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Abstract—In modern electric power systems, Plug-in Electric
Vehicle (PEV) with Vehicle-to-Grid (V2G) potential are becoming
reliable and flexible resources for energy balancing under varying
energy supply and demand scenarios. In this evolving paradigm,
designing energy management strategies for feasible and cost-
effective utilisation of V2G is one of the several challenges faced
by the utility operators and regulators. This paper proposes
two energy management strategies to effectively utilize V2G
potential of PEVs in managing energy imbalances in grid-
connected microgrids. The contributions of the paper are in
twofold. First, it proposes a novel bidding strategy for PEVs
offering V2G by including the projected battery degradation
cost to integrate them into microgrid operation. Second, two
energy management strategies are proposed for inclusion of V2G
into the microgrid operation based on the forecast accuracy on
energy supply and demand, and market prices. The proposed
V2G integration strategies are implemented using a multi-agent
system developed in Java Agent DEvelopment framework and
applied to a microgrid case study system. The simulation results
and their analysis show that V2G can be used to maximum depth
of discharge levels if the electricity price variation is high and
battery cost of PEVs is low.

Index Terms—Demand response, Energy markets, Microgrid,
Multi-agent systems, Plug-in electric vehicle, Smart distribution
system and Vehicle-to-Grid.

ACRONYMS

ABC Artificial Bee Colony.
ABC-ROC Artificial Bee Colony-Rate of Change.
ASA Auction Supervising Agent.
BDC Battery Degradation Cost.
CB Cost of Battery.
CDA Continuous Double Auction.
CSE Cost of Stored Energy.
DG Distributed Generator.
DGA Distributed Generation Agent.
DI Demand Interval.
DOD Depth of Discharge.
EVA Eelctric Vehicle Agent.
EVLA Electric Vehicle Load Aggregator.
G2V Grid-to-Vehicle.
GA Genetic Algorithm.
GBP Grid Buying Price.
GGA Global Grid Agent.
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GSP Grid Selling Price.
JADE Java Agent DEvelopment.
LI Leaving Interval.
MAS Multi-Agent System.
MCP Market Clearing Price.
PEV Plug-in Electric Vehicle.
PLA Point Load Agent.
SI Starting Interval.
SOC State of Charge in kWh.
SPA Second Price Auction.
V2G Vehicle-to-Grid.

NOMENCLATURE

∆t Duration of demand interval in hours
M Total number of PEVs
P i
PEV Power rating of ith PEV in kW

SOCedd+
j SOC available after travelling EDD while SOCLI

equals to SOCj with no V2G in interval j
SOCV 2G,edd+

j SOC available after travelling EDD while SOCLI

equals to SOCj with V2G in interval j
SOCj SOC at the end of interval j
SOCedd SOC required for the expected driving distance
SOCmax Maximum limit on SOC
SOCmin Minimum limit on SOC
xi
j Decision variable to indicate charging or discharging

of ith PEV in interval j
y(ts, te) Set of demand intervals considered for the study

between the starting time (ts) and ending time (te)
ECR Energy Consumption Rate in kWh per mile
EDD Expected driving distance in miles

I. INTRODUCTION

Energy management in conventional power systems is a
challenging task due to dynamic nature of the demand. It is
more challenging when the supply is dynamic due to high
penetration of intermittent sources of energy such as solar
or wind power. This scenario demands an appropriate mix
of flexible resources, such as Demand Response (DR) and
spinning reserve, to maintain and operate the utility grids
reliably [1], [2]. In the context of smart grid, PEVs can be
used as one of the resources to maintain the energy balance in
the system and as an ancillary service provider [3], [4]. The
aggregated effect of PEVs can be used to safeguard the quality
of power being served to the end-users [5]. It can also be used
to aid the utilities in managing peak demand [6].

PEVs with bidirectional power transfer capability provide
both Grid-to-Vehicle (G2V) and V2G services. When com-
pared to the PEVs offering G2V, the vehicles offering V2G
service have additional energy levelling potential due to their
discharging ability when needed. However, frequent filling and
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draining of batteries causes degradation of rated life cycles
and eventually demands replacement of batteries periodically.
Therefore, while designing energy management strategies for
V2G the implications of battery degradation must be taken
into account. Hence, each charge-discharge cycle of the battery
must be given a certain cost component of degradation and this
has to be offset by either monetary incentives or profit gained
through charge-discharge operations.

In recent years, many attempts have been reported in the
literature on effective and feasible utilisation of V2G. For
example, an optimization model to reduce dependency on the
utility grid by scheduling the charging and discharging of
PEVs offering V2G in a two microgrid system is proposed
in [7]. The economic feasibility of exporting power back to
the grid (V2G service) under varying electricity price scenario
by incorporating Battery Degradation Cost (BDC) of Lithium
ion battery is studied in [8] and [9]. This study also quantified
the minimum required variation in electricity tariffs for making
the V2G profitable. Reference [10] presents a feasibility study
on V2G for different types of PEV batteries by considering the
battery cost and degradation characteristics. In [11], an energy
management model is developed for a residential microgrid
with renewable sources and V2G considering the PEV owners
behavior and battery wear cost. Similarly an integrated energy
management system for managing PEVs and battery swapping
stations in a smart microgrid with interruptible loads is pre-
sented in [12]. In this work, authors have proposed pricing
scheme for fixing the PEV charging cost under both grid
connected and islanded mode of operation of the microgrid.

Some of the attempts focused on pricing policy for PEVs
with V2G connected in multi-microgrid scenario. For example,
a distributed dynamic pricing policy for optimal charging of
PEVs to minimize the supply-demand mismatch is proposed
in [13]. In this study, two types of prices, home and roaming
prices, are introduced for charging and discharging of PEVs in
a multi-microgrid scenario. Similarly, a distributed real time
electricity allocation scheme is proposed for grid connected
residential microgrids with V2G to improve the efficiency and
reduce the average cost of electricity purchase in [14].

In [15], a decentralised energy management system for
charging and discharging of PEVs is proposed without com-
promising on the quality of service offered to the PEV owners.
In this, sub-aggregators are introduced where the PEVs’ charg-
ing is scheduled by sub-aggregator while the central aggregator
ensures that circuit loading limits are not violated. Simi-
larly, reference [16] proposed a centralized real-time charging
management framework for PEV aggregator participating in
whole-sale electricity markets. In this work, authors have
formulated a linear programming problem that can be solved
very fast in real-time considering PEVs’ charging priorities.
In the work reported in [17], a new energy scheduling method
is proposed to schedule V2G by optimizing the overall cost of
energy in distribution systems with renewable electric sources.
In this work, the scheduling of PEVs is prepared for a double
tariff structure that has only two prices, high day time tariff
and low night time tariff.

Despite the attempts reported in the literature, some of
the important aspects are not studied so far such as the

economic viability of V2G with BDC for different Depth of
Discharge (DOD) levels under uncertain energy supply and
demand scenario. This is a significant problem to be addressed
when intermittent sources of energy have a dominant share in
the total generation mix. The higher levels of intermittency
leads to predominant variations in the prices of electricity
in spot markets. This variation needs to be considered while
designing efficient and economically viable utilisation policies
for V2G. This paper proposes energy management strategies
for economically feasible utilisation of V2G in competitive
electricity markets where the electricity price variations are
high. The proposed strategy is implemented using a Multi-
Agent System (MAS) developed in Java Agent DEvelopment
(JADE) framework. This is suitable for distribution systems
with intermittent Distributed Generators (DGs) and PEVs
offering V2G. In this study, a smart microgrid connected to
a distribution system is used as a case study to embody the
effectiveness of the proposed energy management strategies
for V2G.

The rest of the paper is organised as follows: the proposed
energy management strategies for feasible utilisation of energy
from PEVs with V2G is presented in Section II. It also details
the MAS framework designed to execute the proposed strate-
gies. The mathematical modelling of the proposed strategies
is described in Section III. Section IV presents a case study
and simulation results with detailed discussion and analysis.
Section V concludes the paper.

II. PROPOSED ENERGY MANAGEMENT STRATEGIES FOR
MICROGRIDS WITH V2G

Economic viability of PEVs with V2G is mainly affected
by variations in cost of electricity and degradation cost
of the batteries which in turn depends on Cost of Bat-
tery (CB), battery type and DOD [8]–[10]. In this study,
Lithium–nickel–cobalt–aluminium (NCA), which is the bat-
tery used in Tesla Model-S PEVs, is used for the analysis [18].
Fig. 1 shows the relation between the cycle-life and DOD for
a Li-ion NCA battery. From the graph, it can be observed that
BDC varies in proportion to the DOD. Therefore, the BDC of a
Li-ion NCA battery for a discharge cycle can be approximated
as [10]:

BDC = (
1

f(DOD2)
− 1

f(DOD1)
)CB (1)

and
f(DOD) = 10NDOD (2)

where DOD1 and DOD2 represent DODs such that
DOD2 > DOD1, NDOD1

and NDOD2
are the number of

cycle-life (in log scale) corresponding to DOD1 and DOD2

respectively. The revenue gained by ith PEV from one charge-
discharge cycle can be expressed as,

(3)Ri = (Di
k − Ci

j)P
i
PEV∆t

and the corresponding profit (Hi) is,0

(4)Hi = (Di
k − Ci

j)P
i
PEV∆t−BDCi

k
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Fig. 1: Variation of log(cycle–life) with %DOD

where Ci
j and Di

k are the prices of electricity per kWh for
charging and discharging of PEV in the intervals j and k
respectively, Ri is the revenue per charge-discharge cycle
of ith PEV in cents and Hi is the profit gained per cycle
by ith PEV in cents. From (4), it can be observed that
higher differences between Ci

j and Di
k results in higher DOD

up to which V2G is viable. Therefore, the revenue gained
from charge-discharge cycles of PEVs must compensate the
corresponding BDCi

k to make V2G viable.
In competitive electricity markets, price varies with supply

and demand. This variation cannot be predicted accurately if
the intermittent sources of energy have greater share in the
generation. When PEVs with V2G are integrated as one of
the resources into such scenarios, the energy mismatches tend
to reduce. Also, the price of electricity becomes stable or less
varying. Although this practice is quite successful in reducing
the energy mismatches, its sustainability in the long run cannot
be guaranteed as the revenue gained by PEVs from lower
price variation may not break-even the BDC. Therefore, PEVs
must be included strategically into such scenarios to make
their integration economically viable. In this paper, two energy
management strategies for integrating PEVs into microgrids
are proposed.

The former strategy is suitable when the day-ahead forecast
on energy generation and consumption is not accurate whereas
the latter one is used when accurate day-ahead forecast is
available. The selection of the strategy to be followed is
based on the accuracy of the day-ahead forecast data during
intervals prior to the decision making carried out by vehicle
aggregator. The vehicle aggregator initially assumes that the
day-ahead forecast is accurate and schedules the charging and
discharging activities of PEVs by respecting their economi-
cal and operating preferences using the optimisation model
described in Section III-B. The outcome of the optimisation
is based on the forecast information and is prone to forecast
errors. However, the supply demand deviation in the system
caused from forecast errors during an interval are addressed
by the operating reserve capacity maintained by the system.
For a system like microgrid with renewable energy sources,
this operating reserve can be 15% of the connected load [19].
Therefore, the forecast errors upto 15% are offset by the
operating reserve capacity of microgrid. The reserve capacity
is offered by either an energy storage system or the utility grid.

Based on the the average error observed over the intervals,
the vehicle aggregator switches between the strategies. If the
average error is greater than 15% then the vehicle aggregator
follows spot market strategy described in Section III-A (Strat-
egy I) otherwise it follows the schedule prepared based on the
forecast.

1) Energy management strategy for V2G without accurate
forecast data in microgrids: When the day-ahead energy
generation and demand forecast in microgrids is not accurate
then the charging and discharging scheduling of PEVs is
decided by following real-time generation and demand data
(5 or 15 min prior) presented by DGs and loads. Based
on the mismatch calculated from real-time information the
charging and discharging schedule of PEVs is scheduled in
decentralised manner. In case of energy shortage in microgrids,
the PEVs will be used as the sources to fill the shortage. In
this case PEVs submit bids to PEV aggregator to provide
energy through V2G. The bids submitted by PEVs include
offer price which is the summation of cost of stored energy
and the expected cost of battery degradation. The bids by PEVs
are calculated based on the assumption that there will be no
charging or discharging before they leave the parking station,
as if there is no knowledge of forecast. Based on the bids
submitted by PEVs, the aggregator chooses PEVs with lowest
offer prices till the energy shortage is bridged. The shortage
beyond the available PEVs capacity will be assigned to the
utility grid.

In case of excess energy in microgrids, PEVs will be
charged by the aggregator. The selection of PEVs for charging
is based on the State of Charge in kWh (SOC) of their
batteries, i.e. the PEV with SOC less than the minimum
required value to travel after leaving the parking station will
be given high priority to charge. A more detailed description
of this strategy is given in section III-A.

2) Energy management strategy for V2G with accurate fore-
cast data in microgrids: If the forecast on energy generation
and consumption in a microgrid is accurate on day-ahead
or half-day ahead basis then the charging and discharging
schedules of PEVs are centrally decided by the aggregator. The
aggregator generates a schedule for charging and discharging
of PEVs by simultaneously optimising the following goals
without violating the desire operational preferences of PEV
owners and the network constraints.

a) Minimising the supply-demand mismatch in the micro-
grid by using V2G and G2V capability of PEVs

b) Minimising the overall charging cost of PEVs
c) Maximising the revenue of PEVs through V2G by

offsetting their BDC
The proposed energy management strategies are imple-

mented using a MAS setup suitable for microgrids and is
as shown in Fig. 2. In this MAS the proposed strategies are
implemented by separately managing PEVs from the primary
market which is a market within the microgrid in which DGs
trade the energy with loads. In Fig. 2, Distributed Generation
Agents (DGAs) and Point Load Agents (PLAs) represent DGs
and loads connected in the microgrid respectively. Auction
Supervising Agent (ASA) is the market organising agent for
primary market and follows first price Continuous Double
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Fig. 2: MAS architecture for energy management in smart microgrids
with V2G

Auction (CDA) mechanism to conduct auction among DGAs
and PLAs. A detailed description on CDA market mechanism
is available in [4]. ASA also suggests vehicle aggregator on
selection of the strategy to be followed based on the deviation
between day-ahead forecast data and real-time data. In this
market bids placed by DGs and loads are limited to the range
[Grid Buying Price (GBP), Grid Selling Price (GSP)], as
the bids beyond this range are undercut by the utility grid.
Global Grid Agent (GGA) represents the utility grid to address
the residual demand and excess supply beyond the PEVs
capacity. Residual demand in a microgrid connotes the power
demand that cannot be met using the available energy sources.
Similarly the excess energy is the superfluous or surplus
energy available in the microgrid in any interval. PEVs in the
microgrid are represented by Eelctric Vehicle Agents (EVAs)
whereas Electric Vehicle Load Aggregator (EVLA) represents
the energy aggregator for PEVs. The communication links
shown in Fig. 2 represent the type of communication required
among various agents in the architecture. EVAs submit their
desired operational preferences to EVLA which follows them
as guideline for scheduling the charging and discharging of
PEVs. The preferences include Starting Interval (SI), Leaving
Interval (LI), desired minimum SOC to be maintained with
PEVs by the end of LI (SOCLI|min), SOCmax, SOCSI and
rated kW.

The proposed MAS treats PEVs as adjustable loads and
their charging and discharging schedules are decided by EVLA
based on the energy supply and demand forecast information.
The type of strategy to be used to manage V2G is chosen
by the MAS based on the accuracy of forecast information as
described in the later parts of this section.

III. OPTIMAL V2G MANAGEMENT MODEL FOR
MICROGRIDS

A. Energy management strategy for V2G without accurate
forecast data in microgrids

In case of inaccurate forecast, ASA suggests EVLA to
follow this strategy. Based on the real-time energy supply

and demand information, ASA calculates the energy mismatch
(∆P ). If the mismatch during a Demand Interval (DI) is non-
zero then PEVs will be called for addressing the mismatch.
The value of ∆P sets the directions for managing the energy
and the role of PEVs as sources or sinks.

Case I - ∆P < 0: ASA requests EVLA to provide the
energy support which in turn invites quotes from EVAs. Each
quote includes the price per kWh at which a PEV is willing to
sell and the power in kW. EVLA follows Second Price Auction
(SPA) mechanism to choose the set of PEVs to address the
energy shortage. The trader who submits the lowest offer price
will be chosen as winner if the offer is less than GSP and
the price he receives is the second lowest price. Thus, it
ensures profit to the winner. If the lowest among the offer
prices submitted by EVAs is more than GSP then the shortage
will be assigned to the utility grid. Alternatively, if the lowest
offer price is less than GSP and the second lowest price is
more than GSP then the price to be offered to the winner is
GSP. In SPA, the bids submitted by traders reflect their true
valuation (τ ) since submitting a bid higher or lower than the
true valuation does not merit their profit. The true valuation
of energy connotes the cost of energy below which it is not
economically feasible to sell. The rationale behind applying
SPA is its quick market clearing capability and transparency.
A more detailed description of SPA can be found in [20]
and [21]. EVLA conducts SPA among EVAs and sends the
outcome to ASA.

Evaluating true valuation of energy by EVAs: If the energy
demand is more than supply then EVLA notifies EVAs to
submit the quotes. EVAs calculate the offer price by taking the
BDC correspond to the expected DOD after travelling EDD.
For a PEV, the minimum SOC to be maintained at the end of
LI can be expressed as,

SOCLI|min = SOCmin + SOCedd (5)

where,
SOCedd = ECR× EDD (6)

In an interval j, if the PEV is not used for V2G service (not
discharged) then the expected SOC at the end of EDD will
be calculated by assuming a worst-case scenario in which the
PEV will not be charged till the end of LI. This is valid when
there is no accurate forecast on energy surplus or shortage in
the microgrid. Therefore,

SOCedd+
j = SOCj−1 − SOCedd (7)

If PEV is used for V2G service in the interval j then SOCj

is less than SOCj−1 by (PPEV ×∆t). In such cases, SOC at
the end of EDD is given by,

SOCV2G, edd+
j = (SOCj−1 − (PPEV ×∆t))− SOCedd (8)

Eq. (8) is also based on the assumptions as (7). From (7)
and (8), it can be observed that SOCV2G,edd+

j is lower than
SOCedd+

j and hence causes higher depth of discharge at the
end of the EDD. This leads to higher BDC due to extra
degradation of the cycle-life. Therefore, while calculating the
true valuation of energy in interval j, the BDC corresponding
to the change in DOD from DODedd+

j to DODV2G,edd+
j must
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be incorporated. Here, DODedd+
j and DODV2G,edd+

j are DODs
corresponding to SOCedd+

j and SOCV2G,edd+
j respectively. As

per (1), the BDC to be considered in the interval ‘j’ is
calculated as follows.

BDCj =

(
1

f(DODV2G,edd+
j )

− 1

f(DODedd+
j )

)
× CB (9)

τ of a PEV in interval j is calculated using BDC and the Cost
of Stored Energy (CSE) as,

τj = CSE(j−1) + αj (10)

where, CSE(j−1) is the cumulative price of stored energy at
the end of interval (j − 1) and is calculated by taking the
weighted average of charging and discharging prices of the
energy from SI to (j − 1).

αj = BDCj/(PPEV∆t) (11)

In (11), αj connotes the extra revenue to be recovered per
unit energy (or additional value of the quote to be place) in
order to breakeven the BDC corresponding to discharging of
the PEV in interval j.

Case II - ∆P > 0: In this case ASA sends ∆P and Market
Clearing Price (MCP) information to EVLA which chooses
EVAs to charge based on their SOC in the corresponding
interval. If SOCj of a PEV is less than its SOCLI|min then
the PEV will be given higher priority to charge. If there
are multiple PEVs with SOCj < SOCLI|min then they are
selected to charge in the increasing order of their SOC. Also,
if PEVs are charged to SOCLI|min then they will be chosen on
the order of their arrival. After identifying the required number
of PEVs, EVLA updates the corresponding EVAs with the
price of electricity. EVAs use this price to update their CSE.
At the end of the DI, the excess energy beyond PEVs capacity
will be assigned to GGA.

B. Energy management strategy for V2G with accurate energy
supply and demand forecast data in microgrids

DGAs and PLAs submit their respective forecast(day or
half-day ahead) information to ASA which notifies EVLA with
the energy imbalances calculated based on the forecasts. ASA
sends the estimated prices of electricity for the corresponding
energy imbalances in the market to EVLA. EVAs submit
their status and preferences about charging and discharging to
EVLA on their arrival. EVLA generates a schedule for PEVs
by optimising the objectives described in section II-2 without
violating the operational preferences of PEVs.

Optimisation model for optimal V2G management: The
primary objective of the proposed V2G management strategy
under the presence of accurate forecast data is minimising
the supply demand mismatch in the microgrid by scheduling
charging or discharging of PEVs. This can be represented as,

(12)f1 : Min
∑

j∈y(ts,te)

(
∆Pj +

M∑
i=1

xijP
i
PEVa

i
j

)

where xij is a decision variable whose value represents the
state (+1 for charging, -1 for discharging and 0 for idle) of

ith PEV in interval j. aij is availability indicator to represent
the availability of ith PEV in interval j and it is equal to 1
if j < LI, 0 otherwise. The second objective (minimising the
overall charging cost of PEVs and maximizing the revenue
from V2G while offsetting the BDC) is modelled as,

(13)

f2 : Min
∑

j∈y(ts,te)

{(
Ci

j

M∑
i=1

(
xij + |xij |

)
2

P i
PEVa

i
j∆t

)

−
M∑
i=1

(
Di

j

(
|xij |−xij

)
2

P i
PEVa

i
j∆t+BDCi

j

)}
where Ci

j and Di
j are the prices of electricity per kWh for

charging and discharging of PEVs in the interval j respectively
and are equal to the prices forecasted by ASA for the interval.
The objective functions (12) and (13) need to be solved
simultaneously, subject to the constraints given in (14), to
obtain the optimal charging and discharging schedule of PEVs.
The schedule minimises the estimated mismatches in the
microgrid while making V2G integration economically viable.

SOCmax ≥ SOCLI ≥ SOCLI|min (14)

During the discharging of PEVs, if SOC becomes less than
the SOC with which they arrived then CSE corresponding to
the initial SOC will be taken into account while deciding the
cost of V2G. The objective function shown in (13) is non-
linear which demands a non-linear multi-objective technique
such as evolutionary algorithms based approaches [22].

In this work, a modified Artificial Bee Colony (ABC)
algorithm, called Artificial Bee Colony-Rate of Change (ABC-
ROC) [23], is used to optimize the overall objective function
formulated as,

(15)

Min


 ∑

j∈y(ts,te)

γ(j)f1

+ γ2f2

+ γ3 (SLI|min − SOCLI)

+ γ4 (SOCLI − SOCmax) + γ5


where γ, γ2, γ3, γ4 and γ5 are the parameters to be tuned while
solving (15). The weight factors γ3 and γ4 are chosen such a
way that they are relatively high compared to the product of
γ2 ∗ f2 so that the members of the population which violate
SOC constraints are heavily penalised. In the present work,
the values of γ2, γ3, γ4 and γ5 are taken as 1, 1e3, 1e3 and
1e3 respectively. The value 1e3 for γ3 and γ4 is arrived by
increasing the value starting from 100. The value of γ is case
dependent and is chosen as follows:

γ(j) =

1e3 if |∆Pj |<
M∑
i=1

|(xij)
∗|P i

PEV

0 otherwise
(16)

where, (xij)
∗ is the value of xij in the current population

generated by ABC. The value of γ(j) is also chosen to
be 1e3 (case 1 of γ(j) given in (16)) to equally penalise
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it unless there is violation in SOC constraints. The ABC-
ROC algorithm parameters used for solving the proposed
optimization problem are colony size 200, maximum ROC
0.6, maximum flag 40, maximum trace 60 and maximum
cycles 500. The generated schedule is submitted to ASA which
obtains binding contracts with DGAs and PLAs for charging
and discharging respectively to make the generated schedule
certain and independent of deviations in the forecasted infor-
mation. The contracts are made for the quantum of energy
needed for charging of PEVs or delivered from discharging
of PEVs at forecasted prices. In energy surplus intervals, the
contracts are made between the PEVs that are scheduled to
charge and DGAs with relatively higher energy cost. This
is due to the fact that the bids placed by such DGs are
undercut by the bids of DGAs with lower energy cost per
kWh. Therefore, DGs with higher energy cost per kWh are
assigned to the utility grid to sell the excess energy at GBP
which is usually less than the proposed contract price. This
gives motivation to such DGs to have binding contracts in
excess energy intervals.

Fig. 3: Flowchart of the proposed energy management system

Similarly, during the energy shortage intervals ASA makes
binding contracts between the PEVs scheduled for discharging
and PLAs with higher profit motivation (type-1 loads, example
commercial buildings). This is due to the fact that these loads
submit lower bids which are undercut by the bids placed by
the loads with relatively less profit motivation (type-2 loads,
example residential units). Therefore, type-1 loads will be left
out in the primary market and buy energy from the utility
grid for meeting the residual demand at GSP which is usually

higher than the binding contract price. This gives motivation
for type-1 loads to have binding contracts during the power
shortage intervals. If the profit motivation behaviour of loads
is not known then ASA chooses loads randomly to make the
binding contracts. In the beginning of each DI in primary
market, DGAs and PLAs submit real-time generation and
demand for the immediate next DI to ASA. After receiving the
information ASA conducts auction (CDA mechanism) among
DGAs and PLAs by excluding the quantum of energy specified
in binding contracts for the corresponding DI. The submitted
information by DGAs and PLAs may not be the same as day-
ahead or half-day ahead forecast information. In such cases,
the excess supply or the residual demand will be assigned to
the utility grid.

Figure 3 showcases the underlying mechanism of the pro-
posed energy management strategies. The obtained schedule
may cause voltage violations or line limit violations which
must be verified before finalizing the set points. The limit vi-
olations are verified with Open Distribution System simulator
(OpenDSS) [24], which is an open source software to simulate
distribution systems with DGs and Storage elements. It has a
powerful component library covering different DG types and
storage systems which helps the systems operators to quickly
build systems for simulation. In addition to this, OpenDSS
provides a graphical representation of the system status upon
solving the power flow, which can be used to quickly assess
the systems status. The linking between the proposed agent
based energy management system to OpenDSS is done using
the COM service of OpenDSS.

In case of auction based scheduling of PEVs (case without
accurate forecast), the most recent contract obtained between
PEVs and DGs/Loads will be canceled if voltages are violated.
In case of optimisation based scheduling (case with accurate
forecast), the obtained schedule will be sent to OpenDSS
platform where it will be executed. If there are any voltage
violations observed, then ASA requests EVLA to provide an
alternative solution (sub-optimal) which will be again verified
for voltage limit violations.

IV. CASE STUDY: SIMULATION, RESULTS & DISCUSSION

The modelling presented in section III suggests that V2G is
economically viable for the systems with large price variations.
In case of distribution systems, due to the high penetration of
DGs and other energy resources such as demand response,
the variations in price of electricity may not be enough
to attract large scale integration of V2G unless the utility
provides special incentives to the EV owners to offset the
degradation costs. Alternatively, such EVs can be integrated
into the system operation through microgrids by localizing the
electricity trading process to microgrid. Therefore in this case
study, a modified IEEE-37 bus system with a grid-connected
microgrid is taken as a case study and is shown in Fig. 4.

The ratings of loads connected outside the microgrid are
same as the specified values of the standard IEEE-37 bus dis-
tribution system [25]. The ratings of DGs and loads connected
in the microgrid are as shown in the Fig. 4. In order to apply
the proposed energy management strategies on the case study
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system, two scenarios are considered. In the first scenario, no
forecast information is taken into account and the scheduling
of PEVs is done by following the strategy described in section
III-A. In second scenario, the forecast information is taken into
consideration and the scheduling of PEVs is done by following
the strategy described in section III-A.

In both the scenarios, energy selling price of the utility grid
is taken as 13.5 cents per kWh and buying price as 9 cents
per kWh. These prices set the limits on quotes and energy
clearing prices in primary market.

Scenario I - Without accurate forecast: For this scenario, it
is taken that three PEVs are available in the microgrid for V2G
management. The ratings, cycle-life and ECR of the PEVs are
given in Table A1. The desired operational preferences and
status of PEVs on their arrival to the parking lot are as given
in Table A2. The vehicles V1, V2 and V3 are represented by
agents EVA-1, EVA-2 and EVA-3 respectively. At this point,
it is assumed that PEVs arrive to the parking lot by 8 a.m.
and submit their information to EVLA on their arrival.
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Fig. 4: Modified IEEE 37 bus distribution network with a grid
connected microgrid

Assuming that the forecast available with ASA is not
accurate, DGAs and PLAs submit their real-time supply and
demand information along with the initial quote in the pre-
ceding DI to ASA. Table I shows supply and and demand
information of DGs and loads respectively for 16 DIs each
of 15 minitues duration. After receiving the information, ASA
organizes CDA market for settling the energy requirements
with local energy producers and sends MCP along with

residual demand or excess supply (∆P ) information to EVLA.
The last two columns of the table show mismatch between
supply and demand and MCP in the corresponding DI.

TABLE I: Real-time generation, demand and MCP data

DI
Generation (kW) Demand (kW) ∆P MCP
DG1 DG2 PL1 PL2 (kW) (¢/kWh)

1 50 50 70 80 -50 12.13
2 50 50 80 80 -60 12.28
3 50 50 70 80 -50 12.13
4 50 50 70 80 -50 12.13
5 90 90 60 60 60 10.47
6 90 80 60 60 50 10.59
7 90 90 60 60 60 10.47
8 90 90 60 60 60 10.47
9 50 50 70 80 -50 12.13

10 50 50 70 80 -50 12.13
11 50 50 80 80 -60 12.28
12 50 50 80 80 -60 12.28
13 90 90 60 60 60 10.47
14 90 90 60 60 60 10.47
15 90 90 60 60 60 10.47
16 90 90 60 60 60 10.47

Based on ∆P value, EVLA either invites bids from EVAs
to address the residual demand or chooses PEVs to charge
using the excess supply by following the procedure detailed
in Section III-A. As shown in Table I, during the intervals 1 to
4 and 9 to 12 the onsite energy is inadequate to serve the loads
in microgrid whereas in rest of the intervals excess supply is
available. During the energy shortage intervals, EVAs submit
bids to discharge if their SOC is more than SOCLI|min. Tables
II, III and IV present the trading activities of PEVs in the
market organised by EVLA. Each table shows, how the bids
by PEVs are calculated and the corresponding clearing prices
in the market. Table II provides more details on the bidding
strategy whereas other two provide only required information.

Table II shows the detailed calculation for V1 in each
interval with τ , α and the quotes placed. In Table II, the
entries under SOC column has two values for each DI to
indicate SOC of V1 in the beginning (SI) and ending (SII)
of the corresponding interval if it is charged or discharged.
Also, BDC has two entries in each interval viz. PT (Present)
and FT (Future). The present BDC values indicate degradation
cost of batteries corresponding to the change in SOC from SI
to SII whereas the future BDC values indicate degradation cost
corresponding to the change in SOC after travelling EDD, i.e.
from(SI−SOCEDD) to (SII−SOCEDD), assuming no further
charging of batteries till LI. Similarly, PT and FT values of α
and τ indicate the additional bid and true valuation of energy
by V1 corresponding to the present and future values of BDC
respectively.

During the interval-1 energy is inadequate to meet the de-
mand and EVLA requests bids from EVAs. While calculating
the bids, EVAs choose future BDC values corresponding to the
expected change in DOD after traveling EDD. For example,
during interval-1 the present and future BDC values of V1 are
2.57 cents and 7.02 cents respectively. The rise in future BDC
is attributed to the uncertainty associated with SOCLI in case
of no forecast on energy supply and demand. This drives EVAs
to consider future BDC values than the present BDC, thus
EVA-1 places a bid (true valuation) at a price 12.81 cents per
kWh which is calculated using (10). Similarly, during all the
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TABLE II: Bids and schedule of EVA-1

Interval
SOC# variation BDC# additional bid, α# Cost of Bid PEV Schedule
Begin End Present Future Present Future stored energy# (Price, Quantity) Clearing Price # Quantity@

1 57.5 55 2.57 7.02 1.03 2.81 10 (12.81,10) 13.44 -10
2 55 52.5 3.14 8.59 1.26 3.44 10 (13.44,10) 13.5 -10
3 52.5 50 3.84 10.51 1.54 4.20 10 (14.2,10) -
4 52.5 50 4.69 12.86 1.88 5.14 10 (15.14,10) -
5 52.5 55 - - - - 10 - 10.47 10
6 55 57.5 - - - - 10.02 - 10.59 10
7 57.5 60 - - - - 10.05 - 10.47 10
8 60 60 - - - - 10.06 - - -
9 60 57.5 2.30 5.74 0.92 2.30 10.06 (12.36,10) 13.49 -10

10 57.5 55 2.57 7.02 1.03 2.81 10.06 (12.87,10) 13.5 -10
11 55 52.5 3.14 8.59 1.26 3.44 10.06 (13.5,10) 13.5 -10
12 52.5 50 3.84 10.51 1.54 4.20 10.06 (14.27,10) -
13 52.5 55 - - - - 10.06 - 10.47 10
14 55 57.5 - - - - 10.08 - 10.47 10
15 57.5 60 - - - - 10.10 - 10.47 10
16 60 60 - - - - 10.11 - -

#: Units of SOC in kWh, BDC in ¢ and the rest are in ¢ per kWh; @: (+) and (-) represent charging and discharging respectively

energy shortage intervals EVAs submit their bids along with
quantum of power. Tables III and IV show the bids placed by
EVA-2 and EVA-3 respectively.

TABLE III: Bids and schedule of EVA-2

DI SOC# variation BDC#

CSE# Bid PEV Schedule
Begin End part of bid (Price,Quantity) Price# kW@

1 55 52.5 3.44 10 (13.44,10) 13.5 -10
2 52.5 50 4.20 10 (14.2,10) -
3 52.5 50 4.20 10 (14.2,10) -
4 52.5 50 4.20 10 (14.2,10) -
5 52.5 55 - 10 - 10.47 10
6 55 57.5 - 10.02 - 10.59 10
7 57.5 60 - 10.05 - 10.47 10
8 60 60 - 10.06 - -
9 60 57.5 2.30 10.06 (12.36,10) 13.49 -10

10 57.5 55 2.81 10.06 (12.87,10) 13.5 -10
11 55 52.5 3.44 10.06 (13.5,10) 13.5 -10
12 52.5 50 4.20 10.06 (14.27,10) -
13 52.5 55 - 10.06 - 10.47 10
14 55 57.5 - 10.08 - 10.47 10
15 57.5 60 - 10.10 - 10.47 10
16 60 60 - 10.11 - -

#: Units of SOC in kWh, BDC in ¢ and the rest are in ¢ per kWh
@: (+) and (-) represent charging and discharging respectively

During the energy shortage intervals, EVLA conducts SPA
market to identify set of PEVs for addressing the shortage
and to finalize the price at which shortage is met. In interval-
1 EVA-1, EVA-2 and EVA-3 submitted 12.81 cents per kWh,
13.44 cents per kWh and 14.69 cents per kWh respectively
as bids to sell 10 kW of power. Therefore, EVA-1 is chosen
primarily as the winner and the price offered is 13.44 cents
per kWh which is the second lowest. Moreover, the second
lowest bid, submitted by EVA-2, is less than GSP and hence
EVA-2 is also chosen to meet the shortage. The price offered to
EVA-2 is 13.5, as the next lowest bid (14.49 cents per kWh) is
higher than GSP. However, during the interval-2 EVA-1 alone
is operating in V2G as the second lowest bid (submitted by
EVA-2) is more than GSP. At this point, if the market price
range is extended beyond 13.5 cents per kWh (e.g. 15 cents per
kWh) then more V2G participation by PEVs can be observed.

During the energy surplus intervals, EVLA chooses EVAs
to charge by following the procedure given in Section III-A.
From Tables II, III and IV , it can be observed that during the
intervals 5 to 7 EVA-1 and EVA-2 are charged till the SOC

reaches SOCmax whereas EVA-3 is charged to maximum
during the intervals 5 and 6. Although SOC of PEVs is more
than SOCLI|min, the motivation for PEVs to get charged
beyond the required SOC can be explained as: a) if they
depart with lower SOC, but greater than SOCLI|min, then
the degradation cost corresponding to the DOD after traveling
EDD is relatively high, b) profit made through V2G.

From Tables II, III and IV, it can be noted that the number of
charge-discharge cycles undergone by V3 are less compared to
the charge-discharge cycles of V1 and V2 due to higher CSE
of V3 than V1 and V2. Also, the number of charge/discharge
cycles undergone by V1 is more compared to that of V2 and
V3 due to higher initial SOC of V1 causing lower BDC costs
and hence lower bids than V2 and V3.

The obtained schedule of PEVs is executed on the case
study network simulated in OpenDSS environment and ver-
ified that voltages are within the limits (0.95 p.u.). In this
strategy, the time required to generate PEV schedule varies
from 1 to 3 minutes depending on the number of vehicles
handled by EVLA.

TABLE IV: Bids and schedule of EVA-3

DI SOC# variation BDC#

CSE# Bid PEV Schedule
Begin End part of bid (Price,Quantity) Price# kW@

1 55 52.5 3.44 11.25 (14.69,10) -
2 55 52.5 4.20 11.25 (15.45,10) -
3 55 52.5 4.20 11.25 (15.45,10) -
4 55 52.5 4.20 11.25 (15.45,10) -
5 55 57.5 - 11.25 - 10.47 10
6 57.5 60 - 11.22 - 10.59 10
7 60 62.5 - 11.19 - -
8 60 60 - 11.19 - -
9 60 57.5 2.30 11.19 (13.49,10) 13.5 -10
10 57.5 55 2.81 11.19 (14,10) -
11 57.5 55 3.44 11.19 (14.63,10) -
12 57.5 55 4.20 11.19 (15.39,10) -
13 57.5 60 - 11.19 - 10.47 10
14 60 60 - 11.16 - -
15 60 60 - 11.16 - -
16 60 60 - 11.16 - -

#: Units of SOC in kWh, BDC in ¢ and the rest are in ¢ per kWh
@: (+) and (-) represent charging and discharging respectively

Scenario II - With accurate forecast: At this point of case
study, it is assumed that the real-time generation and demand
information given in Table I is available a priori with DGs
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and loads and is submitted to ASA on day-ahead basis by
the respective DGAs and PLAs. For the given forecast of
supply and demand, it is assumed that ASA estimated the
market clearing prices and forwarded to EVLA along with
the supply-demand mismatch. In this scenario, three cases are
studied to analyze the performance of the proposed energy
management strategy. In the first case, three PEVs are taken
into consideration with ratings as given in Table A1. Table
V shows the optimal charging and discharging schedule of
PEVs obtained by EVLA adhering to the desired operational
preferences given in Table A2. The values given in the last
two column of the Table V refers the charging or discharging
price, and the resulting mismatch after adding the V2G. The
charging and discharging schedule of PEVs is forwarded to
ASA which creates binding contracts with DGs and loads to
make the obtained schedule certain.

The schedule given in Table V is obtained by taking
the degradation cost corresponding to the change in SOC
between consecutive intervals, i.e. the present value of BDC,
as the charging and discharging schedules of PEVs till their
respective LIs are known. This allows the operators to use
PEVs to higher DOD for the given price range. If the obtained
charge/discharge schedule of PEV is such that SOCLI is less
than SOCSI then the cost of discharging would be CSE. The
prices given in Table V refer to the charging and discharging
price of PEVs.

By comparing the discharging (V2G) prices of PEVs given
in Tables II, III, IV and V, it can be observed that the price
of energy from V2G is minimum if the available forecast
on energy supply and demand is accurate. This is due to
the certainty of SOCLI in Secnario-II (with accurate forecast
information) whereas it is unpredictable in Scenario-I.

TABLE V: Charging and Discharging schedule of V2G (3 PEVs)
with accurate forecast scenario

Interval
PEVs Schedule a Charging/Discharging Resulting mismatch
V1 V2 V3 Price in ¢/kWh after V2G in kW

1 -10 0 0 12.13 -40
2 -10 -10 -10 12.28 -30
3 -10 -10 0 12.13 -30
4 0 0 -10 12.13 -40
5 10 10 10 10.47 30
6 10 10 10 10.59 20
7 10 10 10 10.47 30
8 10 10 10 10.47 30
9 -10 -10 -10 12.13 -20
10 -10 -10 -10 12.13 -20
11 -10 -10 -10 12.28 -30
12 -10 -10 -10 12.28 -30
13 10 10 10 10.47 30
14 10 10 10 10.47 30
15 10 10 10 10.47 30
16 10 10 10 10.47 30

a: (+)&(-) represent charging & discharging in kW respectively

Fig. 5 shows the power mismatch in two cases compared
with the actual mismatch in the system. As shown in graph,
the residual demand and excess supply are diminished with
inclusion of V2G. Although it is an expected outcome of V2G
integration, the effect of forecast of energy supply and demand
on the effective utilisation of V2G is one of the important
aspects of proposed V2G integration strategy. From the graph,
it can be observed that V2G service is better utilised when the

Fig. 5: Comparing ∆P in Case-I and II with reference to actual
mismatch

forecast information is accurate compared to the scenario when
it is not.

TABLE VI: Charging and Discharging schedule of V2G (10 PEVs)
with accurate forecast scenario

PEV Schedule∗ ∆Pa after
DI V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 scheduling
1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -5
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -10
3 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -5
4 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -10
5 1 1 1 1 1 1 0 1 1 1 15
6 0 1 1 1 1 0 1 1 1 1 10
7 1 1 1 1 1 1 1 1 1 1 10
8 1 0 1 1 1 1 1 1 1 1 15
9 -1 -1 -1 -1 0 0 -1 -1 0 0 -20
10 -1 -1 0 0 -1 -1 -1 0 -1 -1 -15
11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -10
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -10
13 1 1 1 1 0 1 1 1 1 1 15
14 1 1 1 0 1 1 1 1 1 0 20
15 1 1 1 1 1 1 1 1 1 1 10
16 1 1 0 1 1 0 1 0 0 1 30

a: (+)&(-) represent charging & discharging in kW respectively; *: the status
of PEV as given in (12) and (13)

In order to verify the scalability of the proposed approach,
the same case study is reconsidered with 10 PEVs and 25
PEVs. In case of 10 PEVs, the rating of each PEV is taken
as 5kW with all other parameters given in Table A1 are
unchanged whereas in latter case the rating is chosen as 2kW.
Table VI and VII show the obtained optimal schedule for the
forecast data given in Table I. The mismatch values given
in the tables represent the modified ∆P after incorporating
the optimal schedule generated by EVLA. By comparing the
mismatches in Tables I, VI and VII, it can be observed that
the mismatches in the microgrid are reduced by engaging the
V2G potential and flexible demand capability of PEVs. The
time taken for solving the optimization in case of 10 PEVs is
approximately 7.7 minutes and in case of 25 PEVs it is 18.53
minutes on a computer with Intel i5, 2.6 GHz processor with
4GB RAM. If the number of vehicles are increased then the
convergence time increases significantly due to the nonlinear
nature of BDC in the the objective function.

In the proposed energy management system, it is assumed
that PEVs submit their preferences and status at least one
hour (TMax) before the schedule commences (say at 8 a.m.).
This time duration sets the limit on the number of vehicles
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TABLE VII: Charging and Discharging schedule of V2G (25 PEVs) with accurate forecast scenario

PEV Schedule∗ ∆Pa after
DI V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 scheduling
1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 -10
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -10
3 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 0 -1 -10
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 -1 -1 -1 0 0 -1 -1 -10
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 16
6 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 16
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 14
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 14
9 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 0 -1 -1 -10
10 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 0 -10
11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -10
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -10
13 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 14
14 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 14
15 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 16
16 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 16

a: (+)&(-) represent charging & discharging in kW respectively; *: the status of PEV as given in (12) and (13)

managed by an aggregator. For example, in the present case
study when the number of PEVs are 25 the time required
to converge the optimization problem is 18.53 min, which
is close to one third of Tmax. And, for the given time
limitation EVLA can manage approximately 75 PEVs. In
order to accommodate more EVs, EVLA can increase TMax

from 1 hour to 1.5 hours which allows it to accommodate
approximately 100 EVs. Alternatively, using multiple EVLAs
in the system more EVs can be managed. In such cases, overall
mismatch in the microgrid is apportioned, similar to [15]
using line limits, among all EVLAs and each EVLA targets to
minimize assigned portion of the mismatch using the proposed
approach. The post-schedule mismatch information of each
aggregator will be shared to other EVLAs which may pick
up the additional mismatch to address from the information
shared by other EVLAs without violating the feeder limits
and adjust the EVs schedule. For this, each aggregator agent
informs the concerned other aggregator about the additional
support that it can provide. The financial model for exchanging
the apportioned mismatches among the multiple aggregators is
currently not covered by the scope of the paper.

The proposed V2G strategy is also applied to another set
of case study data with forecast for 36 intervals, i.e. from 9
a.m. to 6 p.m. In this case study the operational preferences
of PEVs are same as in previous case study except the LI
of PEVs, which is taken as 36. The graph given in Fig. 8
shows the charging and discharging schedule along with the
forecasted mismatches and market clearing prices. From the
graph, it can be seen that the PEVs are discharged only during
intervals 17 to 20 due to higher battery degradation costs that
cannot be off-set at other market prices.

The obtained optimal schedule in all three cases is executed
in OpenDSS environment on the case study system shown
in Fig. 4. It is found that no voltages are violating the limit
(0.95 p.u.). Figure 6 depicts the convergence progress of the
optimization algorithm, i.e. ABC, with number of iterations
when 8 PEVs are participating in a scenario with the same
forecast data. The graph also shows the convergence progress
of ABC-ROC , ABC algorithm with colony size 500, limit
value 200 and maximum cycles are 1000, and Genetic Algo-
rithm (GA) with elitism 10%, crossover 10% and mutation 1%

for solving f2. By comparing the convergence process of the
three algorithms it can be observed that ABC-ROC approach
converges quickly, i.e. in 302 iterations, when compared to
other two algorithms.

Figure 7 shows the cumulative convergence probability
functions of the proposed ABC-ROC based optimization ap-
proach, ABC based approach and GA based approach for
the same case study with 8 PEVs. The graphs show that
the ABC-ROC based approach is able to converge to overall
optimum at higher cumulative probability (0.82), than other
two approaches. This indicates that ABC-ROC based approach
is more reliable than ABC and GA based approaches to solve
the proposed optimization problem.
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Fig. 6: Convergence of the objective function f2 using ABC, GA
and ABC-ROC algorithms

A. Discussion

From the simulation results and modelling presented in
Section-II, it can be understood that the effective utilization
of V2G (to higher DOD levels) can be achieved in econom-
ically viable way in the systems with large electricity price
variations. In breif, to make V2G viable for higher values of
DOD the difference between cost of discharging and charging
must be high .

Another important factor that effects the economic viability
of V2G is the battery cost. If the battery cost of a PEV is high
then its BDC will be more. This demands a large difference
between discharging and charging costs to offset the higher
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Fig. 7: Cumulative convergence probability distribution of the ABC-
ROC, ABC and GA based optimization approaches

Fig. 8: Scheduling of PEVs with forecast data for 36 intervals

BDC values. Figure 9 shows the dependency of % of DOD
on price difference and cost of battery. The graph represents
maximum limits on DOD up to which V2G is viable for
different battery costs and for a given range of price difference.
For the market price range taken in the case study (i.e., 4.5
= 13.5 cents per kWh − 9 cents per kWh), the discharging
of PEVs (V2G) is economically viable only for the region
marked in blue. Therefore, from Fig. 9 it can be deduced that
V2G service upto higher DOD levels is feasible for PEVs with
lower battery cost and in the scenarios with higher electricity
price variations in the system.

Fig. 9: The effect of charging and discharging price difference on
DOD for different battery cost values

V. CONCLUSIONS

In this paper, novel energy management strategies for inte-
gration of PEVs with V2G into the operation of grid connected
microgrids with and without accurate forecast information

are proposed. If the forecast is not accurate then PEVs are
encouraged to participate in V2G by forming a separate market
following SPA mechanism. Also, a bidding strategy that uses
BDC corresponding to expected DOD after travelling EDD is
proposed for PEVs to bid in SPA market. If the forecast is
accurate then an optimal study is carried out to schedule the
charging and discharging of PEVs.

The proposed strategy is implemented using a MAS frame-
work on JADE and applied to a microgrid case study system
with two sets of data. From the simulation results and relevant
analysis it is observed that if forecast on energy supply and
demand in microgrids is not accurate then the future value of
BDC of PEVs decides the discharging price which makes the
cost of electricity from V2G higher in this scenario. Therefore,
for a given market price range V2G to higher DOD levels
at lower price can be realised if the forecast information is
accurate. It is also observed that V2G is economically viable
for PEVs with lower battery cost and in the scenarios with
large difference between discharging and charging costs. The
simulation results and analysis show that the proposed strategy
together with MAS framework is successful in managing V2G
in microgrids.

APPENDIX

TABLE A1: PEV Details

Parameter Value

Make/Model Tesla Model S
Battery technology Li-ion (NCA)

Battery capacity (SOCmax) 60 kWh
Charge/discharge rating 10 kW

SOCmin 5%
Life cycles 600 at 95% DOD
Battery cost $ 10,000

ECR 0.38 kWh/mile

TABLE A2: PEVs arrival status and operational preferences

Parameter (units) V1 V2 V3

SOCSI (kWh) 57.5 55 55
CSE (cents per kWh) 10 10 11.25

SI 1 1 1
LI 16 16 16

EDD (miles) 32 32 32
SOCmin (kWh) 3 3 3
SOCLI|#min (kWh) 15.16 15.16 15.16
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