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ABSTRACT In recent years, the new achievements in the field of technology and data science allowed
to gather detailed and well-structured information about electricity consumption behaviors of industrial
enterprises. Such type of information can find numerous applications in the power distribution industry.
The utilities often use the data from contracts to assign each industrial customer a class label according
to this type defined in predetermined industry segmentation. Such type of fixed-chart segmentation is not
able to satisfy the needs of modern enterprises for the flexible and dynamic determination of production
modes. In this paper, we address this problem by proposing a new method for the segmentation of various
types of factories based on their electricity consumption patterns represented in load profile data. It exploits
the evolution-based characteristics of smart meter data of multiple types of factories to remove irrelevant
features. We use data visualization to estimate the number of clusters and apply the well-known k-means
algorithm on filtered data to generate segmentation. Experimental results on real load profile data collected
with smart meters from manufacturing industries in Guangdong province of China have shown that the new
clustering approach produced the meaningful segmentation of factories that reflect production operations.

INDEX TERMS Segmentation, power consumption, smart grid, load profiles, feature selection.

I. INTRODUCTION
The extensive application of smart meters as a part of smart
grids provides enormous opportunities, but it, however, also
leads to challenges for power distribution operators. Sig-
nificant investments in the Advanced Metering Infrastruc-
ture (AMI) enable the smart grids to be well monitored,
controlled, managed and optimized, and customers to be
well serviced. On the other hand, power providers face more
challenges in handling big data due to the need to satisfy a
list of business imperatives. Such a list includes reliability
and efficiency, safety and security, profitability, and imple-
mentation of evolving intelligent grid that can serve a hetero-
geneous customer base. This list of business essentials could
appear overwhelming, particularly in the context of efficient
integration of big data content and solutions.

Smart metering data can often show substantial changes in
trends over time. Therefore, it is useful to understand, visual-
ize and diagnose the evolution of these patterns. Such data
often poses challenges as huge size, irrelevant dimension-
ality, skewed distribution, sparsity and seasonal variations.
The presence of irrelevant dimensions could arguably lead

to degraded performance and increased computation time
of the most learning algorithms. Irrelevant dimensions of
AMI data are a source of inconsistencies and inefficiency
that make it difficult to discover the production modes of an
industry sector on the basis of power consumption behavior.
Consequently, such dimensions may lead to poor decisions
with an adverse impact on the reliable and economic grid
operation and planning. To the best of our understanding, no
research or industrial community considered the evolution-
based characteristic of smart grid data to obtain strongly cor-
related data subset for defining business process operations.

In this paper, we suggest a solution to this problem by
presenting a new method for segmentation of different types
of factories based on their electricity consumption patterns
represented in load profile data. It utilizes an innovative
concept called density estimation to discover the irrelevant
dimensions of AMI data in an efficient manner. Our method
detects the local densities in different special regions (indi-
vidual dimensions) of the data. When computing the local
densities, we also include those of temporal regions that are
the combination of subsequent dimensions. We classify the
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local densities into two classes, the high-density one repre-
sented by 1 and the low-density one represented by 0. We use
a binary matrix to represent the density classes of factories at
different time slots. From the binary matrix, we compute the
similarity of density vectors between every two subsequent
time slots and identify the irrelevant dimensions of density
vectors to be deleted from the time series data. We finally
use a visualization approach to determine the total number of
clusters and use the k-means algorithm to cluster the filtered
data to generate factory segmentation results.

Experimental results have been obtained using smart meter
data sampled at 15-minute intervals, collected frommanufac-
turing industries in Guangdong province of China. According
to results, the new feature selection algorithm outperformed
the well-known state-of-the-art algorithms. The new cluster-
ing approach produced the meaningful segmentation of facto-
ries that reflect production operations. Such segmentation can
be used in utility applications such as the design of variable
rates.

The rest of the present work is organized as follows.
Section 2 presents smart grid data. In Section 3, a detailed
description of the proposed method is presented. Section 4
shows a thorough evaluation of clustering results on a real-
world dataset. Conclusions are given in Section 5.

II. RELATED WORK
Nowadays, the increasing availability of energy consumption
data allows unique opportunities in designing segmentation
strategies of industrial energy use to support smart grid data
applications. The introduction of smart meters has driven
studies on high-resolution time series modeling and customer
clustering.

The large size of smart meter data suggests that new
approaches are needed to maintain demand response, design
programs for improving the energy efficiency and ensure
efficient customer targeting [1], [2]. In spite of the high
number of clustering algorithms available in the literature e.g.
automated variable weighting in k-means (W-k-means) [3],
clustering with fastmap projection [4], swarm intelligence
based clustering [2], incremental densitybased and rule
based algorithms [5], [6]. The self-organizing maps [7],
k-means [8], and hierarchical clustering [9] are often applied
for load pattern mining. Though, existing algorithms do not
focus on the identification of characteristics of clustering of
customers. They extract load profiles from electricity data
by considering the global properties of power consumption
patterns, rather than undertaking the local ones. Moreover,
they always operate over all feature spaces of an input dataset
to learn as much as possible, which degrades the performance
due to the lack to discover the hidden patterns in noisy and
irrelevant dimensions. The scalability is another significant
issue of existing algorithms for load profiling.

Feature selection plays an important role to improve the
quality of clustering in machine learning and data mining.
The Feature selection approaches can be classified into wrap-
per and filter techniques. Wrapper techniques [10], [11] wrap

feature selection around the learning process and explore
for features which improve the performance of the learning
task. Filter methods [12]–[14], on the other hand, investigate
the intrinsic characteristics of the data and select highly-
ranked features according to some criterion before starting
the learning task.Wrappermethods are computationallymore
expensive than filter methods as they depend on deploying
the learning models several times until a subset of relevant
features is found.

Only a few of the current filter methods are unsupervised.
The Laplacian score [13] is measured to reflect its locality
preserving power. This approach is based on the observation
that two data points are probably related to the same subject
if they are close to each other. In fact, in various learning
problems such as classification, the local structure of the
data space is more important than the global structure. The
Sparse K-Means score [14] uses a lasso-type penalty to select
the features. This framework to develop simple methods for
sparse K-means for feature selection. Data variance [12]
might be the simplest unsupervised evaluation of the features.
The variance along a dimension reflects its representative
power. Although the data variance criteria find features that
are helpful for describing data, there is no reason to expect
that these features must be helpful for discriminating between
data in different classes.

We addressed these problems by proposing a new feature
selection technique for smart meter data to enhance the per-
formance of clustering algorithms. The obtained results are
useful to efficiently adopt the strategies by utilities to increase
the business gain.

III. SMART GRID DATA
AMI deployment is a significant trend in the electricity dis-
tribution industry. The enormous volume of generated AMI
data is associated with two fundamental challenges: to retain
the data and extract business value from it. Such challenges
make AMI prime candidates for the application of big data
processing and analytics. Fig. 1 shows the typical AMI archi-
tecture with multiple smart meters.

Electricity meters have been provided with microproces-
sors and storage units that allow for intelligent functions and
turn them into smart meters. They also ensure bi-directional
communication and remote operating capabilities. A large
number of smart meters have been deployed in different resi-
dential and commercial buildings. In the industry sector, they
are usually installed at factory sites to record the data about
the power consumption of ongoing production activities.

A. DATA COLLECTION
Typically, smart meters generate readings at small intervals
of 15, 30, or 60 minutes. Smart meter data is collected and
forwarded via a local area network (LAN) to the data col-
lection center. In terms of data processing, some tasks could
be carried out at the regional collection centers. Often, the
data are transferred to central collection centers via a wide
area network (WAN). Deploying a substantial number of
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FIGURE 1. Typical smart metering architecture [15].

smart meters and connecting them to collection centers is an
expensive and time-consuming process that often takes many
years.

For the goal of the present research, we obtained the elec-
tricity consumption data of a manufacturing center located
in the Pearl River Delta (PRD) Region, Guangdong Province
of China. This province is an important industrial center,
where the volume of the smart meter data for one month
collected from the factories of one city amounts to approx-
imately 80 GB. There are different types of factories in the
PRD region, and each one has many installed smart meters.
Each smart meter records power consumption at 15-minute
intervals and sends measured information back to the col-
lection center. The collection center maintains a text file for
each smart meter that contains the following attributes: date,
timestamp, a unique identifier for the meter that produced the
reading, and consumption value (kW).

The data collection task usually involves a costly and
time-consuming process. We obtained data from 21330 smart
meters sampled at 15-minute intervals of the year 2012 in
the form of text files. We imported each file into a raw
dataset with n rows and d dimensions. Each dimension of
a raw dataset denotes a time slot, and each row represents
a particular factory with its power consumption at multiple
sequential time slots.

B. DATA EXPLORATION
A load profile provides information about electricity con-
sumption for a given factory over a given period, e.g. a day or
month, at a particular frequency, typically every 15 minutes.

Our target was to extract productionmode ofmultiple types
of factories based on their daily power consumption behavior.
Therefore, we need to analyze one-day data for the analysis.
However, visual analysis of all individual load profile is a
difficult and time-consuming process. Thus, we randomly
chose and analyzed a few of them to discover the generic
types of the load profiles that show abnormal behavior.

Data transmission errors can affect data streams leading to
evaluation and simulation problems. The connection between
smart meters and data collection centers could be both wired

or wireless. Due to the nature of wireless transmission, signal
attenuations that affect data transmission could occur. On the
other hand, wired channels also are susceptible to equipment
and power supply failures, a sudden interruption of lines, etc.
Thus, missing values can take place in the data streams.

Fig.2 illustrates some data streamswithmissing values. For
example, stream 1 and 8 in Fig. 2(a) and 2(b), respectively,
show periodicity with sudden power consumption falling to
zero because of missing values. One significant indication
of this issue is stated in [16]. As a rule of thumb, a typical,
well-run, large-scale smart meter system misses up to 4 %
of the interval usage data that is supposed to record and
retrieve eachmonth. For amillionmeter-system, this amounts
to over 28millionmissing data intervals permonth. The smart
grid requires a high level of confidence in the data for its
applications.

A recent study by an independent testing group found
that 99.91 percent of smart meters are accurate within
0.5 percent [17]. Besides, smart meters are continuously con-
trolled by the responsible authorities to ensure that they are
working correctly. The industrial utilities on their side con-
tinuously monitor the data transmitted from smart meters to
prove that power usage is within the expected limits. If read-
ings show a big deviation from the normal levels, specialists
examine the meter. For example, in Fig. 2(a), 2(b), the load
profiles 4 and 7, counted from the upper left corner to the
right down corner, show a significant difference from other
data streams. Moreover, load profiles 7 and 6 exhibit power
consumption below zero. Such load profiles may represent
that their corresponding smart meters have a technical fault.

C. SEGMENTATION OF LOAD PROFILES
The electricity demand of customers varies daily and sea-
sonally. A production plant assembly line begins and ends
operation during the whole day and week. During peak times,
a tremendous amount of electricity is required (this is the so-
called peak load), but a base load requirement is needed year-
round. Since electricity for industrial consumers cannot be
stored, electricity distribution network operator must predict
electrical power demands for even the most extreme condi-
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FIGURE 2. The one day load profiles (power consumption behaviours) of some factories. (a) Active Power Data
Streams(weekend). (b) Active power data streams(workday).

tions (such as high ambient temperature due to hot weather).
Consumption depends predominantly on the time of day and
the season. The well-defined production modes (such as two-
shift mode, three-shift mode or one-day off) on the basis of
load profile segments could facilitate the handling of demand
and supply.

Data engineering is deemed to be a fundamental problem in
the development of smart grid applications. To build models
of data, the success of the most clustering techniques hinges
on the reliable selection of a small set of highly correlated
features. The presence of irrelevant, redundant, and noisy
features at the stage of model development could result in a
poor clustering performance.

As shown in Fig. 2, the load profiles of some factories
show clear daily electricity consumption patterns. These pat-
terns reflect daily production operations of factories and
the daily patterns repeat on work days and weekend days.
The variation of electricity consumption values at multi-
ple time scales makes smart grid data streams different
from other data streams like the stock time series. Fur-
thermore, the variation is caused by many factors, such
as production order, weather condition, working hours,
price incentives, etc. Therefore, segmentation of load pro-
files is a challenging task for clustering methods to inves-
tigate production modes of factories from load profile
data.

IV. METHODOLOGY
In this section, we present a new method for segmentation
of different types of factories based on their electricity con-
sumption patterns represented in load profile data. These
electricity consumption patterns represent daily production

operations of factories. The proposed method consists of
two steps: feature selection and clustering. According to the
characteristics of AMI streaming data, we propose a new
feature selection method that utilizes evolving characteristics
of AMI streaming data.

A. NOTATIONS
The electricity consumption data of a factory i is represented
as a time series Xi = x1, x2, ..., xd , ..., where each xj is
a measurement of electricity consumption at a given time
interval, i.e., 15 minutes. Let X be a set of N time series from
N factories. For a given time window with d time slots (inter-
vals), X is a N ×d matrix {xi,j} where xi,j is the measurement
of time series i at the jth time slot. Let Yj be a vertical vector of
N elements representing the measurements of N factories at
the jth time slot. X = {Y1,Y2, ...,Yd } represents a sequence
of d vectors. Let W be a time window of d time slots. X is
a matrix representing N time series {X1,X2, ...,XN } with d
dimensional attributes {Y1,Y2,Y3, ....,Yd }.

Based on the above notation, we have a simple data rep-
resentation model as shown in Fig.3. The left figure is a
data matrix of N time series in a time window of d time
intervals. Each column of the matrix represents the distri-
bution of the total electricity consumption at a time interval
over N factories as shown in the middle figure. We call this
distribution as spatial distribution. The electricity consump-
tion along the neighboring time intervals is called temporal
distribution as shown in the right figure. In this work, we
use one day as the time window for electricity consumption
pattern analysis. The window length is 24 hours starting and
ending at midnight. There are 96-time intervals in the time
window, i.e., d = 96. Using this datamodel and the electricity
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FIGURE 3. The time series data of N factories in a time window of d time intervals is represented as an N × d matrix of
the left figure. Each column Yj is considered as spatial distribution of the total electricity consumption at the j th time
interval among N factories as shown in the middle figure. The distribution along the neighboring time intervals is called
temporal distribution as shown in the right figure.

consumption distribution concepts, we developed a feature
selection method described below.

B. FEATURES SELECTION METHOD
1) LOCAL DENSITY ESTIMATION
At a given time slot j, Yj is a vector representing the elec-
tricity consumption distribution of N factories. We use the
k-means clustering algorithm to cluster the N factories into
√
N clusters according to the N measurement values of Yj.

We estimate the distribution density of the factories in cluster
k as

fk (x) =
1
m

m∑
i=1

Kh(x − xi) (1)

where k (1 ≤ k ≤
√
N ) is a cluster number, m is the number

of factories in cluster k and Kh(.) is a Gaussian kernel defined
as

Kh(x − xi) =
1

√
(2π )h

e
−(x−xi)

2

2h2 (2)

where h is a smoothing parameter.
Using (1) and spatial density concept, we calculate the

spatial density for each factory at each time interval Yj and
produce a spatial density vector Dsj. The density estimate is
cluster-based, so it is a local spatial density.

Using the temporal distribution concept, we calculate the
density change in a small time window hw that contains
neighboring time slots j and j + 1 with the spatiotemporal
kernel function [18] as

K ′(hs,hw)(Y , t) =
(
1−

t
hw

)
Khs (Y ) (3)

where Khs (Y ) is a Gaussian kernel in (1), hw is a tempo-
ral kernel width and hs is a spatial kernel width, and t
(i.e. t = j) is the arrival time of vertical vector Yj and t = j/d
where 0 < t ≤ 1.

Using (3), we calculate the velocity-density as

V(hs,hw)(Y , tj) =
K ′(hs,hw)(Yj, tj)− K

′
(hs,hw)(Yj+1, tj+1)

hw
(4)

where tj and tj+1 indicate the time slots of Yj and Yj+1,
respectively.

For each time slot j, we can use Yj and Yj+1 to calculate its
velocity-density vector Dvj with (4).
Given the spatial density vectorDsj and the velocity density

vectorDvj, we calculate the spatiotemporal density vectorDstj
as

Dstj = {dstj(i)} = {dsj(i)× dvj(i)} (5)

where 1 ≤ i ≤ N .
The spatiotemporal density is a modification of the spatial

density by the velocity density. Given a sequence of vectors
Y1,Y2, ...,Ym, we can calculate a sequence of spatiotemporal
density vectors Dst1,Dst2, ...,Dstm. The last spatiotemporal
density vector Dstm is computed by using Dv(m−1) to modify
Dsm because Ym+1 is not available. The algorithm to compute
the spatiotemporal density is given in Algorithm 1.

2) DENSITY THRESHOLD ESTIMATION
Let D = {Dst1,Dst2, ...,Dstd } be a sequence of d spatiotem-
poral density vectors. Each vector contains

√
N clusters.

We compute the average spatiotemporal density value dx for
each cluster and rank the clusters on the average spatiotempo-
ral density values.We plot the average spatiotemporal density
values against the order of clusters from the highest average
spatiotemporal density values to the lowest ones. Fig. 4 shows
examples of four-time slots. We can see that the average
spatiotemporal density distributions are different in different
time slots. Some time slots have more high average density
clusters than others.

We rank the clusters of all time slots on average spatiotem-
poral density values. Fig. 5 shows the distribution of the
average spatiotemporal densities on all time slots. From the
aggregated distribution of densities of all clusters, we set a
threshold to divide clusters into two classes, i.e., high-density
clusters and low-density clusters.

To determine the threshold, we use Minimal Description
Length (MDL) principle to divide all clusters into two subsets
as used in [19]. Let A be the set of high-density clusters
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FIGURE 4. The average spatiotemporal density distributions of four time slots.

Algorithm 1 Local Density Estimation
Input: XN×d
Output: Spatiotemporal density vectors
Dst1,Dst2, ...,Dstd
for j := 1 to d do

Select attributes Yj and Yj+1 from XN×d ;
Apply k-means on Yj using the number of clusters
√
N ;

if j != d then
Compute clusters vise spatial density vector Dsj
of Yj using (1);
Compute velocity density vector Dvj for Yj using
Yj and Yj+1 using (4);
Compute Dstj for Yj using Dsj and Dvj using (5).

else
Compute clusters vise spatial density vector Dsd
of Yd using (1);
Compute velocity density vector Dvd for Yd
using Yd and Yd−1 using (4);
Compute Dstd for Yd using Dsd and Dvd using
(5).

Spatiotemporal density vectors Dst1,Dst2, ...,Dstd ;

FIGURE 5. Aggregated distribution of four time slots in Fig. 4.

and B the set of low-density clusters. Let l be the cluster in
A whose average density is smaller or equal to the average
density of any cluster in A but greater than the average density

of any cluster in B. Let µA and µB be the averages of the
average cluster densities in A and B, respectively. Cluster l
is found by minimizing the code length (CL) of the MDL
principle as

CLl = log(1+ µA)+
∑
ciεA

log(1+ |ci − µA|)

− log(1+ µB)+
∑
ciεB

log(1+ |ci − µB|) (6)

where ci is the average density of cluster i in set A or B.
The average density cl of cluster l is used as the threshold to
separate high-density clusters from low-density ones. We use
Algorithm 2 tominimize theminimum code lengthCL to find
cluster l and threshold cl .

Algorithm 2 MDL-Based Threshold Selection
Input: The sorted sequence of average density of all
clusters S
Output: lmin and cmin
for l := 1 to stotal−1 do

Assign the first l cluster average densities to A;
Assign the next stotal − l cluster average densities to
B;
cl=the average density of cluster l in A;
Compute µA, the average density of clusters in A;
Compute µB, the average density of clusters in B;
Calculate the code length ;
CLl = log(1+ µA)+

∑
clεA log(1+ |cl − µA|) -

log(1+ µB)+
∑

clεB log(1+ |cl − µB|) ;
if (cmin>cl );
cmin=cl ; lmin = l;

Output lmin and cmin;

3) DETECTION OF IRRELEVANT FEATURES
Given the density matrix D = (Dst1,Dst2, ...,Dstd ) and the
density threshold cl found using Algorithm 2, we compute a
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binary matrix B as

b(ri,dj) =

{
1, if d(ri,dj) > cl
0, Otherwise

(7)

where ri and dj are the ith rows and jth dimension,
respectively.

Matrix B classifies densities into two classes with 1 repre-
senting high density and 0 representing low density as shown
Fig. 6.

FIGURE 6. The binary density matrix BN×d .

Given BN×d , we use Jaccard similarity coefficient to com-
pute the similarity between two time slots Yi and Yj as

JC(Yi,Yj) =
n11

n01 + n11 + n10
(8)

where
• n11 is the total number of elements where Yi and Yj both
have a value of 1.

• n01 is the total number of elements where Yi is 0 and Yj
is 1.

• n10 is the total number of elements where Yi is 1 and Yj
is 0.

Using (8), we compute the similarity matrix Sd×d from
BN×d . Sd×d has values between 0 and 1. A large value
between two time slots represents that they have high sim-
ilarity. For each row of Sd×d , we compute the average
similarity value of d dimensions. If the average similar-
ity value of the row is smaller than a given threshold τ ,
the dimension represented by the row is considered irrele-
vant and is deleted from the data matrix X . In our work,
τ is determined by the user. The filtered matrix is aggre-
gated into one-day data (96 dimensions) by averaging power
consumption measurements at the corresponding time slots
in days.

C. CLUSTERING
With the feature selection method discussed above, we delete
some Y vectors from the streaming sequence of Y1,Y2, ...,Yd
in time window W . The remaining Y s form a reduced data
matrix Xr .
We use a visual method to determine the number of clusters

in Xr . As stated in [20], visualizations are powerful tools to
help the users to explore and make sense of data, intuitively

revealing trends, outliers, and clusters from large and com-
plex datasets. We use the k-means algorithm to cluster Xr
into a large number of clusters and visually investigate the
potential clusters and outliers. Fig.7 shows some examples of
clusters produced by k-means.

From the array of clusters in the figure, we can see the
top row contains 2 clusters of clear patterns, i.e., cluster
number 2 and 4. The bottom row also contains two cluster
patterns, i.e., cluster number 7 and 8. The patterns of two
clusters in the leftmost column are not clear. Cluster num-
ber 3 in the top row and cluster number 6 in the bottom
row show some patterns but are not explainable on work
patterns. To determine the number of clusters, we do not
count the clusters in the first column and only consider the
remaining 6 clusters. Therefore, the true number of clusters
is between 4 and 6 in this case. We say [4, 6] is a possible
range.

To find the optimal number from the obtained range of
clusters, we run the k-means algorithm multiple times on
Xr using randomly chosen k from the estimated clusters
range. For each clustering, we again visualize the clusters in
the dimensions of two principle components to explore the
highest variances of the data. The plots are also used to com-
pute the separation and compactness of the clustering results.
These two methods are collectively used to find the optimal
number of clusters that provides plots with compact and well-
separated clusters, where each cluster shows clear electricity
consumption patterns. The procedure for segmentation of
factories based on their power consumption behaviours is
summarized in Algorithm 3.

Algorithm 3 Segmentation of Factories Using Load Pro-
file Data
Input: One-month Data D
Output: Daily-Basis Segmentation λ of Factories
Remove anomalous data records from D ;
Apply feature selection technique on D;
Aggregate filtered data into one-day data (96
dimensions) by averaging power consumption
measurements at the corresponding time slots in days;
Apply data visualization on aggregated data to estimate
the number of clusters;
Apply the k-means algorithm on aggregated data;
Output: λ ;

V. EXPERIMENTAL RESULTS
In this section, we present experiment results of the new
method on a real-world AMI dataset. We compare the per-
formance of clustering results of the new method with three
feature selection methods of state-of-the-art algorithms for
time series data. The comparisons have shown that the new
feature selection method can produce better clustering results
than other three methods. We also discuss applications of
factory segmentation on electricity consumption behaviors in
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FIGURE 7. Exploration of cluster patterns to determine the number of clusters.

tariff setting, demand response management and the quality
of service.

A. DATA
The real world dataset used in experiments was col-
lected from Guangdong province of China. The AMI
streaming data were obtained with smart meters installed
at 21330 manufacturing factories. One month data in
November 2012 was selected. Each time series contains
2880 measurements collected at 15 minutes time inter-
val. 21330 manufacturing factories were from 33 industrial
categories.

We use one day as the pattern analysis time window and
divide the days in the month into workdays from Monday
to Friday and weekends from Saturday to Sunday because
work patterns at a workday and a weekend day are usually
different. Each day has 96 electricity consumption measure-
ments. There were 22 workdays and eight weekend days in
November 2012. We represent workday and weekend day
data in two matrices. Fig.2 plots some workday and weekend
day electricity consumption time series. We can see that there
are anomaly time series that need to be deleted from the
dataset. We can observe two types of anomaly time series
in Fig.2, one with constant electricity consumption measure-
ment values that often result from fault readings of smart
meters and onewith very low average electricity consumption
which indicates irregular production operations such as lack
of production orders.

B. THREE FEATURE SELECTION METHODS
FOR COMPARISON
We chose three feature selection for comparisons with the
proposed method. They are Variance score [12], Laplacian
score [13], and Sparse K-Means score (SK-Means) [14].
These methods represent state-of-the-art individual variable
weighting methods. The SK-Means method uses the well-
known lasso-type penalty to select the features. The Variance
score method uses the variance of instances for each of the
attributes as a measure to estimate the separability. For a
given feature f and instance values v(x, f ), x = 1, ..., n,

f = 1, ..., d, the variance score is defined as follows:

VS(f ) =
1
n

n∑
x=1

(
v(x, f )− µf

)2
,

µf =
1
n

n∑
x=1

v(x, f ) (9)

The Laplacian score is based on locality preserving projec-
tion and Laplacian eigenmaps. It favors on features with high
locality preserving power. The Laplacian score is computed
as:

LS(f ) =

∑
x,y
(
v(x, f )− v(y, f )

)2Sxy∑
x
(
v(x, f )− µf

)2Dxx
Sxy =

e
||dx−dy||2

t , if dx , dy are neighbors
0, Otherwise

(10)

where Dxx =
∑

y Sxy, µf is the mean of values of feature f ,
t is the constant parameter, and dx and dy are the neighbors
that either dx belongs to the k-nearest neighbors of dy, or vice
versa.

In the comparison experiments, we first used a feature
selection method to produce a reduced time series dataset.
Then, we used the k-means algorithm to generate the cluster-
ing results. Finally, we used clustering evaluation measures
to evaluate the clustering results produced by different fea-
ture selection methods. To make the result stable, for each
feature selection method, we conducted clustering five times
and used the average of evaluation measures to compare the
clustering results of different feature selection methods.

C. EVALUATION MEASURES
Three evaluation measures were used to evaluate the clus-
tering results in the experiments. The first measure is Mean
Index Adequacy (MIA) [21], defined as the average of the
distances between the objects and the centers of the clusters to
which the objects are assigned. MIA is calculated as follows:

MIA =

√√√√1
k

k∑
i=1

d
(
r (i),L(i)

)
(11)
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FIGURE 8. Performance comparison on one-day aggregated datasets. The vertical axis shows the clustering performance measure and the
horizontal axis is the number of features removed in the reduced data set. (a) Evaluation on workday data. (b) Evaluation on weekend day
data.

where k is the total number of clusters, L(i) is the set of objects
in cluster i, r (i) is the center of cluster i and d is the sum of
distances between objects in the cluster and the cluster center.
MIA measures the separations of clusters. The smaller the
MIA, the more separate the clusters.

The second measure is Davies-Boulden Index (DBI) [22],
which measures the ratio of the within-cluster scatter and the
between-cluster separation. DBI is calculated as

DBI =
1
k

k∑
x=1

max
(
d ′(L(i))+ d ′(L(j))

d(r (i), r (j))

)
i 6= j (12)

where L(i) is the set of objects in cluster i, d ′(L(i)) is the
geometric mean of the inter-distances between objects in L(i),
and d(r (i), r (j)) is the distance between the centers of clusters
i and j. The smaller the DBI , the better the clustering result.
The third measure is CD index [23] defined as the total

distance between centers of all clusters. CD is calculated as
follows:

CD =
Dmax
Dmin

k∑
i=1

( k∑
j=1

d(r (i), r (j))
)−1

(13)

where Dmax and Dmin represent the maximum and minimum
distances between the cluster centers, respectively. The larger
the CD, the better the clustering result.

D. PERFORMANCE COMPARISON ON FEATURE
SELECTION METHODS
Using the onemonth AMI dataset, we conducted experiments
to compare the clustering performance of the new feature
selection method and other three methods. In preprocessing,
we divided the dataset into workday dataset and weekend

day dataset and removed 1004 anomaly time series from
the workday dataset and 1363 anomaly time series from the
weekend day dataset. Then, we ran the four feature selection
methods on the two datasets to remove some insignificant
features from the two datasets. After that, we aggregated
the multiple days time series in each dataset into one-day
time series by taking the averages of multiple electricity
consumption values at each time slot in the one day window.
Finally, we used the k-means clustering algorithm to cluster
the aggregated one-day workday and weekend datasets. The
clustering results were evaluated with the three evaluation
measures discussed above. The number of clusters k was
visually determined. For the workday dataset, k was chosen
as 25, and for the weekend data, k was set as 30.

Fig.8 shows the clustering performance comparisons of the
four feature selection methods on the workday and weekend
datasets evaluated with three measures. The vertical axis
indicates the evaluation measure and the horizontal axis is the
number of features being removed with the four feature selec-
tion methods. We can observe that both MIA and DBI mea-
sures decrease as the number of removed features increase,
and CD measure decreases as the number of removed fea-
tures increases. These results indicate that feature selection is
necessary for improving the clustering performance of both
workday and weekend datasets.

The comparison of the four feature selection methods
shows that the proposed method performs the best in all three
measures because its performance measure line in the MIA
and CBI figures is located below the Laplacian, variance, and
SK-Means performance lines, whereas it is located above the
other three performance lines in the CD figure. By analyzing
the comparison results in the figures, we absorb that MIA and
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FIGURE 9. Visualization of electricity consumption behaviors based segmentation on workday: y-axis: power consumption (kW); x-axis:
half hour index (time).

FIGURE 10. Visualization of electricity consumption behaviors based segmentation on weekend: y-axis: power consumption (kW); x-axis:
half hour index (time).

DBI measurements are the lowest and CDI measurement is
the highest at the number of removed features 250 and 300 for
the weekend and workday datasets, respectively. On the basis
of this intuition, we remove 300 features from the workday
dataset and 250 features from the weekend day dataset.

E. CLUSTER PATTERNS ANALYSIS
After comparison of feature selection methods, we used the
new feature selection method to remove 300 features from
the workday dataset and 250 features from the weekend day
dataset. The average numbers of removed features per day
from the weekend and workday datasets are 13.6 and 31.3,
respectively. Then, we used the k-means clustering algorithm
to cluster the daily basis aggregated datasets, that have been
generated from reduced one-month datasets for workday and
weekend. The numbers of generated clusters for workday and
weekend datasets were 30 and 25, respectively, which were
determined visually.

Fig. 9 and Fig. 10 visualize the 30 and 25 clusters
from the workday and weekend day datasets, respectively.

These clusters show the daily electricity consumption pat-
terns of different groups of factories in the month of
November 2012. We can see the difference of consump-
tion patterns during workdays and weekends. These patterns
reflect production operation patterns of factories in different
industrial sectors.

Two obvious patterns are the patterns of the two shift mode
and the three shifts mode of production patterns. These are
the common production modes in the discrete manufacturing
process in the PRD region of Guangdong Province in China.
Some clusters reflect the production patterns of the contin-
uous manufacturing process which show constant electricity
consumption pattern in 24 hours of a day.

From the array of Fig. 9, the 9 clusters in the first row
and the first four clusters in the second row from the left
column are the three shift patterns. The next 8 clusters are the
two shift patterns. The next two clusters are constant patterns
that represent continuous manufacturing process. The follow-
ing 13 clusters present different patterns of clusters, some
showing discrete manufacturing patterns and some showing
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TABLE 1. Dominant factory types in power consumption based work patterns.

continuous manufacturing patterns. The cluster patterns
imply irregular manufacturing processes that may be caused
by production disturbances such as insufficient production
orders, frequent change of production processes or partial
operation of production lines due to maintenance. For exam-
ple, the first cluster of the bottom line shows a two-shift
production pattern but the electricity consumptions on the
morning and afternoon shifts were small. These patterns
reflect either factories of small capacity or factories that
production capacity is not entirely used due to insufficient
production orders.

The magnitude of electricity consumption differs from one
cluster to another. The difference resulted from the differ-
ence in electricity consumption in different industry sec-
tors and difference of production capacity of factories in
the same industry sector. For instance, clusters from 1 to 9
represent three-shift mode but have different peak electric-
ity consumptions on workday from 500 kW to 10000 kW.
The highest peak consumption of cluster 23 ranges from
6000 to 12000 kW. These clusters are small with a few
factories.

From the array of Fig. 10, we can see that cluster patterns
are more diverse than workday cluster patterns. There are
less three shift patterns because weekends are not regular
work days in many factories. Some factories work only on
Saturdays with only morning shift and afternoon shift. Few
factories work with three shifts on weekends. Many factories
work irregularly on weekends as they cannot complete their
production orders on workdays.

From the cluster patterns, we can further analyze the
characteristics of factories represented in each cluster pat-
tern. Table 1 lists examples of cluster patterns. Each cluster

contains time series of factories in different industry sectors.
In each cluster, we list the three industry sectors of the top
three frequent factories in the cluster and the percentages
of the factories in each industry sector. We can see that the
factories in different industry sectors use the same production
mode. For example, the three shift cluster pattern contains
factories most from Metal Products, Plastic Products, and
Communication Equipment industry sectors. Since Metal
Products and Communication Equipment industry sectors
are the major industries in the PRD region of Guangdong
province in China and product categories in these industries
are diverse, the factories in these industry sectors have differ-
ent production modes.

Cluster patterns of weekend data are not clear because
the production processes of different factories in different
industry sectors are different on weekends. Some factories
do not work on weekends. Some work only on Saturdays
and some work on both Saturdays and Sundays. Table 2
shows the percentages of factories in different industry sec-
tors that do not work (No-Day-Off ) or work on Saturdays
(1-Day-Off) or work on both Saturdays and Sundays
(2-Day-Off). We can see that most factories work only one
weekday on Saturday. Very few factories work two days on
weekends. These different work policies on weekends make
the cluster patterns on weekends different from the workday
cluster patterns.

F. APPLICATIONS OF CLUSTER PATTERNS
One potential application of segmentation of factories on
electricity consumption patterns is to design variable rates
of the electricity price to reduce peak loads of smart grid.
The economic benefits of such time-variable electricity rates
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TABLE 2. Percentage of consumption patterns with respect to the factory types.

are justifiable [24]. However, the design of time-variable
rates requires segmenting the electricity users according to
their load profiles [25]. Segment-specific rate design deter-
mines a time-variable rate for each factory segment. As stated
in [26], the segment-specific rate design is a complex pro-
cess, requiring to determine the number of time zones, the
start times of all time zones, the total number of price
zones and the profitability of suppliers. In this process, seg-
mentation of users on load profiles is the first necessary
step.

VI. CONCLUSIONS
The extensive roll-out of smart meters on smart grids gen-
erates enormous opportunities and also creates challenges
to electricity utilities. Significant investments in the AMI
allow for a high level of monitoring, control, and optimiza-
tion of smart grids, which, subsequently, leads to improved
customer services. Utilization of the AMI data from smart
meters enables utilities to achieve significant business gains.
However, effective and efficient processing and analysis of
big AMI data are still a big challenge to smart grid companies.

In this paper, we presented an implementation and evalua-
tion of a cluster analysis approach for application to smart
meter data. We proposed a new feature selection method
to reduce the dimensions of a selected time window by
removing insignificant features, thus improving the cluster-
ing performance.We demonstrated that the discovered cluster
patterns allow for a better segmentation of factories using
specific patterns in behaviors of electricity consumption to
judge for the different production modes. We discussed the
application of segmentation in the segment-specific time vari-
able rate design.

In our future work, we will study the change of cluster
patterns over time and develop a predictive technology for
prediction of the pattern change.
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