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Abstract

This paper considers the problem of H∞ state feedback control for networked nonlinear systems under unreliable commu-
nication links with packet dropouts. The nonlinear plant in this paper is described by a Takagi–Sugeno (T–S) fuzzy model.
The packet dropouts in both sensor-to-controller (S/C) and controller-to-actuator (C/A) channels are considered, which are mod-
eled by Bernoulli processes. A new compensation scheme for the estimation of missing packets is proposed, and a piecewise state
feedback controller is designed so that the resulting closed-loop control system is stochastically stable with guaranteed H∞ perfor-
mance. Then the results are extended to the case when both network-induced delays and packet dropouts exist in communication
links. Finally, some numerical examples are given to illustrate the procedure of the proposed approaches and the optimal H∞
performance in comparison to the existing approaches.
© 2013 Elsevier B.V. All rights reserved.

Keywords: T–S fuzzy models; Networked control systems; State feedback; Dropouts; Time-delay; Piecewise Lyapunov functions

1. Introduction

In recent decades, great effort has been devoted to model-based fuzzy control systems [1–5]. In particular,
Takagi–Sugeno (T–S) fuzzy models [6] have been widely studied. This model describes a nonlinear system by a group
of local linear systems, which are blended by several IF-THEN rules [7,8]. Therefore, T–S fuzzy models provide a
basis for systematic stability analysis and synthesis of nonlinear control systems by applying conventional control
theory. At the early stage of the research on T–S fuzzy control systems, some basic stability analysis and controller
design results are proposed [9–11]. The basic idea of these methods is to design a feedback controller for each local
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model and construct a global controller from the local controllers to guarantee the closed-loop performance. However,
the stability criterion is mostly based on common quadratic Lyapunov functions, which is proved to be conservative
when dealing with highly complex nonlinear systems [12]. Some less conservative methods are then proposed, which
are based on piecewise or fuzzy quadratic Lyapunov functions [13,14]. Piecewise quadratic Lyapunov functions are
represented by several Lyapunov functions in different regions according to the partition method to the controlled
plant. It is noted that common quadratic Lyapunov functions are a special case of piecewise quadratic Lyapunov func-
tions when the same Lyapunov function is utilized in different regions. Another typical less conservative Lyapunov
function used in T–S fuzzy control is the fuzzy quadratic Lyapunov function, which is grouped by several local Lya-
punov functions via the same membership function as the controlled plant. Obviously, fuzzy Lyapunov functions will
reduce to common Lyapunov functions when the same local Lyapunov functions are selected.

Recently, networked control systems (NCSs) have attracted great attention because of their theoretical and practical
significance. NCSs are feedback control systems in which the control loops are closed through a real-time network [15,
16]. The actuators, controller and sensors of a physical plant are distributed in a large physical space in NCSs, so they
have giant advantages over traditional control systems, such as lower costs and more convenience for installation,
extension and remote control [17,18]. However, communication links are usually unreliable due to media access con-
straint, data rate constraint, network-induced delays, packet dropouts and so on, which will degrade the performance
of the closed-loop systems or even make them unstable in some cases [15]. To deal with these problems, numerous
methods have been proposed [19–30].

Packet dropout is one of the critical problems of controller design for NCSs, which occurs if there exist packet colli-
sions, buffer overflows or other network congestions [16]. Many researchers have studied the modeling and control of
the systems with packet dropouts, and several approaches on the modeling have been reported, such as those based on
switching systems [31], asynchronous dynamic systems [18] or jump linear systems with Markov chains [19]. These
methods for modeling packet dropout phenomenon can be classified into two categories. One can be called zero strat-
egy [18,32,33], in which the missing packet is set to be zero without any compensation. This strategy has a relatively
simple mathematical expression for analysis and synthesis of control systems, but the overall system will be open loop
for a period of time if packets are lost continuously. Obviously, it will degrade the system performance or even make
it unstable if the packet-loss rate is high. The other is called hold strategy [19,31], in which the data at last sampling
time are held when the current packet is lost during the transmission. Different from the zero strategy, it does not
result in the open-loop scenario. However, the controller performance in this case might not be satisfactory if multiple
packet dropouts phenomena occur, because the system control inputs are not updated frequently enough. Therefore,
to achieve better system performance, a better strategy is needed to deal with the packet dropout phenomenon. More-
over, most of the results on NCSs with packet dropouts reported in literature consider only linear plants [15–17,19,34].
Though there are some works on fuzzy-model-based nonlinear NCSs, they are all based on zero/hold strategy [18,35].
It is thus significant for us to consider a new strategy in order to achieve better performance of T–S fuzzy systems
under the unsatisfactory network environment in practice, which motives our research.

In this paper, we propose a new compensation method for fuzzy-model-based nonlinear NCSs to deal with packet
dropouts in both S/C and C/A channels. The nonlinear physical plant is described by a T–S fuzzy model. By utilizing a
piecewise Lyapunov function method, the H∞ controller is obtained. The result is then extended to the case when both
network-induced delay and packet dropout phenomena exist. Finally, two examples are given to show that our strategy
is effective and able to achieve better performance in comparison to the zero/hold strategies. The contributions of this
paper can be summarized as follows: (1) a new approach to solving the H∞ control design problem of the T–S fuzzy
control system with packet dropouts in both S/C and C/A channels is proposed; (2) the optimal H∞ performance is
achieved by utilizing the proposed compensation approach; (3) the proposed approaches can deal with the case when
both packet dropouts and network-induced delay phenomena exist.

The remainder of the paper is organized as follows. Section 2 is devoted to problem formulation and the description
of the novel compensation strategy. Section 3 presents the H∞ analysis and synthesis results based on a piecewise
quadratic Lyapunov function. Section 4 presents an extension to the case when both network-induced delay and
packet dropout phenomena exist. In Section 5, two simulation examples are given to illustrate the effectiveness of the
proposed approaches and show better performance in comparison with the existing methods. Finally, a conclusion is
drawn in Section 6.

Notations: The notations utilized in this paper are standard. The superscript “T ” stands for matrix transpose;
�n denotes the n-dimensional Euclidean space; �m×n is the set of all real m by n matrices. We use an asterisk (*) to
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Fig. 1. Structure of the networked T–S fuzzy system.

represent a term that can be induced by symmetry in symmetric matrices. diag{...} stands for a block-diagonal matrix.
The notation P > 0 means that P is real symmetric and positive definite. I and 0 denote the identity matrix and zero
matrix, respectively. In addition, E{x} and E{x | y} denote expectation of x and x conditional on y, respectively.
Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

2. Model description and problem formulation

In this paper, we focus on a class of T–S fuzzy systems with packet dropouts in communication links as illustrated
in Fig. 1. Note that the packet dropout phenomenon exists both in S/C and C/A channels. Therefore, the inputs to the
controller x̂(t) are not the same as the states of the controlled plant x(t), and the control inputs to the plant u(t) are
also different from the outputs of the controller û(t). Now, we model the physical plant, dynamic compensator and
controller mathematically.

2.1. Physical plant

The T–S fuzzy-model-based physical plant in this paper is given by:
Plant rule Rl: If θ1(t) is F l

1 and θ2(t) is F l
2 and · · · and θv(t) is F l

v , then{
x(t + 1) = Alx(t) + Blu(t) + Dlw(t),

z(t) = Llx(t) + Hlu(t), l ∈ I := {1,2, . . . , r}, (1)

where Rl denotes the lth fuzzy inference rule, r the number of inference rules, F l
ϕ (ϕ = 1,2, . . . , v) the fuzzy sets,

x(t) ∈ �nx the state vector, u(t) ∈ �nu the input vector, z(t) ∈ �nz the regulated output vector, w(t) ∈ �nw the
disturbance input vector, [θ1(t), θ2(t), . . . , θv(t)] the premise variables, which are some measurable variables of the
system such as the state variables, and (Al,Bl,Dl,Ll,Hl) denotes the matrices of the system’s lth local model.

By using a standard fuzzy inference method, which includes a singleton fuzzifier, product fuzzy inference and
center-average defuzzier, the T–S fuzzy system in (1) can be inferred as,{

x(t + 1) = A(μ)x(t) + B(μ)u(t) + D(μ)w(t),

z(t) = L(μ)x(t) + H(μ)u(t),
(2)

where

A(μ) =
r∑

l=1

μlAl, B(μ) =
r∑

l=1

μlBl, D(μ) =
r∑

l=1

μlDl,

L(μ) =
r∑

l=1

μlLl, H(μ) =
r∑

l=1

μlHl, (3)

and μl is the normalized membership function satisfying

μl = ζl(θ)∑r
ϕ=1 ζϕ(θ)

, ζl(θ) =
v∏

ϕ=1

F l
ϕ(θϕ), μl � 0,

r∑
l=1

μl = 1 (4)

with F l
ϕ(θϕ) representing the grade of membership of θϕ in the fuzzy set F l

ϕ .

 

 



F. Han et al. / Fuzzy Sets and Systems 235 (2014) 44–61 47
 

In order to investigate the robust H∞ state feedback control problem for system (1) based on piecewise Lyapunov
functions, the premise variable space is partitioned into a number of polyhedral regions {Si}i∈Ī ⊆ �v , which are
divided into crisp and fuzzy regions with the following definitions, respectively,

Sic = {
θ(t)

∣∣ μm

(
θ(t)

) = 1, m ∈ ℵ(ic)
}
, ic ∈ Ī , (5)

and

Sif = {
θ(t)

∣∣ 0 � μm

(
θ(t)

)
< 1, m ∈ ℵ(if )

}
, if ∈ Ī , (6)

where ℵ(ic),ℵ(if ) are sets containing the indices of rules in each region, and Ī is the set of polyhedral regions.
Local models act in crisp or fuzzy regions: in crisp regions the dynamic system is described by one local model and
in fuzzy regions the dynamic system is determined by a blending of several local models. The partition method is not
unique, one feasible approach is to set crisp regions when the dynamic system is governed by one local model, and
set different fuzzy regions when the dynamics are determined by different local models according to the membership
functions. Therefore, the rules of T–S fuzzy systems induce polyhedral partition regions. An example to set polyhedral
regions for a practical system will be described in Example 5.1 in Section 5.

With such a partition method, the global fuzzy control system (2) is rewritten in each region as{
x(t + 1) =Aix(t) +Biu(t) +Diw(t),

z(t) = Lix(t) +Hiu(t), x(t) ∈ Si, i ∈ Ī ,
(7)

where

Ai =
∑

m∈ℵ(i)

μmAm, Bi =
∑

m∈ℵ(i)

μmBm, Di =
∑

m∈ℵ(i)

μmDm,

Li =
∑

m∈ℵ(i)

μmLm, Hi =
∑

m∈ℵ(i)

μmHm (8)

with 0 � μm(θ(t)) � 1,
∑

m∈ℵ(i) μm(θ(t)) = 1.
In order to carry out the controller design based on piecewise Lyapunov functions, we also define a set T that

represents all possible transitions among regions as follows:

T := {
(i, j)

∣∣ θ(t) ∈ Si, θ(t + 1) ∈ Sj , ∀i, j ∈ Ī
}
. (9)

The states remain in the same region Si in the case of j = i, (i, j) ∈ T . Otherwise, the states transit from region Si

to Sj .

2.2. Dynamic compensator

Before presenting the compensation results, it is assumed in this section that there do not exist network-induced
delay effects in communication links, and only packet dropout phenomenon is considered in the unreliable transmis-
sion [17].

The dynamic compensator in S/C channel has the following form,

x̂(t + 1) = α(t)Āix(t) + (
1 − α(t)

)
Ās x̂(t), i, s ∈ Ī , (10)

where x̂(t) is the compensated state, Āi , Ās, i, s ∈ Ī are compensator gains in different regions to be determined,
and {α(t)} is a Bernoulli process representing the unreliable transmission in S/C channel. Moreover, α(t) = 0 when
the data are lost, while α(t) = 1 means a successful transmission.

A natural assumption on α(t) can be made as follows:

Prob
{
α(t) = 1

} = E
{
α(t)

} = ᾱ, Prob
{
α(t) = 0

} = 1 − ᾱ. (11)

For the compensated state x̂(t), we also define a set T̂ to describe the region transitions:

T̂ = {
(s, k)

∣∣ x̂(t) ∈ Ss, x̂(t + 1) ∈ Sk, s, k ∈ Ī
}
. (12)
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Remark 2.1. There is a memory in the compensator node such that the missing states x(t + 1) can be estimated as
x̂(t + 1) by historical states stored in the memory according to (10).

Remark 2.2. The dynamic compensator is event driven, that is, the compensated state x̂(t + 1) will be estimated
by x(t) if the packet carrying x(t) arrives at the compensator node at sampling time t , otherwise, x̂(t) is utilized
for the estimation. Obviously, the compensator is still able to estimate the state when the multiple packet dropouts
phenomenon occurs.

Remark 2.3. It is noted that the states of a physical plant are available at the physical plant node instantly, but not
always available in the compensation node due to the unreliable transmission. Therefore, the compensated states are
utilized for determining the region where the compensator stays when the packet dropout phenomenon occurs, and
the region information of x(t) is no longer needed at the compensator node. In this case, the plant states and the
compensated states might not be in the same region, thus the region transitions of the physical plant and compensator
might not be synchronized, which are defined in (9) and (12), respectively. Therefore, the compensator in (10) uti-
lizes compensation gains in different regions according to the plant states and compensated ones. More specifically,
Āi and Ās are compensation gains in regions Si and Ss , respectively.

Remark 2.4. It is noted from [36] that the compensator will be identical to a linear compensator if we design a fuzzy
compensator based on conventional parallel distributed compensation (PDC) [22] when the premise variables between
the physical plant and the designed fuzzy filter are different. Therefore, the piecewise compensator in (10) is designed,
which is less conservative.

Remark 2.5. The proposed compensation scheme is more general than the traditional hold and zero strategies. More
specifically, hold strategy is a special case when Āi = Ās = I in (10), and zero strategy is a special case when Āi =
Ās = 0.

Remark 2.6. Methods utilizing the hold strategy need an assumption that the maximum dropout step is bounded when
dealing with multiple packet dropouts [19,37]. Actually, we are not always able to estimate the maximum packet-loss
upper bound beforehand in practical situation. However, this assumption is not needed in our approach.

2.3. Controller

Based on the compensator given in (10), the following piecewise controller is considered,

û(t) = α(t)Kix(t) + (
1 − α(t)

)
Ksx̂(t), i, s ∈ Ī , (13)

where Ki,Ks, i, s ∈ Ī are controller gains in different regions to be determined.

Remark 2.7. Similar to Remark 2.3, it is also noted that the states of physical plant are not always available in the
controller node because of the unreliable transmission. Therefore, the compensated state x̂(t) will be employed for the
controller design if the packet carrying x(t) is dropped during the transmission. Otherwise, x(t) is utilized. It is also
noted that the plant states and the compensated states might not be in the same region. Therefore, the controller in (13)
utilizes controller gains in different regions according to the plant states and compensated ones, which is similar to
the compensator given in (10). More specifically, Ki and Ks are controller gains in regions Si and Ss , respectively.

Remark 2.8. The controller in (13) is rather different from those given in some existing results, such as [33,38], which
utilize a parallel distributed compensator (PDC) with the assumption that the premise variables of the physical plant are
always available at the controller node. However, this assumption is unpractical under network-based circumstances.
Moreover, it is also assumed that there exists a perfect communication link so that the region index information of
the physical plant can be sent to the receiving node in [37]. However, this assumption is also not needed in this paper,
which is more practical.
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Fig. 2. The time-sequence diagram of the signals in the closed-loop system.

2.4. Closed-loop system

We model the packet dropouts in C/A channel as follows,

u(t) = β(t)û(t), (14)

where {β(t)} is a Bernoulli process representing the unreliable transmission in C/A channel, which is independent of
{α(t)}. More specifically, β(t) = 0 when the packet is dropped, while β(t) = 1 indicates a successful transmission.

Similar to (11), β(t) is assumed to have the following stochastic properties:

Prob
{
β(t) = 1

} = E
{
β(t)

} = β̄, Prob
{
β(t) = 0

} = 1 − β̄. (15)

Additionally, we define α̃(t) = α(t) − ᾱ and β̃(t) = β(t) − β̄ . It is clear that

E
{
α̃(t)

} = 0, E
{
α̃(t)α̃(t)

} = σ 2
1 , E

{
β̃(t)

} = 0, E
{
β̃(t)β̃(t)

} = σ 2
2 , (16)

where σ1 = √
ᾱ(1 − ᾱ), σ2 =

√
β̄(1 − β̄).

Then based on (10), (13) and (14), the physical plant (7) is rewritten as,{
x(t + 1) = (

Ai + α(t)β(t)BiKi

)
x(t) + (

1 − α(t)
)
β(t)BiKsx̂(t) +Diw(t),

z(t) = (
Li (t) + α(t)β(t)HiKi

)
x(t) + (

1 − α(t)
)
β(t)HiKsx̂(t), i, s ∈ Ī .

(17)

From (10) and (17), we have the following augmented closed-loop system,{
ξ(t + 1) = Ais(t)ξ(t) + Diw(t),

z(t) = Lis(t)ξ(t), i, s ∈ Ī ,
(18)

where

ξ(t) = [
xT (t) x̂T (t)

]T
, Di = [

DT
i 0

]T
,

Ais (t) = α̃(t)Ais1 + β̃(t)Ais2 + α̃(t)β̃(t)Ais3 + Ais4,Lis(t) = α̃(t)Lis1 + β̃(t)Lis2 + α̃(t)β̃(t)Lis3 + Lis4,

Ais1 =
[

β̄BiKi −β̄BiKs

Āi −Ās

]
, Ais2 =

[
ᾱBiKi (1 − ᾱ)BiKs

0 0

]
,

Ais3 =
[
BiKi −BiKs

0 0

]
, Ais4 =

[
Ai + ᾱβ̄BiKi (1 − ᾱ)β̄BiKs

ᾱĀi (1 − ᾱ)Ās

]
,

Lis1 = [
β̄HiKi −β̄HiKs

]
, Lis2 = [

ᾱHiKi (1 − ᾱ)HiKs

]
,

Lis3 = [
HiKi −HiKs

]
, Lis4 = [

Li + ᾱβ̄HiKi (1 − ᾱ)β̄HiKs

]
. (19)

The time-sequence diagram of the signals in the closed-loop system is illustrated in Fig. 2.

2.5. Problem formulation

Before proceeding further, some basic definitions are introduced as follows.
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Definition 2.1. (See [37].) The closed-loop fuzzy system in (18) is said to be stochastically stable in the mean square
sense if, when w(t) ≡ 0 and for any initial condition ξ(0), there is a finite matrix Y > 0 such that

E

{ ∞∑
t=0

∣∣ξ(t)
∣∣2

∣∣∣ ξ(0)

}
< ξT (0)Y ξ(0). (20)

Definition 2.2. (See [37].) The closed-loop fuzzy system in (18) is stochastically stable with guaranteed H∞ perfor-
mance γ if the following two conditions are satisfied:

2.5.1. Stochastic stability
The closed-loop fuzzy system (18) is stochastically stable in the sense of Definition 2.1.

2.5.2. H∞ performance
Under zero-initial conditions, the controlled output z(t) satisfies

‖z‖E � γ ‖w‖2, (21)

where ‖z‖E := E{
√∑∞

t=0 |z(t)|2}, and γ > 0 is a prescribed scalar.

The problem to be addressed in this paper is described as follows.
H∞ Dropout Compensator and Controller Design Problem. Consider the fuzzy system in (1) and suppose

that the network parameters ᾱ and β̄ are given. Design a compensator and controller in the form of (10) and (13)
respectively such that the augmented system (18) is stochastically stable with guaranteed H∞ performance γ by
Definition 2.2.

3. Main results

In this section, the piecewise compensator and H∞ state feedback controller analysis and synthesis problem of the
fuzzy system (7) is investigated, which is solved by a linear matrix inequality (LMI) approach based on piecewise
Lyapunov functions.

The following lemma presents a condition to guarantee the stochastic stability and H∞ performance of the closed-
loop system (18).

Lemma 3.1. Consider the system (1) and suppose that the compensator and controller gain matrices Ās and
Ks, s ∈ Ī of the local compensators in (10) and controllers in (13) are given. The augmented system (18) is stochas-
tically stable with guaranteed H∞ performance γ , if there exist matrices Xis = XT

is > 0, i, s ∈ Ī satisfying⎡
⎢⎢⎣

Γ1 0 Γ2Xis 0
∗ Γ3 Γ4Xis Γ5
∗ ∗ −Xis 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, i, s ∈ Ī , (22)

where

Γ1 = diag
{−γ 2I,−γ 2I,−γ 2I,−γ 2I

}
, Γ2 = [

σ1L
T
is1 σ2L

T
is2 σ1σ2L

T
is3 L T

is4

]T
,

Γ3 = diag{−Xjk,−Xjk,−Xjk,−Xjk}, Γ4 = [
σ1A

T
is1 σ2A

T
is2 σ1σ2A

T
is3 A T

is4

]T
,

Γ5 = [
0 0 0 DT

i

]T
. (23)

Proof. Consider the following piecewise Lyapunov function,

V (t) = ξT (t)X−1
is ξ(t), i, s ∈ Ī , (24)

where XT = Xis > 0 are Lyapunov matrices to be determined.

 

 

is
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It is known that the closed-loop system in (18) can be demonstrated stochastically stable in the mean square sense
with H∞ performance γ under zero initial conditions by proving the following index J is negative:

J = E
{
V (t + 1)

∣∣ η(t)
} +E

{
γ −2zT (t)z(t)

∣∣ η(t)
} − ξT (t)X−1

is ξ(t) − wT (t)w(t), (25)

where η(t) = [ ξT (t) wT (t) ]T .
From (19), we have

J = E

{
ηT (t)

[
A T

i

DT
i

]
X−1

jk

[
Ai Di

]
η(t)

∣∣∣ η(t)

}

+E
{
γ −2ξT (t)

(
α̃(t)L T

is1 + β̃(t)L T
is2 + α̃(t)β̃(t)L T

is3 + L T
is4

)
× (

α̃(t)Lis1 + β̃(t)Lis2 + α̃(t)β̃(t)Lis3 + L T
is4

)
ξ(t)

∣∣ η(t)
} − ηT (t)diag

{
X−1

is , I
}
η(t)

= ηT (t)
{− [

Γ4 Γ5
]T

Γ −1
3

[
Γ4 Γ5

] − [
Γ2 0

]T
Γ −1

1

[
Γ2 0

] − diag
{
X−1

is , I
}}

η(t). (26)

Then by the Schur complement and (22), we have J < 0. The proof is thus completed. �
Remark 3.1. A piecewise quadratic Lyapunov function is utilized in Lemma 3.1, which is defined in (24). It is noted
that (24) will reduce to the common quadratic Lyapunov function if Xis = X for any i, s ∈ Ī .

In terms of Lemma 3.1, now we present the controller synthesis result in the following theorem.

Theorem 3.1. Consider system (1). The closed-loop system (18) is stochastically stable with guaranteed H∞ perfor-
mance γ , if there exist matrices Xis = XT

is > 0,Qs, Ḡ,Rs, i, s ∈ Ī such that the following linear matrix inequalities
are satisfied:⎡

⎢⎢⎣
Γ1 0 Γ̄2 0
∗ Γ3 Γ̄4 Γ̄5

∗ ∗ Xis − Ḡ − ḠT 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, i, s ∈ Ī , (27)

where

Xis =
[

Xis11 Xis12
∗ Xis22

]
, Ḡ =

[
G G

G G

]
, D̄m =

[
Dm

0

]
,

Γ̄2 =

⎡
⎢⎢⎣

σ1Πmis5
σ2Πmis6

σ1σ2Πmis7
Πmis8

⎤
⎥⎥⎦ , Γ̄4 =

⎡
⎢⎢⎣

σ1Πmis1
σ2Πmis2

σ1σ2Πmis3
Πmis4

⎤
⎥⎥⎦ , Γ̄5 =

⎡
⎢⎢⎣

0
0
0

D̄m

⎤
⎥⎥⎦ ,

Πmis1 =
[

β̄BmQi − β̄BmQs β̄BmQi − β̄BmQs

Ri − Rs Ri − Rs

]
, Πmis3 =

[
BmQi − BmQs BmQi − BmQs

0 0

]
,

Πmis2 =
[

ᾱBmQi + (1 − ᾱ)BmQs ᾱBmQi + (1 − ᾱ)BmQs

0 0

]
,

Πmis4 =
[

AmG + ᾱβ̄BmQi + (1 − ᾱ)β̄BmQs AmG + ᾱβ̄BmQi + (1 − ᾱ)β̄BmQs

ᾱRi + (1 − ᾱ)Rs ᾱRi + (1 − ᾱ)Rs

]
,

Πmis5 = [
β̄HmQi − β̄HmQs β̄HmQi − β̄HmQs

]
, Πmis7 = [

HmQi − HmQs HmQi − HmQs

]
,

Πmis6 = [
ᾱHmQi + (1 − ᾱ)HmQs ᾱHmQi + (1 − ᾱ)HmQs

]
,

Πmis8 = [
LmG + ᾱβ̄HmQi + (1 − ᾱ)β̄HmQs LmG + ᾱβ̄HmQi + (1 − ᾱ)β̄HmQs

]
. (28)

Moreover, the controller and compensation gains are respectively given by

Ki = QiG
−1, Āi = RiG

−1, i ∈ Ī . (29)
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Proof. According to Lemma 3.1, if there exist matrices Xis > 0, i, s ∈ Ī satisfying (22), the closed-loop fuzzy
system (18) is stochastically stable with guaranteed H∞ performance γ . Based on (8), the left hand side of (22) can
be rewritten as

∑
m∈ℵ(i) μmΨmjkis, j, k, i, s ∈ Ī , where

Ψmjkis =

⎡
⎢⎢⎣

Γ1 0 Γ̆2Xis 0
∗ Γ3 Γ̆4Xis Γ̄5
∗ ∗ −Xis 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ ,

Γ̆2 = [
σ1L̄

T
mis1 σ2L̄

T
mis2 σ1σ2L̄

T
mis3 L̄ T

mis4

]T
,

Γ̆4 = [
σ1Ā

T
mis1 σ2Ā

T
mis2 σ1σ2Ā

T
mis3 Ā T

mis4

]T
,

Ā mis1 =
[

β̄BmKi −β̄BmKs

Āi −Ās

]
, Ā mis2 =

[
ᾱBmKi (1 − ᾱ)BmKs

0 0

]
,

Ā mis3 =
[

BmKi −BmKs

0 0

]
, Ā mis4 =

[
Am + ᾱβ̄BmKi (1 − ᾱ)β̄BmKs

ᾱĀi (1 − ᾱ)Ās

]
,

L̄ mis1 = [
β̄HmKi −β̄HmKs

]
, L̄ mis2 = [

ᾱHmKi (1 − ᾱ)HmKs

]
,

L̄ mis3 = [
HmKi −HmKs

]
, L̄ mis4 = [

Lm + ᾱβ̄HmKi (1 − ᾱ)β̄HmKs

]
. (30)

We can see from (30) that the compensation matrices are coupled with the Lyapunov matrices, which is difficult
for the controller synthesis. To facilitate the controller design, we introduce an additional slack matrix Ḡ = [ G G

G G
].

Then, post- and pre-multiplying Ψmjkis by diag{I, I,X−1
is Ḡ, I} and its transpose, respectively, lead to⎡

⎢⎢⎣
Γ1 0 Γ̆2Ḡ 0
∗ Γ3 Γ̆4Ḡ Γ̄5

∗ ∗ −ḠT X−1
is Ḡ 0

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, i, s ∈ Ī , m ∈ ℵ(i). (31)

Note that

Xis − Ḡ − ḠT + ḠT X−1
is Ḡ = (

Xis − ḠT
)
X−1

is (Xis − Ḡ) � 0, (32)

which implies

−ḠT X−1
is Ḡ � Xis − Ḡ − ḠT . (33)

Based on (33), the following inequality implies (31)⎡
⎢⎢⎣

Γ1 0 Γ̆2Ḡ 0
∗ Γ3 Γ̆4Ḡ Γ̄5

∗ ∗ Xis − Ḡ − ḠT 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, i, j ∈ Ī , m ∈ ℵ(i). (34)

We define Qi = KiG, Ri = ĀiG. It then follows that (27) implies (34).
Based on Lemma 3.1, the fuzzy system (18) is stochastically stable with H∞ performance γ , and the proof is thus

completed. �
Remark 3.2. If we let Āi = Ās = I or Āi = Ās = 0, the proposed dropout compensation results will reduce to hold
or zero strategy-based ones, respectively. In hold strategy, the last packet x̂(t − 1) stored in the buffer will be utilized
for the controller design when the packet carrying x(t) is lost. It is noted that x̂(t − 1) and x(t) may be in different
regions, thus the asynchronous control method is also utilized [35]. In zero strategy, the inputs of the controller are
assumed to be zero when packet dropout phenomenon occurs. In this case, the asynchronous control problem is not
involved [33].
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4. Extensions

Besides packet dropout phenomenon, network-induced delay is another important issue in study of networked
control systems [16]. In order to deal with this issue, the following assumption is needed.

Assumption 4.1. The delays and consecutive steps of packet dropouts in S/C channel are bounded, say, less
than N [39].

Based on the compensator in (10), we have the following compensation scheme:

x̂(t) = x̂(t | td ), td � t, (35)

where x̂(t) is the compensated state at sampling time t if the current packet x(t) does not arrive, and x̂(t | td ) is the
estimated state compensated by x(td), which is the latest system state stored in the buffer.

We define d(t) = t − td , which is the time-delay of the packet in the controller caused by the network-induced delay
and packet dropout phenomena in S/C channel, and it is assumed to satisfy 0 � d(t) � N . Obviously, the time-delay
in the buffer d(t) is only related to d(t − 1) and the current packet received at time t .

Remark 4.1. A time stamp is added to the packet before it is transmitted into the network links in both S/C and C/A
channels, and network delay d(t) is measurable by comparing the time stamp of the latest packet with the current time
instant.

Remark 4.2. It is noted that any packet which does not arrive in time will be compensated no matter it is delayed or
dropped. When a delayed packet x(t − d(t)) arrives at sampling time t , it will be utilized for the estimation of x̂(t)

if it is newer than the packet stored in the buffer. Otherwise, the packet x(t − d(t)) will be dropped and the original
latest packet stored in the buffer will be utilized. Therefore, network-induced delays, packet dropouts and the packets
out of sequence can be treated in the unified model simultaneously.

The dynamic compensator has the following form when the packet is delayed or lost during the transmission:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂(t + 1 | t) = Āi0x(t),

x̂(t + 1 | t − 1) = Āi1 x̂(t | t − 1),
...

x̂(t + 1 | t − N) = ĀiN x̂(t | t − N),

(36)

where x̂(t | t − 1), . . . , x̂(t | t − N) are states of the dynamic compensator estimated by the latest states stored in the
buffer. Āi0 , . . ., ĀiN , i0, . . . , iN ∈ Ī are compensator gains in different regions to be determined.

Remark 4.3. It is noted that the plant states and the estimated states compensated by different states stored in the
buffer might not be in the same region, thus the compensator in (36) utilizes compensation gains in different regions
according to the plant states and compensated ones. More specifically, Āi1, . . . , ĀiN are compensation gains in region
Si1, . . . , SiN , respectively.

The following piecewise controller is utilized:

u(t) = αp0(t)Ki0x(t) + αp1(t)Ki1 x̂(t | t − 1) + · · · + αpN(t)KiN x̂(t | t − N), (37)

where

αpq(t) = α
(
d(t) = q, d(t − 1) = p

)
,

αpq(t) =
{

1, d(t) = q, d(t − 1) = p,

0, d(t) �= q, d(t − 1) = p.
(38)

and Ki0, . . . ,KiN , i0, . . . , iN ∈ Ī are the controller gains in different regions to be determined.
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Remark 4.4. The proposed controller in (37) is similar to the model in [40]. However, [40] employs the hold strategy,
where a delayed state x(t − d(t)) is utilized for the controller design at sampling time t . If we let x̂(t) = x(t − d(t))

specifically, our compensation scheme will reduce to the model in [40].

Remark 4.5. Similar to the model in the second section, the premise variables are also not available at the compensator
and controller nodes with the existence of packet dropout and network-induced delay phenomena. Therefore, the
asynchronous approach is also employed.

We model the delays and packet dropouts in C/A channel as follows,

u(t) = β(t)û(t), (39)

where β(t) = 1 when the packet carrying û(t) arrives at the actuator node in time. Otherwise, β(t) = 0.
Natural assumptions can be made as follows:

Prob
{
αpq(t) = 1

} = E
{
αpq(t)

} = πpq, Prob
{
β(t)

} = E
{
β(t)

} = β, (40)

and the transition probability matrix is

T =

⎡
⎢⎢⎢⎣

π00 π01 · · · π0N

π10 π11 · · · π1N

...
...

. . .
...

πN0 πN1 · · · πNN

⎤
⎥⎥⎥⎦ . (41)

Additionally, we define ẽpq(t) = epq(t) − ēpq,p, q = 0,1, . . . ,N , where epq(t) = αpq(t)β(t) and ēpq =
E{epq(t)} = πpqβ . It is clear that

E
{
ẽpq(t)

} = 0, E
{
ẽpq(t)ẽpq(t)

} = σ 2
pq (42)

with σpq = √
ēpq(1 − ēpq).

Based on (1), (36), (37) and (39), the closed-loop fuzzy control system is expressed as follows:{
ξ(t + 1) = Ωi(t)ξ(t) + D̄iw(t),

z(t) = Φi(t)ξ(t),
(43)

where

ξ(t) = [
xT (t) x̂T (t | t − 1) · · · x̂T (t | t − N + 1) x̂T (t | t − N)

]T
,

Ωi(t) = ẽp0(t)Ωi0 + · · · + ẽpN (t)ΩiN + Ωia,

Φi(t) = ẽp0(t)Φi0 + · · · + ẽpN (t)ΦiN + Φia, D̄i =
[
DT

i0
0 · · · 0 0

]T

,

Ωi0 =

⎡
⎢⎢⎢⎣
Bi0Ki0 · · · 0 0

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

⎤
⎥⎥⎥⎦ , . . . , ΩiN =

⎡
⎢⎢⎢⎣

0 · · · 0 Bi0KiN

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

⎤
⎥⎥⎥⎦ ,

Ωia =

⎡
⎢⎢⎢⎣
Ai0 + ẽp0Bi0Ki0 · · · ẽpN−1Bi0KiN−1 ẽpNBi0KiN

Āi0 · · · 0 0
...

. . .
...

...

0 · · · ĀiN−1 0

⎤
⎥⎥⎥⎦ ,

Φi0 = [
Hi0Ki0 · · · 0 0

]
, . . . , ΦiN = [

0 · · · 0 Hi0KiN

]
,

Φia = [
Li0 + êp0Hi0Ki0 · · · êpN−1Hi0KiN−1 êpNHiKiN

]
. (44)

Based on the model above, we have the following stability analysis result.
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Lemma 4.1. Consider fuzzy system (7) and suppose that the compensator and controller gain matrices Āiδ and
Kiδ , iδ ∈ Ī , δ = 0,1, . . . ,N of the local compensators in (36) and controllers in (37) are given. The closed-loop
system (43) is stochastically stable with guaranteed H∞ performance γ , if there exists a set of matrices Xi0...iN−1iN =
XT

i0...iN−1iN
> 0, i0, . . . , iN−1, iN ∈ Ī satisfying:⎡

⎢⎢⎣
Λ1 0 Λ2Xi0...iN−1iN 0
∗ Λ3 Λ4Xi0...iN−1iN Λ5
∗ ∗ −Xi0...iN−1iN 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, i, s ∈ Ī , (45)

where

Λ1 = diag
{−γ 2I, . . . ,−γ 2I,−γ 2I

}
, Λ2 = [

σp0Φ
T
i0 · · · σpNΦT

iN ΦT
ia

]T
,

Λ3 = diag{−Xj0...jN−1jN
, . . . ,−Xj0...jN−1jN

,−Xj0...jN−1jN
},

Λ4 = [
σp0Ω

T
i0 · · · σpNΩT

iN ΩT
ia

]T
, Λ5 =

[
0 · · · 0 DT

i0

]T

. (46)

Proof. The proof is omitted for its similarity to Lemma 3.1. �
Remark 4.6. A piecewise quadratic Lyapunov function is also utilized in Lemma 4.1, which will reduce to the com-
mon quadratic Lyapunov function if Xi0...iN−1iN = X for any i0, . . . , iN ∈ Ī in (45).

In terms of Lemma 4.1, now we present the controller synthesis result in the following theorem.

Theorem 4.1. Consider fuzzy system (7). The closed-loop system (43) is stochastically stable with guaranteed H∞
performance γ , if there exist matrices Xi0...iN−1iN = XT

i0...iN−1iN
> 0, Riδ , Qiδ , iδ ∈ Ī and Ḡ such that the following

linear matrix inequalities are satisfied for all δ,p = {0,1,2, . . . ,N}:⎡
⎢⎢⎣

Λ1 0 Λ̄2 0
∗ Λ3 Λ̄4 Λ̄5

∗ ∗ Xi0...iN−1iN − Ḡ − ḠT 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0, m ∈ ℵ(i0), i0, . . . , iN ∈ Ī , (47)

where

Ḡ =

⎡
⎢⎢⎢⎣

G · · · G G
...

. . .
...

...

G · · · G G

G · · · G G

⎤
⎥⎥⎥⎦ , D̄m =

⎡
⎢⎢⎢⎣

Dm

...

0
0

⎤
⎥⎥⎥⎦ , Λ̄2 =

⎡
⎢⎢⎢⎣

σp0Θmi0
...

σpNΘmiN

Θmia

⎤
⎥⎥⎥⎦ ,

Λ̄4 =

⎡
⎢⎢⎢⎣

σp0Ξmi0
...

σpNΞmiN

Ξmia

⎤
⎥⎥⎥⎦ , Λ̄5 =

⎡
⎢⎢⎢⎣

0
...

0
Dm

⎤
⎥⎥⎥⎦ ,

Ξmi0 =

⎡
⎢⎢⎢⎣

BmQi0 · · · BmQi0 BmQi0

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

⎤
⎥⎥⎥⎦ , . . . , ΞmiN =

⎡
⎢⎢⎢⎣

BmQiN · · · BmQiN BmQiN

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

⎤
⎥⎥⎥⎦ ,

Ξmia =

⎡
⎢⎢⎢⎣

Ξmia(1) · · · Ξmia(1) Ξmia(1)

Ri0 · · · Ri0 Ri0
...

. . .
...

...

R · · · R R

⎤
⎥⎥⎥⎦ , Ξmia(1) = AmG + ēp0BmQi0 + · · · + ēpNBmQiN ,
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Θmi0 = [
HmQi0 · · · HmQi0 HmQi0

]
, . . . , ΘmiN = [

HmQiN · · · HmQiN HmQiN

]
,

Θmia = [
Θpia(1) · · · Θpia(1) Θpia(1)

]
, Θpia(1) = LpG + êm0HpQi0 + · · · + êmNHpQiN . (48)

Moreover, the controller gains and the compensation matrices are respectively given by

Kiδ = QiδG
−1, Āiδ = RiδG

−1, δ = 0,1, . . . ,N − 1. (49)

Proof. The proof is omitted for its similarity to Theorem 3.1. �
5. Simulation examples

In this section, we use two examples to demonstrate the effectiveness of the compensator and controller design
methods proposed in this paper.

Example 5.1. In this example, we use a nonlinear inverted pendulum on a cart [18] to demonstrate the improvement
of the proposed compensation method in comparison with the existing results.

ẋ1 = x2,

ẋ2 = g sin(x1) − amlx2
2 sin(2x1)/2 − a cos(x1)u

4l/3 − aml cos2(x1)
+ w,

where x1 denotes the angle of the pendulum from the vertical axis, x2 is the angular velocity, g = 9.8 m/s2 is the
gravity constant, m is the mass of the pendulum, a = 1/(m + M), M is the mass of the cart, 2l is the length of the
pendulum, u is the force applied to the cart, and w is the external disturbance. In this example, we choose m = 2 kg,
M = 8 kg, and 2l = 1 m.

Then, we linearize the plant around the origin, x = (±60◦,0), and x = (±88◦,0). After choosing sampling period
T = 0.01 s, we obtain the discrete-time T–S fuzzy system as follows:

Plant rule Rl : If |x1| is F l , then{
x(t + 1) = Alx(t) + Blu(t) + Dlw(t),

z(t) = Llx(t) + Hlu(t), l ∈ I := {1,2}, (50)

where

A1 =
[

1 0.01
0.1729 1

]
, B1 =

[
0

−0.0018

]
, D1 =

[
0

0.01

]
, L1 = [

0.5 0.1
]
,

H1 = 0.005,

A2 =
[

1 0.01
0.0585 1

]
, B2 =

[
0

−0.0007792

]
, D2 =

[
0

0.01

]
, L1 = [

0.5 0.1
]
,

H2 = 0.01.

The membership functions are shown in Fig. 3(a). It is noted that the fuzzy system is governed by one linear
dynamic when 0 � |x1| < π

18 according to Fig. 3(a), and a fuzzy blending of two local dynamics when π
18 � |x1| � π

3 .
Applying the partition method given in the second section, the physical plant can be partitioned into two regions,
which are described as follows:

S1 :=
{
x

∣∣∣ 0 � |x1| < π

18

}
,

S2 :=
{
x

∣∣∣ π

18
� |x1| � π

3

}
.

Similar to the case in the physical plant node, the states in the compensator and controller nodes are partitioned
into two regions as follows:
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Fig. 3. Simulation results of Example 5.1.

S1 :=
{
x̂

∣∣∣ 0 � |x̂1| < π

18

}
,

S2 :=
{
x̂

∣∣∣ π

18
� |x̂1| � π

3

}
.

With such a partition, the fuzzy system is rewritten in each region as follows:{
x(t + 1) =Aix(t) +Biu(t) +Diw(t),

z(t) = Lix(t) +Hiu(t), x(t) ∈ Si, i ∈ {1,2},
where

A1 = A1, B1 = B1, D1 = D1, L1 = L1, H1 = H1,

A2 =
2∑

m=1

μmAm, B2 =
2∑

m=1

μmBm, D2 =
2∑

m=1

μmDm, L2 =
2∑

m=1

μmLm, H2 =
2∑

m=1

μmHm.

It is noted that the open-loop system is unstable. The objective is to design a piecewise fuzzy compensator and
state feedback controller of the form (10) and (13) so that the closed-loop system (18) is stochastically stable with
H∞ performance γ .
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Table 1
Minimum H∞ performance γmin in each situation of Example 5.1.

Models ᾱ/β̄ 0.0/0.0 0.2/0.2 0.3/0.3 0.4/0.4 0.5/0.5 0.6/0.6 1.0/1.0

Zero-strategy γmin ∞ ∞ 7.9846 0.7368 0.4367 0.3139 0.0956
Hold-strategy γmin ∞ ∞ ∞ 0.8109 0.3916 0.2778 0.1401
Theorem 3.1 γmin ∞ 0.5551 0.3678 0.2872 0.2398 0.2076 0.1354

When ᾱ = 0.2 and β̄ = 0.2, there are no feasible solutions utilizing the zero or hold strategies, while we obtain
γmin = 0.5551 by applying Theorem 3.1. The feasible controller and compensator gains are

K1 = [ −2.3634 0.8538
]
, K2 = [ −2.3633 0.8538

]
,

Ā1 = 10−3 ×
[ −0.0882 0.3245

−0.2131 0.7617

]
, Ā2 = 10−3 ×

[ −0.0852 0.3237
−0.2088 0.7608

]
.

With the purpose of illustrating the state responses, ᾱ = 0.4 and β̄ = 0.4 are assumed such that there are feasible

solutions by different strategies. We assume the initial conditions of the system to be x̂(0) = x(0) = [
π
5 0

]T
. The

data missing is randomly generated according to the probability shown in Fig. 3(b). The state responses are illustrated
in Fig. 3(c), where the external disturbance w(t) = 0. It can be observed that the states of the closed-loop system
converge to zero.

In order to illustrate the H∞ performance, we assume the initial conditions to be zero, and the external disturbance
w(t) = e−0.1t cos (2t). Fig. 3(d) shows the response of the ratio ζ of the closed-loop system, where

ζ =
√∑k

i=0 zT (i)z(i)√∑k
i=0 wT (i)w(i)

.

From Fig. 3 we can observe that better H∞ performance and system response can be achieved by the proposed
compensation method in comparison with other strategies.

The more detailed comparison between the existing strategies and the compensation strategy proposed in this
paper on the minimum H∞ performance γmin under various scenarios of ᾱ and β̄ is illustrated in Table 1, which
clearly demonstrates that much better H∞ performance can be achieved by utilizing the proposed strategy than those
existing ones.

Remark 5.1. It is noted from Table 1 that the proposed strategy does not achieve the best system performance in the
special case when ᾱ = β̄ = 1, which implies that there are no packet dropouts throughout the transmission. That is
because the compensator incurs some unnecessary effects in that special case. In this case, a normal fuzzy controller
would be used instead if there are no packet dropouts, which can be found in some existing results, see [2] and
references therein.

Example 5.2. In this example, we consider both packet dropout and network-induced delay problems, aiming to
illustrate the effectiveness of Theorem 4.1.

Consider the following discrete-time fuzzy system of form (7) with two rules.
Rule Rl : If x1 is F l

1, then{
x(t + 1) = Alx(t) + Blu(t) + Dlw(t),

z(t) = Llx(t) + Hlu(t), l ∈ I := {1,2}, (51)

where

A1 =
[

1.5 −0.5
1 0

]
, B1 =

[
1
1

]
, D1 =

[
0.2
0.3

]
, L1 = [

0.5 0.1
]
, H1 = 0.4,

A2 =
[ −1 −0.5

1 0

]
, B2 =

[ −2
1

]
, D2 =

[
0

0.01

]
, L2 = [

0.5 0.1
]
, H2 = 0.2.
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Fig. 4. Simulation results of Example 5.2.

The membership functions are shown in Fig. 4(a). According to the partition method given in the second section,
there are two regions of the physical plant, which are illustrated as follows:

S1 := {x1 | −∞ < x1 � −3},
S2 := {x1 | −3 < x1 � 1}.

Similar to the case in the physical plant node, the states in the compensator and controller nodes are partitioned
into following two regions:

S1 := {x̂1 | −∞ < x̂1 � −3},
S2 := {x̂1 | −3 < x̂1 � 1}.

With such a partition, the fuzzy system is rewritten in each region as follows:{
x(t + 1) =Aix(t) +Biu(t) +Diw(t),

z(t) = Lix(t) +Hiu(t), x(t) ∈ Si, i ∈ {1,2},
where
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A1 = A1, B1 = B1, D1 = D1, L1 = L1, H1 = H1,

A2 =
2∑

m=1

μmAm, B2 =
2∑

m=1

μmBm, D2 =
2∑

m=1

μmDm, L2 =
2∑

m=1

μmLm, H2 =
2∑

m=1

μmHm.

In this example, the largest consecutive steps of network-induced delays and packet dropouts N = 2 is assumed.
Additionally, β̄ = 0.95, and the transition probability matrix is given by

T =
⎡
⎣ 0.95 0.03 0.02

0.95 0.03 0.02
0.95 0.03 0.02

⎤
⎦ .

By applying Theorem 4.1, the corresponding controller and compensation gains are obtained as follows,

K1 = [ −0.8153 0.1178
]
, K2 = [ −0.8117 0.0779

]
,

Ā1 = 10−3 ×
[

1.3262 −0.8298
1.6967 4.4351

]
, Ā2 = 10−3 ×

[ −0.5474 1.5152
−4.3911 5.9701

]
,

and the minimum H∞ performance γmin = 0.2040. However, it is also noted that for this example there is no feasible
solution by utilizing the hold strategy.

To illustrate the closed-loop performance, some simulations have been done with the initial conditions of the system
as x̂(0) = x(0) = [ −2 0 ]T . The network-induced delays and data missing are randomly generated according to the
probability shown in Fig. 4(b). The state responses of the closed-loop system are illustrated in Fig. 4(c), where the
external disturbance w(t) = 0. It can be observed that the states of the closed-loop system converge to zero.

In order to illustrate the H∞ performance, we assume the initial conditions to be zero, and the external disturbance
w(t) = e−0.1t cos (2t). Fig. 4(d) shows the response of the ratio ζ of the closed-loop system.

From Fig. 4 we can observe that the system is stochastically stable with guaranteed H∞ performance, which shows
the effectiveness of Theorem 4.1.

6. Conclusion

The H∞ control problem of fuzzy-model-based nonlinear NCSs with packet dropouts is discussed in this paper.
A new compensation method for packet dropouts is proposed, and a piecewise state feedback controller is designed.
It is shown that the closed-loop system is stochastically stable with guaranteed H∞ performance with the existence
of packet dropouts in both S/C and C/A channels. Moreover, the proposed compensation method can achieve better
control performance in comparison to the existing approaches such as zero and hold strategies. Moreover, the results
are extended to the case where both packet dropouts and network-induced delay phenomena exist. The developed
results are illustrated by two simulation examples.
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