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Abstract 

Due to the increasing life pressure in modern society, 

more and more people are suffering from sleep disorders. 

The most serious case of sleep disorders called apnea is 

characterized by a complete breaking block, leading to 

awakening and subsequent sleep disturbances. However, 

great obstacles still exist in automatic identification of 

arousals. In this study, a novel method was developed to 

detect non-apnea sources of arousals during sleep using 

several physiological signals. In the dataset provided, the 

duration of arousal regions is much less than that of  non-

arousal regions. In order to address this issue, a set of 

segments were extracted for model training in which 

arousal regions take up a much larger proportion than that 

in the original training set. After the preprocessing, a 

sequence-to-sequence deep neural networks (DNNs) which 

consists of a series of convolutional layers with residual 

connections, a long short-term memory (LSTM) layer and 

two fully connected layers, was trained to classify samples 

in the segments. Result shows that the area under receiver 

precision recall curve (AUPRC) is 0.43 in test dataset. In 

this study, an effective algorithm to detect non-apnea 

arousals was developed, which has great potentials in the 

clinical diagnosis and treatment of automatic sleep 

disturbance in the future.  

 

1. Introduction 

Sleep disorders can make people not well recovered in 

energy and physical power, which is essential to maintain 

the normal operation of various functions of the human 

body. At present, there are more than 84 defined sleep 

disorders including obstructive sleep apnea hypopnea 

syndrome (OSAS) [1]. In 1973, Guilleminauh first 

proposed the concept of OSAS which is a high incidence 

disease with serious hazard and potential danger. As 

hypoxia and hypercapnia often happen during sleep, OSAS 

may ultimately lead to progressive damages in multi-

system and multi-organs. According to the survey record 

[2], ninety percent of the traffic accident is caused by sleep 

apnea disorders. However, due to the occurrence at night, 

these diseases are not easy to be discovered. As the disease 

is chronic, their symptoms are not immediately apparent 

[3]. 

The polysomnography (PSG) is the gold standard to 

diagnose sleep arousals. But, due to the limitation of 

recording duration of PSG, vast majority of patients cannot 

get timely treatment. Therefore, a low-cost and more 

convenient diagnostic method is required. 

The goal of the challenge is using information from the 

available signals to correctly classify non-apnea arousal 

regions. According to the previous studies, sleep arousals 

were mainly investigated from two aspects, by screening 

the physiological parameters of breathing, blood oxygen, 

electrocardiograph (ECG) or analysing snoring signals.  

For the first aspect, studies have proposed several 

simplified methods to aid the screening of sleep 

disturbances based on a few numbers of signals [4, 5] or 

even a single one, such as ECG [6, 7], pulse oximetry [8], 

breath sounds [8, 9], snore sounds [10, 11] or nasal airway 

pressure [12]. 

For the second aspect, in the last several decades, many 

works have been performed for snoring detection [13, 14]. 

In general, most methods of breathing signal classification 

used preprocessing techniques to extract finer feature 

information for better classification, because the discrimin- 
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Figure 1. Flowchart diagram of the proposed method for 

the identification of arousals classification. 

ation information is introduced by the frequency 

information. However, the accuracy of the existing 

methods can not satisfy the need of clinical diagnosis 

In this study, we developed a novel effective method to 

detect non-apnea arousals based on deep neural networks 

(DNNs). Result showed that the area under receiver 

precision recall curve (AUPRC) is 0.43 in test dataset. 

 

2. Method 

Figure 1 outlines the architecture of our proposed 

algorithm which included segmentation of dataset and a 

sequence-to-sequence deep neural networks (DNNs) 

trained to classify samples in the segments. Each major 

step was explained in more detail in the two following 

subsections. 

2.1. The segmentation of dataset 

In this challenge, there are a variety of physiological 

signals including electroencephalography (EEG), 

electrooculography (EOG), electromyography (EMG), 

electrocardiology (ECG), and oxygen saturation (SaO2). 

Excluding SaO2, the other signals were sampled to 200 Hz. 

For analytic convenience, SaO2 was resampled to 200 Hz 

and is measured as a percentage [15]. 

The signals come from multiple channels, each of which 

has a duration of about 7 to 10 hours and a data sampling 

rate of 200 Hz. If each piece of data in the original data set 

was used as a sample for DNNs, the training process would 

require exhausting memory space (hundreds of GB) and 

have a long training period (days or even weeks). In 

addition, in the initial dataset, arousal interval usually 

accounts for a small proportion (<5 percent) of the entire 

sleep process. The imbalance problem of dataset will make 

the training model tend to mistakenly predict the arousal 

regions as the non-arousal regions. To address this issue, 

this paper provides a reconstruction method for a training 

set to accelerate the DNNs training process. The specific 

steps are as follows: 

Step1: Read the sequence of labels for each piece of data 

in turn, and re-label them with the binary method: if the 

original label of a certain position is the arousal regions, 

re-mark it as 1, otherwise re-mark it as 0. 

Step2: Divide each piece of data and its corresponding 

label into small segments of fixed length (20,000 sample 

points) and group the intercepted segments into a matrix 

(each row represents a segment, and the sequence of 

segments is based on the time series of the original signal). 

After the segment is truncated, if the remaining part of the 

segment is less than the length of one segment, it is 

discarded directly. 

Step3:  Pa represents the proportion of segments having 

more than 5% points labeling 1. Pn represents the 

proportion of segments having all 0 labeling in the segment 

set. As the non-arousal regions are much bigger than the 

arousal regions, Pn is much larger than Pa. In order to 

improve the dataset imbalance, Pd proportion of segments 

(Pd=Pn-Pa) with all 0 labeling are randomly discarded. 

Step4: Save the retained data segments and their 

corresponding annotations for the subsequent model 

training. 

The above steps can effectively solve two problems. 

First, the serious imbalance of training data is improved. 

The gap between the non-arousal and arousal regions in the 

training data is narrowed, which is beneficial for the 

decision-making of the classification model without 

excessive bias. The second one is to solve the issue of 

training difficulty for the big dataset. This method cut the 

signals into small data segments (20000 sampling points) 

to reserve the required context information to train the 

model. It has less memory usage and time consumption for 

training the DNNs.  

  

2.2. Sequence-to-sequence deep neural 

networks (DNNs) 

DNNs is effective to learn features from the raw data and 

generally can achieve a better performance than the 

traditional hand-crafted features [16-18]. In this challenge, 

we employed a novel sequence-to-sequence DNNs to learn 

features from the small data segments. The structure of our 

network is illustrated in Figure 2. The network is a 

sequence-to-sequence structure, which includes a feature 

extraction part composed of a one-dimensional 

convolutional layer and a bidirectional LSTM layer, as 

well as a feature classification part composed of a fully 

connected layer, which is described in Figure 2. 

(1) In the feature extraction part, as shown in Figure 3, 

the input signal first enters an one-dimensional 

convolutional layer (the number of convolution kernels is 

32 and the length of the convolution kernel is 16), and then 

undergoes batch normalization and activation of the ReLU 

function, then enters the first residual module. The residual 

module includes an one-dimensional convolution layer, a 

batch normalization layer, a ReLU activation layer, a 

Dropout layer, a one-dimensional convolution layer, and a 

maximum pooling layer (the reduction factor is 2). The in- 
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Figure 2. The structure of the proposed DNNs. There are 

156 local eigenvectors each of which has a length of 128. 

put of the module is subjected to bitwise addition operation 

producing the output of its main operation after the 

maximum pooling layer down sampling, which is fed as 

the input to the subsequent part of the network. Then there 

are six residual modules of the same structure, each of 

which includes a batch normalization layer, a ReLU 

activation layer, a Dropout layer, a one-dimensional 

convolution layer, a batch normalization layer, a ReLU 

activation layer, a Dropout layer, an one-dimensional 

convolution layer and a maximum pooling layer. The 

convolutional layer in the first module contains 32 

convolution kernels, each of which has a length of 16. 

After each of previous two modules, the number of 

convolution kernels is increased by 32, and the convolution 

kernel length is reduced to the half of previous one. The 

same as the first residual module, the input of subsequent 

each module is subjected to a bitwise addition operation 

producing the output of its main operation after the 

maximum pooling layer down sampling, and the result is 

input to the subsequent part of the network. The dropping 

rate of all the above Dropout layers is 0.5. After all the 

residual modules, the data is then passed through a 

normalization layer, a ReLU activation layer, and a 

bidirectional LSTM layer. The LSTM layer performs 

sequence-to-sequence learning on the input data that 

means each output corresponding to each input sequence 

element, and the length of input and output sequence is the 

same. The LSTM layer contains 128 units, which means 

that each element of the output sequence is a vector of the 

length of 128. Each vector in the sequence represents the 

feature of its corresponding location. The input Dropout 

rate and the cyclic Dropout rate of the LSTM layer are both 

0.2. 

(2) The feature classification section processes each of 

the feature vectors learned as described above to determine 

whether the corresponding position belongs to the arousal 
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Figure 3. The structure of feature learning network 

regions. This part contains two fully connected layers, the 

first and second layers contain 16 and 1 neuron. Since the 

network performs the binary classification problem, the 

activation function of the second layer is Sigmoid, and its 

formula is as follows: 

( )
1

1 x
S t

e−
=

−
                      (1) 

(3) For each training sample, the objective function to 

be optimized during the model training process is the cross 

entropy function, and its formula is as follows: 

( ) ( )
1

1
, |

m

i

i

L X r log p R r X
m =

= − =      (2) 

where x is the input data of the training sample, r is the 

marking sequence of the training sample, m is the length 

of the marking sequence in the training sample, and p is the 

probability of the ith output flagged as ri. The DNNs apply 

the Adam optimization method and uses Keras based on 

the TensorFlow engine to train.  

Based on the method described above, the classification 

in test dataset of PhysioNet database were estimated. 

3. Results and discussions 

Result showed that the area under receiver precision recall 
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curve (AUPRC) is 0.43 in test dataset, which is acceptable 

in spite of the existence of various physiological signals 

and the influences of different noises in the test dataset. 

It is notable that the advantages of the proposed method 

include the novel methods of data segmentation and 

automatic feature extraction.  The good accuracy  shows it 

is a potential choice for clinical automatic arousal 

identification in the future. In the further work, new 

network construction should be added to improve our 

method for arousal analysis. 

4. Conclusion 

In this study, using different physiological signals, 

DNNs have been proposed for identification of arousals. A 

novel method of segmenting datasets was proposed in 

preprocessing stage. the method reorganized the training 

set to accelerate the DNNs training and narrowed the gap 

between the non-arousal and arousal regions. For the 

feature learning and classification, the DNNs incorporate 

residual model and recurrent neural network (RNN) to 

adapt to sequence learning problems with long time series 

dependence, which can effectively identify the arousal 

regions.  
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