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A B S T R A C T

The projected and current adoption rates of electric vehicles are increasing. Electric vehicles need to be re-
charged continually over time, and the energy required to ensure that is immense and growing. Given that
existing infrastructure is insufficient to supply the projected energy needs, models are necessary to help decision
makers plan for how to best expand the power grid to meet this need. A successful power grid expansion is one
that enables charging stations to service the electric vehicle community. Thus, plans for power expansion need to
be coordinated between the power grid and charging station investors. In this paper, we present a two-stage
stochastic programming approach that can be used to determine a power grid expansion plan that supports the
energy needs, or load, from an uncertain set of electric vehicles geographically dispersed over a region. The first
stage determines where to expand the power grid, and the second stage determines where to locate charging
stations. The key link between the first and second stage decisions is that charging stations can only be located in
areas with sufficient power supply enabled by an expanded power grid. To solve the model, we utilize a hybrid
approach that combines Sample Average Approximation and an enhanced Progressive Hedging algorithm. We
enhance the Progressive hedging algorithm by applying rolling horizon and variable fixing techniques. To va-
lidate the proposed model and gain key insights, we perform computational experiments using realistic data
representing the Washington, DC area. Our computational results indicate the robustness of the proposed al-
gorithm while providing a number of managerial insights to the decision makers.

1. Introduction

The increase in electric vehicles’ use by consumers and commercial
businesses is shaping the future for a cleaner and more energy-efficient
transportation system. The growth in adoption rates of electric vehicles
is motivated by many reasons. First, advances in battery storage, al-
lowing a Tesla model S to travel almost 300 miles (Tesla.
Modelvailable, 2016) with a single charge, allows users to overcome the
problem of range anxiety (Rezvani et al., 2015). Additionally, the U.S.
government has many initiatives to encourage the adoption of electric
vehicles. For example, in January 2014 U.S. Energy Secretary Ernest
Moniz allocated $50 million dollars for research on electric vehicles in
support of the Electric Vehicle Everywhere Grand Challenge which aims to
produce electric vehicles that are as affordable and convenient as in-
ternal combustion vehicles by 2022 (U.S. Department of Energy, 2014).

While the increase in the adoption of electric vehicles allows for the

transportation system to become less reliant on scarce and harmful
fossil fuels, there are logistics considerations that need to be addressed
as more electric vehicles become prevalent. Internal combustion en-
gines require fuel to run, whereas electric vehicles require power from a
battery. When an electric vehicle battery nears depletion, users com-
monly recharge at an electric vehicle charging station. As more electric
vehicles take to the road, the charging station system needs to be ex-
panded. Electric vehicle charging stations require sufficient energy,
supplied from the power grid, to operate and recharge electric vehicle
batteries. In order to support the expansion and new installation of
electric vehicle charging stations, the power company needs to ensure
they have sufficient energy flowing through their grid to meet the in-
creased demand from these stations. Many power grids do not have
sufficient supply to meet the projected increase in demand from electric
vehicle charging stations (Yunus et al., 2011), and thus, power expan-
sion plans need to be implemented. A recent study from Washington
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State's Department of Transportation reveals that a total of
228,725 kWh of energy were supplied to charge electric cars between
2012 and 2015, which is equivalent to displacing 22,397 gallons of gas
(Washington State Department of Transportation, 2015). Moreover,
since the stations were first opened in 2012, they have been used a total
of 25,888 times as of December 2015, as shown in Fig. 1. It is expected
that the load from electric vehicles in the state of Washington will reach
107MW by 2029 (City Light, 2010). Hence, the power company needs
to be prepared in advance to handle these additional power require-
ments.

Expanding the power grid takes time, requiring that the power
company make decisions based on uncertain aggregate projections on
the adoption rate of electric vehicles per year by geographic region.
This uncertainty in adoption rates translates into uncertainty in pre-
dicting the demand for electric vehicle charging by location. Thus, the
power company must work with this uncertainty as they decide where
to expand the power grid to support the installation of charging stations
over time.

To address this need, this study develops a two-stage stochastic
programming model where the first stage determines the power ex-
pansion plan for a geographic region that is projected to experience
electric vehicle growth. Specifically, we model locations within a power
grid and determine whether or not to expand the power capabilities at
each discrete power location. To inform this first stage decision, we
consider a set of candidate locations where charging stations can be
installed, the necessary supporting power capabilities by vehicle loca-
tion, and an aggregated projection for the flow, or demand, for each
charging location per year. Once the power expansion plan is decided in
the first stage, we then examine each candidate location to determine
whether a charging station should be installed and its size. The key link
between the first and second stage decisions is that charging stations
can only be installed in locations with sufficient power supply, or
equivalently, where the power grid has been expanded. The goal of this
model is to maximize the total profit from expanding the power grid
and locating charging stations.

Until now a number of researchers have studied the problem of
locating electric vehicle charging stations under deterministic settings.
Ip et al. (2010) use a clustering approach of electric vehicle charging
demand in an urban setting to inform the location plans for the battery-
driven electric vehicle charging stations. Chen and Kockelman (2013)
perform regression analysis on parking survey data to determine where
to locate charging stations in parking locations. Using a flow-based set

covering model, Wang and Lin (2009) determine the optimal locations
for the electric vehicle charging stations. Frade et al. (Ribeiro and
Gonçalves, 2011) use a maximal covering model to determine where to
locate electric vehicle charge stations within Lisbon, Portugal.
MirHassani and Ebrazi (2012) reformulate a mixed integer linear pro-
gramming model based on the flow refueling location model (FRLM)
developed by Kuby and Lim (2005). The main idea of FRLM is to locate
several charging stations along long round trips using maximum cover.
Bouche et al. (Baouche et al., 2014) used realistic trip based origin-
destination (OD) data to determine the energy consumption of the
electric vehicles while identifying the optimal location of the charging
stations by formulating an integer programming model. Most recently,
Chung and Kwon (2015) use the FRLM as a foundation to locate electric
vehicle charging stations under a multi-time period planning model.
The authors employ a forward myopic method and a backward myopic
method to solve the multi-time period optimization model.

Alternatively, to generate a more reliable solution, a number of
studies have developed stochastic models to locate electric vehicle
charging stations. For instance, Pan et al. (2010) develop a two-stage
stochastic program to optimally locate the stations prior to the reali-
zation of battery demands, loads, and generation capacity of renewable
power sources. Ravichandran et al. (2016) propose a multi-time period
mixed-linear integer programming model to determine an optimal
control strategy for a charging station equipped with power storage,
integrated EVs, and sources of renewable energies. The authors further
propose a stochastic chance-constrained programming model that
considers uncertainty in demand and power generation, EV state of
charge, and the times of connection and disconnection. Xi et al. (2013)
use a three-step combined simulation and optimization approach to
determine where to locate electric vehicle charging stations as well as
which charging level should be installed at each station. Mak et al.
(2013) examine a robust optimization model that determines how to
build the electric vehicle swapping station infrastructure given limited
information regarding the electric vehicle adoption rates. Bayram et al.
(2013) propose a stochastic model that determines how to operate an
electric vehicle charge station efficiently through the use of an energy
storage device under stochastic demand. Zhu et al. (2014) presents a
dynamic optimization framework that considers multiple charging
stations and cars charging at the same time. The key objective is to
provide cars with the optimal charging rate that minimizes charging
costs based on stochastic optimal control methods. Most recently,
Hosseini and MirHassani (2015) introduce a two-stage stochastic

Fig. 1. Number of charging sessions monthly for the period 2012–2015 (Washington State Department of Transportation, 2015).
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refueling station location model based on a finite number of scenarios
that incorporate uncertainties of traffic flows. A two-step heuristic al-
gorithm is used to solve the optimization problem where the first step
reduces the size of the problem by solving a relaxed version of the
original model while the second step applies a greedy algorithm to
locate the charging stations.

Our model assumes that there is a collaboration between the power
company and EV charging station decision makers. The reasons for
making this assumption are twofold. First, the centralized decision
making that we model shows a best-case scenario for such coordination.
Second, we hope that although the power company and EV station
decision-makers are likely to be privately run companies, given the
government initiatives seeking to increase adoption of EVs that co-
ordination between these two entities would be incentivized. The ma-
jority of research done in this regard assumes a centralized decision
making, where all interested parties are assumed to work together. On
the other side, few research has assumed a decentralized approach. Guo
et al. (2016) assumes a competitive market, where charging stations’
investors work toward maximizing their profits separately, and EV
owners makes decisions on where to charge taking into consideration
time and price issues. Yu et al. (Tong and Li, 2016) introduce a se-
quential game model between investors, aiming to maximize incomes,
and the users, who are conflicted between owning a traditional gaso-
line-powered car or an EV.

By incorporating the realistic aspect that charging stations can be of
different sizes, Ge et al. (2011) adopted a grid based partitioning ap-
proach to locate different sized charging stations in a given region. The
authors used a genetic algorithm to locate charging stations in the grid

so that the users’ loss on the way to the charging station can be mini-
mized. Similarly, Jia et al. (2012) minimize the location cost of electric
vehicle charging stations of different sizes under varying charging de-
mands. Wang et al. (Wang and Lin, 2013) extend their previous work
(Wang and Lin, 2009) by determining where to locate multiple types of
electric vehicle recharging stations when considering application spe-
cifics such as budget, charging speed, and rerouting of electric vehicles
based on charging station locations into account.

Another stream of research attempts to integrate both the power
and transportation decisions under the same decision making frame-
work. Wang et al. (2010) present a multi-objective planning model that
considers a number of factors such as electric vehicles sustainable de-
velopment, characteristics of charging station and consumers, dis-
tribution of the charging demand and the power grid. A solution al-
gorithm is presented that considers demand priority and exploits the
existing gas stations to locate charging stations. He et al. (2013) de-
termine where to locate electric vehicle charging stations based on
examining the interactions between the power and transportation net-
works. Specifically, the authors determine the equilibrium between
electricity prices, traffic flow, and power flow which is utilized to de-
termine the optimal location of the electric vehicle charging stations.
The mathematical model is solved using an active-set decomposition
algorithm. Sweda and Klabjan (2011) develop an agent-based decision
support system to identify the patterns in residential electric vehicle
ownership and driving activities to enable strategic deployment of new
charging infrastructures. Galus and Andersson (2008) further use an
agent-based approach and model the recharging behavior of large
numbers of autonomous Plug-In Hybrid Electric Vehicles (PHEV) that
allows sufficient support from the power grid via demand management
using a nonlinear pricing model. Note that all the models discussed
above attempt to locate charging stations by assuming that the key
modeling parameters such as power demand, vehicle flow rate, char-
ging capacity are known in advance and thus may produce unreliable or
infeasible solutions when system uncertainties (e.g., technology, bat-
tery capacity, power demand, flow rate) are taken into consideration.

Another aspect, other than the charging stations location, that needs
to be investigated is the consideration of electric power limitations
when planning for EV. One paper by He et al. (2012) provides sche-
duling formulations that optimize the charging and discharging deci-
sions and minimize the total cost. A global minimization scheduling
aims to minimize the cost over a day for all EV, while a local mini-
mization scheduling concentrates on optimizing some smaller region.
The authors employed an interior point method to solve the proposed

Fig. 2. Network representation (Original map obtained from (ArcashingtonA, 2016)) and geographical demand distribution of Washington DC.

Table 1
Different power expansion and charging station budget scenarios.

Scenarios Yearly Budget (thousand $)

2017 2018 2019 2020 2021

Base Case Bt
e 5000 6000 7000 8000 9000

Bt
c 400 550 700 850 1000

Scenario 1 Bt
e 5000 6000 7000 8000 9000

Bt
c 600 825 1050 1275 1500

Scenario 2 Bt
e 7500 9500 10,500 12,000 13,500

Bt
c 400 550 700 850 1000

Scenario 3 Bt
e 7500 9500 10,500 12,000 13,500

Bt
c 600 825 1050 1275 1500
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optimization model. Hajimiragha et al. (2010) aim to optimally utilize
the electric grid during off-peak period to charge EVs using MIP. To
better control the load from the charging EV cars on the grid,
Richardson et al. (2012) develop a linear program that optimizes the
rate at which EV charge to control the electric voltage and maximize
the total power transferred to the cars within network limitations.
Rotering and Ilic (2011) propose two dynamic programming algorithms
that help in avoiding the overloading of the electric grid. The first one
optimizes charging time to reduce electricity costs while the second one
incorporates Vehicle-to-Grid (V2G) energy transfer to support the grid.
Liu et al. (2015) presents different control methods (e.g., grid-to-vehicle
and V2G) that balance the bidirectional communications between the
EV and the power system. Rezai et al. (Akhavan-Rezai et al., 2015)
study how parked EVs can be used as an energy storage device when
plugged into the grid to respond to changes in demand. The authors
employ a multi-stage model that schedules the charging session based
on the pricing offers between an aggregator and the EV owners.
Sundstrom and Binding (Sundstroem and Binding, 2012) consider the
grid restrictions (e.g., voltage and power restrictions) in planning for
the charging of electric vehicles. The aim is to control the load on the
grid and provide each EV owner with a charging plan.

Note that none of the prior studies modeled the feasibility of lo-
cating electric vehicle charging stations based on power grid support.
Moreover, there are very limited studies that consider system un-
certainties (e.g., adoption rates, vehicle flow rate, charging capacity)
that frequently impact the location and routing decisions of electric
vehicles. To fill these gaps in the literature, this study develops a two-
stage stochastic programming model that takes into account the un-
certainty in both the adoption rates and charging behavior of

geographic regions. Further, we consider the important links between
the power and transportation systems by ensuring that electric vehicle
charging stations are only installed where there is sufficient power
support. The model assumes a flow-based demand as opposed to a
node-based demand, since it captures the dynamics of the transporta-
tion system. We solve the two-stage stochastic program using a hybrid
decomposition algorithm comprised of Sample Average Approximation
and an enhanced Progressive Hedging algorithm. The Progressive
Hedging algorithm is enhanced through the application of rolling hor-
izon and variable fixing techniques. From multiple numerical experi-
ments, we show that the hybrid decomposition algorithm is capable of
producing a near-optimum solution in a reasonable amount of time.

In addition to proposing the general model, another important
contribution of this paper is applying this model to a real-world case
study. We use Washington, DC as a testing ground in our case study.
This region possesses a number of favorable factors (e.g., high income
and dense population) that are likely to attract intensive electric vehicle
infrastructure investment in the future.1 For the problem modeled in
this paper, the demand is not static but instead flows throughout a
geographic region. We do not have access to real data representing the
flow of EVs through the Washington, DC area. In absence of this data,
we use the following rules and information to estimate the flow per cell,
from which we generate the demand scenarios at each cell. First, we
assume that flow is centered in the downtown area. We also know that
there were 10,000 EVs in 2014 in Washington, DC (Washington State

Fig. 3. Electric vehicle charging station expansion planning under base case scenario.

1 At present, there are over 700 public charging stations located in the DC and
Baltimore area and this number is expected to increase in the coming future
(Available from: http://evadc.org/charging/).
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Department of Transportation, 2015). We determine which cells have
and do not have a road passing through them, then we use balance of
flow equally based on the degree at a particular location. For example,
if the road forks, then flow is evenly split between each of the forks. If
two roads join, the demand is summed from both directions. Using
these rules and information, we carefully calculated the flow at each
cell. In order to avoid double counting the satisfaction of flow demand,
we imposed the rule that if a station is established in one cell, another
station cannot be established in an adjacent cell. Demand scenarios has
been generated based on the flow in each road. Different realizations
have been proposed for each eligible cell by assuming that either flow
will remain the same, increase, or decrease when the time comes for
making the decision for locating a charging station. To account for the
increase in demand over time, we multiplied the flow through each cell
by a random factor between 1.0 and 2.0. When we base the decision of
opening a charging station on demand, we actually mean that the flow
at the time of making the decision suggests a potential demand of some
size. We use demand instead of the flow of EVs because demand in kW
is more direct and help us shape the model the way it is now. The
outcome of this study provides a number of managerial insights such as
optimal expansion of power grid and charging stations under limited
budget availability, which can effectively aid decision makers to design
a robust network to adopt electric vehicles in a given region. Finally, we
showed how the power demand variability and vehicle flow rate impact
the adoption of electric vehicles in a given region.

The exposition of this paper is as follows. In Section 2, we present
the two-stage stochastic program for the electric vehicle charging sta-
tion expansion planning problem. We then describe the results deduced
from a series of computational experiments performed in Section 3.
Lastly, we conclude and present avenues for future research in Section

4. The developed hybrid solution approach to solve our optimization
model is outlined and detailed in the appendix in Section 5.

2. Problem description and model formulation

In this section, we present a two-stage stochastic mixed-integer
programming (MIP) formulation to establish a dynamic multi-period
plan that maximizes the expected monetary return from expanding
power cells and electric vehicle charging stations over a pre-specified
planning horizon. We first make electric power capacity expansion
decisions to support the installation of charging stations. We represent
the power network as a grid where we let = …{2, , | | 1}I I be the set
of candidate rows and = …{2, , | | 1}J J be the set of candidate col-
umns to consider for possible power expansion of electric vehicle
charging stations over a set of time periods t T where

= … T{1,2, , }T . Each cell i j( , ) ( , )I J is referred to by its respective
row i and column number j. We further define iI (indexed by k iI )
and jJ (indexed by l jJ ) be the neighboring cells of a selected cell
i j( , ) ( , )I J where l k i j( , ) ( , ). We assume that fijt is the projected
expected number of cars that will flow into each cell i j( , ) ( , )I J in a
given time period t T . This flow generates a profit of mijt for the
charging stations, if a station is located at cell i j( , ) ( , )I J in time
period t T . Locating a charging station at i j( , ) ( , )I J in time
t T requires an expansion of the power network which incurs a fixed
investment cost cijt . We assume we are given a budget Bt

e to select cells
for expanding power for electric vehicle charging stations in a given
time period t T . The model is designed so that if a cell is selected, the
set of surrounding cells k l( , ) ( , )i jI J to the selected cell
i j( , ) ( , )I J are prohibited from being chosen for power expansion

Fig. 4. Electric vehicle charging station expansion planning under scenario 1.
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to ensure the sparsity of the charging stations. We feel this is necessary
at the early stages of building the infrastructure for electric vehicles,
since the adoption rate of electric cars increase steadily. Moreover,
sparsity ensures that the covering of demand will not be exaggerated.

After decision makers finish their assessment and projections of
electric vehicle flow ( fijt), they determine which cells to expand the
power capacity. However, there is uncertainty about what the true
power demand (in kWh) will be on each cell based on uncertain electric
flows. Thus, we denote the realized power demand by dijt. Let be the
set of scenarios of different realization of power demand for the char-
ging stations located in cell i j( , ) ( , )I J at a given time period t T

and defines a particular realization. Let st be the cost of opening
a charging station of size s S in time period t T , and at that time
period, we are given a budget Bt

c to open the charging stations. Since
the power demand is stochastic, the amount of power may transfer from
cell k l( , ) ( , )i jI J to cell i j( , ) ( , )I J in time period t T under
scenario by incurring a reallocation cost of cijklt

r . This in turn will
increase the income (in $/kWh) of a charging station by serving addi-
tional customers visited at cell i j( , ) ( , )I J in time period t T and
is denoted by ijklt . Thus, an expected profit of c( )ijklt ijklt

r is obtained
by reallocating power in the charging stations located at cell
i j( , ) ( , )I J from cell k l( , ) ( , )i jI J in time period t T . Note
that the cells will also have the option to retain their excess energy
which they can use in remaining time periods. We make the following
additional assumptions to simplify our modeling approach: Electric car
traffic volume will increase over time and is certain. This assumption is
consistent with the assumption made by Chung and Kwon (2015). Grid
power is available throughout the entire time horizon i.e., no disruption
will occur during the time horizon that causes power failure. Also, the
number of time stages is predetermined and each time stage has an

equal length. All charging stations will be of fast charging DC chargers
(referred to as Type 3). This assumption is made to ensure the ability to
meet the demand. The power company and charging station investors
are assumed to work in coordination and decisions for power expansion
are made collaboratively. Finally, charging stations will only be open
from the cells whose capacity was expanded in the first-stage.

Let us now introduce the following notation for our two-stage sto-
chastic programming model formulation:

Sets:
• I : set of rows
• J : set of columns
• iI : set of neighboring rows of row i I

• jJ : set of neighboring columns of column j J

• T : set of time periods
• S : set of capacities for charging stations
• : set of scenarios
Parameters:
• cijt : fixed cost of expanding power in cell i j( , ) ( , )I J in time
period t T

• mijt : expected profit from car traffic in dollars for cell
i j( , ) ( , )I J in time period t T

• Bt
e: budget availability for expansion in time period t T

• fijt : flow (cars/time period) at cell i j( , ) ( , )I J in time period
t T

• st : cost of opening a charging station of size s S in time period
t T

• Bt
c: budget availability for locating charging stations in time
period t T

• cijklt
r : cost of reallocating power to a charging station located at cell

Fig. 5. Electric vehicle charging station expansion planning under scenario 2.
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i j( , ) ( , )I J from cell k l( , ) ( , )i jI J in time period t T

• ijklt : expected income (in $/kWh) obtained from reallocating
power to a charging station located at cell i j( , ) ( , )I J from
cell k l( , ) ( , )i jI J in time period t T

• dijt : power demand (in kWh) at a charging station located in cell
i j( , ) ( , )I J in time period t T under scenario
• cijs: capacity (in kWh) of a charging station of size s S located
in cell i j( , ) ( , )I J

• ijt : minimum utilization required for a charging station located at
cell i j( , ) ( , )I J in time period t T

• pijt : amount of residual power available at cell i j( , ) ( , )I J in
time =t 1
• t : percentage of car charged in time period t T

• β: unit power requirement for each car
• : probability of scenario
Decision Variables:
• Xijt : 1 if cell i j( , ) ( , )I J is selected for power expansion in time
period t T ; 0 otherwise
• Zijst: 1 if a charging station of size s S is open at cell

i j( , ) ( , )I J in time period t T under scenario ; 0
otherwise
• Yijklt: amount of power transferred from cell k l( , ) ( , )i jI J to cell

i j( , ) ( , )I J in time period t T under scenario
• Pijt: amount of power remaining at cell i j( , ) ( , )I J in time
period t T under scenario

We now introduce the following first and second-stage decision
variables for our two-stage stochastic programming model formulation.
The first-stage decision variables = X i j tX: { |( , ) ( , ), }ijt I J T se-
lect the set of cells for possible power expansion of electric vehicle

charging stations in a given time period t. The first set of second-stage
decision variables = Z i j s tZ: { |( , ) ( , ), , , }ijst I J S T se-
lect the size, cell, and time to open a charging station in a given sce-
nario. The next second-stage decision variables include

= Y i j k l tY: { |( , ) ( , ), ( , ) ( , ), , }ijklt i jI J I J T denote the
amount of power transferred from cell k l( , ) ( , )i jI J to cell
i j( , ) ( , )I J in time period t T under scenario and

= P i j tP: { |( , ) ( , ), , }ijt I J T denote the amount of power
remaining at cell i j( , ) ( , )I J in time period t T under scenario

.
The objective function of the electric vehicle power expansion

model [EVP] maximizes the first-stage profits and the expected value
of the random second-stage profits. The first-stage decisions include the
cells to select for power expansion that maximizes the monetary returns
from electric vehicle flow at each cell in a given time horizon. These
decisions are required to be made prior to a realization of any un-
certainty. However, after the uncertainty is revealed the second stage
decisions are made which include the charging stations to open from
selected first-stage cells, power transferred, and remain in a given cell
at a particular time period. The following is a two-stage stochastic
mixed-integer linear programming (MILP) model formulation of the
problem referred to as model [EVP]:

+Maximize m X X[EVP] ( , )i j t ijt ijt
X

( , ) ( , )I J T (1)

Subject to

c X B t
i j

ijt ijt t
e

( , ) ( , )
T

I J (2)

Fig. 6. Electric vehicle charging station expansion planning under scenario 3.
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+ +

= =

i j
X i j t

1 1
1 ( , ) ( , ),

k i l j
klt

1 1
I J T

(3)

X X i j t( , ) ( , ),ijt ijt1 I J T (4)

X i j t{0,1} ( , ) ( , ),ijt I J T (5)

with X( , ) being the solution of the following second-stage problem:

= Maximize c YX( , ) ( )i j
k l

k l i j
t ijklt ijklt

r
ijklt

Y Z P, ,
( , ) ( , )

( , ) ( , )
( , ) ( , )

i j
I J

I J
T

(6)

Subject to

Z B t ,
i j s

st ijst t
c

( , ) ( , )
T

I J S (7)

Z i j t1 ( , ) ( , ), ,
s

ijst I J T
S (8)

Z Z i j s t( , ) ( , ), , ,ijst ijst1 I J S T (9)

d X
c

Z i j s t( , ) ( , ), , ,ijt ijt

ijs
ijt ijst I J S T

(10)

+ +

= =

i j
Y P i j t

1 1
( , ) ( , ), ,

k i i k l j j l
ijklt ijt

1, 1,
I J T

(11)

+ +
=

= =
P

i j
Y P i j t

1 1
( , ) ( , ), ,ijt

k i i k l j j l
ijklt ijt1

1, 1,
I J T

(12)

= =P p i j t( , ) ( , ), 1,ijt ijt I J (13)

+ +

= =
max d f X

i j
Y i j t{ , 0}

1 1
( , ) ( , ),

,
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Z i j s t{0,1} ( , ) ( , ), , ,ijst I J S T (15)

Y i j k l t0 ( , ) ( , ), ( , ) ( , ), ,ijklt i jI J I J T (16)

P i j t0 ( , ) ( , ), ,ijt I J T (17)

The objective function (1) is the sum of the first-stage profits and the
expected second-stage profits. The first-stage profits maximize the mone-
tary return that the charging stations may get by expanding power in a
given cell i j( , ) ( , )I J in time period t T . Constraints (2) limit the
number of cells that can be selected in a given time period t T with a
pre-specified budget Bt

e. To ensure that the distribution of charging sta-
tions around a selected cell i j( , ) ( , )I J is sparse, constraints (3) pre-
vent a set of surrounding cells from being chosen for power expansion. The
summation limits and the number of stations allowed can be adjusted
based on how the sparsity of the selected cell is desired. Constraints (4)
indicate that once a cell is expanded for power expansion, it will still be
selected in the subsequent time periods. Constraints (5) set the binary
restrictions for the first-stage decision variables.

The objective function of the second-stage (6) maximizes the return of
rerouting power to cover extra demand. Constraints (7) limit the number
of charging stations that can be opened in a given time period t T with
a pre-specified budget Bt

c. Constraints (8) ensure that at most one charging
station of size s S is opened in a given cell i j( , ) ( , )I J in time
period t T under scenario . Constraints (9) indicate that if a

Fig. 7. Impact of low power demand variability on system performance.
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charging station is opened at time period t 1 then it will still remain
open in the subsequent time periods t T . Constraints (10) indicate that
a charging station is open only if the expected utilization is attractive for
the investors. Since power can be drawn from adjacent cells
k l( , ) ( , )i jI J as necessary, the remaining amount should be monitored.
Therefore, constraints (11) ensure that the power rerouted is no more than
what is available. Constraints (12) assign the remaining power after re-
allocation to the next time period. Constraints (13) indicate that the re-
sidual power at the first time period is initialized with the parameter pij1,
which is the amount of residual power available at the beginning.
Constraints (14) ensure that if the demand, which is stochastic in nature, is

more than the expected flow, then power from adjacent cells
k l( , ) ( , )i jI J can be rerouted to the selected cell i j( , ) ( , )I J to
fulfill the unaccounted increase in demand. Note that β and t denote the
unit power requirement for each car and a percentage of electric car fijt
charged in time period t T , respectively. Finally, constraints (15) set
the binary restrictions and (16), (17) are the standard non-negativity
constraints.

3. Experimental results

This section presents our computational experience in solving model

Fig. 8. Impact of high power demand variability on system performance.

Fig. 9. Impact of power demand variability on system performance.
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[EVP] to test the performance of the algorithms proposed in Section 5
and to draw managerial insights. All the algorithms are coded in GAMS
24.2.1 (General Algebraic Modelin, 2013) and executed on a desktop
computer with an Intel Core i7 3.50 GHz processor and 16.0 GB RAM.
The optimization solver used is ILOG CPLEX 12.6. The following sub-
sections describe the input parameters used in this study followed by
the results obtained from the experimental study and then reports the
computational performance of the hybrid Sample Average approxima-
tion based Progressive Hedging algorithm to solve model [EVP].

3.1. Input parameters

The region of interest for our case study is Washington, DC for
which a network representation is depicted in Fig. 2(a). The demand
distribution for Washington, DC is shown in Fig. 2(b). The rationale
behind selecting Washington, DC is that the city offers incentives to
own electric vehicle cars and the adoption rate is high. The map is
divided into a grid of size ×50 46 cells (i.e., = =| | 50, | | 46I J ) where
each cell contributes an area of approximately 0.5 mile2 2. Note that the
data for cell-specific parameters are only obtained for those that have a
road passing through them; otherwise, the values for the cells are set to
zero. We assume that only the active cells can be considered for power
expansion and a potential location of opening a charging station. We
are considering a 5-year planning horizon starting in 2017 and ending
in 2021. All costs are calculated based on 2017 dollars. Costs and profits
are then adjusted for inflation. The cost of expanding power c( )ijt in a
given cell i j( , ) ( , )I J is set to $700,000 (Institute for Renewable
Energy, 2016) and we assume that we are given an annual budget (Bt

e

=$5M, $6M, $7M, $8M, and $9M) to expand power for years
2017–2021 (Institute for Renewable Energy, 2016). Similarly, the
construction cost for locating a fast electric vehicle charging station ( st)
in a new location is set to $50,000 (Agenbroad and Hollland, 2014). We
consider three different electric vehicle charging station capacities
(s=100 kWh, 200 kWh, and 300 kWh). We assume that we are given
an annual budget (Bt

c =$400, $550, $700, $850, and $1000) (in
thousand dollars) to build infrastructures for electric vehicle charging
stations in our tested region for years 2017–2021 (Clean Technica,

2016). The cost of reallocating power (cijklt
r ) to a charging station lo-

cated at cell i j( , ) ( , )I J from cell k l( , ) ( , )i jI J in time period
t T is set to $0.12/kWh (National Public Radio, 2016). Finally, we
set =mijt $0.5/kWh, =ijt 40%, = 10 kWh, and =t 20% for our base
case experimentations.

3.2. Experimental results

3.2.1. Impact of Bt
e and Bt

c on system performance
To understand the impact of the power expansion (Bt

e) and charging
station (Bt

c) budgets on system performance, we conduct four different
experiments: (a) base budget for power expansion and charging station,
(b) Bt

c is increased by 50% while keeping the budget Bt
e fixed, (c) Bt

e is
increased by 50% while keeping the budget Bt

c fixed, and (d) both Bt
e

and Bt
c are increased by 50%. Table 1 summarizes the test instances of

different budgets for power expansion and charging stations from 2017
to 2021. Figs. 3–6 show the deployment of power expansion cells Xijt
(represented by symbol “ ” in Figs. 3–6) and charging stations Zijst
(represented by symbol “ ” in Figs. 3–6) for these experiments. Clearly,
the decisions of Xijt and Zijst are highly impacted by the budgets Bt

e and
Bt

c set by the decision makers. It is observed that the results for scenario
1 (shown in Fig. 4) show a little progression of selecting charging sta-
tions over the base case scenario (shown in Fig. 3). This is because
scenario 1 kept the budget for power expansion Bt

e fixed; thus, the
model gets less options to establish charging stations in the second-
stage even though there may still be money in the budget Bt

c to open
charging stations. We now see that a wide-spread distribution of cells
for power expansion are getting selected under scenario 2 (shown in
Fig. 5). However, it is important to note that many of the cells selected
in the first-stage are eventually not picked for locating charging stations
in the second-stage. This is because of the lack of money available in the
budget to open charging stations under this scenario. Finally, we ob-
serve a rapid expansion of power cells and charging stations for the case
when we assume that both the budgets, Bt

e and Bt
c, are allowed to be

increased by 50% over years 2017–2021 (scenario 3), and the results
are illustrated in Fig. 6. We observe some additional charging stations
being located far away from the original cluster of stations primarily
due to serving the high density of population, hospitals, and colleges
located near the stations. In summary, it is observed that depending on
the values of Bt

e and Bt
c set by the decision maker many more cells and

charging stations are opened to provide a broader coverage for the
electric vehicles. These results shall further provide an insightful
ground for decision makers to invest in power expansion that supports
the adoption of electric vehicles in the long run.

3.2.2. Impact of power demand (dijt) variability on system performance
The second set of experiments shows how different power demand

Fig. 10. Impact of ijt on locating station decisions.
Fig. 11. Impact of fijt on locating charging station decisions.

2 We represent each cell by a virtual region on the map which can be distinct
depending on the population, road condition, and power availability in that
cell. Our study assumes that each cell contributes an area of approximately 0.5
mile2. We further mentioned in our manuscript that the data for cell-specific
parameters are obtained for those that have a road passing through them;
otherwise, the values for the cells are set to zero. We assume that only the active
cells can be considered for power expansion and a potential location of opening
a charging station. Finally, it can be noted that the cells can be of any shape as
needed though we used squares in our study.
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(dijt) variation levels impact electric vehicle expansion decisions.
Electricity demand for charging stations cannot be accurately predicted
in advance. Therefore, the electricity demand is modeled as a random
variable of which probability distribution may not be known in ad-
vance. Thus, a set of scenarios of different realization of power de-
mand for the EV charging stations is defined, where each scenario

is associated with a positive probability p ( =p 1).
Therefore, a large set of scenarios are required to accurately estimate
stochastic demand. To handle this complexity, Monte Carlo simulation
is implemented for generating scenarios of demand. The generated
samples are independent and identically distributed (iid) random
variables. Moreover, we assume EV power demand follows a multi-
variate normal distribution N µ( , ) in each time period, where vectors μ
and are defined as the forecasted EV power demand and forecasting
error, respectively. It is worth noting that the error terms are also
considered to be independent and normally distributed with mean zero
and variance 2. the demand for each period is independent and varies
in the range [ +d d(1 ), (1 )ijt ijt ] for each cell i j( , ) ( , )I J in time
period t T . Note that dijt represents the nominal power demand for

each cell i j( , ) ( , )I J in time period t T and we assume that the
demands are uniformly distributed. We create two different realistic
scenarios where we set ε=50% and ε=15% to represent high and low
power variation levels, respectively. Note that there are a number of
factors that may govern the power variability in a given region, such as
the availability of electric cars and among them the percentage that
charge at the charging stations located in the service region. Moreover,
customers’ willingness to buy, along with the availability of federal tax
credits, state and/or local incentives, and auto manufacturer incentives
for electric and plug-in hybrid vehicles, all play a major role in the
availability of electric cars in a given region. Figs. 7 and 8 demonstrate
the network under low and high power demand variation levels. Results
indicate that the number of cells for power expansion and charging
station increases with the increase in variability of power demand
under a specified budget limit. More specifically, the model decides to
expand 18.75% power cells and 35.89% charging stations to counter
high power demand variability over the base case scenario. Fig. 9(a)
summarizes the number of power expansion cells (PE) and charging
stations (CS) opened under low and high demand variabilities. This in
turn will have an impact on the amount of power transferred from cell
i j( , ) ( , )I J to cell k l( , ) ( , )i jI J under scenario , as illu-
strated in Fig. 9(b). Overall, we observe that the power demand
variability levels highly impact the electric vehicle expansion plans.

3.2.3. Impact of ijt on system performance
To see the impact of minimum utilization of the charging station ijt

on system performance, we conduct a series of experiments by in-
creasing the value of ijt from 20% to 80%. Fig. 10 demonstrates a re-
lationship between charging station opening decisions Zijst under dif-
ferent ijt values. It is clear from the figure that when the value of ijt
increases, the charging station opening decisions Zijst decreases. For

Fig. 12. Impact of 50% increase in fijt on system performance.

Table 2
Problem size of the test instances.

Case | |I | |J | |S | |T Binary
Variables

Continuous
Variables

Total
Variables

No. of
Constraints

1 26 24 3 5 12,480 1,950,000 1,962,480 56,170
2 26 24 3 10 24,960 3,900,000 3,924,960 112,340
3 38 35 3 5 26,600 8,851,150 8,877,750 99,760
4 38 35 3 10 53,200 17,702,300 17,755,500 199,520
5 50 46 3 5 46,000 26,461,500 26,507,500 172,510
6 50 46 3 10 92,000 52,923,000 53,015,000 345,020

M. Kabli, et al. International Journal of Production Economics xxx (xxxx) xxxx

11



instance, an 80% increase in ijt value decreases the average number of
charging stations | Z | opening decisions by 37.14%. This indicates the
potential of improving the minimum utilization level ijt on the system
performance.

3.2.4. Impact of fijt on system performance
We now analyze the impact of vehicle flow, fijt , on system perfor-

mance. Estimating fijt can be challenging and depending on the geo-
metry of the roads (e.g., curvy links) the task can be even more difficult.
However, a rough estimation of fijt can be made as follows: (i) devel-
oping a routing algorithm that deploys electric vehicles from multiple
source to destination points to get an estimation of the number of ve-
hicles passed through each link of the real world physical network
(Chung and Kwon, 2015), and then (ii) developing cells on the network
obtained from (i) to estimate the number of electric vehicles passing
through each cell in a given time period. Fig. 11 provides a relationship
between charging station opening decisions Zijst under different fijt va-
lues. Clearly, increasing the flow ( fijt) at each cell i j( , ) ( , )I J in time
period t T impacts the charging station opening decisions Zijst under
a pre-specified budget restriction. For instance, a 50% increase in fijt

Table 3
Performance of enhancement techniques used in [PHA].

Case N [PHA] [PHA + HR] [PHA + HR + RHA]

GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter

1 20 9.07 10,800 37 0.97 789 12 0.83 642 4
30 11.47 10,800 41 0.96 932 8 0.91 847 3
40 12.32 10,800 27 0.98 1063 9 0.87 984 5

2 20 8.43 10,800 32 0.86 1532 11 0.81 1238 4
30 11.65 10,800 35 0.92 1784 13 0.85 1453 3
40 17.82 10,800 43 0.96 2145 11 0.79 1703 2

3 20 7.28 10,800 25 0.69 1368 7 0.84 1029 3
30 9.69 10,800 19 0.93 1598 9 0.82 1386 4
40 15.34 10,800 26 0.87 1782 6 0.77 1839 3

4 20 10.07 10,800 37 0.94 4758 13 0.84 2742 3
30 12.35 10,800 43 0.83 6436 9 0.94 4332 2
40 9.67 10,800 32 0.97 8643 11 0.79 6863 4

5 20 10.07 10,800 23 0.96 6989 7 0.9 5328 3
30 12.35 10,800 25 0.83 8236 9 0.84 5384 4
40 9.67 10,800 19 3.65 10,800 6 0.88 6547 5

6 20 23.67 10,800 24 5.99 10,800 8 0.94 8724 7
30 18.35 10,800 19 10.35 10,800 7 0.87 9524 4
40 15.63 10,800 27 14.94 10,800 21 1.19 10,800 4

Average 12.49 10,800.0 29.7 2.64 5069.7 9.8 0.87 3964.7 3.7

Fig. 13. Comparison of solution time in each replication of the SAA algorithm.

Table 4
Comparison of different solution approaches.

Case N M [SAA] [Hybrid-1] [Hybrid-2] [Hybrid-3]

GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter

5 20 5 0.89 9368 1 0.98 8452 2 0.75 6152 1 0.89 4235 1
10 0.69 10,234 1 0.89 9821 2 0.71 6478 2 0.92 5343 2

30 5 8.96 10,800 1 7.62 10,800 1 0.83 6992 1 0.94 5862 1
10 mema – – mem – – 2.56 10,800 1 0.88 6686 1

40 5 mem – – mem – – 0.76 6926 2 0.94 7535 2
10 mem – – mem – – 3.54 10,800 1 0.89 8954 1

6 20 5 7.76 10,800 1 0.66 8452 1 0.65 6124 1 0.79 6628 1
10 mem – – 0.69 8821 2 0.81 7720 2 0.86 6992 1

30 5 mem – – 7.62 10,800 2 0.83 9524 1 0.92 7323 2
10 mem – – mem – – 3.23 10,800 1 0.88 8657 1

40 5 mem – – mem – – 4.76 10,800 2 0.94 9875 2
10 mem – – mem – – 5.67 10,800 1 1.39 10,800 1

Aveage 4.58b 10,300.5 1.0 3.08b 9524.3 1.7 2.09 8659.7 1.3 0.94 7407.5 1.3

a Out of Memory.
b Instances where (a) did not contribute to the average calculation.
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increases the average number of charging stations Z| | by 31.4%. A
network representation for this scenario is depicted in Fig. 12. It is
interesting to note that we observe a widespread distribution of char-
ging stations under this scenario (shown in Fig. 12) compared to the
base case scenario (shown in Fig. 3).

3.3. Analyzing the performance of solution algorithms

This section presents our computational experience in solving model
[EVP] using the algorithms proposed in Section 5. To help the readers
follow our approaches, we have used the following notations to re-
present the algorithms:

• [SAA]: Sample Average Approximation (SAA) algorithm (described
in Section 5.2)
• [PHA]: Progressive Hedging Algorithm (PHA) (described in Section
5.3)
• [Hybrid-1]: Sample average approximation algorithm where the
subproblems of the [SAA] are solved using the Progressive Hedging
algorithm (PHA) (described in Section 5.3)
• [Hybrid-2]: Sample average approximation algorithm where the
subproblems of the [SAA] are solved using an enhanced Progressive
Hedging algorithm (PHA) (enhancement techniques described in
Sections 5.4.1 and 5.4.2)
• [Hybrid-3]: Sample average approximation algorithm where the
subproblems of the [SAA] are solved using an enhanced Progressive
Hedging algorithm (PHA) (enhancement techniques described in
Sections 5.4.1, 5.4.2, and 5.4.3)The algorithms presented above are
terminated when at least one of the following criteria is met: (a) the
optimality gap (i.e., = UB LB UB| |/ ) falls below a threshold value
of ε=0.01; or (b) the maximum time limit timemax =10,800 (in
CPU seconds); or (c) the maximum number of iterations itermax

=100 is reached. To terminate the Progressive Heading algorithm,
we have used additional stopping criteria which are described at the
end of Section 5.3. The size of the deterministic equivalent problem
of model [CSC] are presented in Table 2.

The first set of experiments (shown in Table 3) examines the impact of
different enhancement techniques over the basic Progressive Hedging al-
gorithm ([PHA]). We employ the following enhancement techniques: i( )
[PHA + HR] that incorporates penalty parameter updating techniques
(described in Section 5.4.1) and heuristics strategies (described in Section
5.4.2) inside the [PHA] algorithm and ii( ) [PHA + HR + RHA] that
incorporates a rolling horizon algorithm (described in section 5.4.3) along
with penalty parameter updating techniques (described in Section 5.4.1)
and heuristics strategies (described in Section 5.4.2) inside the [PHA] al-
gorithm. Table 3 presents the computational results obtained from solving
model [EVP] using different variants of the [PHA] algorithm (e.g.,
[PHA + HR], [PHA + HR + RHA]). We consider three different sce-
nario sizes =N {20,30,40} and tested them in problem cases 1–6 (shown in
Table 2) to obtain 18 different problem instances. We do not present the
results obtained from CPLEX since CPLEX runs out of memory when solving
all the problem instances as reported in Table 3. Note that in reporting the
computational performance of the algorithms, we highlighted the algorithm
which is solved in less than the stopping criteria ε while simultaneously
producing the smallest running time (represented by CPU in Table 3) for a
given test instance. Otherwise, if such a quality solution is not found within
the maximum time or iteration limit then the algorithm with the smallest
optimality gap (represented by GAP in Table 3) is highlighted. Results in-
dicate that implementing the enhancement techniques discussed in section
5.4 substantially improves the performance of the Progressive hedging al-
gorithm ([PHA]). More specifically, algorithm [PHA] fails to solve any of
the problem instances in less than a 1% optimality gap within the pre-
specified time limit, whereas algorithms [PHA + HR] and
[PHA + HR + RHA] solve 14 and 17 out of 18 problem instances, re-
spectively by obeying the termination criteria described earlier. On average,

algorithm [PHA + HR + RHA] provides a 21.8% faster solution than
algorithm [PHA + HR] and drops the average optimality gap from 2.64%
to 0.87%. Note that algorithm [PHA+HR+RHA] does not guarantee to
produce a valid lower bound for algorithm [PHA]. Therefore, the results
shown in Table 3 use the lower bound of the [PHA + HR] algorithm to
present an optimality gap for the [PHA + HR + RHA] algorithm i.e.,
100* + + + + +UB LB UB( )/ %PHA HR RHA PHA HR PHA HR RHA[ ] [ ] [ ] . We further
point out to the reader that even though algorithm [PHA + HR + RHA]
terminates with an ε-optimal solution, the quality of the solution produced
by the [PHA+HR+RHA] algorithm, as shown in Table 3, is consistently
high.

The second set of experiments analyze the benefits of using different
accelerated techniques in each replication of the Sample Average
Approximation [SAA] algorithm. Fig. 13 shows the average computing
time spent in solving each replication of the [SAA] algorithm using
algorithms [Hybrid-1], [Hybrid-2], and [Hybrid-3]. To demonstrate
the impact of the accelerated techniques, we pick a small problem in-
stance consisting of | |I =14, | |J =13, | |S =3, | |T =5, N=10,
and M=40. Results indicate that the computation time can be sig-
nificantly reduced by using algorithm [Hybrid-2] over algorithm
[Hybrid-1]. We further observe even more reduction in computing
time by employing the rolling horizon framework ([Hybrid-3]) inside
algorithm [Hybrid-2]. On average, algorithm [Hybrid-3] is 1.2 and
1.5 times faster than the [Hybrid-2] and [Hybrid-1] algorithms, re-
spectively.

The final set of experiments present the results from solving model
[EVP] using the algorithms proposed in Section 5 (shown in Table 4).
To test the performance of the algorithms, we use Cases 5 and 6 (the
two largest test cases from Table 2) and vary sample size N and re-
plication number M in the [SAA] algorithm to obtain 12 different
problem instances. We set the large scenario size N =500 to evaluate
the [SAA] gap. We do not present results obtained from CPLEX since
CPLEX runs out of memory when solving all the problem instances re-
ported in Table 4. Results indicate that [SAA] is capable of solving only
2 out of 12 problem instances by obeying the pre-specified termination
criteria. The performance can be slightly improved by solving the
subproblems of the [SAA] algorithm using the [PHA] algorithm. It is
observed that algorithm [Hybrid-1] is now able to solve 4 out of 12
problem instances by obeying the pre-specified termination criteria.
The benefits of using the algorithms become more evident when the
enhancement techniques (described in section 5.4) are implemented in
[PHA] algorithm to solve the subproblems of the [SAA] algorithm.
The overall average optimality gap for the [Hybrid-2] algorithm is
reported as 2.09%, with 7 out of 12 problem instances solved within the
pre-specified termination criteria. On the other hand, the overall
average optimality gap for the [Hybrid-3] algorithm is reported as
0.94%, with 11 out of 12 problem instances solved in less than a 1.0%
optimality gap within the specified time limit. It is important to note
that algorithm [Hybrid-3] on average saves 11.7% computation time
over algorithm [Hybrid-2] in reporting the optimality gaps presented
in Table 4. In summary, algorithm [Hybrid 3] seems to offer high
quality solutions consistently within the experimental range.

4. Conclusion

This study develops a novel optimization framework that can be
used to design widespread adoption of electric vehicle charging stations
for a pre-specified planning horizon subjected to stochastic power de-
mands. A multi-time period two-stage stochastic mixed integer linear
programming model is constructed to determine a set of power cells to
expand over time so that they can be utilized as potential locations for
opening charging stations while simultaneously supporting the sto-
chastic power needs of the stations under uncertainty. The model can be
computationally very challenging depending on the size of the cells,
time periods, and scenarios set by the decision maker. To alleviate these
challenges and to solve real scale problem instances, we develop a
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hybrid decomposition algorithm that combines Sample Average
Approximation (SAA) with an enhanced Progressive Hedging algorithm
(PHA). The hybrid algorithm incorporates several algorithmic im-
provements such as penalty parameter updating schemes, local and
global heuristics, and the rolling horizon heuristic. Computational re-
sults showed that the enhanced variant of the hybrid algorithm [Hybrid
3], which incorporates all the enhancement techniques discussed in
Section 3.3, can be used to solve realistic instances of large size pro-
blems.

By using Washington, DC as a testing ground, we conducted thor-
ough computational experiments to test our model and to draw man-
agerial insights. Our computational experiments reveal some insightful
results about the impact of cell expansion (Bt

e) and charging station
budgets (Bt

c) on electric vehicle adoption performance. We further
conduct sensitivity analysis on the impact of power demand (dijt)
variability and vehicle flow rate ( fijt) on system performance. It is ob-
served that the model decides to open an additional 18.75% power
expansion cells and 35.89% charging stations to counter high power
demand variability over the base case scenario. Moreover, we observe
that a 50% increase in vehicle flow fijt will open an additional 31.4%
charging stations in our tested region under a specified budget con-
straint. We believe our results will help decision makers develop a fu-
ture sustainable transportation system that will add value not only to
the economy but also to the environment.

This research opens up a number of future research opportunities.
Our study makes several assumptions that can be made more realistic in
future works. For example, the flow of car fluctuates throughout the
day and from a month to another. A more realistic approach would be
to track the changes in flow at a finer time frame than yearly. This will
help in making more robust decisions. Another assumption made is the
availability of electric power. Disruptions (from natural disasters, for
example) and their effect on the ability to satisfy demand can be studied
further. Options that helps in mitigating the absence of electricity can
be included to alleviate the situation and satisfy demand as much as
possible. Congestion and its effect on the drivers decision to charge the
car is another factor of consideration. A game-theoretic- approach,
where we assume that the decision making entities do not work in

collaboration, would lead to interesting insights into what type of ac-
tions would best incentivize the coordination between the two players
in order to achieve the idealized scenario. It is also worth to study the
multiple customers the power company needs to consider when making
a multi-objective decision on where to expand the power grid instead of
catering to the charging station needs separately. Since self-driving cars
have become a reality, this model can be extended to include autono-
mous vehicles. Some experts expect that ride sharing will soon become
the more popular choice of commute due to the self-driving capability
(ArcashingtonA, 2016). This will help in solving issues such as range
anxiety and long charging times. Automating transportation will help in
making better decisions about the power requirements by linking cars
information to the smart grid and scheduling charging sessions ahead of
time. This will make EVs more popular and remove the ambiguity of
demand to a large extent. Future studies will investigate how the pro-
posed optimization model can be extended to solve the integrated
shared problem between autonomous and electrified vehicles. Demand
in our work is a prediction of how much electric energy is requested
based on the flow of cars, regardless of any abnormal road conditions.
Relocation of demand can be considered based on the traffic on road to
reflect the different adaptations the drivers make when they encounter
difficulties reaching the nearest charging station. The assumption that
drivers charge at the nearest charging station can be relaxed to allow
preferences of customers and their willingness to deviate from their
current behavior in order to visit charging stations. We ignored the
interactions taking place between locations when we expand power at a
cell. Future works should consider the network interactions of ex-
panding the power grid for delivery of increased flow at multiple lo-
cations. High fidelity models will be developed in the future to relax
these assumptions. Further, it is interesting to integrate renewable en-
ergy sources into the optimization framework and assess the robustness
of the model in a situation where a disruption (e.g., hurricane, tornado)
impacts the system. Finally, The problem can be modeled as a multi-
stage stochastic program to represent the case when the decision maker
can adjust decisions based on the output of the previous period or stage.
These issues will be addressed in future studies.

Appendix

5.1 Solution approach

By setting =| | 1 and =| | 1T i.e., a single scenario and a single time period, we can show that the problem [EVP] is a special case of a
capacitated facility location problem which is known to be anNP -hard problem (Magnanti and Wong, 1981). Therefore, commercial solvers, such
as CPLEX, can hardly solve a small to moderate sized instance of such problems. This motivates us to develop a hybrid decomposition algorithm that
combines a Sample Average Approximation technique with an enhanced Progressive Hedging algorithm. The techniques used to enhance the
Progressive Hedging algorithm are local and global adjustment techniques and a rolling horizon algorithm. The goal is to generate high quality
solutions for problem [EVP] in a reasonable amount of time.

5.2. Sample average approximation

We first employ a sampling technique, known as the Sample Average Approximation (SAA) scheme, to solve problem [EVP]. The idea of the SAA
scheme is to generate a random sample and approximate the expected value function by the corresponding sample average function. The procedure
is repeated until a pre-specified tolerance gap is achieved. The SAA provides high quality feasible solutions along with the statistical estimation of
their optimality gap. The SAA scheme has previously been applied to solve large scale supply chain network flow related problems (see e.g., (Verweij
et al., 2003), (Santoso et al., 2005), (Chang et al., 2007), (Schutz et al., 2009)) and the convergence properties and statistical performance of the SAA
scheme can be found in Kleywegt et al. (2001), Norkin et al. (1998b) and (Norkin et al., 1998a), and Mark et al. (Mak et al., 1999). The first step of
SAA generates random samples with <N | | realizations of uncertain parameters and then approximates the recourse function with the sample
average function = nX( , )N n

N1
1 . Problem [EVP] is now approximated by the following SAA problem:

= + ={ }Maximize X m X N ng Xˆ ( ): ( , )
X i j t ijt ijt N nX ( , ) ( , )

1
1I J T (18)

As the sample size increases the optimal solution of (18), X̃N , and the optimal value vN , converges with probability one to an optimal solution of
the original problem [EVP] (Kleywegt et al., 2001). Assuming that the SAA problem is solved within an absolute optimality gap 0, we can
estimate the sample size N needed to guarantee an ε-optimal solution to the true problem with probability at least equal to (1 ) as:
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N log log3
( )

(| || || |( 2) )max
2

2 I J T
(19)

where > , (0,1) and max
2 is a maximal variance of certain function differences (Kleywegt et al., 2001). Sample size estimation using equation

(19) is too conservative for practical applications. Thus, one can choose a sample size N as a trade-off between the solution quality obtained by
solving (18) and the computational burden needed to solve it. In each iteration of the algorithmic step, SAA provides a valid statistical lower and
upper bound for the original problem [EVP] and the process terminates when the gap between the estimators falls below a pre-specified threshold
value.

The following steps briefly summarize the Sample Average Approximation (SAA) technique to solve problem [EVP].

1. Generate M independent demand scenarios of size N i.e., …d d d{ ( ), ( ), , ( )}m m m
N1 2 , = …m M1, , , where

= d i j td { , ( , ) ( , ), , }ijt I J T and solve the corresponding SAA:

= + ={ }Maximize X m X N ng Xˆ ( ): ( , )
X i j t ijt ijt N nX ( , ) ( , )

1
1I J T (20)

The optimal objective value is denoted by v N
m and the optimal solution by X̂N

m; = …m M1, , .

2. Compute the average of the optimal solutions obtained by solving all SAA problems, v M
N and variance,

v
2

M
N :

=
=M

M
v v1

M
N

m
N
m

1 (21)

where, v M
N provides a statistical upper bound on the optimal objective function value (v *) for the original problem defined by (1)–(17) i.e., v vM

N *

(Norkin et al., 1998b). Since M samples are generated and …v v v, , ,N N N
M1 2 are independent, the variance of v M

N is given by:

=
=M M

M
v v1

( 1)
( )

m
N
m

M
N

v
2

1

2
M
N

(22)

3. Pick a feasible first-stage solution X X˜ obtained from Step 1 of the SAA algorithm, i.e., one of the solutions from X̂N
m and estimate the objective

function value of the original problem [EVP] using a reference sample N as follows:

= + =X m X N ng X˜ ( ˜ ): ˜ ( , )N i j t ijt ijt N n( , ) ( , )
1

1I J T (23)

The estimator Xg̃ ( ˜ )N serves as a lower bound for the optimal objective function value of problem [EVP] which will be updated in each iteration
if the value obtained is less than the value of the previous iteration. We now generate a large set of power demand scenarios (N ) i.e.,

…d d d{ ( ), ( ), , ( )}N1 2 , = …n N1, , . Typically, sample size N is chosen much larger than the sample size N in the SAA problems i.e., N N . We
can estimate the variance of Xg̃ ( ˜ )N as follows:

= +
=

X
N N

N
m X n XX g( ˜ ) 1

( 1)
˜ ( , ) ˜ ( ˜ )N

n i j t
ijt ijt N

2

1 ( , ) ( , )

2

I J T

4. Compute the optimality gap (gap X( ˜ )N M N, , ) and its variance ( gap
2 ) using the estimators calculated in Steps 2 and 3.

=
= +

gap X X
X

v g( ˜ ) ˜ ( ˜ )
( ˜ )

N M N M
N

N

gap N v

, ,
2 2 2

M
N

The confidence interval for the optimality gap is then calculated as follows:

+ +X z Xv g̃ ( ˜ ) ( ˜ )M
N

N N v
2 2

1/2

M
N

with z : = (1 )1 , where z( ) is the cumulative distribution function of the standard normal distribution.

5.3 Progressive hedging algorithm

Step 1 in the Sample Average Approximation algorithm requires solving a two-stage stochastic mixed-integer linear programming model with N| |
scenarios. Depending on the size of | |I , | |J , and | |T , solving this problem can still be considered challenging. To overcome this issue, we solve each
subproblem of the SAA problem using a Progressive Hedging Algorithm (PHA) (Rockafellar and Wets, 1991). The PHA proceeds by applying a
scenario decomposition technique based on the augmented Lagrangian relaxation scheme to solve a number of individual scenario subproblems and
finally aggregating the individual scenario solutions. The Progressive hedging algorithm has been successfully applied in a variety of different
application areas, such as financial planning (Mulvey and Vladimirou, 1991), fisheries management (Helgason and Wallace, 1991), surgery planning
(Gul et al., 2015), hydrothermal operation planning (Santos et al., 2009; Carpentier et al., 2013), and others. Interested readers can review the
studies of Wallace and Helgason (1991), Watson and Woodruff (2011), Crainic et al. (Gabriel Crainic et al., 2016), and Manerba and Perboli
(ManerbaGuido, 2019) for a detailed discussion about the algorithmic implementation.

Constraints (10) and (14) in [EVP] link the first-stage decisions with the second-stage decision variables. These constraints do not allow problem
(20) to be separable by scenario. To remedy this problem, we define a new variable X{ } {0,1}ijt

n
i j t n( , ) ( , ), ,I J T N

that ensures a copy of the first-
stage decision variable is created for each scenario n N . Problem (20) can now be rewritten as follows:
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+
=

Maximize
N

N
m X c Y1 ( )

n i j t
ijt ijt

n

k l
l l i j

ijklt ijklt
r

ijklt
n

X Y Z P, , , 1 ( , ) ( , ) ( , ) ( , )
( , ) ( , )

i jI J T I J

subject to: (7)–(9), (11)–(13), (15)–(17), and

c X B t n N,
i j

ijt ijt
n

t
e

( , ) ( , )
T

I J (24)

+ +

= =

i j
X i j t n N

1 1
1 ( , ) ( , ), ,

k i l j
klt
n

1 1
I J T

(25)

X X i j t n N( , ) ( , ), ,ijt
n

ijt
n

1 I J T (26)

d X
c

Z i j s t n N( , ) ( , ), , ,ijt
n

ijt
n

ijs
ijt ijst

n I J S T
(27)

+ +

= =
max d f X

i j
Y i j t n N{ , 0}

1 1
( , ) ( , ), ,ijt

n
t ijt ijt

n

k i i k l j j l
ijklt
n

1, 1,
I J T

(28)

=X X n m N n m, ,ijt
n

ijt
m (29)

X i j t n N{0,1} ( , ) ( , ), ,ijt
n I J T (30)

Constraints (29) are referred to as nonanticipativity constraints which link the first and second-stage decision variables and force all the scenarios
to yield the same value for each first-stage decision variable. This makes the model not separable by scenarios. To make the model separable by
scenarios and apply Lagrangian relaxation, we need to rewrite the nonanticipativity constraints. Let X{ } {0,1}ijt i j t( , ) ( , ),I J T

be the “overall design
vector”. The following constraints are equivalent to (29):

=X X i j t n N( , ) ( , ), ,ijt
n

ijt I J T (31)

X i j t{0,1} ( , ) ( , ), .ijt I J T (32)

Following the decomposition technique proposed by Rockafellar and Wets (1991), we relax constraints (31) using an augmented Lagrangian
strategy and obtain the following objective function:

+ + +=Maximize N m X c Y X X X X( ) ( ) ( )N n i j t ijt ijt
n k l

k l i j
ijklt ijklt

r
ijklt
n

ijt
n

ijt
n

ijt ijt
n

ijt
X Y Z P, , ,

1
1 ( , ) ( , )

( , ) ( , )
( , ) ( , )

1
2

2i j
I J T

I J

where { }ijt
n

i j t n N( , ) ( , ), ,I J T
define the Lagrangian multipliers for the relaxed constraints and defines a penalty ratio. Given the binary re-

quirements of variables X{ }ijt
n

i j t n N( , ) ( , ), ,I J T
and X{ }ijt i j t( , ) ( , ),I J T

the quadratic term X X( )i j t ijt
n

ijt( , ) ( , )
2

I J T shown in the above ob-
jective function can be reduced as follows:

= +

= +

X X X X X X

X X X X

( ) ( ( ) 2 ( ) )

( 2 )
i j t ijt

n
ijt i j t ijt

n
ijt
n

ijt ijt

i j t ijt
n

ijt
n

ijt ijt

( , ) ( , )
2

( , ) ( , )
2 2

( , ) ( , )

I J T I J T

I J T

The objective function can now be reduced as follows:

+ + + +
=

Maximize
N

N
m X X c Y X X1

2
( ) 1

2n i j t
ijt ijt

n
ijt ijt

n

k l
k l i j

ijklt ijklt
r

ijklt
n

ijt
n

ijt ijt
X Y Z P, , , 1 ( , ) ( , ) ( , ) ( , )

( , ) ( , )
i jI J T I J

when the value of the overall plan X{ }ijt i j t( , ) ( , ),I J T
is fixed, the last two terms of the above objective function becomes constant. This allows the

subproblems to be decomposable by scenarios n N , and the overall problem can be formulated as follows:

+ + +Maximize m X X c Y[EVP(PHA)]
2

( )
i j t

ijt ijt
n

ijt ijt
n

k l
k l i j

ijklt ijklt
r

ijklt
n

X Y Z P, , , ( , ) ( , ) ( , ) ( , )
( , ) ( , )

i jI J T I J

subject to

c X B t
i j

ijt ijt
n

t
e

( , ) ( , )
T

I J (33)

+ +

= =

i j
X i j t

1 1
1 ( , ) ( , ),

k i l j
klt
n

1 1
I J T

(34)
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X X i j t( , ) ( , ),ijt
n

ijt
n

1 I J T (35)

Z B t
i j s

st ijst
n

t
c

( , ) ( , )
T

I J S (36)

Z i j t1 ( , ) ( , ),
s

ijst
n I J T

S (37)

Z Z i j s t( , ) ( , ), ,ijst
n

ijst
n

1 I J S T (38)

d X
c

Z i j s t( , ) ( , ), ,ijt
n

ijt
n

ijs
ijt ijst

n I J S T
(39)

+ +

= =

i j
Y P i j t

1 1
( , ) ( , ),

k i i k l j j l
ijklt
n

ijt
n

1, 1,
I J T

(40)

+ +
=

= =
P

i j
Y P i j t

1 1
( , ) ( , ),ijt

n

k i i k l j j l
ijklt
n

ijt
n

1
1, 1,

I J T
(41)

= =P p i j t( , ) ( , ), 1ijt
n

ijt I J (42)

+ +

= =
max d f X

i j
Y i j t{ , 0}

1 1
( , ) ( , ),ijt

n
t ijt ijt

n

k i i k l j j l
ijklt
n

1, 1,
I J T

(43)

X i j t{0,1} ( , ) ( , ),ijt
n I J T (44)

Z i j s t{0,1} ( , ) ( , ), ,ijst
n I J S T (45)

Y i j k l t0 ( , ) ( , ), ( , ) ( , ),ijklt
n

i jI J I J T (46)

P i j t0 ( , ) ( , ),ijt
n I J T (47)

Here, { }ijt
n r

i j t n N
,

( , ) ( , ), ,I J T
and r denote the lagrangian multipliers and penalty parameter of the progressive hedging algorithm, respectively

which are updated at each iteration r. The general idea of the basic Progressive hedging algorithm is to solve N deterministic [EVP(PHA)] problems
and obtain the consensus parameter X{ }ijt

r
i j t( , ) ( , ),I J T

. If the gap between the binary variable Xijt
n r, and the consensus parameter Xijt

r falls below a
threshold value ε (i.e., = 0.001) for each i j t( , ) ( , ),I J T then the algorithm terminates; otherwise, the value of ijt

n r, and r are updated using
equations (48) and (49) and the process continues.

+ X X i j t( ) ( , ) ( , ),ijt
n r

ijt
n r

ijt
n r

ijt
n r

ijt
r, , 1 , 1 , 1 I J T (48)

r r 1 (49)

where > 1 is a given constant and 0 is set to a fixed positive value to ensure that r as the number of iteration r increases. Moreover, ljt
n,0 is

set to zero for each scenario n N . Pseudo-code of the basic progressive hedging algorithm is provided in Algorithm 1.

Algorithm 1
Progressive Hedging Algorithm

rInitialize, 1, , { } 0,ijt
n r

i j t n N
r,

( , ) ( , ), ,
0

I J T

ter ate falsemin
while (terminate= false) do
for =n 1 to N
Solve [EVP(PHA)] and obtain X{ }ijt

n r
i j t n N

,
( , ) ( , ), ,I J T

end for
Calculate the consensus parameter:

=X X i j t; ( , ) ( , ),ijt
r

N n
N

ijt
n r1

1
, I J T

if >r( 1) then
Update the largangian parameter:

+ X X i j t( ); ( , ) ( , ),ijt
n r

ijt
n r r

ijt
n r

ijt
r, , 1 1 , 1 I J T

Update the penalty parameter:
r r 1 and > 1

end if
if any termination criteria is met, then

terminate true
end if

+r r 1
end while

Termination Criteria: The Progressive hedging algorithm terminates when one of the following conditions is satisfied:
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• = X X| |N n
N

i j t ijt
n r

ijt
r1

1 ( , ) ( , )
,

I J T
; where ε is a pre-specified tolerance gap

• 10 consecutive non-improvement iterations
• Maximum iteration limit is reached (i.e., itermax =100)
• Maximum time limit is reached (i.e., timemax =10,800 CPU seconds)

5.4 Enhanced progressive hedging algorithm

Our initial computational experimentation with the Progressive Hedging algorithm with a sufficiently large data set exposes its inability to
converge within a reasonable amount of time. This motivates us to explore additional enhancement techniques (e.g., local and global heuristics,
dynamic penalty parameter updating technique, rolling horizon heuristic) to improve the convergence and stability of the Progressive Hedging
algorithm. Therefore, the following subsections will present some enhancement techniques to solve problem [EVP(PHA)] efficiently.

5.4.1 Penalty parameter updating
Prior studies such as (Chen and Fan, 2012; Huang et al., 2014) show that setting the value of highly impacts the quality of the solution

produced by the Progressive Hedging algorithm. For instance, when the value of is too large then the algorithm converges fast to a suboptimal
solution. On the other hand, if the value of is too low then the algorithm converges slowly to a near optimal solution. To overcome this challenge,
we have used a method proposed by Hvattum and Lokketangen (2009) to dynamically adjust the value of over iterations based on comparing the
convergence rate of the algorithm at iterations r and r 1. Let r

1 and r
2 be indicators of the convergence rates in the dual space and in the primal

space, respectively. Thus, the penalty value can be updated as follows:

=
>

>
if 0

else if 0

otherwise

r

r r r

r r r

r

1
1 1

1

1 1
2 2

1

1 (50)

where:

= X X( )r

i j t n N
ijt
n r

ijt
r

1
, 2

I J T (51)

= X X( )r

i j t
ijt
r

ijt
r

2
1 2

I J T (52)

and ϕ is a constant parameter which value is set to > 1.

5.4.2 Heuristic strategies
As inspired by Crainic et al. (2011), we have used two heuristic strategies that modify the value of mijt in problem [EVP(PHA)] to further

enhance the performance of the Progressive Hedging algorithm. The first one is termed global heuristic since this strategy adjusts the value of mijt at
the end of each iteration r. On the other hand, the second one, referred to as local heuristic, adjusts the value of mijt within the scenario level.

Remember that problem [EVP(PHA)] can be decomposed into a series of N deterministic sub-problems. At the end of each iteration r of
Algorithm 1, we can obtain the values of the consensus parameter X{ }ijt

r
i j t( , ) ( , ),I J T

which provides an indication of how many times a cell
i j( , ) ( , )I J at time period t T was selected in the previous iterations. A higher value of Xijt

r means that the cell i j( , ) ( , )I J at time period
t T was selected in many of the previous iterations. Contrarily, a lower value of Xijt

r indicates that the cell i j( , ) ( , )I J at time period t T was
not a favorable decision in most of the previous iterations. Let a and a be the two parameters that define the upper and lower threshold value.
Therefore, if the value of Xijt

r is greater than the threshold value a , then increasing the profit associated with selecting cell i j( , ) ( , )I J in time
period t T will attract the subproblems to use the cell in the coming iterations. Similarly, if the value of Xijt

r is lower than the threshold value a,
then decreasing the profit associated with selecting cell i j( , ) ( , )I J in time period t T will discourage the use of this cell in the subproblems of
the coming iterations. This will fix the decisions of using few cells in a given time period to either one or zero and thus will help reduce the size of the
problem. The adjustment strategy is shown as follows:

=

>

<m

m X a

m X a

m

if

if

Otherwise
ijt
r

ijt
r

ijt
r

ijt
r

ijt
r

ijt
r

1 1

1 1 1

1
(53)

where mijt
r represents the modified expected profit from car traffic at cell i j( , ) ( , )I J in time period t T and iteration r; a and a are the two

constant parameters whose values are set to < <a0 0.3 and < <a0.7 1; and δ is a constant parameter whose value is set to > 1.
We can further enhance the global heuristic strategy by modifying the selection of mijt locally within the scenario level. This strategy is termed

local heuristic (Crainic et al., 2011) since the modification ofmijt only impacts the subproblem of the current scenario n at a particular iteration r. This
strategy emphasizes modifying the profits associated with selecting cell i j( , ) ( , )I J in time period t T at scenario n N and iteration r if the
gap between Xijt

n r, and Xijt
r is sufficiently large. The local adjustment strategy applied to Algorithm 1 is as follows:

=

=

=m

m X X a X

m X X a X
m

if| | and 0

if| | and 1
Otherwise

ijt
n r

ijt
r

ijt
n r

ijt
r far

ijt
n r

ijt
r

ijt
n r

ijt
r far

ijt
n r

ijt
r

,

, 1 , 1

1 , 1 , 1

(54)

wheremijt
n r, represents the modifiedmijt of selecting a cell at location i j( , ) ( , )I J in time period t T under scenario n N and at iteration r; afar

is a threshold point at which a local adjustment to themijt of selecting a cell is applied and is set to < <a0.5 1far ; and δ is a constant parameter whose
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value is set to > 1.

5.4.3 Rolling horizon heuristic strategy
Note that, the Progressive Hedging algorithm sill requires that we solve a deterministic, multi-time period problem [EVP(PHA)] N times which is

considered challenging from a solution standpoint. To alleviate this challenge, in this section we develop a Rolling Horizon ([RH]) heuristic to solve
problem [EVP(PHA)]. This approach decomposes problem [EVP(PHA)] into a series of small subproblems where each subproblem includes a few
consecutive time periods which are drawn from the overall planning horizon. The algorithm terminates when all the subproblems are investigated.
Interested readers can review the works by Balasubramanian and Grossman (Balasubramanian and Grossmann, 2004), Kostina et al. (2011) and
Marufuzzaman and Eksioglu (2016) to learn more about the [RH] algorithm. Pseudo-code of the [RH] algorithm is shown in Algorithm 2.

Let [EVP(PHA(r))] denote the approximate subproblem of the rolling horizon algorithm. We further define t r
0 and Mr to be the starting time

period and number of time periods of subproblem r, respectively. Note that we can either set a fixed or variable size of Mr for the subproblems. For
each scenario n N , the approximate subproblems [EVP(PHA(r))] are solved by setting the variables as: i( ) X{ } {0,1}ijt

n
i j t( , ) ( , ),I J T

and
+Z{ }ijst

n
i j s t( , ) ( , ), ,I J S T

for +t t t Mr r r
0 0 , ii( ) X0 1ijt

n and +Zijst
n for > +t t Mr r

0 . Once a subproblem is solved, we fix the values of
=X X i j t; ( , ) ( , ),ijt

n r
ijt
n r, , 1 I J T and =Z Z i j s t; ( , ) ( , ), ,ijst

n r
ijst
n r, , 1 I J S T for <t t r

0 and update the step size r. The process termi-
nates when all the subproblems [EVP(PHA(r))] are solved. Fig. 14 shows an example of using the rolling horizon approach to solve a three time
period problem.

Fig. 14. Illustration of a rolling horizon strategy for a three time period.

Algorithm 2
Rolling Horizon (RH) Heuristic

r 1, =t 0r
0 , Mr , terminate false

while (terminate= false) do
Set:

X{ } {0,1}ijt
n

i j t( , ) ( , ),I J T
and Z{ } {0,1}ijst

n
i j s t( , ) ( , ), ,I J S T

for +t t t Mr r r
0 0

X0 { } 1ijt
n

i j t( , ) ( , ),I J T
, Z0 { } 1ijst

n
i j s t( , ) ( , ), ,I J S T

for > +t t Mr r
0

Solve the approximate sub-problem [EVP(PHA(r))] using CPLEX
if( >t | |0 T ) then
stop true

else
Fixing the values of X{ }ijt

n
i j t( , ) ( , ),I J T

, Z{ }ijst
n

i j s t( , ) ( , ), ,I J S T
for <t t r

0

end if
mile2

end while
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