
Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier.com/locate/tre

Modeling electric vehicle charging station expansion with an
integration of renewable energy and Vehicle-to-Grid sources
Md Abdul Quddus⁎, Mohannad Kabli, Mohammad Marufuzzaman
Department of Industrial and Systems Engineering, Mississippi State University, Starkville, MS 39759-9542, United States

A R T I C L E I N F O

Keywords:
Electric vehicles
Charging station
Renewable energy
Progressive hedging algorithm
Rolling horizon heuristics

A B S T R A C T

This study proposes a novel formulation for designing and managing electric vehicle charging
stations, considering both long-term planning decisions and short-term operational decisions
over a pre-specified planning horizon and under stochastic power demand. To solve this chal-
lenging problem, we propose a hybrid algorithm that combines Sample Average Approximation
with an enhanced Progressive Hedging Algorithm. A case study, based on the road network
around Washington, D.C., is presented to visualize and validate the modeling results. Results
indicate that the electric vehicle power demand are satisfied primarily via the grid and Vehicle-
to-Grid when energy cost is low and solar power is unavailable.

1. Introduction

Fossil fuel has been the dominant energy source for transportation vehicles over a long period of time. The technology in cars has
advanced significantly in every aspect except energy sources they are running. Several attempts were made to replace fossil fuels with
other forms of energy such as natural gas, electricity, hydrogen, and hybrid fuels. Fossil fuels are limited and will have to be replaced
by other energy sources. Advancing of the technology of renewable energy serves to that effect. Another advantage of using re-
newable resources is the lower in Greenhouse Gas (GHG) emissions which is gained by using less energy from fossil fuels and more
from natural resources. Attempts to replace fossil fuels were few and inefficient. Furthermore, range anxiety1 is one of the major
reasons for slowing down the adoption rate of electric vehicles (Nilsson, 2011). Fortunately, a number of recent advancements in
battery technology, along with the continuation of research in this area, are striving to alleviate this problem in future. For instance, a
recent advancement in lithium-ion batteries let Tesla run their electric vehicles over 300 miles.2 Samsung, on the other hand,
developed a lithium-ion battery that can be fully charged in 20min and makes electric vehicles to go over 370 miles.3 Another barrier
for promoting electric vehicles is the lack of charging stations which, if constructed carefully over time, would improve the use of
electric vehicles in the future (Kuby and Lim, 2005). Finally, a number of initiatives from the U.S. government, such as Electric Vehicle
Everywhere Grand Challenge, will support the growth of electric vehicles in coming years (U.S. Department of Energy, 2014). The
collaboration in the investment strategies between the light duty electric vehicles (LDEV) and electricity generation sectors can
substantially reduce the total societal cost (i.e., the sum of costs from both sectors) (Chen et al., 2017). To cope with this projected
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growth, there is a need to carefully design and manage electric vehicle charging stations to not only reduce the overall system costs
but also to provide substantial environmental and social benefits for the community. As the penetration of electric vehicle spreads,
the load on the power system is going to increase due to the expansion of the charging infrastructure. A recent study from the
Washington State’s Department of Transportation reveals that a total of 228,725 kWh of energy was supplied to charge electric cars
between 2012 and 2015, which is equivalent to replacing 22,397 gallons of gas (Washington State Department of Transportation,
2015). Further, projections are made that the load from electric vehicles in the state of Washington will reach around 107MW by
2029 (City Light, 2010). Bai et al. (2015) demonstrate the effect of the daily load curve triggered by an electric vehicle considering
three different modes of charging. The authors have found that electric vehicles have significant impact on the daily load curve. To
hedge against this projected growth, it may be required to upgrade electricity distribution systems, increase capacities, integrate
renewable energy sources (RES), introduce dynamic pricing options (i.e., encourage off-peak charging so that the growing loads do
not exacerbate peak demand), and many more.

Charging stations heavily rely on electric power systems. Since the electricity demand and supply must be equal at all times,
generation, transmission, and distribution capacities need to be designed accordingly to cope with any anticipated peak demand. This
can be better achieved by integrating renewable sources withthe Vehicle-to-Grid (V2G) services, where cars will have the option to sell
back the excess energy in their vehicle’s batteries to the grid. The V2G allows car batteries to act as a portable storage for energy. The
RES, also known as green energy, are generated using natural resources, such as solar rays, wind, or river streams, and are subject to
varying degrees of uncertainty. For instance, solar and wind energies depend on the availability of sun, weather fronts, and other
complex phenomena. On the other hand, V2G services allow charging stations to discharge electricity back to the grid when con-
nected and thus lead to greater renewable-integration benefits. In the V2G mode, electric vehicles can discontinue charging and start
discharging their batteries in exchange for some incentive, if the charging stations experience any sudden increase in demand or
unexpected interruption from renewable sources. It is worth noting that, though the benefits of using these sources are obvious,
challenges lie on predicting their availabilities in hours ahead. Renewable energy variability and uncertainty cause a number of
power system operational and planning challenges for the power companies since real-time electricity supply and demand must be in
exact balance at all times to maintain power system stability and reliability (Weiller and Sioshansi, 2016). Furthermore, since the
sources of V2G energy are heavily reliant on electric vehicles passing through the charging stations and highly stochastic in nature,
therefore, the availability of V2G services vary significantly in different time periods of the day. Therefore, even though the benefits
of integrating renewable energy with V2G are already realized, charging stations still find difficulty to optimize their operations to
receive the true benefits from this integration.

Up until now, a stream of research has addressed the charging scheduling problem. Of those, many have considered the in-
tegration of renewable energy with or without V2G sources while planning charging schedules for the electric vehicles. Liu et al.
(2012) study how the smart charging patterns of electric vehicles affect the power system scheduling while considering coordination
of wind energy, thermal units, and V2G sources. He et al. (2012) present a global and a local scheduling model to decide on charging
and discharging decisions for the electric vehicles with an aim of minimizing the overall system cost. Ortega-Vazquez et al. (2013)
study how the integration of V2G with power systems can be made to achieve better efficiency and security. Results show that this
coordination will allow to operate efficiently under the existing power infrastructure. Haddadian et al. (2016) study the effects of
considering V2G and renewable energy as viable sources for the smart grid. The impact of electric vehicles as mobile sources of
energy is studied to hedge against the peak load hours and make the power supply more stable. Jin et al. (2014) propose a stochastic
optimization model to minimize the average cost of using renewable energy under its supply uncertainty. Hong et al. (2015) plan for
the operations of charging stations by considering different pricings throughout the day while integrating renewable energy into the
power system.

Another stream of research is dedicated to the applications of battery swap stations where the electric vehicles can exchange their
depleted or nearly depleted batteries with full batteries for a fee. Pan et al. (2010) present a two-stage stochastic programming model
that determines where to locate battery swap stations and then make appropriate operational decisions (e g. ., number of batteries to
charge and discharge) based upon realized battery demands, electric vehicle loads, and production of renewable energies. A salient
feature of the model is that it allows for battery discharge to support grid during peak hours. Worley and Klabjan (2011) present a
dynamic programming model that determines the number of batteries to purchase and their charging time based on dynamic changes
in grid power fees. Mak et al. (2013) develop two robust optimization models where one minimizes costs while the other one
maximizes a pre-specified amount of profit associated with optimizing the infrastructure planning for battery swap stations. Nurre
et al. (2014) develop a mathematical model to determine the optimal operational decisions (e.g., number of batteries to charge,
discharge, and exchange) of a battery swap station over a pre-specified time horizon. Liu et al. (2014) propose an optimization model
to determine the energy exchange strategies of a battery swap station by considering solar energy availability. Along the same line,
Liu et al. (2016) extend the previous study to determine the location and capacity of battery swap stations while considering the
energy demand management decisions (e g. ., optimal pricing, number of batteries to charge and discharge).

Realizing the need that the energy demand may fluctuate highly from one hour to the next, imposes most of the studies discussed
above which attempt to manage charging station decisions on an hourly basis. However, the studies fail to provide an expansion plan
for the charging stations. The principal challenge that must be overcome in order to replace petroleum powered passenger vehicles
with electric vehicles is to concurrently locate and manage charging station decisions efficiently over a specified planning horizon.
This is practical since potential consumers will be less inclined to purchase electric vehicles unless there is an adequate charging
station infrastructure (Bento, 2008). In pursuit of this goal, a new stream of research has attempted to extend the single time period
flow-refueling location model (FRLM), introduced by Kuby and Lim (2005). Of those, we mention the works done by Hosseini and
MirHassani (2015) and Li et al. (2016). Recently, Vries and Duijzer (2017) prove FRLM as strongly NP-hard, and propose a mixed-
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integer linear programming formulation for the FRLM. The authors also extend to the case for which the driving range varies during a
trip. Others have tackled the same problem using different perspectives. For example, Sweda and Klabjan (2011) identify the patterns
in residential electric vehicle ownership and driving activities by developing an agent-based decision support system to allow
strategic deployment of new charging stations. Ge et al. (2011) optimize the sizing and siting of electric vehicle charging stations and
minimize the cost of charging stations. A mathematical program model is presented and solved using an active-set decomposition
algorithm. Ip et al. (2010) use a clustering technique that compile data points, containing quantified road information of electric
vehicle charging demand in an urban setting, to inform the location plans for the electric vehicle charging stations. Bhatti et al.
(2015) study a two-stage optimal location decision problem, where the demand information is learned over time. A key feature of the
model is to provide a solution for whether to actively learn the market through a greater initial investment in the alternative fuel
stations network or to deter the commitment since an overly aggressive investment often results in sub-optimal alternative fuel
station locations.

To the best of the authors’ knowledge, no prior studies have integrated both the long-term charging station planning decisions
(e g. ., size, location, and time to open charging stations) and short-term hourly operational decisions (e g. ., number of batteries
charged, discharged through B2G, stored, V2G, renewable, grid power usage) under the same decision making framework. To fill this
gap in the literature, this study proposes a two-stage stochastic programming model that simultaneously optimizes long-term
planning decisions and short-term charging station management decisions over a pre-specified planning horizon and under stochastic
power demand. The problem is challenging due to the -hard nature of location design, uncertainties present in dynamic traffic
demands, availability in RES, and many others which significantly impact the hourly power management (e g. ., renewable, V2G, grid
power usage) and battery charging, discharging, and storage decisions in a charging station. To alleviate these modeling challenges
and to solve real scale problem instances, we propose a customized hybrid algorithm that combines Sample Average Approximation
(SAA) with an enhanced Progressive Hedging Algorithm (PHA). The hybrid algorithm incorporates several algorithmic improvements
such as penalty parameter updating techniques, local and global heuristics, and different variants of the rolling horizon heuristic. We
apply this algorithm to solve a real world case problem by using the road network of Washington, D.C. and to cast a number of
managerial insights into the optimal system design and the total system cost. Table 1 distinguishes our contribution with the existing
electric vehicle literatures. In summary, the main contributions of this paper to the existing literature are as follows:

1. We develop a two-stage stochastic mixed-integer program that incorporates both long term planning decisions and short-term
hourly operational decisions to design and manage electric vehicle charging station decisions under stochastic power demand. The
proposed model differs from existing studies in that:
(a) We consider a long-term charging station expansion planning model that features size, location, and timing to open facilities

and demand response with a short-term hourly time resolution. We notice from the existing body of literature that there are
models that capture either long-term charging station planning decisions or short-term operational charging stations mana-
ging decisions. However, none of the prior studies have investigated the integrated effects for both long-term charging station
planning and short-term hourly operational decisions under the same decision making framework. Separate considerations of
these models, as observed in prior studies, may result in sub-optimal decisions or inaccurate cost estimation. The integration
of these considerations is motivated by real cases and indeed poses methodological challenges. Upon solving efficiently, this
holistic approach holds promise to enhance engineering guidelines and policies which are crucial for the sustainment of this
new vehicular system.

(b) We extend the model by introducing chance and expected value constraints to ensure high renewable energy utilization.
Experimental results indicate that this integration has profound impact on minimizing the overall system cost.

2. We develop and implement a customized hybrid solution approach that combines a Sample Average Approximation algorithm
with an enhanced Progressive Hedging Algorithm to solve our proposed optimization model. We introduce a number of algo-
rithmic improvements such as penalty parameter updating techniques, local and global heuristics, and different variants of the
rolling horizon heuristic.

3. We construct a real-world case study to test the performance of the algorithms and to reveal interesting managerial insights. We
demonstrate the computational performance of our customized hybrid algorithm relative to its generic version. As evidenced from
a set of computational results that the enhanced variant of the hybrid algorithm is capable of producing high-quality solutions
consistently to solve realistic large-size problem instances by obeying the termination criteria.

The exposition of this paper is as follows. Section 2 introduces a two-stage stochastic programming model for designing and
managing long-term and short-term electric vehicle charging station decisions under power demand uncertainty. The hybrid solution
approach to solve our proposed optimization model is introduced in Section 3. Section 4 performs a series of computational ex-
periments to draw managerial insights and to verify the performance of the algorithms. Section 5 concludes this paper and provides
some future research directions.

2. Problem description and model formulation

This section discusses the electricity flow of the transportation network. The problem description is provided which is followed by
a two-stage stochastic mixed-integer linear programming (MILP) model to solve the research problem optimally. The key purpose is
to minimize the overall energy network cost of electricity flow with respect to established charging stations, which allows decision
makers to serve electricity demands in an efficient way.
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2.1. Problem description

We develop a two-stage stochastic MILP model that simultaneously addresses long-term electric vehicle charging station ex-
pansion decisions (e g. ., facility location decisions) and short-term hourly operational decisions (e g. ., number of batteries charged,
discharged through B2G, stored, V2G, renewable, grid power usage) over a pre-specified planning horizon and under power demand
uncertainty. To serve this purpose, the transportation network is divided into a set of cells , where each cell can be considered as a
potential location to establish a charging station over a set of time periods, including a set of hours and a set of years .

A two-way connection between the power grid (PG) and electric vehicle (EV) charging station is used, allowing the station to buy
electricity from the grid when needed and sell back to the grid through Battery-to-Grid (B2G) when it is profitable. In this research,
two types of charging stations are considered with respect to their electric supply capacities. A type 1 charging station includes the
PG, the RES, and the V2G usage as power sources, while a type 2 charging station includes swappable batteries in addition to the
power sources available for type 1 charging stations. After opening a charging station, we assume that the electricity demand in the
charging station can be supplied from four different energy sources: i( )PG; ii( ) stored batteries at the charging stations; iii( )RES (e.g.,
solar power); and iv( ) discharged power of electric vehicles into the grid through the V2G connection capabilities. Fig. 1 shows how
different energy sources are integrated with a charging station in a transportation network.

It is worth noting that long-term decisions, which require large budgets, are sometimes desired to be provided in advance for
the entire predefined planning horizon. The charging station opening decision is a key strategic long-term decision which provides
the necessary infrastructure to accommodate electric vehicle charging needs and participate in increasing the ownership base of
electric vehicles. Hence, we assume that the number of time-stages are predetermined and each time-stage has an equal length (for
both hours and years). Moreover, short-term operational decisions are made on an hourly basis and we use a representative 24 h
period from each year of the planning horizon as the short-term operational decisions. Even though the operations of a charging
station occur continuously over time, we divide a day into 24 h to ease traceability. The representative 24 h demand is equivalent
to the average demand of the whole year. We further assume the charging station opening decisions are made at the beginning of
each year.

Estimating electric vehicles’ flow is a challenging problem, and it can be even more difficult depending upon traffic and road
geometry (e g. ., curvy links). A rough estimation of flow is obtained by: i( ) developing a routing algorithm that deploys electric
vehicles from multiple sources to destination points to get an estimation of the number of vehicles passed through each link of the real
world physical network, and then ii( ) developing cells on the network obtained from i( ) to estimate the number of electric vehicles
passing through each cell in a given time period. Additionally, electric vehicles’ flow also fluctuates highly from one hour to another.
This mandates the necessity to investigate a large scenario set for electric vehicles’ flow in developing a two-stage stochastic pro-
gramming model. While doing so, we consider the available electric vehicles in our tested region into account that helps in predicting
the future availability of electric vehicles. Then, we use the Monte Carlo simulation to generate scenarios for electric vehicles’ flow in
our tested regions. The demand of each cell is modeled as an uncertain variable of which probability distribution might not be known
in advance. Electricity demand of each cell is determined in terms of the expected number of electric vehicles traversed through the
cell in each time period and, consequently, the percentage of those that requires to be charged under each scenario. Similarly,
expected V2G electricity availability is determined in terms of the percentage of electric vehicles required to be discharged in each
time period and under each scenario. It is worth noting that this way we have indirectly considered the drivers’ behavior in charging
station choice.

2.2. Model formulation

Let us now summarize the following notation for our two-stage stochastic programming model. Parameters are introduced by
lowercase and Greek letters, while variables are introduced by uppercase letters. Additionally, the superscripts of parameters re-
present their brief descriptions while their subscripts represent their indices.

Fig. 1. Network illustration of integration of different energy sources with a charging station.
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Sets:

• : set of cells
• : set of years
• : set of hours
• : set of station types (K1 to denote type 1 charging stations and K2 to denote type 2 charging stations with battery swap stations,
i.e., = K K{ , }1 2 )
• : set of scenarios

Parameters:

• ikt : annualized cost of constructing and maintaining a charging station of type k at cell i in year t
• fiht: flow of electric cars at cell i in hour h of year t
• : average unit power requirement for each car (in kWh)
• : average unit power discharged from each car (in kWh)
• ht : percentage of the car charged on hour h of year t under scenario
• ht : percentage of the car discharged power on hour h in year t
• cht

pg : unit PG electricity cost consumed by EV in hour h of year t ($/kWh)
• cht

r : unit cost of producing electric power from solar energy sources in hour h of year t ($/kWh)
• cht

v g2 : unit V2G electric energy cost in hour h of year t ($/kWh)
• riht : renewable energy available at cell i in hour h of year t
• giht : grid power available at cell i in hour h of year t
• ht : unit penalty cost for power shortage in hour h of year t ($/kWh)
• pt

s: minimum power demand requirement to open a charging station of year t
• pt

b: minimum power demand requirement to open a type 2 charging station of year t
• ht : unit cost of storing battery in hour h of year t
• ht : unit profit of discharging battery in hour h of year t
• qt

in: number of plug-ins available for charging batteries og year t
• qt

out : number of plug-ins available for discharging batteries of year t
• ut: maximum number of batteries that can be stored at a type 2 charging station of year t
• : probability of scenario

Decision variables:

• Yikt: 1 if a station of type k is opened at cell i in year t ; 0 otherwise
• Giht : amount of grid power used to satisfy demand at cell i in hour h of year t under scenario
• Ziht : amount of renewable power used to satisfy demand at cell i in hour h of year t under scenario
• Viht : amount of V2G power used to satisfy demand at cell i in hour h of year t under scenario
• Biht : number of batteries demands at cell i in hour h of year t under scenario
• Riht : amount of power shortage at cell i in hour h of year t under scenario
• Hiht : number of full batteries stored at cell i in hour h of year t under scenario
• Siht : number of batteries charging at cell i in hour h of year t under scenario
• Piht : number of batteries discharging at cell i in hour h of year t under scenario

We now introduce the following first- and second-stage decision variables for our two-stage stochastic programming model. The
first-stage decision variables YY { }ikt i k t, , select the type, location, and year to open a charging station as shown below:

=Y k i t1 if a charging station of type is opened at cell in year
0 otherwise;ikt

The second-stage decision variables GG { }iht i h t, , , denote the amount of grid power used to satisfy demand at cell
i in hour h of year t under scenario ; ZZ { }iht i h t, , , denote the amount of renewable power used to
satisfy demand at cell i in hour h of year t under scenario ; VV { }iht i h t, , , denote the amount of V2G
power used to satisfy demand at cell i in hour h of year t under scenario ; BB { }iht i h t, , , denote the
number of batteries demand requested at cell i in hour h of year t under scenario ; HH { }iht i h t, , ,
denote the number of full batteries available at cell i in hour h of year t under scenario ;

SS { }iht i h t, , , denote the number of batteries charging at cell i in hour h of year t under scenario ;
PP { }iht i h t, , , denote the number of batteries discharging at cell i in hour h of year t under scenario ;

and finally RR { }iht i h t, , , denote the amount of power shortage at cell i in hour h of year t under scenario
.

The objective of model [EVC] is to minimize the first-stage and the expected value of the random second-stage costs. More
specifically, the first-stage minimizes the cost of locating charging stations prior to the realization of any stochastic event (e g. .,
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electric vehicle power demand). However, after the uncertainty is revealed, the second-stage decisions are made, which include
decisions about power dispatching between charging stations and electric vehicles. These decisions depend on the first-stage deci-
sions which are made after the uncertainties are revealed and pertain to the real-time operation. The following is a two-stage
stochastic mixed-integer linear programming (MILP) model for our problem, referred to as [EVC]:

+Minimize YEVC Y[ ] ,
i k t

ikt ikt
Y (1)

subject to

Y i t1 ,
k

ikt
(2)

Y Y i k t, ,ikt ikt1 (3)

Y i k t{0, 1} , ,ikt (4)

with Y( , ) being the solution of the following second-stage problem:

= + + + +

+

Minimize c G c Z c B c V

R H P

Y, (

)
i h t

ht
pg

iht ht
r

iht ht
pg

iht ht
v g

iht

ht iht ht iht ht iht

G Z S V R H P B, , , , , , ,

2

(5)

subject to

+ +G Z V p Y i h t, , ,iht iht iht
k

t
s

ikt
(6)

+ + + =f G Z V B R i h t( ( )) , , ,ht iht iht iht iht iht iht (7)

+ +
=max

f g r f
Y B i h k K t

( )
, 0 , , , ,ht iht iht iht ht iht

ikt iht 2
(8)

=H u Y i h k K t, , , ,iht t ikt 2 (9)

+ = +H B P S H i h H t, , ,iht iht iht iht i h t, 1, , (10)

+ = +H B P S H i t T, ,i H t i H t i H t i H t i t,1, 1, (11)

=S i0 ,i,1,1, (12)

= ++S B P i h H t, , ,i h t iht iht, 1, , (13)

= ++S B P i t T, ,i t i H t i H t,1, 1, (14)

=S q Y i h k K t, , , ,iht t
in

ikt 2 (15)

=P q Y i h k K t, , , ,iht t
out

ikt 2 (16)

=B p Y i h k K t, , , ,iht t
b

ikt 2 (17)

G g Y i h t, , ,iht
k

iht ikt
(18)

V f Y i h t, , ,iht
k

ht iht ikt
(19)

Z r Y i h t, , ,iht
k

iht ikt
(20)

+B H S P Z i h t, , , , , ,iht iht iht iht (21)

G Z V R i h t, , , 0 , , ,iht iht iht iht (22)

The objective function (1) is the sum of the first-stage costs and the expected value of the second-stage costs. The first-stage
decisions minimize the annualized cost of constructing and maintaining a charging station of type k in cell i of year t .
Constraints (2) ensure that at most one charging station of type k is opened in a given cell i of year t . Constraints (3)
indicate that if a charging station is opened in an earlier year, it will remain open in the subsequent years. Constraints (4) set the
binary restrictions for the first-stage decision variables.
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The objective function in the second-stage (5) minimizes the expected value of the second-stage costs. More specifically, the first
to fourth term in (5) represent the costs of charging electric vehicles due to using grid, renewable, battery, and the V2G power
sources, respectively. The next two terms represent the costs associated withnot satisfying electricity demand and storing batteries in
the charging stations, respectively. The last term of the objective function represents the profit associated with discharging the
batteries in the charging stations. Constraints (6) mandate at least a certain amount of electricity usage pt

s to open a charging station
at a given cell i of year t under scenario . Constraints (7) indicate that the stochastic electricity demand ( fht iht) at
each cell i must be satisfied either through the PG, renewable resources, V2G, swapping batteries, or through electricity pur-
chased from other power distribution companies. Constraints (8) limit the maximum number of batters that can be demanded in a
type 2 charging station at time period t . More specifically, these constraints specify that when the three power sources (e.g., grid,
renewable, and V2G) cannot satisfy the vehicles’ energy demand, then the available batteries in the charging stations can be used to
fulfill the vehicles’ demand. Constraints (9) limit the number of batteries that can be stored in a charging station located at cell i
in hour h of year t under scenario . Constraints (10) decide the hourly storing, charging, and discharging battery
decisions for a charging station located in cell i of a given year t under scenario . It is assumed that a battery will
require an hour to be fully charged. Constraints (11) map the battery storing, charging, and discharging decisions between the last
hour of the previous year to the first hour of the next year. Constraints (12) initialize that no charged batteries are available in the
first hour of the first year of the planning horizon. Constraints (13) ensure that the number of batteries charged in the next hour +h 1
depends on the charging decisions made in the previous hour h. Constraints (14) ensure the number of batteries charged in the first
hour of the next year depend upon the charging decisions taken in last hour of the previous year. Constraints (15) and (16) limit the
number of batteries that can be charged and discharged in a type 2 charging station located in cell i at hour h of year t
under scenario . Constraints (17) set a minimum power demand pt

b to justify opening a type 2 charging station at cell i of
year t under scenario . Constraints (18) indicate that the amount of grid power used to satisfy electricity demand at cell
i in hour h of year t under scenario should not exceed their availabilities (giht). Constraints (19) indicate that the
V2G power availability in a given cell i is limited by the electric vehicles willingness to discharge at hour h of year t
under scenario . Constraints (20) limit the usage of renewable energy to the availability (riht) of a given cell i in hour
h of year t under scenario . Finally, constraints (21) and (22) set the integrity and standard non-negativity con-
straints, respectively. Moreover, model EVC[ ] is extended to model EVE[ ] to ensure high renewable energy utilization which is
reported in Appendix A.

3. Solution approach

An uncapacitated facility location problem (UFLP) has been shown to be NP-hard problem (Cornuejols et al., 1983). The problem
addressed in this research can also be shown as a special case of the UFLP under the following conditions:

• only one time period is considered, i.e., = 1 and = 1;
• there is only one demand scenario, i.e., = 1;
• electricity demand is fulfilled primarily via the PG (Ziht & =V i h t0 , , ,iht );
• there is no restriction on the PG consumption and, consequently, no power shortage;
• charging price is not dependent on the power usage in each time period ( = 1); and,
• only type 1 charging station is considered, i.e., = 1. Then, no battery related activities are considered at the charging stations,
i.e., H S P, ,iht iht iht , & =B i h t0 , , ,iht .

It can be concluded that the problem investigated in this research is also strongly NP-hard problem; therefore, there is no
guarantee of solving this problem to optimally in a polynomial time. Consequently, commercial solvers, such as CPLEX/GUROBI, will
fail to solve any large instance of such problems. To overcome these computational challenges, we propose a hybrid decomposition
algorithm that combines Sample Average Approximation technique with an enhanced Progressive Hedging Algorithm. The techni-
ques used to enhance the Progressive Hedging Algorithm are local and global adjustment techniques, and few variants of the rolling
horizon algorithm. Interested reader is referred to review the recent study by Poudel et al. (2017) for the details about this hybrid
sampling based decomposition algorithm. The aim is to efficiently generate high-quality feasible solutions for our problem EVC[ ].

3.1. Sample average approximation

The percentage of electric vehicles ht that require charging in a charging station located at cell i in hour h of year
t differs significantly from one hour to the next of a given year. It mandates evaluating a large scenario set to provide meaningful
insights for the decision makers. However, evaluating such a large scenario set poses significant computational challenges in solving
model [EVC]. To remedy this problem, a sampling technique, commonly known as the Sample Average Approximation (SAA) method,
is employed to reduce the computational burden associated with solving model [EVC] in a timely fashion. The SAA has been
extensively used previously to solve many large scale network flow related problems, such as Quddus et al. (2018),Marino et al.
(2018), Quddus et al. (2018), and others. Interested readers may review the work by Kleywegt et al. (2001) to understand the
convergence properties of the SAA technique. In SAA, a sample ,1 2,….., N of N realization of the random vector is generated
from (where <N ) according a normal probability distribution , and they are solved repeatedly until a pre-specified tolerance
gap is achieved. Problem EVC[ ] is now approximated by the following SAA problem:
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+
=

Minimize Y
N

nv Y1 ,
Y

N
m

i k t
ikt ikt

n

N

Y 1 (23)

As the sample size increases, the optimal solution of (23) converges with probability one to an optimal solution of the original
problem EVC[ ] (Kleywegt et al., 2001). Assuming that the SAA problem is solved within an absolute optimality gap 0, we can
estimate the sample size N needed to guarantee an -optimal solution to the true problem with probability at least equal to (1 ) as:

N log log3
( )

( ( 2) )max
2

2 (24)

where > , (0, 1), and max
2 is a maximal variance of certain function differences (Kleywegt et al., 2001). In each iteration of the

algorithmic step, SAA provides a valid statistical lower and upper bound for the original problem EVC[ ], and the process terminates
when the gap between the estimators falls below a pre-specified threshold value. The main steps to solve EVC[ ] using the Sample
Average Approximation (SAA) approach are explained below:

Step 1: Generate M independent percentage of electric vehicle recharging scenarios of size Ni e. .,
… = …m M{ ( ), ( ), , ( )} ; 1, ,m m m

N1 2 , where = h t{ ; , , }ht and solve the corresponding SAA problem
(25). Each sample consists of N realizations of independently and identically distributed (i i d. . .) random scenarios.

+
=

Minimize Y
N

nv Y1 ,
Y

N
m

i k t
ikt ikt

n

N

Y 1 (25)

The optimal objective value is denoted by v N
m and the optimal solution by = …m MY ; 1, ,N

m
.

Step 2: Compute the average of the optimal solutions obtained by solving all SAA problems, v̄ M
N and variance,

v̄
2

M
N :

=
=M

v v¯ 1
M
N

m

M

N
m

1 (26)

where v̄ M
N provides a statistical lower bound on the optimal objective function value (v ) for the original problem defined by Eqs.

(1)–(22)i e. ., v v¯ M
N . Since M samples are generated and …v v v, , ,N N N

M1 2 are independent, the variance of v̄ M
N is given by:

=
=M M

v v1
( 1)

( ¯ )
m

M

N
m

M
N

v̄
2

1

2
M
N

(27)

Step 3: Pick a feasible first-stage solution Y Y obtained from Step 1 of the SAA algorithm, i e. ., one of the solutions from Y N
m

and estimate the objective function value of the original problem using a reference sample N as follows:

+
=

Y Y
N

ng Y( ) 1 ,N
i k t

ikt ikt
n

N

1 (28)

The estimator Yg ( )N serves as an upper bound for the optimal objective function value of problem EVC[ ]. Typically, sample size
N is chosen much larger than the sample size N in the SAA problems i e. ., N N (Kleywegt et al., 2001). We can estimate the
variance of Yg ( )N as follows:

= +
=

Y
N N

Y n YY g( ) 1
( 1)

, ( )N
n

N

i k t
ikt ikt N

2

1

2

where nY( , ) represents the solution of the second-stage problem.
Step 4: Compute the optimality gap (gap Y( )N M N, , ) and its variance ( gap

2 ) using the estimators calculated in Steps2 and 3.

=

= +

gap Y Y

Y

g v( ) ( ) ¯

( )
N M N N M

N

gap N v

, ,
2 2

¯
2

M
N

The confidence interval for the optimality gap is then calculated as follows:

+ +Y z Yg v( ) ¯ { ( ) }N M
N

N v
2

¯
2 1/2

M
N

with z ≔ (1 )1 , where z( ) is the cumulative distribution function of the standard normal distribution.
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3.2. Progressive Hedging algorithm

In Step1, the SAA algorithm requires to solve a two-stage stochastic mixed-integer programming model consisting of N scenarios.
Depending on the size of , , and , which significantly impacts the computational performance of the SAA problems, problem
(25) can still be considered challenging. Often, decomposition based methods can be employed to divide the original problem into
smaller and more manageable subproblems (Rockafellar and Wets, 1991). This motivates us to solve each subproblem of the SAA
problem using a Progressive Hedging Algorithm (PHA). The PHA offers high-quality solutions in solving a variety of application-
specific problems. An example of such can be found in (Huang et al., 2014; Quddus et al., 2019; Quddus, 2018), and many others.

Constraints (6) ( (8) ( (9) (), (and), (16)–(19), ()) in EVC[ ] link the first-stage decisions with the second-stage decision variables.
Therefore, these constraints do not allow problem (25) to be separable by scenarios. To remedy this problem, we created a copy
variable Y{ } {0, 1}ikt

n
i k t n, , , which ensures that the copy of the first-stage decision variables are created for each scenario

n N . Problem (25) can now be rewritten as follows:
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Constraints (40) are referred to as nonanticipativity constraints. These constraints link the first- and second-stage decision variables
and force all scenarios to yield the same first-stage decision variables. To make the model separable by scenarios and to apply
Lagrangian relaxation, we need to rewrite the nonanticipativity constraints. Let Y{ } {0, 1}ikt i k t, , be the “overall design vector.”
The following constraints are equivalent to (40):

=Y Y i k t n, , ,ikt
n

ikt (42)

Y i k t{0, 1} , ,ikt (43)

We employ the augmented Lagrangian strategy, proposed by Rockafellar and Wets (1991), to relax constraints (42) and obtain the
following objective function:
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where { }ikt
n

i k t n, , , defines the Lagrangian multipliers for the relaxed constraints and defines a penalty ratio. Given the
binary requirements of variables Y{ }ikt

n
i k t n, , , and Y{ }ikt i k t, , , the quadratic term Y Y( )i k t ikt

n
ikt

2 shown
in the above objective function can be reduced as follows:
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Meanwhile, the objective function can be reduced as follows:
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When the value of the overall plan Y{ }ikt i k t, , is fixed, the last two terms of the above objective function become constant
and can be removed from the objective function. This will allow the subproblems to be decomposable by scenarios n N . The overall
problem can be formulated for each scenario n as follows:
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Here, { }ikt
n r

i k t n
,

, , , and r denote the lagrangian multipliers and penalty parameter of the PHA, respectively, which are
updated at each iteration r. The values of ikt

n r, and r are updated using Eqs. (64) and (65) and the process continues.

+ Y Y i k t( ) , ,ikt
n r

ikt
n r r

ikt
n r

ikt
r, , 1 1 , 1 (64)

r r 1 (65)

where is a given constant which we initialize at > 1. We further initialize l k t n N0 ; , , ,lkt
n,0 . Finally, 0 is set

to a fixed positive value to ensure that r as the number of iterations r increases. A Pseudo-code of the basic PHA is provided in
Algorithm 1.

Termination Criteria: The PHA terminates when one of the following conditions is satisfied:

• = Y YN n
N

i k t ikt
n r

ikt
r1

1
, ; where is a pre-specified tolerance gap

• 10 consecutive non-improvement iterations
• Maximum iteration limit is reached (i e. ., itermax = 100)
• Maximum time limit is reached (i e. ., timemax = 10,800 CPU seconds)
Algorithm 1. Progressive Hedging algorithm

Initialize, r 1, , { } 0,ikt
n r

i k t n
r,

, , ,
0

terminate false
while (terminate=false) do
for =n 1 to N

Solve EVC PHA[ ( )] and obtain Y{ }ikt
n r

i k t n
,

, , ,
end for
Calculate the consensus parameter:

=Y Y i k t; , ,ikt
r

N n
N

ikt
n r1

1
,

if >r( 1) then
Update the largangian parameter:

+ Y Y i k t( ) ; , ,ikt
n r

ikt
n r r

ikt
n r

ikt
r, , 1 1 , 1

Update the penalty parameter:
r r 1 and > 1

end if

if Y Y( )ikt
n r

ikt
r

i k t
, 1

, , then

terminate true
end if

+r r 1
end while

3.3. Enhanced Progressive Hedging algorithm

Even though the PHA shows faster convergence in solving small to medium sized network problems, the technique fails to provide
a reasonable solution for sufficiently large sized network design problems. This motivates us to explore additional enhancement
techniques (e g. ., local and global heuristics, dynamic penalty parameter updating technique, different variants of the rolling horizon
heuristic) to further improve the convergence and stability of the basic Progressive Hedging Algorithm. The following subsection
discusses some PHA enhancement techniques that we have investigated in an attempt to make the model EVC PHA[ ( )] solve faster.

3.3.1. Penalty parameter updating
Prior studies, such as Huang et al. (2014), show that the performance of the PHA is significantly impacted by choosing an

appropriate value. For instance, the algorithm converges faster to a sub-optimal solution for a significantly large value of .
However, the algorithm takes a longer time to converge if is set to a conservative value. Since there is no way we can estimate the
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appropriate value for a given optimization problem in advance, we adopt the strategies proposed by Hvattum and Lokketangen
(2009) to dynamically adjust the value of over iterations based on the computational performance obtained from prior iterations of
the PHA algorithm. Let r

1 and r
2 define the indicators of the convergence rates in the dual and primal space, respectively. The

penalty value can now be updated as follows:
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(66)
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(67)

=
>

>
if 0
elseif 0

otherwise
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r r r

r

1
1 1

1

1 1
2 2

1

1 (68)

where is a constant parameter whose value is set to > 1.

3.3.2. Heuristic strategies
We will now employ two heuristic strategies, proposed by Crainic et al. (2011), that modify the value of ikt in problem

EVC PHA[ ( )] to further enhance the performance of the Progressive Hedging Algorithm. The first is termed global heuristic as this
strategy adjusts the value of ikt at the end of each iteration r. On the other hand, the second, referred to as local heuristic, adjusts the
value of ikt within the scenario level.

We realize that problem EVC PHA[ ( )] can be decomposed into N deterministic sub-problems. At the end of each iteration r of
Algorithm 1, we can obtain the values of the consensus parameter Y{ }ikt

r
i k t, , which provides an indication of how many times a

charging station of type k is opened in cell i of year t in the previous iterations. A higher value of Yikt
r means that the

charging station of type k located in cell i at year t was selected in many of the previous iterations. Contrarily, a lower
value of Yikt

r indicates that a charging station of type k opened in cell i at year t was not a favorable decision in most of
the previous iterations. Let a and a be the two parameters that define the upper and lower threshold values. Therefore, if the value of
Yikt

r is greater than the threshold value a , then lowering the fixed cost of opening a charging station will attract the subproblems to use
that charging station in the coming iterations. Similarly, if the value of Yikt

r is lower than the threshold value a, then increasing the
fixed cost of opening a charging station will discourage the use of that charging station in the subproblems of the coming iterations.
This will fix the decisions of using fewer charging stations in a given year to either one or zero and thus will help reduce the size of the
problem. The adjustment strategy is shown as follows:
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(69)

where ikt
r represents the modified fixed cost of opening a charging station of type k at cell i in year t and iteration r a;

and a are the two constant parameters whose values are set to < <a0 0.3 and < <a0.7 1; and is a constant parameter whose value
is set to > 1.

We can further enhance the global heuristic strategy by modifying the selection of ikt locally within the scenario level. This
strategy is termed as local heuristic (Crainic et al., 2011) since the modification of ikt only impacts the subproblem of the current
scenario n at a particular iteration r. This strategy emphasizes on modifying the cost associated with opening a charging station of
type k at cell i in year t under scenario n N if the gap between Yikt

n r, and Yikt
r is sufficiently large in a given iteration r.

The local adjustment strategy is then applied to Algorithm 1 as follows:
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(70)

where ikt
n r, represents the modified ikt of opening a charging station of type k at cell i in year t under scenario n N

and at iteration r a; far is a threshold point at which a local adjustment to the ikt of selecting a cell is applied and is set to < <a0.5 1far ;
and is a constant parameter whose value is set to > 1.

3.3.3. Rolling Horizon Heuristic Strategy
The PHA algorithm demonstrates high-computational capability in solving small- to medium-size problems. However, PHA is not

capable of providing a reasonable solution for large-size problems. This motivates us to explore additional enhancement techniques
with different variants of the Rolling Horizon Heuristic strategy to further improve the convergence and stability of the PHA algo-
rithm, i.e., solving sub-problems faster.

It is worth noting that the Progressive Hedging Algorithm still requires solving a deterministic, multi-period problem
[EVC(PHA)]N times, which is still considered challenging from a solution standpoint. One way to tackle this problem is to split the
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planning horizon (i.e., years and hours) into multiple slices and solve them sequentially until all the slices are investigated. In this
study, we employ a Rolling Horizon (RH) heuristic that decomposes problem [EVC(PHA)] into a series of small sub-problems. This is
made for a few consecutive hour-year combinations from the overall planning horizon. The algorithm terminates when all the hour-
year combinations of the planning horizon are investigated. Interested readers can review the studies conducted by Balasubramanian
and Grossmann (2004) and Poudel et al. (2018) to learn more about the RH heuristic.

Three different variants of the RH heuristic are proposed to find high-quality solutions to solve problem [EVC(PHA)] in a
reasonable amount of time. The first variant of the RH heuristic, i.e., [RH1], decomposes problem [EVC(PHA)] on yearly basis,
while the second and third variants of the RH heuristic, i.e., [RH2] and [RH3], respectively, decompose problem [EVC(PHA)] on
hourly and a combination of hourly and yearly bases, respectively. A pseudo-code of the basic RH heuristic is provided in Algorithm
2.

Algorithm 2. Rolling Horizon Heuristic

Let rEVC PHA[ ( ( ))] be an approximate sub-problem of the RH algorithm at iteration r. We further let t h M, ,r r r
0 0 , and Qr be the

starting time period for years, hours, and number of time periods for years and hours for each sub-problem r, respectively. In the RH
heuristic, one can either set a fixed value of Mr and Qr or vary them across different iterations of the algorithm. For each scenario
n , the approximate sub-problems rEVC PHA[ ( ( ))] are solved by setting the variables as:
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After solving a sub-problem, we fix the values of = =Y Y i k t B, , , ;ikt
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0 and step size r is updated. Note that by varying parameters t h M, ,r r r
0 0 , and Qr , several different

variants of the RH algorithm can be developed. Figs. 2–4 provide an illustration of solving a three-year and four-hour time period
problem using three different variants of the RH heuristic ([RH1]-[RH3]). Through multiple numerical experiments discussed in
Section 4.3, we will identify which variant of the RH heuristic solves problem rEVC PHA[ ( ( ))] efficiently.

4. Computational study and managerial insights

In order to test the performance of the algorithms proposed in Section 3 and to draw managerial insights, we develop a case study
where we use Washington, D.C. as a testing ground for the analysis. All the algorithms proposed in this study are coded in GAMS
24.2.1 (General Algebraic Modeling System, 2013) and executed on a desktop computer with an Intel Core i7 3.50 GHz processor and
16.0 GB RAM. The optimization solver used is ILOG CPLEX 12.6.4 In this section, we first provide the details about the input
parameters used to develop the case study. Next, we discuss the results obtained from the experimental study and then present the
computational performance of the hybrid Sample Average approximation based Progressive Hedging Algorithm to solve model
[EVC].

4 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.
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4.1. Input parameters

This study considers Washington, D.C. as a testing ground to visualize and validate the modeling results. A network representation
along with demand distribution of Washington, D.C. is shown in Fig. 5. The rationale behind selecting Washington, D.C. is that the
city offers incentives to own electric vehicle and the adoption rate is high. We divide the network into cells (i e. ., = 132) where
each cell contributes an area of approximately 1.0 mile2. The data for cell-specific parameters are obtained only for those that have a
road passing through them; otherwise, the values for those cells are set to zero. Thus, it is reasonable to assume that only the active
cells can be considered for potential location of opening a charging station. We have considered a 5-year planning horizon starting in
2017 and ending in 2021 ( = 5). Further, we have drawn a representative 24 h from each year of the planning horizon to account
for the short term operational decisions ( = 24). Note that all the cost components are calculated based on 2017 dollars and are
adjusted based on inflation. The cost of opening a fast electric vehicle charging station ( ik t1 ) at cell i costs $50,000 (Agenbroad
and Hollland, 2014) while the cost increases to $500,000 to open a charging station with battery swap station ( ik t2 ) (Gigaom, 2015).

Fig. 2. Illustration of a rolling horizon strategy for [RH1].

Fig. 3. Illustration of a rolling horizon strategy for [RH2].
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Even though the cost of opening a charging station varies from one cell to another; however, in this study we have assumed a fixed
investment cost for all the charging stations opened in cell i for a reasonable approximation. The hourly electricity price plan for
PG cht

pg , renewable resources cht
r , and V2G cht

v g2 are obtained from Salt River Project (2015),Solar Cell Central (2016), and Plug in
America (2016). We project the flow of cars fiht at each cell i of hour h in year t based on the number of electric
vehicles available at Washington, D.C. in 2014. We used the information that there are 8,275 electric vehicles on Washington, D.C.
roads (Plug In Sites, 2014). Factors such as density of population, hospitals, and colleges located near major roads are considered to
project fiht. It is assumed that electric vehicle flow is increasing annually. Many studies predict that there will be a vast increase in
sales of electric vehicles. For instance, Trochaniak (2016) shows how the increase in electric vehicle sales has grown from 2014 to
2016. With another study, Becker et al. (2009) makes predictions on electric vehicle adoption growth rate until 2030. The study
shows that there will be an increasing trend in electric vehicle sales compared to hybrid and traditional combustion engine cars. Flow
is measured by only considering cells that have a road passing through. The flow is considered cumulative, in the sense that if the
road forks demand is divided between the separating roads and if two roads join, then the demand is accumulated. Based on the
number of electric vehicles in 2014, we assumed a different electric vehicle adoption growth rate for the yearly increase in demand.
Since this information cannot be obtained in advance due to its stochastic nature, we regarded charging stations’ demand as an
uncertain parameter in the study. Demand for each charging station is obtained by multiplying the number of cars flowing fiht by the

Fig. 4. Illustration of a rolling horizon strategy for [RH3].

Fig. 5. Network representation (Original map obtained from ArcGIS (2016)) and geographical demand distribution of.Washington, D.C.
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average electric vehicle charge requirement and the percentage of flow requesting a charge ht . We set the car charging percentage
= 40%ht and the car discharging percentage = 5%ht in our base case experiments. The availability of grid power giht and re-

newable resources riht are adopted from the Energy Information Administration (2016) and Public Service Public Service Commission
of the District of Columbia (2016), respectively. The cost of storing a battery in a Type 2 charging station is set to be = "$"0.02ht /hr.
Finally, we set average unit power requirement for each car to be 35.6 kWh and average unit power discharged from each car to
be 35.6 kWh, respectively, in our base case experimentations. Table 2 provides a summary of the input data used in the model.

4.2. Experimental results

A sensitivity analysis is performed to determine how different values of an independent parameter impact a particular dependent
variable(s) as well as the overall electricity supply network cost and design, under a given set of assumptions. Annual decisions on
established charging stations determine the electricity supply network design. Therefore, a considerable change in critical factors

Table 2
Summary of input data.

Parameters Symbol Value References

Fixed cost of opening charging station of type I ik t1 $50,000 Agenbroad and Hollland (2014)
Fixed cost of opening charging station of type II ik t2 $500,000 Gigaom (2015)

Unit PG electricity price cht
pg $(0.06–0.15)/kWh Salt River Project (2015)

Unit cost of producing electricity from renewable resources cht
r $0.099/kWh Solar Cell Central (2016)

Unit V2G electricity price cht
v g2 $(0.05–0.13)/kWh Plug in America (2016)

Flow of electric vehicles fiht 8275/day Plug In Sites (2014)
Car charging percentage ht 40% Assumed

Car discharging percentage ht 5% Assumed
Cost of storing a battery ht $0.02/hr Assumed

Average unit power requirement for each car 35.6 kWh/car Assumed
Average power discharged from each car 35.6 kWh/car Assumed

Fig. 6. Electric vehicle charging station location under base case scenario.
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results in changes in network design. The impact of the car charging percentage, available energy resources (e.g., PG, renewable, and
V2G), minimum power requirement to establish a charging station, and solar power utilization on the overall electricity supply
network design and cost are analyzed.

All sensitivity analyses are performed with respect to a real life case study developed for Washington, D.C. (base case study). Fig. 6
shows the deployment of charging stations Y (symbol “•” represents type 1 charging station and “★” represents type 2 charging
station) for the base case experimentation. Results indicate that the model [EVC] decides to open a number of charging stations near
the downtown area of Washington, D.C. since the density flow of electric vehicles to those cells are high. We further observe a
noticeable expansion of charging stations in Washington, D.C. from year 2017–2021.

In the following, the impact of critical parameters on the electricity supply network cost and design are determined. We denote
=G G Y/iht i h t iht t, , , to be the average consumption of grid in a charging station located in cell i on hour h of

year t . Moreover, Yt is considered as the number of charging stations of any type established at the electricity supply network in
a particular year t. Likewise, we denote Z V,iht iht , are representatives of an average of hourly electricity power supplied by solar
power and V2G power, respectively, related to any type of charging stations established at any network cell. In addition,

=B B Y/iht i h t iht t, , , is considered as a representative of the average number of batteries, which are hourly utilized at a
type 2 charging station established at any network cell. Similarly, H S,iht iht , and Piht are considered as representatives of the average
number of batteries, which are hourly stored, charged, and discharged at a type 2 charging station established at any network cell,
respectively. In addition, Yt is considered as the number of type 2 charging stations established at the electricity supply network in a
particular year t.

4.2.1. Impact of car charging percentage ( ht ) variability on system performance
The next set of experiments show how different levels of car charging percentage variations ht impact the system performance.

To achieve this goal, we created three different realistic scenarios. In the first scenario (base case), we solve model [EVC] using the
input parameters discussed in Section 4.1. The second and third scenarios are created by setting = 50% and = 5% to represent high
and low car charging percentage variation levels. Note that we employ the Monte Carlo simulation to generate different car charging
percentage scenarios ht within +[ (1 ), (1 )]ht ht where ht represents the mean car charging percentage scenario for each hour
h in year t .

Fig. 7 demonstrates the impact of car charging percentage variability ht on system performance. As evidenced from the results, as the
level of car charging percentage variability ht increases, the amount of power utilized to satisfy the electricity demand from diversified
power sources (e g. ., grid, solar, V2G) also increases. Clearly, model [EVC] is highly responsive to a number of time-dependent parameters
such as solar power availability, electricity prices, and vehicle flows, which severely impact the hourly operational decisions of a charging
station located in cell i of a given year t . For instance, it is observed that the electric vehicle power demand is satisfied primarily
via grid and V2G during low cost operating hours and solar power unavailability (i e. ., from 8:0 P.M. to 8:0 A.M.). Alternatively, the
demand is satisfied first via solar and then via grid and V2G during peak operating hours (i e. ., from 10:0 A.M. to 2:0 P.M.) and solar power
availability. Fig. 8 demonstrates the impact of car charging percentage variability ht on the battery-related decisions when model [EVC]
decides to open type 2 charging stations in our tested region. It is observed that to cope with high power demand variability ht , the
charging stations decide to charge more batteries during off peak hours (shown in Fig. 8(c)) which they discharge during peak hours
(shown in Fig. 8(d)). As more batteries are charged during off peak hours, more batteries are required to be stored in the charging stations
during those operating hours as illustrated in Fig. 8(b). In summary, we observe that the car charging percentage variability ht highly
impacts the operational decisions in the electric vehicle charging stations.

4.2.2. Impact of g r,iht iht, and ht on System Performance
Our proposed model [EVC] is highly sensitive to a number of input parameters such as availability of grid power giht, solar power

riht, and V2G power (V2G power availability depends on car discharging percentage ht). Changes in power availability may lead to
deviations from the desired operation quality and therefore must be quantified and carefully evaluated. To see the impact of these
three power availabilities (e g. ., grid, solar, and V2G) on system performance, we conduct four sets of experiments by varying their
availability by ±25% and ±50% from the base case scenario as illustrated in Figs. 9–11. Let us first quantify the performance of grid
power availability giht on system performance (shown in Fig. 9). We keep the solar power riht and V2G power availability at their base
values. We observe that, as the grid power availability giht decreases by 50%, model [EVC] opens 52.94% additional charging
stations to meet the electric vehicles power demand (shown Fig. 9(a)). Moreover, by increasing the grid power availability, the
average utilization of grid power Giht in a charging station also increases as illustrated in Fig. 9(b).

We now evaluate the system performance by varying solar power availability riht by ±25% and ±50% from the base case scenario.
It is observed that model [EVC] decides to open an additional 23.53% charging stations when the solar power availability riht drops
by 50% from the base case scenario. Even though the unavailability of grid and solar power significantly impact the system per-
formance, solar power is relatively less sensitive compared to grid power unavailability. Further, Fig. 10(b) shows that model [EVC]
increases the average utilization of solar power Ziht in a charging station as soon as the source becomes available. Finally, we
investigate the performance of V2G power availability on system performance (shown in Fig. 11). Results indicate that for a 50%
decrease in ht value, model [EVC] opens an additional 14.70% charging stations in our tested region (shown in Fig. 11(a)). Clearly,
if less cars decide to discharge power in a charging station which is considered as the main source of V2G energy, the system will be
relatively less impacted compared to grid and solar power unavailability. This is because grid, followed by solar, are the main sources
of energy for the charging stations and their unavailability are expected to impact the system severely as compared to V2G energy.
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We further observe that as the V2G power availability increases, the average utilization of V2G power Viht in a charging station
located at cell i in hour h of year t also increases (shown in Fig. 11(b)). In summary, we observe that the availability of
grid, solar, and V2G energy significantly impacts the long-term charging station location decisions and short-term day-to-day op-
erational decisions (e g. ., hourly resource utilization, battery storage decisions).

4.2.3. Impact of pt
s and pt

b on system performance
We now analyze the impact of minimum power demand requirements (i e. ., pt

s and pt
b) to open a charging station on system

performance. Fig. 12 illustrates the relationship between charging station opening decisions Yikt under different pt
s and pt

b values. It is
obvious from the results that decreasing both pt

s and pt
b from the base values increase the opening of both type 1 and type 2 charging

stations and vice versa. For instance, a 50% decrease in minimum power demand requirement pt
s increases the average number of

charging station opening decisions by 22.2%. A network representation for this scenario is depicted in Fig. 13. However, we observe
that changing pt

b provides less sensitive decisions in opening charging stations compared to pt
s. For instance, a 50% decrease in

minimum power demand requirement pt
b results in an increase in average number of charging station opening decisions by 10.9%. A

network representation for this scenario is depicted in Fig. 14. It is interesting to note that a 50% decrease in pt
s causes opening a

significant number of type 1 charging stations in a widespread distribution on our tested region as illustrated in Fig. 13. On the other
hand, a 50% decrease in pt

b, though it opens more charging stations, shows less sensitive in opening type 2 charging stations (as shown
in Fig. 14) compared to the base case scenario (shown in Fig. 6).

4.3. Analyzing the performance of solution algorithms

This section presents our computational experience in solving model EVC[ ] using the algorithms proposed in Section 3. We first
assess the computational performance of using different variants of the rolling horizon heuristic over CPLEX (shown in Table 4). Next,

Fig. 7. Impact of car charging percentage ( t ) variability on utilizing resources.
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Fig. 8. Impact of car charging percentage ( t ) variability on real-time demand response.

Fig. 9. Impact of PG availability (giht) on system performance.
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Fig. 10. Impact of solar power availability (riht) on system performance.

Fig. 11. Impact of V2G power availability ( t) on system performance.

Fig. 12. Impact of pt
s and pt

b on system performance.
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Fig. 13. Electric vehicle charging station location under 50% decrease of pt
s.

Fig. 14. Electric vehicle charging station location under 50% decrease of pt
b.
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we show how different heuristic strategies enhance the performance of the Progressive Hedging Algorithm (shown in Table 5).
Finally, we compare the computational performance of incorporating different accelerated techniques inside the Sample Average
Approximation algorithmic framework (shown in Table 6). To help the readers follow our solution methods, we have used the
following notations to represent the algorithms:

• [SAA]: Sample Average Approximation (SAA) algorithm (described in Section 3
• [PHA]: Progressive Hedging Algorithm (PHA) (described in Section 3
• [Hybrid-1]: Sample average approximation algorithm where the subproblems of the [SAA] are solved using the Progressive
Hedging Algorithm (PHA) (described in Section 3
• [Hybrid-2]: Sample average approximation algorithm where the subproblems of the [SAA] are solved using an enhanced
Progressive Hedging Algorithm (PHA) (enhancement techniques are described in Sections 3.3.1 and 3.3.2)
• [Hybrid-3]: Sample average approximation algorithm where the subproblems of the [SAA] are solved using an enhanced
Progressive Hedging Algorithm (PHA) (enhancement techniques are described in Sections 3.3.1, 3.3.2, and

The algorithms presented above are terminated when at least one of the following criteria is met: (a) the optimality gap (i e. .,
= UB LB UB/ ) falls below a threshold value of = 0.01, or (b) the maximum time limit timemax = 36,000 (in CPU seconds), or

(c) the maximum number of iterations itermax = 100 is reached. To terminate the Progressive Heading Algorithm, we have used
additional stopping criteria which are described at the end of Section 3.2. The columns of the tables presented in this section provide
the optimality gap (represented by GAP), running time of the algorithms (represented by CPU), and the corresponding number of
iterations (represented by Iter). In the experimental results, if the algorithms are solved less than the stopping criteria ( ) then we
highlight the approach which gives the smallest running time. Otherwise, if such a quality solution is not found within the maximum
time or iteration limit, then the approach with the smallest optimality gap is highlighted. The size of the deterministic equivalent
problem of model EVC[ ] is presented in Table 3.

The first set of experiments (reported in Table 4) present the computational performance in solving model EVC[ ] using three
variants of the rolling horizon heuristic (e g. ., algorithm RH1 RH2[ ], [ ], and RH3[ ]) over CPLEX. To test the performance of these
algorithms, we vary , , and to obtain 18 different problem instances as reported in Table 3. Note that each subproblem of the
rolling horizon heuristic is solved using CPLEX, and we set a maximum time limit of 10,800 CPU seconds for each of the subproblems.
It is worth noting that the bold values indicate the respective algorithm provides the best solution in Tables 4–6. Results indicate that
CPLEX offers high-quality solutions over different variants of the rolling horizon heuristic when the problem size is fairly small (e g. .,
Cases 1 to 3). However, the true benefits of using different variants of the rolling horizon heuristic over CPLEX become more apparent
when the problem size increases as can be observed from the results in Table 4. For instance, it is observed from the results that when
the problem size increases (i.e., > 100), CPLEX is unable to solve the Washington, D.C. network problem by obeying pre-specified
termination criteria. Further, we observe that algorithm RH3[ ], on average, provides 21.7% and 35.3% faster solutions than algo-
rithms RH1[ ] and RH2[ ], respectively. Note that, on average, algorithm RH3[ ] not only provides a competitive running time but also

Table 3
Problem size of the test instances.

Case Binary Variables Integer Variables Continuous Variables Total Variables No. of Constraints

1 25 2 12 5 250 6000 6000 12,250 16,370
2 25 2 12 10 500 12,000 12,000 24,500 32,740
3 25 2 24 5 250 12,000 12,000 24,250 31,490
4 25 2 24 10 500 24,000 24,000 48,500 62,980
5 25 2 48 5 250 24,000 24,000 48,250 61,730
6 25 2 48 10 500 48,000 48,000 96,500 123,460
7 50 2 12 5 500 12,000 12,000 24,500 32,620
8 50 2 12 10 1000 24,000 24,000 49,000 65,240
9 50 2 24 5 500 24,000 24,000 48,500 62,740
10 50 2 24 10 1000 48,000 48,000 97,000 125,480
11 50 2 48 5 500 48,000 48,000 96,500 122,980
12 50 2 48 10 1000 96,000 96,000 193,000 245,960
13 100 2 12 5 1000 24,000 24,000 49,000 65,120
14 100 2 12 10 2000 48,000 48,000 98,000 130,240
15 100 2 24 5 1000 48,000 48,000 97,000 125,480
16 100 2 24 10 2000 96,000 96,000 194,000 250,480
17 100 2 48 5 1000 96,000 96,000 193,000 245,480
18 100 2 48 10 2000 96,000 96,000 194,000 250,480
19 132 2 12 5 1320 31,680 31,680 64,680 85,920
20 132 2 12 10 2640 63,360 63,360 129,360 171,840
21 132 2 24 5 1320 63,360 63,360 128,040 165,240
22 132 2 24 10 2640 126,720 126,720 256,080 330,480
23 132 2 48 5 1320 126,720 126,720 254,760 323,880
24 132 2 48 10 2640 253,440 253,440 509,520 647,760

M.A. Quddus, et al. Transportation Research Part E 128 (2019) 251–279

273



offers high-quality solution over algorithms RH1[ ] and RH2[ ], respectively. In summary, algorithm RH3[ ] seems to offer high-quality
solutions consistently within the experimental range.

The second set of experiments analyzes how different variants of the rolling horizon heuristic enhance the performance of the
Progressive Hedging Algorithm (shown in Table 5). We employ the following enhancement techniques: i( ) + +PHA HR RH1[ ] that
incorporates the first variant of the rolling horizon heuristic iiRH1[ ];( ) + +PHA HR RH2[ ] that incorporates the second variant of
the rolling horizon heuristic RH2[ ]; and iii( ) + +PHA HR RH3[ ] that incorporates the third variant of the rolling horizon heuristic
RH3[ ] inside the PHA[ ] algorithm. Note that in all the enhancement techniques discussed in i iii( ) ( ), we incorporate the penalty
parameter updating techniques (described in Section 3.3.1) and heuristic strategies (described in Section 3.3.2) inside the PHA[ ]
algorithmic framework. We test the performance of the algorithms by fixing the scenario size N=50 while varying , , and to
obtain 18 different problem instances as reported in Table 3. It is observed from Table 5 that algorithm + +PHA HR RH3[ ]

Table 4
Comparison between different variants of the rolling horizon heuristic over CPLEX

Case [CPLEX] [RH1] [RH2] [RH3]

GAP (%) CPU (sec) GAP (%) CPU (sec) GAP (%) CPU (sec) GAP (%) CPU (sec)

1 0.38 283.6 0.89 335.9 0.74 434.2 0.85 296.8
2 0.46 414.3 0.68 587.8 0.81 576.5 0.59 438.6
3 0.77 387.9 0.64 493.2 0.57 460.2 0.76 563.3
4 0.96 1283.4 0.79 774.6 0.91 1065.4 0.74 797.6
5 0.75 1158.3 0.71 798.3 0.86 736.5 0.88 682.4
6 0.49 15,124.6 0.81 8106.5 0.92 8956.4 0.78 6023.5
7 0.82 413.5 0.79 489.5 0.69 653.8 0.83 427.4
8 0.46 1558.3 0.63 825.7 0.86 1089.6 0.77 863.3
9 0.68 1247.8 0.89 841.5 0.97 895.2 0.79 724.2
10 0.98 16,650.6 0.66 9842.7 0.87 10,454.8 0.63 7496.6
11 0.36 15,247.3 0.76 8256.4 0.84 9182.1 0.75 6161.8
12 3.15 36,000 0.84 9914.2 0.92 10,189.6 0.63 8225.7
13 0.84 1584.6 0.71 889.3 0.85 1083.6 0.75 851.1
14 0.74 17,524.8 0.87 10,378.3 0.87 11,621.2 0.86 9223.5
15 0.89 16,632.8 0.98 9963.7 0.79 10,503.9 0.69 7563.8
16 8.68 36,000 3.41a 14,425.4 4.81a 16,123.5 1 82. a 12,463.2
17 4.32 36,000 2.87a 11,351.6 2.68a 14,869.4 1 06. a 10,982.7
18 15.63 36,000 4.15a 18,362.6 3.41a 19,658.8 2 89. a 13,864.2

Average 2.30 12,972.8 1.23 5924.3 1.30 6586.4 0.95 4869.4

a Unable to solve the first subproblem within 10,800 CPU seconds.

Table 5
Performance of different variant of the rolling horizon heuristic in [PHA]

Case [PHA+HR+RH1] [PHA+HR+RH2] [PHA+HR+RH3]

GAP (%) CPU (sec) GAP (%) CPU (sec) GAP (%) CPU (sec)

1 0.67 70.9 0.74 84.2 0.79 76.8
2 0.58 124.8 0.67 167.4 0.68 138.6
3 0.74 143.2 0.72 180.2 0.46 113.5
4 0.79 424.6 0.81 565.4 0.68 397.4
5 0.84 468.3 0.87 586.1 0.81 422.4
6 0.87 4523.1 0.81 5524.4 0.75 3024.6
7 0.64 139.3 0.57 173.8 0.33 127.1
8 0.79 525.7 0.76 689.1 0.64 463.3
9 0.84 541.2 0.85 675.7 0.72 424.2
10 0.75 4682.1 0.67 5682.6 0.64 3424.1
11 0.82 4782.1 0.91 5482.8 0.88 3661.8
12 0.78 6784.1 0.91 7425.3 0.71 4965.3
13 0.76 519.5 0.78 784.4 0.81 454.2
14 0.78 4876.4 0.87 5687.3 0.78 3854.1
15 0.81 4613.4 0.84 5541.1 0.87 3546.4
16 0.84 9414.1 0.75 10,243.5 0.87 6786.5
17 0.91 8756.7 0.97 9874.6 0.84 6014.7
18 14.15 36,000 18.41 36,000 2.89 36,000

Average 1.52 4854.9 1.77 5298.2 0.84 4105.3
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outperformed both algorithms + +PHA HR RH1[ ] and + +PHA HR RH2[ ] with respect to running time and solution quality. On
average, algorithm + +PHA HR RH3[ ] provides a 18.3% and 29.1% faster solution than algorithms + +PHA HR RH1[ ] and

+ +PHA HR RH2[ ], respectively while dropping the average optimality gap from 1.52% and 1.77% to 0.84%. Overall, algorithm
+ +PHA HR RH3[ ] seems to offer high-quality solutions consistently within our experimental range.

The final set of experiments presents the results from solving model EVC[ ] using the algorithms proposed in Section 3 (shown in
Table 6). To test the performance of the algorithms, we use Case 19-24 from Table 3 (the largest test instances from Table 3) and
vary sample size N and replication number M in the SAA[ ] algorithm to obtain 24 different problem instances. We set the large
scenario N = 500 to evaluate the SAA[ ] gap. We do not present the results obtained from CPLEX since CPLEX runs out of memory in
solving all the problem instances reported in Table 6. Results indicate that [SAA] is able to solve only 4 out of 24 problem
instances by obeying the pre-specified termination criteria. The performance improved slightly by incorporating Progressive
Hedging Algorithm (PHA) inside the SAA[ ] framework, referred to as [Hybrid-1] algorithm. With this enhancement, [SAA] is
now able to solve 8 out of 24 problem instances by obeying the pre-specified termination criteria. The benefits of using the
algorithms become more pronounced when the heuristic enhancement strategies discussed under Section 3.3.1 and 3.3.2 are
incorporated in the [Hybrid-1] algorithm, referred to as [Hybrid-2] algorithm. We observe that with these enhancement stra-
tegies, the average optimality gap of the [Hybrid-2] algorithm drops to 1.38% from 3.70% as reported in [Hybrid-1] algorithm.
Further, the results in Table 6 indicate that the [Hybrid-2] algorithm is now capable of solving 16 out of 24 problem instances by
obeying the pre-specified termination criteria. Finally, we observe a significant improvement in computational efficiency when the
rolling horizon heuristic is incorporated in the [Hybrid-2] algorithm, referred to as [Hybrid-3] algorithm. Evidence from Table 4
and 5 shows that the rolling horizon heuristic variant RH3[ ] provides superior computational performance over the other two
variants (e g. ., RH1[ ] and RH2[ ] algorithm). Thus, we utilize RH3[ ] algorithm inside the [Hybrid-3] algorithmic framework. With
this enhancement, [SAA] is now able to solve 22 out of 24 problem instances by obeying the pre-specified termination criteria. We
further observe that algorithm [Hybrid-3] on average saves 87.2% computation time over algorithm [Hybrid-2] in reporting the
optimality gaps presented in Table 6. In summary, the [Hybrid-3] algorithm seems to offer consistently high-quality solutions
within the experimental range.

Table 6
Comparison of different solution algorithms.

[SAA] [Hybrid-1] [Hybrid-2] [Hybrid-3]

Case N M GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter

19 20 5 0.79 2532.3 1 0.64 1732.5 2 0.77 932.7 2 0.33 632.3 1
10 0.81 2712.4 1 0.64 1934.5 1 0.59 1025.8 2 0.47 724.6 1

40 5 0.62 6814.5 1 0.79 2042.4 1 0.76 1186.2 1 0.44 816.3 2
10 0.74 9552.4 1 0.87 3684.4 2 0.76 1632.4 1 0.63 1153.6 1

20 20 5 3.41 36,000 1 0.74 4056.5 1 0.84 2423.5 1 0.58 1363.7 1
10 4.52 36,000 1 0.78 4634.8 1 0.97 2687.6 2 0.71 1463.5 2

40 5 5.69 36,000 1 0.81 5563.6 2 0.78 3125.7 1 0.65 1623.4 1
10 12.69 36,000 1 0.76 7563.6 2 0.87 4225.7 1 0.55 1896.3 1

21 20 5 10.36 36,000 1 4.32 36,000 1 0.85 6475.6 1 0.84 2954.2 1
10 15.36 36,000 1 6.54 36,000 2 0.69 7635.7 1 0.54 3654.3 1

40 5 11.35 36,000 1 5.5 36,000 1 0.85 8656.3 1 0.48 4157.6 2
10 mema – - 6.63 36,000 2 0.67 9542.8 2 0.59 4598.4 1

22 20 5 mem – – 5.62 36,000 1 0.82 10,563.4 1 0.23 4624.5 1
10 mem – – 8.63 36,000 1 0.71 11,123.3 1 0.51 4869.2 1

40 5 mem – – 6.52 36,000 1 0.87 12,415.3 1 0.74 5168.3 1
10 mem – – 9.41 36,000 2 0.84 14,352.6 2 0.66 5653.6 1

23 20 5 mem – – mem – – 1.56 36,000 1 0.89 7125.5 2
10 mem – – mem – – 4.64 36,000 1 0.74 7852.6 1

40 5 mem – – mem – – 2.25 36,000 2 0.64 8142.8 2
10 mem – – mem – – 5.32 36,000 2 0.94 8754.2 2

24 20 5 mem – – mem – – 2.65 36,000 2 0.87 9145.4 1
10 mem – – mem – – mem – – 0.78 11,324.7 1

40 5 mem – – mem – – mem – – 1.09 36,000 2
10 mem – – mem – – mem – – 1.25 36,000 1

Average 6.03b 24,882.9 1.0 3.70b 19,950.8 1.4 1.38b 13,238.3 1.4 0.68 7070.8 1.3

a Out of Memory.
b Instances where (a) did not contribute to the average calculation.
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5. Conclusion

This study develops an optimization framework that integrates both long-term planning decisions and short-term hourly op-
erational decisions to design and manage electric vehicle charging station decisions over a pre-specified planning horizon and under
power demand uncertainty. The proposed model [EVC] can be very challenging computationally depending on the size of the cells,
years, hours, and scenarios set by the decision maker. To alleviate these challenges and to solve real scale problem instances, we
develop a hybrid decomposition algorithm that combines Sample Average Approximation (SAA) with an enhanced Progressive
Hedging Algorithm (PHA). The hybrid algorithm incorporates several algorithmic improvements such as penalty parameter updating
techniques, local and global heuristics, and different variants of the rolling horizon heuristic. As evidenced from a set of computa-
tional results that the enhanced variant of the hybrid algorithm [Hybrid-3] is capable of producing high-quality solutions con-
sistently to solve realistic large-size problem instances in a reasonable amount of time.

We use Washington, D.C. as a testing ground to evaluate the performance of the modeling results and to draw managerial insights.
Our computational experiments reveal some insights about the impact of car charging percentage uncertainty on the design and
management of charging stations. Further, we conduct sensitivity analysis on the impact of availabilities of grid power, solar power,
and car discharging percentage for V2G power on system performance. It is observed that a 50% decrease in PG, solar power, and car
discharging percentage for V2G power availability will open an additional 52.94%, 23.53%, and 14.70% charging stations in our
tested region, respectively. Moreover, we observe that the system is highly sensitive to setting different minimum power demand
requirements to open charging stations. Finally, we conduct sensitivity analysis with model [EVE] to see the impact of solar power
utilization on system performance. Results indicate that the total system cost increases with an increase in solar utilization level but
decreases with an increase in risk level. We believe that the models and results presented in this paper will help decision makers
develop a future sustainable transportation system that will add value, not only to the economy, but also to the environment in which
we live.

The major focus of our model is to cover both high- and low-level decisions for charging stations. We think that the main drive for
the high-level decisions of locating charging stations is the performance of other already established stations. We see the inclusion of
low-level decisions as a necessity to determine where to locate new stations, as the economic performance of already established
facilities is a strong indication of whether there is a need to provide more. The majority of the parameters of the model are readily
available for charging stations and can be easily obtained. Dividing the study area into cells and taking them all into consideration at
once, as opposed to electing several locations, insures the elimination of potential error in assessing locations. We believe that it is
more accurate, though exhausting and tiresome, to base the selection of the locations on performance and flow of electric vehicles at
each and every segment of the grid, than to limit the choices. There might arise issues of the availability of land, but the cell selection
should not be seen as rigid, but rather as an opportunity that can be seized in the surrounding region. Thus, this study will provide a
more understandable and usable model for charging stations’ investors to apply for future expansion.

This research also opens up a number of future research opportunities. The electric vehicles coming to a station, whether for
charging or swapping, will have different levels of remaining power in their batteries. Thus, the unit power charging for each battery
is considered to be variable. However, in this study we consider on average a constant unit power requirement for each car. Hence,
one of the future research directions would be to incorporate the dynamicity of state-of-charge (SoC) to investigate its effect on the
proposed two-stage stochastic problem. Our study also ignores the impact of traffic congestion in the designing and managing of
electric vehicle charging stations. Furthermore, our study assumes that the network is robust and will never fail. However, in reality,
electricity power can be disrupted due to natural (e.g., storms and severe weather, ice storms, hurricanes and tropical storms,
tornadoes, and combination of extreme heat events and wildfires) or human-induced events (e.g., cyber attacks) which can severely
impact the operational decisions of a charging station. These issues will be addressed in future studies.
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Appendix A. Impact of solar power utilization on system performance

Renewable energy (e g. ., solar and wind) curtailment occurs frequently to maintain system reliability, resulting in low utilization
of these power resources. The main reason for renewable energy curtailment includes global oversupply, transmission or distribution
congestion, and operational issues (Bird et al., 2014). The National Renewable Energy Laboratory (NREL) report, published in 2014,
highlights the severity of renewable energy curtailment. For instance, in Texas, the average annual wind power curtailment was
reported 16% of the total wind generation in 2009 (Rogers et al., 2010). The high solar and wind power curtailment has big impacts
on the economics of the renewable power plant and will discourage investors, resulting a decrease in the usage of RES. Thus, the
renewable resources operators are encouraged to utilize these powers to their largest possible extent. The chance-constrained sto-
chastic optimization approach is used extensively in literature to ensure high renewable power utilization (Birge and Louveaux, 1997;
Wang et al., 2012). However, the chance constraint ignores the scenario that occurs with lower probability but higher output. This
eventually may lead to insufficient renewable power utilization. This low utilization of renewable power can be avoided if an
expected value constraint is incorporated. Thus, we extend model EVC[ ] by introducing the following chance and expected value
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constraints for each scenario , referred to as EVE[ ].
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i k h
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Constraints (71) are joint chance-constraints which indicate that in each year t , there is at least (1 ) chance that the
difference between the energy demand for electric vehicles ( fht iht) and the energy supply sources (e.g., grid, solar, V2G) lies below
a threshold value . Constraints (72) enforce that the utilization of solar energy resources should be greater than a certain percentage
of the available solar energy riht . Note that with this incorporation, the hybrid decomposition algorithm, proposed in Section 3, can

no longer be applicable to solve model [EVE]. Therefore, we use the combined Sample Average Approximation (SAA) algorithm
proposed by Zhao et al. (2014) to solve model [EVE]. We use Monte Carlo simulation to generate scenarios for renewable resources.
We consider the historical data (Public Service Commission of the District of Columbia, 2016) of renewable resources in our tested
region into account for predicting the future availabilities of solar power.

We now experiment with the impact of solar power utilization on system performance through solving model [EVE]. We define

Table 7
Systems performance under different solar power utilization and risk levels.

With different utilization levels With different risk levels

utilization (%) Total cost ($) CPU (sec) Risk level (%) Total cost ($) CPU (sec)

50 18,223,017 3516 10 18,858,728 3385
60 18,476,658 3478 20 18,672,987 3425
70 18,672,404 3678 40 18,507,246 3486
80 18,859,358 3325 80 18,401,505 3504
90 18,929,212 3264 100 18,115,764 3574

Fig. 15. Electric vehicle charging station location with expected value and chance constraint.

M.A. Quddus, et al. Transportation Research Part E 128 (2019) 251–279

277



the small scenario set N = 30 and the large scenario N = 200 to evaluate the SAA gap. The first set of experiments perform
sensitivity analysis by setting different solar energy utilization levels to = {50%, 60%, 70%, 80%, 90%} while fixing the risk level
at 0.05. It is evident from the results in Table 7 that the total system cost increases as the solar utilization increases from 50% to 90%.
This might be due to the incorporation of chance and expected value constraints (i e. ., constraints (71) and (72)), which enforce
model EVE[ ] to become more restrictive, leading to an increase in total system cost. The second set of experiments perform sensitivity
analysis on varying to = {0.10, 0.20, 0.40, 0.80, 1.00} while fixing the solar utilization to 80%. The results in Table 7 indicate that
as the risk level increases from 10% to 100%, the total system cost reduces by 3.94% since constraints (71) become less restrictive as
the risk level increases. A network representation for risk level = 0.10 and solar utilization level = 80% is depicted in Fig. 15. We
observe that the scenario defined by incorporation of chance and expected value constraints (i e. ., constraints (71) and (72)) force
model EVE[ ] to open more charging stations in a widespread distribution on our tested region compared to the base case results
provided by model EVC[ ] in Fig. 6.
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