of executing 

threads, machine and communication resources’ 

utilization, and performance information. In addition, it 

is responsible for reclaiming system resources after 

each service’s completion or termination.  

3. The Security Manager provides security measures for 

the system (see next subsection for details).  

4. The Service Class Loader remotely loads user service 

classes on the remote machines preparing for execution.  

5. The Scheduler selects the fogs/cloud machines to 

execute a user service based on the its requirements.  

B. Multiuser and Security Issues 

 The multi-agent middleware infrastructure allows multiple 

users to execute multiple services simultaneously. To properly 

manage these services, each service has multiple levels of 

identification, starting with a unique service ID assigned by the 

system. The user ID and the program name further distinguish 

different services. Within each service, thread IDs are used to 

identify the remote threads of the service. Executing user 

threads on remote fog machines exposes these fogs to many 

“alien” threats, raising security and integrity worries. 

Therefore, these machines must be protected to ensure safe 

execution. Java’s default security manager offers some security 

mechanisms of protection by checking executions against 

certain defined security policies before execution. However, the 

security manager in Java has some limitations, thus many 

features were updated for our middleware infrastructure. More 

specifically, two modes of operation are used to offer a secure 

and reliable environment:  

1. The Agent Mode, in which no limitations are enforced. 

A thread running in this mode has full access and 

control of all the operations, services, and resources in 

the corresponding fog.  

2. The User Mode, in which limitations are enforced to 

limit users’ access to the fog operations, services, and 

resources. Some operations, such as removing files, 

initiating a process, using system calls, and changing 

system properties are inactive in this mode.  

With the security modes in place, the user services have full 

access to operations and resources on their local machines 

(where the user job was initiated), but limited and controlled 

access to all remote machines’ resources (since they are running 

in user mode). Nevertheless, this policy can be adapted to offer 

other levels of access control, when needed, on the available 

fog machines. For example, a user can be given to access to 

certain fogs while he/she is disabled on other fogs. 

VI. APPLICATION EXAMPLES 

SmartCityWare can be utilized for building and operating 

smart city applications. Here we present two potential and 

relevant smart city applications for the SmartCityWare: an 

intelligent traffic light control system; and smart buildings 

collaborative data analytics.   

A. Intelligent Traffic Light Control System 

Intelligent traffic light controls can be facilitated by 

SmartCityWare. This implies that the traffic light controls will 

feature monitoring devices at numerous locations to accurately 

capture and model traffic patterns and utilize this information 

to adjust traffic lights to optimize flow. This type of application 

can, furthermore, utilize global positioning, vehicle-to-vehicle 

and vehicle-to-infrastructure communication systems to 

enhance the granularity of data collection. For example, 

individual vehicles can be observed from various perspectives 

(road sensors, cameras, on vehicle sensors, neighboring 

vehicles, etc.) to create a more accurate models. This enhanced 

granularity of data can be utilized to achieve global urban traffic 

control optimizations. We expect this application to yield 

shorter traffic delays, higher throughput, shorter vehicles travel 

times, higher vehicles average velocity, and improved 

prioritization of emergency vehicles’ movements in urban 

areas. Typical algorithms that can be utilized to enhance urban 

traffic control optimization are learning and adaptation 

algorithms. Projects that exemplify this are discussed in [23], 

[24], and [25].  
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SmartCityWare can support the development and operations 

of intelligent traffic light control systems. All involved devices 

within the reaching area of the traffic light, such as the vehicles, 

road sensors, and communication devices, are considered as 

services that observe the status of the traffic in that area. These 

processes and elements are illustrated in high-level in Figure 4. 

In each traffic light, a fog can be used to perform various 

services, as well as provide local optimization. The information 

gathered through the relevant devices will be utilized by the fog 

to make informed optimizing decisions about specific traffic 

lights. A collection of services on a cloud can also monitor the 

global traffic status within the smart city by observing the status 

of the fogs operations and local conditions. This information 

will be utilized by the cloud services to provide global 

optimizations for decreasing traffic delays, enhancing vehicles’ 

flow, and prioritizing emergency traffic on a larger scale, 

covering urban locations more thoroughly. The status of the 

traffic in a smart city can be gathered through these services in 

regular periods. This status can then be used to analyze, assess 

and enhance the traffic, as well as configure the fog services 

correspondingly. Furthermore, cloud services can facilitate 

synchronization mechanisms among multiple fogs to organize 

multiple traffic lights available within a short distance of each 

other or positioned at a significant street in a smart city. With 

the change in traffic conditions, all fogs will fine-tune their 

operations using the locally collected information along with 

the global view delivered by the cloud services.    

B. Smart Buildings Data Analytics 

Another potential application of SmartCityWare is enabling 

collaborative data analytics for optimizing smart buildings 

energy performance. As it has been stated repeatedly, buildings 

in urban areas account for around 40% of the overall energy 

consumption [45]. Thus, their energy performance optimization 

represents a significant opportunity to reduce the overall energy 

consumption. A large part of commercial buildings is run by 

Building Management Systems (BMS), and the utilization of 

Information and Communication Technologies (ICT) enables 

for utilization of sophisticated algorithms and methods to 

enhance buildings’ performance. Furthermore, smart buildings 

encompass many sensing and monitoring devices, as well as 

various types of actuators. As it has been demonstrated in [46], 

that collaborative data analytics of smart buildings can 

positively impact the accuracy and quality of results, decisions 

and actions, as compared to isolated buildings data analytics, in 

which cases it would need long times of data collection before 

their data becomes useful. SmartCityWare can be utilized to 

enhance the collaborative data analytics among large numbers 

of smart buildings. 

The availability and quality of security services would be 

highly relevant for participating buildings’ owners, as we are 

talking about commonly confidential data. Therefore, 

SmartCityWare will be responsible for providing adequate 

mechanisms for anonymizing and protecting data. It will also 

provide mechanisms to transfer data to the cloud, as well as 

machine learning algorithms for development of models. The 

cloud will be providing these learning algorithms and it will 

perform global optimization, also taking into consideration 

information from the smart grid power generation. 

Furthermore, SmartCityWare will offer mechanisms for 

transferring decisions and recommendations to smart buildings, 

which can then act upon them to enhance their performances. 

These processes and main participants are illustrated in Figure 

5. Here, as shown in the figure, a fog can be used for each 

building to execute many recommendations and to provide 

local optimization. SmartCityWare will enable development of 

much more accurate models, as yielded by the collaborative 

data analytics. These models can serve different purposes, such 

as: timely and accurate fault detection and diagnosis (cloud 

services), generation of (nearly) optimal preventive 

maintenance schedules (fog services), optimization of matching 

of demand and response (cloud services), generation of optimal 

set points for each building (fog services), etc. 

 

 

Figure 5. SmartCityWare application for collaborative data 
analytics for smart buildings. 

Using SmartCityWare to enable utilizing cloud computing 

for collaborative data analytics for smart building can provide 

faster mechanisms to discover faults. As shown in [46], energy 

 

Figure 4. SmartCityWare application for intelligent traffic light 
control systems. 
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savings can be achieved with connecting two or more smart 

buildings to the cloud. The savings can be increased by 

connecting more buildings as faults can be discovered faster 

and energy losses will be discovered and avoided earlier. 

Although, some overhead and extra cost will be involved in this 

connection, energy savings from experiences collected from 

multiple buildings can significantly exceed the extra costs 

specially with multiple buildings. More analysis and 

information on this approach can be found in [46].         

VII. IMPLEMENTATION AND EXPERIMENTS  

A SmartCityWare prototype was implemented including the 

multi-agent runtime environment discussed in Section V. In 

addition, most of the core services of SmartCityWare 

mentioned in Section IV were implemented. These include the 

broker services, invocation services, and location-based 

services. Two types of broker services were implemented: the 

global broker that will be deployed on the cloud and the local 

brokers that will be deployed on all fogs.  A distributed process 

to update the global broker, with new information from the local 

brokers, is executed periodically every 30 seconds. This update 

may include adding a new service, removing a service, or 

changing the location of a service. A mechanism is also 

implemented to allow a local broker to forward a service lookup 

request to the global broker if it does not have the requested 

service. Both local and remote service invocations were also 

implemented and added to the prototype implementation.  

For the IoT side, we used the Arduino board [36] which is 

open source hardware for embedded systems. For this prototype 

implementation, the Arduino was used as the IoT payload 

subsystem that is the onboard device requesting services. Some 

sensors were connected to the Arduino such as DHT11 sensor 

[37] for temperature and humidity measurements. Furthermore, 

some LEDs and a buzz were installed to represent actuators. In 

addition, we installed an Adafruit CC3000 Wi-Fi board [38] to 

connect the Arduino to a local area network that has a fog. The 

Arduino code was developed using the Arduino IDE [39] with 

the Adafruit CC3000 library [40]. Each IoT service was 

implemented with a RESTful API.  

At the fog side, there is a service that represents each sensor 

or actuator attached to the Arduino. The main function of these 

services is to map and bridge a call from the SOAP APIs to 

RESTful APIs. All sensor and actuator services are registered 

with the local broker. In addition, the global broker is 

periodically updated with these services.  

For the experiments, we used three computers; one represents 

the cloud and two represent two fogs. In addition, we used 

WAN emulators among the machines to introduce the effects of 

using long distances and/or the Internet to connect them. 

Experiments were conducted with different configurations: 

• LSC: a local IoT service call within the corresponding fog. 

• RSCCF: a remote IoT service call from the cloud. 

• RSCFF: a remote IoT service call to another fog where 

both fogs are connected using a WAN and not involving 

the cloud. 

• RSCFCF: a remote IoT service call to another fog through 

the cloud. 

The experiment was repeated for two types of services. The 

first service is to get the current temperature (CurTemp) while 

the second is to turn on the LED (LEDon). The average results 

of 10 runs of multiple service calls are shown in Figure 6. These 

recoded times for these calls do not include the service lookup 

times. The response time for a service call from fog to another 

fog and from cloud to fog is similar as the service call that is 

directly done between the client fog and the server fog without 

involving the cloud.  

The average service lookup time for local services (Local), 

remote services between a fog and the cloud or between a fog 

and another fog where they are connected by a WAN (Remote-

direct), and remote services between a fog and another fog 

through the cloud (Remote-cloud) as there is no direct network 

between both fogs are shown in Figure 7. As shown, there is a 

big difference between local and remote service lookup times. 

The local services can look for and utilize the local fog services 

and local IoT device services faster. This enables having low 

latency services supported by the available fogs for IoT 

applications. At the same time, local services can utilize 

services at the cloud or at other fogs including their IoT device 

services. Any cloud service can also utilize any services 

available at any fog.   

 

 
Figure 6. IoT device service calls response times. 

 

 
Figure 7. Service lookup times. 
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VIII. RELATED WORK 

Several middleware platforms were proposed and developed 

to solve different challenges in smart cities. Some examples of 

these middleware platforms are Civitas [26], SOFIA [8], 

VITAL [27],  SmartUM [28], SMArc [29], GAMBAS [30], and 

CityHub [31]. One of the main differences between 

SmartCityWare and other proposed middleware platforms is 

that SmartCityWare is a completely service-oriented 

middleware that utilizes both emerging CoT and Fog 

Computing to provide different services for smart cities. The 

representation of all components and tools as services allow for 

a smooth integration of services using a common integration 

and deployment mechanism. An advantage of using SOM is 

allowing the middleware to be open for unlimited extensions 

including utilizing services provided by other systems as well 

as integrating and utilizing future developed technologies as 

part of the middleware.  

Different engineering issues such as developing generic 

computational models for smart city platforms and the 

difficulty of developing a common platform for smart cities 

were discussed in [32][33]. Our work in this paper utilizes the 

flexibility and extensibility of the service-oriented architecture 

to add the needed flexibility and extensibility to the 

SmartCityWare middleware platform. As a result, 

SmartCityWare can be built using current available 

technologies, yet it can evolve over time to include more 

services and utilize state-of-the-art algorithms, tools and 

models as they are developed. 

IX. CONCLUSION 

Smart city applications provide numerous enhancements to 

the smart city features and capabilities leading to enhanced 

operations, optimized resources utilization and ultimately a 

better quality of life for the residents. These applications often 

require using multiple ICT components and the integration of 

various systems and services. IoT, Fog and Cloud computing 

can be integrated to support these applications, yet this imposes 

multiple challenges on the development and operations of these 

applications. Middleware support is essential for such 

applications to meet the challenges imposed such as 

heterogeneity, mobility, and real-time support. In this paper, we 

outlined the functions and features needed in a middleware 

infrastructure to support smart city applications. Based on these 

functions, a service-oriented middleware that integrates and 

utilizes the cloud of things (CoT) and fog computing and 

provides a set of services to support smart city applications was 

proposed. This middleware is named SmartCityWare, where all 

system resources are viewed as a set of services to be used to 

develop smart city applications. One of the main advantages of 

this approach is the flexibility of extending the middleware 

itself to include new and more advanced services to support 

smart city applications as they develop. In addition, it provides 

the flexibility to add more devices, components, and services as 

the city grows or more services are needed. In addition, the 

proposed middleware can be easily extended to utilize 

emerging technologies, other than Cloud of Things and Fog 

Computing, for supporting smart city applications in the future. 

In addition, we discussed the design and architecture of 

SmartCityWare and its runtime environment. We also offered 

some implementation details and experimental results showing 

the validity of the approach. In the future, we plan to enhance 

the implementation of SmartCityWare, include more features 

and services common to many smart city applications and 

demonstrate its features through actual implementations of 

specific smart city applications.  
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