Journal of Parallel and Distributed Computing 134 (2019) 180-197

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

LSB: A Lightweight Scalable Blockchain for IoT security and anonymity = R

Ali Dorri®*, Salil S. Kanhere ", Raja Jurdak ¢, Praveen Gauravaram ¢

Check for
updates

2The School of computer science and engineering, UNSW, Sydney and DATA61 CSIRO, Australia
b The School of computer science and engineering, UNSW, Sydney, Australia
€School of Electrical Engineering and Computer Science, QUT and DATA61, CSIRO, Brisbane, Australia

d'Tata Consultancy Services, Brishane, Australia

ARTICLE INFO

Article history:

Received 22 October 2018

Received in revised form 1 July 2019
Accepted 17 August 2019

Available online 9 September 2019

Keywords:
Internet of Things
Blockchain
Security

Smart home

ABSTRACT

In recent years, Blockchain has attracted tremendous attention due to its salient features including
auditability, immutability, security, and anonymity. Resulting from these salient features, blockchain
has been applied in multiple non-monetary applications including the Internet of Things (IoT). How-
ever, blockchain is computationally expensive, has limited scalability and incurs significant bandwidth
overheads and delays which are not suited for most IoT applications. In this paper, we propose a
Lightweight Scalable blockchain (LSB) that is optimized for IoT requirements while also providing
end-to-end security. Our blockchain instantiation achieves decentralization by forming an overlay
network where high resource devices jointly manage the blockchain. The overlay is organized as
distinct clusters to reduce overheads and the cluster heads are responsible for managing the public
blockchain. We propose a Distributed Time-based Consensus algorithm (DTC) which reduces the
mining processing overhead and delay. Distributed trust approach is employed by the cluster heads to
progressively reduce the processing overhead for verifying new blocks. LSB incorporates a Distributed
Throughput Management (DTM) algorithm which ensures that the blockchain throughput does not
significantly deviate from the cumulative transaction load in the network. We explore our approach
in a smart home setting as a representative example for broader IoT applications. Qualitative arguments
demonstrate that our approach is resilient to several security attacks. Extensive simulations show that
packet overhead and delay are decreased and blockchain scalability is increased compared to relevant
baselines.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

for a central authority. Special nodes in the network, known as
miners, add newly generated transactions to a pool of pend-

Blockchain is an immutable, auditable, and timestamp ledger
of blocks that is used for storing and sharing data in a dis-
tributed manner [30]. The stored data can be payment history,
e.g. Bitcoin [38], or a contract [51] or even personal data [54]. In
recent years, blockchain has attracted tremendous attention from
practitioners and academics in different disciplines (including
law, finance, and computer science) due to its salient features
which include a distributed structure, auditability, immutability
and security and anonymity [9].

Blockchain maintains a distributed digital ledger of transac-
tions that is shared across all participating nodes. Storing all
transactions in the ledger provides high auditability of the trans-
actions. New transactions are verified and confirmed by other
nodes participating in the network, thus eliminating the need

* Corresponding author.
E-mail addresses: ali.dorri@unsw.edu.au (A. Dorri),
salil.kanhere@unsw.edu.au (S.S. Kanhere), rjurdak@qut.edu.au (R. Jurdak),
p.gauravaram@tcs.com (P. Gauravaram).

https://doi.org/10.1016/j.jpdc.2019.08.005
0743-7315/© 2019 Elsevier Inc. All rights reserved.

ing transactions. Each miner collates pending transactions into a
block when the size of the collected transactions reached a pre-
defined size known as block size. Appending a new block to the
blockchain (referred to as mining in literature) entails following
a consensus algorithm that ensures blockchain security against
malicious miners and introduces randomness among them. Ex-
isting blockchain implementations typically use either: Proof of
Work (POW) [50] or Proof of Stake (POS) [51]. POW demands
high computational resources, thus the miner with higher com-
putational power is more likely to win the consensus algorithm
and mine the next block. POS demands the miners to lock their
stake, or assets, in the blockchain to mine new blocks. Miners
with a higher locked stake are more likely to mine the next block.
Each user employs a Public Key (PK) as his identity while creating
transactions that in turn introduces high-level of anonymity.

In recent years, blockchain has attracted tremendous attention
to enhance security, auditability, reliability, and anonymity of
the Internet of Things (IoT) where billions of everyday devices
are connected to the Internet to facilitate everyday life and offer

https://doi.org/10.1016/j.jpdc.2019.08.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.08.005&domain=pdf
mailto:ali.dorri@unsw.edu.au
mailto:salil.kanhere@unsw.edu.au
mailto:r.jurdak@qut.edu.au
mailto:p.gauravaram@tcs.com
https://doi.org/10.1016/j.jpdc.2019.08.005

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 181

personalized services. Conventional IoT frameworks suffer from
the following challenges:

e Resource consumption: Most IoT devices have limited re-
sources, including bandwidth, computation, and memory,
which is incompatible with the requirements of complex
security solutions [56].

e Centralization: Current IoT ecosystems rely on centralized
brokered communication models where all devices are iden-
tified, authenticated and connected through cloud servers.
This model is unlikely to scale as billions of devices are
connected. Moreover, cloud servers will remain a bottleneck
and point of failure that can disrupt the entire network [56].

The various benefits afforded by blockchain technology as out-
lined earlier in this section make it an attractive solution for
addressing the aforementioned problems in IoT. IBM introduced
a new blockchain instantiation for IoT known as Hyperledger
Fabric [14], which is a permissioned blockchain, wherein only au-
thorized nodes can participate in blockchain. The authors in [28]
proposed a new framework for managing the IoT devices us-
ing smart contracts. This framework manages each device by
a smart contract. In [44], the authors proposed a blockchain-
based Software Defined Network (SDN) architecture for IoT. The
architecture manages access requests using rule tables which are
stored in the blockchain.

However, the existing blockchain instantiations suffer from
the following limitations:

Scalability and overheads: In a typical blockchain implementa-
tion, all blocks are broadcast to and verified by all nodes. This
leads to significant scalability issues since the broadcast traf-
fic and processing overheads would increase quadratically with
the number of nodes in network. The associated overheads are
intractable as many IoT devices have limited bandwidth connec-
tions (e.g. Low Power Wide Area Networks such as LoRa [37]) and
processing capabilities.

Complex consensus algorithms: Most of the consensus algo-
rithms employed in blockchain consume significant resources of
the participating nodes which are far beyond the capabilities of
most [oT devices.

Latency: There is a non-trivial delay associated with ensuring
that a transaction is confirmed by nodes participating in the
blockchain. For example, in Bitcoin, it can take up to 30 min for
a transaction to be confirmed. Most IoT applications have stricter
delay requirements e.g. a service provider requesting data from a
smart home sensor should not have to wait for several minutes
as the data are processed to offer real-time services to the user.

Throughput: In blockchain, the throughput is defined as the
number of transactions that can be stored. Classical instantia-
tions of blockchain have limited throughput. For example, Bitcoin
throughput is 7 transactions per second. However, the number of
transactions in the IoT ecosystem would far exceed such limits
due to extensive interactions between various entities.

The main contribution of this paper is to address the outlined
challenges by proposing a Lightweight Scalable Blockchain (LSB)
for IoT. To ensure scalability, the overlay nodes, which include IoT
devices, cloud storages, and Service Providers (SPs), are organized
into clusters and only the Cluster Heads (CH) are responsible
for managing the blockchain. Blockchain management involves
verification and storage of individual transactions or blocks of
transactions. A transaction is defined as the basic communica-
tion primitive for exchanging control information between nodes.
Transaction are collated to form a block which is then appended
to the blockchain to form the distributed ledger. In LSB, the
data of IoT devices is stored off-the-chain, e.g., in cloud storage,
to reduce the memory footprint and packet overhead of the
blockchain. Additionally, the flow of data to and from the IoT

Table 1
A summary of acronyms used in the paper.
Acronym The phrase
LSB Lightweight Scalable Blockchain
IoT Internet of Things
DTC Distributed Time-based Consensus algorithm
DTM Distributed Throughput Management algorithm
PoW Proof of Work
PoS Proof of Stake
PK Public Key
SP Service Provider
CH Cluster Head
OBM Overlay Block Manager
T_ID Transaction identifier
P_T_ID Previous transaction identifier

devices is kept separate from the transaction flow. Transactions
are broadcast among the overlay nodes while data packets are
routed toward their destination. This separation allows optimal
unicast routing of data packets, thus resulting in reduced de-
lays and packet overhead for transferring data. We propose a
Distributed Time-based Consensus (DTC) algorithm that requires
each CH to wait for a random time before mining, i.e., appending,
a block in place of solving a computationally demanding puzzle,
and significantly reduces the mining processing overhead. DTC
limits the number of new blocks generated by the CHs within a
tunable consensus period to protect against malicious CHs which
may flood the network with a large number of new blocks. To
reduce the computation overhead associated with verifying new
blocks that are to be added to the blockchain, LSB employs a
distributed trust algorithm. Each CH accumulates evidence about
other CHs based on the validity of new blocks that they generate.
The number of transactions in a new block that need to be verified
is gradually reduced as CHs develop trust in each other. Finally,
we propose a Distributed Throughput Management (DTM) mech-
anism to dynamically adjust certain system parameters to ensure
that the throughput of the public blockchain (i.e., the number of
transactions appended to the blockchain) does not significantly
deviate from the transaction load in the network. DTM ensures
that network is self-scaling, i.e., as the network grows in size,
more transactions can be appended to the public blockchain, thus
increasing the throughput.
The key contributions of this paper are summarized below:

1. We present a new blockchain instantiation, known as
Lightweight Scalable Blockchain (LSB), that is tailored to
meet the specific requirements of IoT devices and appli-
cations. We incorporate a number of optimizations which
include a distributed time-based consensus algorithm, a
distributed trust method, a distributed throughput man-
agement strategy and separation of the transaction traffic
from the data flow.

2. We undertake a qualitative analysis of LSB against 8 rele-
vant cyber attacks and outline the specific defense mecha-
nisms, which ensure that LSB is resilient against all of them.
Additionally, a risk analysis is conducted to investigate the
likelihood of the attacks.

3. We conduct extensive simulations using NS3 to evaluate
key performance parameters including latency, processing
time, and resilience against cyber attacks. Our results jus-
tify various design decisions made and demonstrate the
efficacy of the proposed optimizations.

Table 1 proposes a summary of the frequently used acronyms
in the rest of the paper.

The rest of the paper is organized as follows. Section 2 outlines
details of LSB. Section 3 discusses a case study of LSB in a smart
home. Detailed security analysis and performance evaluations are

182 A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

presented in Section 4. Section 5 discusses further aspects of
LSB. Section 6 presents a literature review on IoT security and
blockchain applications, and finally Section 7 concludes the paper
and outlines future work.

2. Lightweight Scalable Blockchain (LSB)

In this section, we discuss the LSB in detail. The basic com-
munication primitive for exchanging control information among
any entities is referred to as a transaction. We first discuss an
overview of the LSB in Section 2.1, following transactions and
blocks are outlined in Section 2.2. Next, Section 2.3 outlines
time-based consensus algorithm. Verification of transactions and
distributed trust is discussed in Section 2.4. Section 2.5 gives
details of distributed throughput management. A high-level sum-
mary of multiple algorithms in LSB is given in Section 2.6. Finally,
Section 2.7 outlines compatibility of LSB with IoT requirements.

2.1. Overview

The participants in blockchain, which includes IoT devices, SPs,
and IoT users, jointly form an overlay network as shown in Fig. 1.
Similar to Bitcoin, we assume that each node in the overlay is
known by a Public Key (PK). Nodes use a fresh PK to generate
each new transaction to ensure anonymity (discussed further
in Section 4.1). As noted in Section 1, IoT devices have limited
resources, thus, verifying all new blocks and transactions may
be far beyond their capabilities. To ensure scalability and reduce
processing and packet overhead on IoT devices, we assume that
the blockchain is managed by a subset of the overlay nodes. We
assume that a clustering algorithm such as in [31] is used to group
nodes into clusters, with each cluster electing a Cluster Head
(CH). In [31] the CHs will be the nodes with maximum number
of one-hop neighbors so that the CH will have the maximum
coverage in the network and the network can be clustered with
the minimum number of CHs. In case that multiple nodes have
the same number of neighbors, the cluster members randomly
join one of the clusters. Eventually, the node with higher number
of cluster members will be chosen as the CH. The cluster members
also choose a co-leader for the cluster. The co-leader become
the CH in case the previous CH departs from the network, for
example, due to loss of connectivity. A node selected as a CH is
expected to remain online for an extended duration of time and
to have sufficient resources for processing blocks and transac-
tions. CHs are responsible for managing the blockchain and are
thus referred to as Overlay Block Managers (OBMs). Managing
the blockchain involves generation, verification and storage of
individual transactions and blocks of transactions. Recall that
blockchain is inherently a trustless system where the participat-
ing nodes do not trust each other. Thus, the cluster members
monitor the behavior of their OBM. In case the cluster members
detect any misbehavior, e.g., a transaction is not forwarded to
other OBMs, they choose a new OBM (see dropping attack in
Section 4.1). We assume that mechanisms such as those used
in [46] for managing CH failures are in place.

As an illustrative example, consider that a smart thermostat
wishes to communicate with the SP server. A transaction record-
ing this interaction is recorded in the blockchain. The thermostat
subsequently directly sends temperature readings to the SP server
which analyzes the measurements and may send commands
for adjusting the temperature to the thermostat. As noted in
Section 1, in LSB data flow is distinct from transactions. Unlike
transactions which are broadcast, the data packets are unicast and
can be routed along optimal paths through the overlay network
(between OBMs) using routing protocols such as OSPF [1]. For
data packets, the recipient’s OBM ID must be populated in the

transaction which enables the OBMs to route the packet (see 2.2).
This reduces the packet overhead for data exchange. To ensure
data integrity, the transaction corresponding to the exchanged
data between overlay nodes contains the hash of the data signed
by the transaction generator.

In LSB, all transactions are stored on-chain. The data of IoT
devices is stored off-the-chain to reduce the packet overhead and
memory requirement of the blockchain. Each OBM stores a trust
table (see Section 2.4), trust rate for other OBMs, and the time-
stamp of the last block generated by other OBMs off-the-chain.

2.2. Transactions and blocks

Transactions generated by an overlay node are secured using
asymmetric encryption, digital signatures and cryptographic hash
functions (e.g. SHA256). In blockchain, transactions can be further
classified into: (i) single signature transactions which only contain
the signature of the transaction generator, and (ii) multisig trans-
actions which require more than one signature to be considered
as valid transactions. A multisig transaction might require m
out of n signatures, where n and m are number of signatures
and n >= m, to be considered as valid. The value of m and
n is defined based on application. An example application of a
multisig transaction is given in Section 3.

The structure of a transaction is as follows:

T_ID || P_T_ID || PK || Sign || output || metadata

T_ID is the transaction identifier which is essentially the hash
of the transaction content. P_T_ID is a pointer to the previous
transaction of the same overlay node. Thus, all (multisig or single
signature) transactions created by an overlay node are chained
together and can be audited. This is followed by the PK and sig-
nature of the transaction generator. The signed T_ID is used as the
signature of the transaction. In case of multisig transaction, the PK
and signature of the other (n— 1) participating nodes precede the
output field. Note that only m signatures (out of n) are required
for the transaction to be considered as valid. The output field
contains the hash of the PK that the transaction generator will use
for its next transaction. This is necessary to verify the subsequent
transaction created by the same node, since the overlay nodes
change the PK used for generating each new transaction. Meta-
data fields provide extra information that participating nodes in
the transaction might require, e.g., if the transaction is generated
to request data of an IoT device for a specific period of time, the
time period can be specified in the metadata (see Section 3 for
further examples). The aforementioned fields are required for a
transaction to be considered valid. However, additional fields can
be defined based on the application.

Each overlay node must first create a genesis transaction,
which serves as the starting point for its ledger in the blockchain,
using one of the following approaches:

e Certificate authorities: In this approach, the node relies on
the widely deployed Public Key Infrastructure (PKI) [18] in
the Internet. The overlay node contacts a trusted Certificate
Authority (CA), which ratifies the node’s PK by attaching
a signed certificate. The node includes the certificate in
the genesis transaction. To verify the transaction, an OBM
verifies the certificate. It is assumed that the OBMs have
access to a list of trusted CA root certificates for verification
(similar to browsers and operating systems).

e Burn coin in Bitcoin: Alternatively, if the node does not
wish to rely on PKI, then it can privately create a genesis
transaction by burning Bitcoins [49]. The node creates a per-
manent transaction in the Bitcoin blockchain by destroying
a specified amount of fraction of coin (that can be defined
as a design choice), which is referred to as “burning coins”.

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 183

H))/f\ ————————

/ Cluster memebers to OBM communications

| L OBM to OBM communications e

Service Provider

/ e Cloud Storage

/ Smart home

Smart devices

G Local communications that needs LBM permission - -

i‘l‘ Local communications —
=7

Fig. 1. An overview of LSB.

The address of the burn transaction is used as the input of
the genesis transaction. The overlay node creates a genesis
transaction with the same PK as the burn transaction and
sends it to the OBM whose cluster it belongs to. If the
genesis transaction generator is an OBM, then it broadcast
the transaction to other OBMs. To verify the received gen-
esis transaction, the OBM matches the PK of the genesis
transaction with the PK of the burn transaction in the Bit-
coin blockchain. Next, the OBM verifies the signature in the
genesis transaction.

In both approaches after verification, the OBM broadcasts the
genesis transaction to other OBMs to be stored in the blockchain.
In LBS, the data flow is kept separate from the transaction flow.

Similar to Bitcoin, multiple transactions are grouped together
and then processed as one block. A block can store at most
T_max transactions. The value of T_max affects the blockchain
throughput such that with a larger T_max, more transactions can
be stored in a single block. Each block consists of two main parts
namely, transactions and block header. The block header contains
the following:

B_ID || P_B_ID || B_Generator || B_verifiers

B_ID is the hash of the block content. P_B_ID is the hash of
the previous block which ensures immutability. If an attacker
attempts to change a previously stored transaction, then the hash
of the corresponding block which is stored in the next block will
no longer be consistent and will thus expose this attack. The rest
of the fields will be discussed later in this section.

Recall that to ensure scalability, transactions and blocks are
broadcast only to the OBMs. However, in case of multisig trans-
actions, the transaction is not valid until m out of n participating
nodes in the transaction have appended their signature. Thus,
the transaction must be sent to the involved parties. To address
this challenge, OBMs maintain a key list (essentially a simplified
access control list) consisting of a list of PKs that can access
the cluster members. If one of the PKs of a received transaction
by the OBM matches with one of the keys in the list, the OBM
broadcasts the transaction to its cluster members. The reason for
broadcasting transactions in the cluster is to protect the privacy
of the cluster member against malicious OBMs which may track
the transactions received by a particular cluster member to link
different transactions and thus deanonymize the node. If one of
the PKs of the incoming transaction Y matches with an entry in
the key list, then the OBM sends the transaction to the cluster
member that has previously uploaded the key in keylist. Other-
wise the transaction is broadcast to all other OBMs. All pending
transactions are stored in a transaction pool at each OBM. When
the size of the running pool becomes equal to T_max the OBM
starts the process of creating a new block using a distributed
time-based consensus (DTC) algorithm.

2.3. Distributed Time-based Consensus (DTC) algorithm

As noted in Section 1, in LSB, we propose a time-based consen-
sus algorithm in place of the more resource-intensive alternatives
such as PoW. The consensus algorithm must ensure a block gen-
erator is selected randomly among nodes and is limited in the
number of blocks it can generate. This protects against malicious
block generators which continuously generate new (fake) blocks.
To introduce randomness among block generators, each OBM
must wait for a random time, known as waiting-period, prior to
generating a new block. To prevent OBMs from always claiming
to have a short waiting-period, the neighboring OBMs monitor
the frequency with which an OBM generates new blocks in the
beginning of the waiting-period. If the number of such blocks
exceeds a threshold, defined based on the application by the
blockchain designers, the OBMs drop the block generated by their
neighbor. Since the waiting-period differs for each OBM, an OBM
might receive a new block created by another OBM that contains
some or all of the transactions that are currently within the
pool of transactions of the OBM. In this instance, this OBM must
remove these transactions from its pool as they are stored in the
blockchain by another OBM. Requiring OBMs to wait for a random
time also reduces the number of duplicate blocks that can be
generated simultaneously. The maximum waiting-time is capped
at twice the maximum end-to-end delay in the overlay network.
When a new block is generated, it is broadcast to all other overlay
nodes so that it can be appended to the blockchain.

It is possible that multiple nodes generate a block in the same
time and broadcast to the network which potentially would lead
to blockchain forking. In the latter, the blockchain is diverged into
two paths. To prevent forking, LSB relies on the concept of the
longest ledger where the ledger that more blocks are chained to
it is accepted as the true ledger in the blockchain. This concept is
utilized in most of the existing blockchains to handle fork.

To protect the overlay against a malicious OBM that may
potentially generate a large number of blocks with fake trans-
actions which is referred to as an appending attack (discussed
in Section 4.1), the periodicity with which an OBM can generate
blocks is restricted such that only one block can be generated over
an interval denoted by consensus-period. The consensus-period
is adjusted by Distributed Throughput Management (DTM) and
is discussed in Section 2.5. The default (and maximum) value
for consensus-period is 10 min, which is similar to the mining
interval in Bitcoin. The minimum value of consensus-period is
equal to twice the maximum end-to-end delay in the overlay, to
ensure that there is sufficient time for disseminating a new block
generated by other OBMs. Each OBM monitors the frequency with
which other OBMs generate blocks. Any non-compliant blocks are
dropped and the trust associated with the responsible OBM is
decreased as outlined in Section 2.4.

184 A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

2.4. Verification

An OBM must validate each new block that it receives from
other OBMs prior to appending it to the blockchain. To validate a
block, the OBM first validates the signature of the block generator.
It is assumed that each OBM uses a pre-defined key for generating
blocks and it is assumed that these keys are known to all other
OBMs [34]. Next, each individual transaction in the block is veri-
fied. A block is considered to be valid if all transactions contained
in the block are valid.

Algorithm 1 outlines the procedure for verifying an individual
transaction, X. The hash of the PK that will be used for the next
transaction is stored in the output field of the current transaction.
This ensures anonymity as the transaction generator can change
his PK for each new transaction. Thus, the OBM first confirms this
by comparing the hash of the PK in X with output of the previous
transaction in the same ledger (lines 1, 2). Following this, the
signature of X, that is contained within the fourth field of X, is ver-
ified (also called redeemed) using its PK in X (lines 4, 5). In case of
multisig transaction, the signature of all participating nodes are
verified using their PKs. If the steps complete successfully, X is
verified.

Algorithm 1 Transaction verification.

Input: Overlay Transaction (X)
Output: True or False
Requester verification :
1: if (hash (X.PK) # X_q.output) then
2 return False;
3: else
4: if (X.PK redeem X.signature) then
5 return true;
6 end if
7: end if

Verifying all transactions and blocks is computationally de-
manding, particularly when the number of nodes in the overlay
increases. In the IoT context, one can expect serious scalability
issues since the number of nodes is expected to be very large. Re-
call from Section 2 that LSB clusters the overlay network and only
CHs, i.e., OBMs, manage the blockchain which in turn reduces
packet overhead and improves scalability. However, the overhead
associated with verifying each new block (which effectively en-
tails verifying all transactions generated in the network) can be
significant and would impact the scalability of the blockchain. To
address this, LSB uses a distributed trust algorithm that gradually
reduces the number of transactions that need to be verified in
each new block as OBMs build up trust in one another. The
algorithm introduces the notions of direct and indirect evidence
as follows:

Direct evidence: OBM A has direct evidence about OBM B if it
previously verified at least one block that was generated by B.

Indirect evidence: If OBM A does not have direct evidence about
OBM B, but if one of the other OBMs has confirmed that the block
generated by B is valid, then A has indirect evidence about B.

Each OBM maintains a list that records pertinent information
to establish direct evidence. For this, the OBM records the number
of blocks it has validated for every other OBM. Since only the
cumulative number of verified transactions is stored for each
OBM, the associated memory overhead of the distributed trust
table would be negligible. Recall from Section 2.3 that an OBM
might create blocks which are non-compliant with the consen-
sus algorithm. Other OBMs that receive a non-compliant block
will drop it and decrement the direct trust associated with the
responsible OBM by one. If the malicious OBM continues with
this behavior, its trust rating would be correspondingly reduced.
This implies that an increasing proportion of its transactions will
have to be verified by the other OBMs. For indirect evidence,

Number of previously
Direct validated blocks 0N RCON RSO RSO [0
evidence R
Needs to validate 80% | 60% | 40% | 30% | 20%
A Percentage of OBMs |,/ | 4004 | 6006 | 80% [100%
Indirect signed the block
evidence .
Needs to validate 80% | 75% | 70% | 60% | 40%

Fig. 2. An example of a trust table.

the OBM checks the number of other OBMs that have verified
a received block generated by an OBM. The core idea behind
the distributed trust algorithm is that the stronger the evidence
an OBM has gathered about the OBM generating the new block,
fewer transactions within that block need to be verified to vali-
date the block. A trust table, an example of which is illustrated
in Fig. 2 is maintained by the OBMs to implement this strategy.
Direct evidence takes precedence over indirect evidence. If the
OBM has direct evidence about the block creator, then a fraction
of the transactions within the block are selected to be validated
as per Fig. 2. In the case that there is no direct evidence, the
OBM checks if indirect evidence is available and then selects a
different fraction of transactions based on how many other OBMs
have vouched for the block generator as per Fig. 2. Note that, a
certain fraction of transactions are always verified even if there
is strong evidence to protect against a potentially compromised
OBM. If no evidence is recorded, then all transactions in the block
are verified.

2.5. Distributed Throughput Management (DTM)

The classical consensus algorithms used in blockchain limit
the blockchain throughput, which is measured as the number of
transactions stored in the blockchain per second, as solving the
cryptographic puzzle is computationally demanding. For instance,
Bitcoin blockchain is limited to 7 transactions per second because
of POW [38]. For IoT, such limits would be unacceptable, since
there are numerous interactions (and thus transactions) among
various nodes. Moreover, some of the transactions may require
immediate actions (e.g. unlocking smart home door from over-
lay). In LSB we propose a Distributed Throughput Management
(DTM) mechanism (outlined in Algorithm 2 below) to actively
monitor the blockchain utilization and make appropriate adjust-
ments to ensure that it remains within an acceptable range.
At the end of every consensus-period, each OBM computes the
utilization («) as the ratio of the total number of new trans-
actions generated to the total number of transactions added to
the blockchain. Note that, since all transactions and blocks are
broadcast to all OBMs, the utilization computed by all OBMs
should be similar. The aim of DTM is to ensure that « remains
within a certain desirable range (min, ®max)-

Assuming a network with N nodes of which M are OBMs
and R representing the average rate at which a node generates
new transactions per second (R can be estimated from the total
number of transactions generated in the consensus-period), the
utilization can be represented as follows:

N * R x Consensus_period
o= (1)
T_max x* M
The above equation suggests that there are two ways by which
the utilization can be adjusted: (i) changing the consensus-period,
which dictates the frequency with which blocks are appended
to the blockchain; or (ii) changing M, as each OBM can generate
one block within the consensus-period. The latter approach incurs

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 185

Algorithm 2 Distributed Throughput Management.

Input: o
1: while true do

2: if (@ > amgx) then
Umin+omax

compute consensus-periodpe,, from Eq. (1) with a =
if (consensus-period;;;; <= consensus-periodne,,) then
update consensus-period to consensus-periodney,
else
reset consensus-period to default value
. Umin+omax
compute M from Eq. (1) with o = -H——=
recluster overlay
end if
end if

if (@ < apip) then
compute consensus-periodpe,, from Eq. (1) with o =
if (consensus-periodpe,, <= consensus-periodmax) then
update consensus-period to consensus-periodney,
else
reset consensus-period to default value
- : Umin +@max
compute M from Eq. (1) with « = %
recluster overlay
10: end if
11: end if
12: end while

Umin +omax

© ©O®ON NDU AR AR WWN

©

significantly greater overheads as it requires reconfiguration of
the entire overlay network (see Section 2). Thus, if « exceeds
Omax, 1N the first instance, DTM checks whether the consensus-
period can be reduced by checking if it has received the minimum
consensus period. If so, then the new value for the consensus-
period is computed using Eq. (1) and assuming that « is equal
to the mid-point of the desired range (omin, ®max), Which ensures
a stable operating point for the network (line 2-3, Algorithm
2). Conversely, if the consensus-period cannot be reduced then
the network needs to be reclustered with a new value for M
(line 4). This new value is computed using Eq. (1), with « again
set to the mid-point of the desired range and the consensus-
period set to the default value, which is consensus-period.. This
feature allows LSB to scale well, where an increased number of
participating nodes delivers higher throughput. In order to avoid
constant reconfiguration of the network when the utilization
is increased above its threshold, we reset the consensus-period
to default value. With a constant number of OBMs, the upper-
bound throughput of LSB is primarily dependent on the value
of the consensus-period which in turn depends on the end-to-
end delay among the OBMs. If we neglect the end-to-end and
synchronization delays, the throughput will be limited by the
maximum rate at which the slowest OBM can generate new
blocks which is the time taken to verify all transactions in a new
block and collating them to form a block. This potentially pre-
vents a resource-capable OBM (which may store blocks at a faster
rate than other nodes) from gaining control of the blockchain. As
can be inferred from Eq. (1), a smaller consensus-period leads to
larger throughput.

In the instance when the utilization drops below «;;; an
inverse approach is adopted, i.e. DTM first attempts to increase
the consensus-period, otherwise it decreases the number of OBMs
(lines 7-9, Algorithm 2).

To ensure that all nodes are consistent about the action to
be taken (whether it be changing the consensus-period or M),
each OBM waits for a random duration and broadcasts a message
specifying the action to be taken to all other OBMs. A recipient
OBM checks whether the action is consistent with its decision. If
S0, it signs the original message and broadcasts it to other OBMs.
If not, then it creates a fresh message specifying its action and
broadcasts it to other OBMs. The action message that receives sig-
natures from more than half the number of OBMs is assumed to
be agreed-upon decision which all OBMs must follow. Note that,
in most instances the actions taken by all nodes will be consistent.

However, occasionally there may be slight discrepancies in the
OBMs estimate of the number of generated transactions due to
packet loss or latency issues, which may in turn lead to minor
differences in the computed consensus-period or M. In the rare
event that there is no clear majority, the OBMs employ an election
method such as in [39] to reach a final agreement about the new
consensus-period.

In the event where the number of OBMs are to be changed,
the network is reclustered using the same clustering method used
initially as discussed in Section 2.

2.6. Summary

This section provides a high-level view of all algorithms that
are executed by an OBM for managing LSB. An OBM may either re-
ceive a transaction T or a block B from other OBMs. In the former
instance, the OBM first verifies the transaction (by validating the
embedded signature using the corresponding PK) and if valid adds
it to the pool of pending transactions, T_Pool (line 3 in Algorithm
3). If the cumulative size of T_Pool equals or exceeds the block
size, T_max, these transactions are collated to form a block, which
is stored in the blockchain by invoking the consensus algorithm
as discussed in Section 2.3 (line 4). An invalid transaction is
discarded (Line 6). In the latter case, the OBM first verifies the
block by verifying the constituent transactions (line 9). Recall
that, LSB employs distributed trust algorithm (see Section 2.4)
to reduce the processing overhead in verifying new blocks. If
the block is valid, it is appended to the locally stored copy of
the blockchain. Otherwise the block is discarded. The OBM is
executing the DTM algorithm continuously in a parallel thread to
manage the throughput of LSB in accordance with the network
load (line 10).

Algorithm 3 A high-level view of algorithms executed by an OBM.

Input: T, B
1: while true do
1 Receive From Blockchain
if Received a T then
if (T is valid) then
T_Pool += T;
if (size.T_Pool >=T_max) then
Run DTC (see Section Section 2.3)
end if
else
Discard T
end if
end if
if Received a B then
Verify block (see Section Section 2.4)
10: end if
10: Run DTM (see Section Section 2.5)
11: end while

©XNDPDD RN

©

2.7. LSB compatibility

In this sub-section, we discuss LSB compatibility with:
(i) existing blockchain solutions, and (ii) loT requirements.

LSB introduces significant changes to core blockchain func-
tions including: (i) the consensus algorithm (see Section 2.3),
(ii) the underlying network topology, which is a clustered net-
work (see Section 2.1), (iii) the separation of data and transaction
flow (see Section 2.1), (iv) the distributed trust algorithm (see
Section 2.4), and (v) distributed throughput management algo-
rithm (see Section 2.5). LSB can rely on existing blockchains for
providing other functionality, e.g., nodes that serve as miners in
an existing blockchain could act as OBMs in LSB, or the peer-
to-peer algorithms used in conventional blockchains can be used
between OBMs.

LSB is designed particularly for IoT, and thus must fulfill the
fundamental requirements of IoT, namely supporting real-time
applications and the connectivity and mobility of IoT devices:

186

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

e Real-time applications: IoT devices are required to share
data with the users or SPs in real-time that are used to
offer real-time services. The distributed operations inher-
ent in a blockchain incur delays and could thus potentially
impact IoT applications that require real-time functionality.
However, LSB incorporates a number of measures to reduce
these delays and is thus suitable for real-time applications.
These are: (i) Separation of data and transaction flow: The
transactions are broadcast while the data packets are di-
rectly sent, i.e., routed, toward the destination. For example,
when a camera receives an access transaction, it directly
sends the data in real-time to the user. At the end of the
data transmission, the corresponding transaction is stored in
the blockchain that contains the hash of the data, (ii) Elim-
inating the confirmation time: In conventional blockchains,
the blockchain participants have to wait at least 3 blocks
to be chained to the block that contains the transaction to
protect against double spending. As the concept of double
spending is not applicable for communications between IoT
devices, e.g., opening a smart lock, LSB does not demand the
IoT devices to wait for transaction confirmation to accept a
transaction. In cases where double spending is applicable,
e.g., trading asset, the delay for confirmation will still apply
in LSB.

e Connectivity and mobility: In IoT the connectivity of a node
cannot always be guaranteed. Additionally, the nodes might
be mobile nodes that change their position in the net-
work. We discuss these from the perspective of the cluster
members and the OBMS.

Mobility or connectivity issues of the cluster members do
not affect the blockchain state and function as the
blockchain is managed by OBMs. A node that is disconnected
no longer receives service as in other existing systems. A
mobile node can continue receiving service from its OBM,
however, the experienced delay in communication with the
OBM may increase. To address this challenge and reduce
the delay while maintaining the nodes connectivity, LSB
leverages existing soft handover methods such as in [29].
The mobile node joins a new OBM that has lower delay
compared to its older OBM and updates its keys in the new
OBMs key list. Once the join request is accepted by the new
OBM, the mobile node disconnects from its previous OBM
and removes its keys from the key list of that OBM. Thus,
the mobile node can change its OBM with no interruption
in service.

Next, we discuss mobility and connectivity from the per-
spective of the OBMs. Note that OBMs are typically selected
from the nodes with no or very low mobility and high con-
nectivity. In case an OBM is disconnected from the network,
the cluster members and blockchain throughput will be
temporarily affected. Note that exiting clustering algorithms
choose one node as the leader [31], i.e., OBM in LSB, and
another node as the co-leader. Once the leader leaves the
network, the co-leader will become the new leader so that
the cluster members will not be disconnected from the
network for a long time to find a new leader.

The network throughput is also affected as there are fewer
OBMs to generate new blocks. Recall from Section 2.5 that
the DTM manages the throughput by measuring the net-
work utilization or « (see Section 2.5). @ shall always meet
the following condition: apmin <= ¢ <= Amax

The network throughput is not affected by departure of an
OBM if @ remains within the specified range. If it exceeds
the threshold, the DTM adjusts the throughput.

3. Case study

In the previous section, we outlined LSB and its key features
including low resource consumption and high throughout, that
are suitable for a broad range of applications. To ground the
discussion and evaluation, we focus on the case study of a smart
home.

We assume the smart home is equipped with a number of IoT
devices, e.g., smart thermostat, smart lock, smart light, etc. IoT
devices with significantly varying capabilities are now available
on the market, e.g. Amazon Echo [11] which has high resources
and motion sensors [45] which have more restricted resources.
The high resource IoT devices, which are at the high end of the
spectrum, can readily handle asymmetric encryption [11] while
the devices at the other end of the spectrum can only afford
symmetric encryption. Thus, we study two distinct use cases of
LSB in the smart home that covers both these types of devices in
Sections 3.1 and 3.2.

As discussed in Section 1, storing data of IoT devices in
blockchain is not scalable and incurs significant overheads. LSB
offers flexibility whereby the data of IoT devices can be stored
in: (i) Local storage: This storage can be integrated with the
home Internet gateway or it can be a separate backup device.
IoT devices use direct communication to store data in the local
storage as outlined in Sections 3.1 and 3.2, (ii) Cloud storage: We
assume that a user who wishes to store the data of his IoT devices
in the cloud has created an account with a cloud storage provider
(e.g., Dropbox, OneDrive, etc.) out-of-band (i.e., independent of
LSB). We assume that the user creates a public/private key pair
for this cloud storage account and that the corresponding public
key is used in subsequent store cloud and access transactions.
Recall that LSB creates a clear distinction between the control
plane and the data plane to ensure that the data packets can
be routed efficiently through the network. To facilitate this, we
assume that the IoT device that requires to store data in the cloud
sends a request during the initial setup to the cloud storage with
the aforementioned PK. Upon authentication, the cloud storage
sends the ID of its OBM to this device. Subsequently, all data
being stored in the cloud can be directly routed to the cloud (as
discussed in Section 2.1).

Having discussed the basic concepts of the smart home, we
study two scenarios based on the resources available for the IoT
devices in the rest of this section.

3.1. Scenario 1: High resource devices

In this scenario, we assume that IoT devices are capable of
performing asymmetric encryption. Each IoT device is part of
the overlay and is known by a PK. The IoT devices within the
smart home can directly communicate with each other, i.e., off-
the-chain communication, using the existing communication pro-
tocols including Wi-Fi or ZigBee. As these communications take
place within the smart home, no record is required to be stored in
the blockchain. In contrast, when IoT devices communicate with
overlay nodes, corresponding transactions are stored in LSB to
record these interactions. In the following, we outline the process
of store, monitor, and access transactions. As in Bitcoin and other
blockchain-based systems where a transaction generator knows
the PK of the transaction receiver, e.g., the node that should be
paid in Bitcoin, it is assumed that the requester knows the PK of
the requested IoT device.

Store: An IoT device might require to store its data either in
the local storage or in a cloud storage. As outlined above, the IoT
device can store data locally by encrypting data with the PK of
the local storage and directly communicating with the storage.
An IoT device may also need to store data in a cloud storage. The

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 187

flow of events for storing data in the cloud is shown in Fig. 3.
The IoT device that wishes to store data in the cloud sends data
with the OBM ID of the cloud to its own OBM (S1 in Fig. 3). The
OBM then routes data directly to the cloud storage using routing
protocol. After storing data, the cloud storage signs the received
transaction from the IoT device and sends it to its own OBM to
be stored in the blockchain (S2).

Access and monitor: The flow of access and monitor transac-
tions are shown in Fig. 3. For both transactions, the requester,
i.e., the node that is requesting IoT device’s data, generates and
sends a multisig transaction, which requires 2 out of 2 signatures
to be considered as valid, to its OBM (A1, M1 in Fig. 3). The OBM
checks the keylists to find a match and if not then broadcasts
the transaction to other OBMs (A2, M2). By finding the match,
the OBM forward the transaction to the IoT device (A3, M3). The
fourth step differs for access or monitor transaction. For access
transaction, the data is fetched from either the local or cloud
storage (A4), while for monitor transaction the device sends the
real time data to the requester (M4). After receiving data from
either cloud or local storage, the IoT device routes it to the
requester (A5). Recall that the data flow is routed directly and
separate from the transaction flow. Finally, the IoT device signs
the received transaction from the requester and sends it to its
OBM to be stored in the blockchain (A6, M5).

3.2. Scenario 2: Low resource devices

Next, we consider how low resource IoT devices interface
with LSB. Performing asymmetric encryption might be far beyond
the capabilities of these devices. Thus, we introduce a central
controller in the smart home which connects these IoT devices
to the overlay network as shown in Fig. 4. Local communications,
i.e., the communications between IoT devices, central controller,
and the local storage, are encrypted using symmetric encryption,
for which a shared key is established between the two parties,
and use lightweight cryptographic hash function, such as in [13].
The central controller could be integrated with the Internet gate-
way or a stand-alone middlebox such as F-secure [43] which acts
as an intermediary between the IoT devices and the gateway.
The central controller uses the generalized Diffie-Hellman [21]
key distribution method to generate and distribute a shared key
between two local entities that request to exchange data.

In the following, we outline the process of store, monitor, and
access transactions.

Store: Similar to scenario 1, the IoT devices may store data
either locally or in the cloud storage. In the former instance, the
device sends its store request to the central controller. The central
controller generates and distributes a shared key between the
device and the local storage. Local storage uses the shared key
for authentication. For further communications, the device and
the storage communicate directly using the shared key.

The flow of events for storing data in the cloud are shown in
Fig. 4. The IoT device sends its data to the central controller (S1
in Fig. 4). This data is encrypted with the shared key of the device
and the central controller. The central controller forwards the
data to its own OBM with the destination address corresponding
to the OBM ID of the cloud storage. As noted earlier, the data is
directly routed to the cloud storage (S2). Similar to scenario 1,
the OBM of the cloud storage signs the transaction and stores it
in the blockchain (S3).

Access and monitor: The flow of access and monitor transac-
tions are shown in Fig. 4. The first 3 steps are as scenario 1.
However, unlike scenario 1 where the requester sends a request
directly to the device, in scenario 2 the requester sends the
request to the central controller of the smart home in which the
device is located. The ID of the requested device is populated in

the metadata field of the transaction (see Section 2.2). The fourth
step differs for access or monitor transaction. For access trans-
action, the central controller fetches data from either the local
or cloud storage (A4), while for monitor transaction the central
controller requests the real-time data of the device (M4). After
receiving data, the central controller routes it to the requester
(A5, M5), then signs the received transaction and stores it in the
blockchain (A6, M6).

4. Evaluation and discussion

In this section we provide qualitative security and privacy
analyses as well as quantitative performance evaluation.

4.1. Security and privacy analysis

In this section, we discuss LSB security, privacy, and fault
tolerance.

Threat Model: It is assumed that the adversary (or cooperative
adversaries) can be the OBM or a node in the overlay network. Ad-
versaries are able to sniff communications, discard transactions,
create false transactions and blocks, analyze multiple transactions
in an attempt to deanonymize a node, and sign fake transactions
to legitimize colluding nodes. The adversary can pretend to be
multiple nodes as well as OBMs by generating transactions or
blocks with multiple PKs to flood the network or consume the
resources of the participating nodes. Adversaries can collude to
compromise the security of the consensus algorithm by ignoring
the frequency with which an OBM is generating new blocks. We
assume that standard secure encryption methods are used in the
overlay, which cannot be compromised by adversaries.

Security: Table 2 summarizes the various mechanisms that
allow LSB to meet key security requirements.

In following we study seven specific security attacks to which
IoT networks or blockchains are particularly vulnerable and out-
line how LSB protects against them.

Denial Of Service (DOS) attack: In a DOS attack, the attacker
floods and overlay node (target) with a large number of
multisig transactions (which require the target signature) to over-
whelm the node such that it cannot devote any resources to pro-
cess genuine transactions from other nodes. LSB protects against
this attack using the following defense methods (see Section 2):
(i) OBMs would not send a transaction to their cluster members
unless they find a match with an entity in their key list, (ii) Each
overlay node has a threshold for maximum rate of transactions
received from the overlay. If the threshold is exceeded, the keylist
is updated to prevent nodes from sending transactions to the
target node.

Distributed DOS (DDOS): This attack is the distributed version
of DOS attack where multiple overlay nodes are compromised by
the attacker. The methods discussed to protect against DOS attack
also protect again DDOS attack. Additionally, infecting devices
and overlay nodes is difficult due to usage of OBM keylists (see
Section 2).

Dropping attack: In this attack, the OBM drops transactions to
or from its cluster members to isolate them from the overlay. To
protect against this attack, a cluster member can change the OBM
it is associated with if it observes that its transactions are not
being processed.

Blockchain modification: The attacker advertises a false ledger
of blocks and makes it as the longest ledger. Thus, all nodes
accept the attacker ledger as the true ledger. The proposed DTC
algorithm (see Section 2.3) limits the number of blocks each OBM
can generate within a time interval. This will limit the number of
malicious blocks that an OBM can append, and thus prevent the
attacker from generating a longer ledger than the true ledger.

188

Cloud Storage

(RecSig

__ s2TB

158
eyep 1senbay vy

;;i@
@
eep 2101S T

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

S: Store transaction

A: Access transaction

M: Monitor transaction

¥ :No match in OBM key lists
@ : Match in OBM key lists

-

: Overlay indirect communications
— : Overlay direct communications
(using routing protocols)
§99 : First step for each transaction

RecSig : Requestee signature
SenSig : Requester signature
TBS : Transaction to be stored on BC

Requester

Fig. 3. The process of store, access, and monitor transactions for high resource devices.

Cloud Storage

s _4a
2
|

wep 2101S ‘T

=

elep 1sanbay :py

Central
Controller

Motion sensor

Local Storage

:Store transaction
:Access transaction
: Monitor transaction
:No match in OBM key lists
: Match in OBM key lists
: Overlay indirect communications
: Overlay direct communications
— (using routing protocols)
799 : First step for each transaction
RecSig : Requestee signature
12 SenSig : Requester signature
TBS : Transaction to be stored on BC

=> 0

[4

5. M5 Rur;\V\"\<\
€questey dagg o<

Requester

Fig. 4. The process of store, access, and monitor transactions for low resource devices.

Table 2
Security requirements discussion.

Requirement Employed method

Confidentiality Encryption is used for all transactions (Section 2).

Integrity Each transaction includes a hash of all other fields contained in the transaction (Sections 2).

Availability An OBM sends a transaction to its cluster members only if a key contained in the transaction
matches one of the entries in its keylist (Section 2). This ensures that the cluster members only
receive transactions from authorized nodes.

Authentication Each node should have a stored genesis transaction in the BC to be authenticated. As

transactions are chained to the genesis transaction, a node is authenticated when it has the
private key corresponding to the output PK of a transaction stored in the BC (Section 2).

Non-repudiation

Transactions are signed by the transaction generator to achieve non-repudiation. Additionally,
all transactions are stored in the BC, so involved parties in the transaction can deny their

complicity in a transaction (Section 2).

Compromising the time interval: In this attack, a malicious OBM
generates more than one block in each consensus-period. This
attack can be conducted by a group of collaborative malicious
nodes. Multiple OBMs will verify that a malicious block follows
the consensus rules and thus can be appended to the blockchain.
To prevent this attack, each OBM stores the time-stamp of the last
block that other OBMs in the network have generated. Thus, each
OBM independently decides whether an OBM follows the consen-
sus rules. If the time difference between two blocks generated by

the same OBM is less than the consensus period, the new block
will be rejected. The time-stamp is maintained and updated along
with the trust table.

Compromising the waiting time period: In this attack malicious
OBMs collude to generate blocks with short waiting time to store
fake transactions in the blockchain. Recall from Section 2.3 that
each OBM waits for a random time before generating a new block.
The neighboring OBMs monitor the random time to ensure that
an OBM does not always select a short waiting time. However,

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 189

a group of malicious neighboring nodes may collude and always
allow a selected node(s) to choose short waiting times and subse-
quently generate blocks. This attack can be detected by the honest
OBMs during multiple rounds of consensus period when the
malicious OBMs mine multiple blocks with short waiting time. By
monitoring the waiting time of multiple blocks generated by each
of the malicious nodes, the honest OBMs detect the attack. Even
if the attackers succeed, the security of the blockchain remains
unaffected as still the malicious OBMs cannot generate more than
one block per consensus period (see Section 2.3). Moreover, the
OBMs verify the transactions in new blocks, thus will detect any
fake transaction stored in the blockchain. In summary, this attack
provides no advantages for the malicious nodes that worth it to
allocate resource and effort for conducting the attack.

Sybil attack: In Sybil attack a malicious node pretends to be
multiple nodes by creating multiple identities. The malicious
nodes can add fake transactions and in the worst case get control
of the blockchain. We study Sybil attack from the perspective of
a node in the blockchain and an OBM.

In LSB, each participant must have a previous transaction
in the blockchain to chain its new transactions which implies
the need to have a genesis transaction to begin this transaction
chain. Recall that a genesis transaction is the first transaction in
each ledger. In LSB the generation of genesis transaction either
requires the user to burn coin in Bitcoin or receive a certificate
from trusted CAs, both of which incur monetary costs (see dis-
cussions in Section 2). The creation of multiple identities thus
requires significant investment from the attacker. The transac-
tions generated by nodes are verified by the OBMs, thus any
misbehavior will be detected by the OBMs. In case of a successful
Sybil attack by participating nodes, the OBMs utilize the proposed
DTM algorithm (see Section 2.5) to balance the throughput to
mitigate the delay experienced by the end-users for receiving
service. However, additional OBM resources will be invested to
generate and verify blocks.

An OBM may also pretend to be multiple OBMs to generate
more blocks. Once OBMs are selected, everyone will be notified
of the PK of the OBMs. Thus, malicious OBMs cannot pretend to be
multiple OBMs as the blocks generated with a PK that is not listed
in the OBM list will be rejected by other OBMs. However, an OBM
may attempt to generate fake identities and create fake OBMs
during network clustering. The OBMs are selected distributively
during the clustering phase. The nodes with maximum number
of cluster members are chosen as the CHs. The malicious node
cannot fake one hop communication with a large number of par-
ticipants, which protects against Sybil attack. To further increase
the security, we assume methods such as in [52] are in place to
protect against this attack. The blocks generated by the OBMs are
verified by participating nodes which further protects against this
attack.

Appending attack: In this attack, a malicious OBM attempts to
store fake transaction(s) in blockchain. Recall from Section 2.4
that the OBMs verify transactions in a block that protects against
this attack. However, LSB employs distributed trust algorithm
where fewer percentage of transactions in new blocks are verified
as OBMs build up trust. Since only a fraction of transactions
within a block are verified, there is a chance that a fake trans-
action may not be verified and thus appended to the blockchain.
Based on the simulation results given in Fig. 8 a minimum of
13 OBMs must be active in the network to ensure blockchain
resilience against appending attack. We will further elaborate on
this attack in Section 4.2.

Consensus period attack: In this attack, the attacker sends false
requests to update the consensus period. In LSB, for a request
to be considered as valid, it must be signed by at least half the
number of OBMs. The likelihood f this is very low.

Table 3

Studying attacks on LSB.
Attack Resistant to attack Attack likelihood
Denial Of Service (DOS) attack High Unlikely
Distributed DOS (DDOS) attack Beyond high Unlikely
Dropping attack High Unlikely
Blockchain modification Beyond high Unlikely
Compromising the time interval Beyond high Unlikely
Compromising the waiting time period Moderate Possible
Sybil attack Beyond high Unlikely
Consensus period attack High Unlikely
51% attack Beyond high Unlikely

51% attack: The attacker controls more than 51% of OBMs and
tries to compromise the consensus algorithm by generating fake
blocks or more than the permitted number of blocks. This attack
can be detected during the block verification or by other OBMs
based on the consensus algorithm.

In Table 3 we analyze how resilient LSB is against the afore-
mentioned attacks and the likelihood of the attack to happen
based on European Telecommunications Standards Institute
(ETSI) [47] risk analysis criteria. These criteria evaluate each
attack based on the following five metrics: (i) time: the cu-
mulative time for an attacker to first detect a vulnerability,
and subsequently plan and launch a successful attack, (ii) ex-
pertise: the generic expertise that the attacker must possess
about the underlying principles in order to orchestrate the attack,
(iii) knowledge: specific information that is available about the
target system, e.g., security configuration, (iv) opportunity: the
duration and nature (e.g., continuous or intermittent) of access
to the system needed for launching the attack, (v) equipment:
software and/or hardware necessary for conducting the attack.
LSB exhibits beyond high resistance to five attacks and high
resistance to three attacks. This suggests that LSB is highly secure.

We now discuss the adversary tolerance level for LSB and
compare with existing blockchain consensus algorithms. The ad-
versary tolerance level represents the blockchain resilience level
against malicious behaviors. The adversary tolerance level for LSB
is 51% of the participating nodes. In other words, as long as 51%
of the participating nodes are honest, the security of the ledger
can be guaranteed as the honest nodes can generate the longest
ledger. Recall from Section 2.4 that LSB uses distributed trust
to reduce the processing overhead for verifying new blocks. The
adversary tolerance level for distributed trust depends on the
trust table values. Fig. 7 and Table 4 demonstrate the simulation
results for adversary tolerance based on the adopted trust table
values for our experiments.

In this paragraph we discuss the adversary tolerance level for
PoW, Byzantine Fault Tolerance (BFT), and Proof of Elapsed Time
(PoET) for comparison with LSB. Details of these algorithms are
discussed in Section 6. The adversary tolerance level identifies
the extent to which a consensus algorithm can tolerate malicious
activities.

The adversary bound for PoW is 51% of the computational,
i.e., mining, power [50]. Malicious nodes may be able to compro-
mise the security of the PoW-based blockchain if their combined
computational power reaches at least 51% of the blockchain com-
putational power. In BFT algorithm the validator, i.e., miner, of
the next block is chosen based on voting of the nodes to the
new blocks. The adversary tolerance level for BFT is 33% of the
participating nodes. PoET is a time-based consensus algorithm
that enforces the validators to wait for a random time prior to
adding new blocks to the blockchain. PoET uses Intel hardware
to enforce the randomness. The authors in [15] argued that the
adversary tolerance level for PoET is 6(”’if;’f”).

In summary, LSB achieves higher adversary tolerance level
compared to BFT and PoET. The adversary tolerance level of LSB

190 A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

cannot be compared with PoW as it is based on the number of
participants in LSB while in PoW it is based on the computational
power of the adversaries.

Privacy: LSB uses anonymity and affords users control over
their data to protect their privacy. Similar to Bitcoin, each user
may employ multiple identities, i.e., PKs, for his transactions
which introduces high-level of anonymity. LSB empowers the
users to control access to their devices and data. Recall that
blockchain achieves high auditability by permanently storing all
communications in the public immutable ledger. Thus, LSB users
can monitor the data transferred by their devices to detect any
malicious activity.

In certain IoT applications, the two end points that are com-
municating may need to know the real identity of each other.
For example, a home insurance company needs to know the real
identity of the owner of the smart home that it is insuring. In
these instances, the corresponding transaction generator uses a
unique PK to communicate with each overlay node.

Malicious nodes may attempt to deanonymise a user by track-
ing his transactions stored in blockchain which in turn endangers
the user privacy. This attack is known as “linking attack” in
blockchain literature. Linking attack is possible in all blockchain
instantiations and LSB is not an exception. To protect against
linking attack, a user may employ multiple ledgers for each of
his devices and change his key for each transaction.

Recall that transactions in blockchain reflect communications
between IoT devices and/or SPs. Thus, an adversary may be able to
collect activity patterns, even though the transaction metadata is
encrypted. However, such attacks are inherent in all blockchains
(not just LSB) as all transactions and blocks are broadcast to
participating nodes. To reduce the success rate of this attack, the
participating nodes may employ multiple ledgers in LSB to store
their transactions. This attack is well-studied for cryptocurrencies
but there are few works to discuss this attack for IoT device
identification. In [23] we have studied the success rate of collect-
ing device activity pattern in existing blockchain instantiations
using machine learning algorithms. The implementation results
demonstrate that the attacker can successfully classify data with
90% accuracy.

Fault tolerance: Fault tolerance is a measure of how resilient
an architecture is to node failures. It is evident from Section 2 that
OBMs implement various key functions and the failure of these
nodes could thus potentially impact the normal operation of LSB.
In case an OBM leaves the overlay, the cluster members associ-
ated with this OBM would not receive any service. However, they
can readily select a new OBM to associate with. The OBM(s) de-
parture may also affect the overlay throughput as there are fewer
OBMs to generate blocks. However, the DTM mechanism outlined
in 2.5 can handle this situation. The departure of multiple OBMs
may also impact security due to the corresponding actions of
the distributed trust mechanism. Recall from Section 2.4 that
as OBMs garner trust in one another, fewer transactions within
a block need to be verified. Thus, when multiple OBMs leave,
the probability of detecting a fake transaction in a new block
decreases as fewer OBMs remain in the network to validate the
new blocks. We will further elaborate on the minimum number of
OBMs required to participate in the blockchain to prevent attacks
in Section 4.2.3.

4.2. Performance evaluation

In this section, we present extensive evaluations of various
performance aspects of LSB. We first explored the possibility of
using open source blockchain instantiations such as Ethereum.
However, these platforms are particularly suited for developing
applications on top of the underlying blockchain substrate. LSB

Fig. 5. Bitcoin blockchain hash rate as at Jan 2019 [6].

has significant differences in its fundamental operations in com-
parison to these blockchain instantiations. As a result, we were
unable to use these platforms for our evaluations and thus chose
to use simulations. We use NS3 [4] to evaluate the performance
as it has been widely used for analyzing peer-to-peer networks.

We consider a network consisting of 50 overlay nodes. We
assume the T_max to be 10 transactions. We assume five overlay
nodes generate four transactions per second. The above settings
are referred to as the default configuration and are used in the
simulations unless explicitly noted otherwise.

In the rest of this section, we first evaluate the POW processing
time in Section 4.2.1. Next, we evaluate the delay which an
overlay node experiences while requesting data from another
overlay node in Section 4.2.2. Distributed trust and its effects on
the overlay security and performance are studied in Section 4.2.3.
Finally, we evaluate DTM in Section 4.2.4.

4.2.1. POW processing time

In this part of evaluation, we aim to evaluate the time con-
sumed by an off-the-shelf device to solve the POW, one of
the widely used consensus algorithms in blockchain-based sys-
tems [25]. We do so to highlight the ineffectiveness of using
classic blockchain and PoW in the IoT context. Each block in the
Bitcoin blockchain has a nonce attached to them. The miner is
required to search for the correct nonce such that the block as
a whole satisfies a certain arbitrary condition. Specifically, it is
required that the SHA-256 hash of the block has a certain number
of leading zeros. The only way to find the correct nonce is by
brute force. The number of leading zeros controls the difficulty
of solving the POW. The longer the length of this sequence, the
more resources and processing time required to solve the puzzle.

We study the possibility of using laptop to solve PoW puzzle
using MinerGate [8]. We used a MacBook Pro (2.7 Ghz Intel Core
i5 processor, 8 GB memory, and Intel Iris Graphics 6100 graphic
card) for this study. Typical IoT devices are significantly more
resource-constrained than a laptop so the results obtained are
conservative upper bounds that one can expect with IoT devices.
Once running the MinerGate, the hash rate reached maximum of
1 KHs. The laptop, however, fails mining a block in one day. This
is expected as currently the mining hash of Bitcoin blockchain
is around 38,000,000 THps [6] (see Fig. 5). Given the difficulty
of Bitcoin blockchain, mining requires specific miner hardwares
known as Application-Specific Integrated Circuit (ASIC) miners
with at least Trillion hashes per second.

4.2.2. Requesting an IoT device

In this section, we evaluate end-to-end delay experienced
by an overlay node for requesting the data of an IoT device
which is performed using multisig transaction. Delay is measured
from the time since the request is generated till the response
is received. Note that in this evaluation, we only consider the
request/response delay, while data exchange delay is studied in

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 191

0.003 6000

0.0025 5000 o
— &
£ &
= 0002 4000 2
E 2
00.0015 3000 2
£ g
2 3
g 0.001 2000 5
= -
& 2

0.0005 II I 1000 &

o =m__HN .
5 7 10 13 15 17 20

The number of OBMs.

m]SB packet overhead
Baseline end-to-end delay==~LSB end-to-end delay

m Baseline packet overhead

Fig. 6. Assessing the impact of separating the data and transaction flows.

the next evaluation. We conduct simulations using NS3 with
the default configuration with 13 overlay nodes acting as OBMs.
We compare LSB with a baseline method which is consistent to
current methods offerings on the market, where the two nodes
directly communicate without the need for any of the transac-
tion processing that is part of LSB. The delay incurred using the
baseline method is 17.62 ms. On the contrary, with LSB, the delay
increases to 48.74 ms. The higher delay can be attributed to the
fact that the transaction has to be broadcast to other OBMs for
verification. Each OBM incurs a delay of 0.006 ms for processing
the transaction (the precise steps are outlined in Section 2).
However, this delay is relatively insignificant.

As was noted in Section 2, LSB separates the data flow from
the transaction flow. While transactions are broadcast amongst
the OBMs in the overlay, the data packets are forwarded toward
the destination along optimal paths as determined by a routing
protocol such as OSPF. To quantify the benefits of this design
decision, we compare LSB with a baseline method wherein both
the transactions and data packets are broadcast in the overlay
network. We use the default configuration and assume that an
overlay node (requester) sends four multisig transactions per
second to a another overlay node (requestee). We consider the
following two performance metrics which are best at capturing
the impact of the separation between the transaction and data
flows: (i) end-to-end delay — similar to above (ii) packet over-
heads — this captures the total number of packets transmitted by
OBMs for delivering the data packets to the requester. Since, the
size of the data and transaction packets are different, we measure
the latter as the cumulative sum of all packet sizes in KBytes.
Since, these two metrics are affected by the number of OBMs in
the network, we vary the number of overlay nodes that act as
OBMs from 5 to 20. The results are presented in Fig. 6. LSB incurs
lower packet overhead and end-to-end delay compared to the
baseline since, in the latter the data packets are broadcast among
all OBMs as compared to the former where the data packets
are routed along optimal paths. Observe that, for the baseline,
both metrics grow linearly as the number of OBMs increases. The
amount of broadcast traffic generated is directly proportional to
the number of OBMs which explains the linear increase in the
packet overhead. Since the data packets are now broadcast, the
delay incurred in receiving the data at the requester also increases
linearly. In contrast, with LBS only the packet overhead increases
with the number of OBMs. Since the data packets are routed
directly to the requester, the end-to-end delay is not affected by
the number of OBMs.

These results demonstrate the efficacy of keeping the data and
transaction flows independent of each other.

025 100
90

02 80

_ 70

zois 60

g 50 &

z

£ o 40

o

£

0.05 20
0o = ' 0

1 10 20 30 40 50 60
BNLSB WWBaseline 148%

Fig. 7. The average processing time on OBMs to validate new blocks.

4.2.3. Evaluation of the distributed trust algorithm

Recall that in the classical blockchain, all transactions within
a new block must be verified by an overlay node. In contrast,
LSB uses a distributed trust algorithm wherein the number of
transactions that must be verified decreases gradually as OBMs
build up trust in each other (see Section 2.4). In this experiment,
we compare the processing time for validating a new block in LSB
with a baseline strategy that is similar to classical blockchains.
We use the default network configuration and the trust table
shown in Fig. 2. The simulation lasts for 180 s and the results,
shown in Fig. 7, are the average of 10 runs. The standard deviation
is also shown, except for the baseline where results are determin-
istic. We measure the time taken by each OBM to validate a new
block and plot the average in Fig. 7 (shown on the left vertical
axis). Note that, we disregard all other tasks (e.g. checking key
lists, generating new blocks, etc.) other than validation of new
blocks in this evaluation as the former are not affected by the
trust algorithm. Fig. 7 plots the processing time as a function of
the number of blocks successfully verified (and thus appended
to the blockchain) as the simulation progresses. The percentage
of transactions that need to be verified (PTV) is shown on the
right vertical axis. As can be inferred from Fig. 7, at start up,
the processing time is the same for both methods since the
OBMs have yet to garner trust in each other. However, as time
progresses and more blocks are generated and verified, the OBMs
build up direct trust in each other. Consequently, only a fraction
of the total transactions in a new block need to be verified in LSB,
which reduces the processing time as compared to the baseline,
wherein all transactions within the block are verified. Moreover,
as the number of blocks verified increases, progressively less
transactions need to be verified (also shown in Fig. 7) as the
trust in other OBMs continues to increase. Once 50 blocks are
generated, the trust among OBMs reaches the highest level (see
Fig. 2). From here on, the number of transactions that need to be
verified remains fixed and so does the processing time. At steady
state (i.e., when the network has been running for a substantial
period of time), LSB achieves over 50% savings in processing time
compared to the baseline.

In LSB, since only a fraction of transactions within a block
is verified, there is a chance that a fake transaction created by
malicious node may not be verified and thus appended to the
blockchain (referred to as appending attack in Section 4.1). In
the following, we evaluate the success percentage of such an
attack. Intuitively, the more OBMs in the network, the lower the
likelihood of a successful attack, since the chance that the fake
transaction will be picked for verification increases. However, the
packet overhead also increases proportionally with the number of
OBMs due to the increase in the broadcast traffic. To study this
trade-off, we consider the default network configuration and vary

192 A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

100 100000
54177

80 18842
70

10000
60

Number of packets

40 1020

30
20 337
1 I
0
3 5

B 1SB packet overhead

1000

Attack Success Percentage
%3
S

100
7 10 13 15 17 20
Number of OBMs

B Bitcoin packet overhead == Attack success percentage

Fig. 8. Evaluating the impact of the number of OBMs on security and packet
overhead.

the number of overlay nodes acting as OBMs from 3 to 20. The
evaluation metrics are the attack success rate and the cumulative
packet overhead. To simulate the attack, we consider the worst-
case scenario, where a highly trusted OBM, which has generated
more than 50 blocks and has thus accrued a high level of trust,
creates a new block containing one fake transaction. We use the
trust table shown in Fig. 2. We run the simulation 10 times and
attack success is the percentage of the number of runs that the
fake block is not detected by any of the honest OBMs (this applies
to all evaluations that consider security attacks in the rest of the
paper). We compare the packet overheads incurred in LSB with
a baseline wherein the overlay network is structured similarly to
Bitcoin. Recall that in Bitcoin all overlay nodes (50 in our case)
manage the blockchain distributedly unlike LSB where blockchain
management is limited to selected overlay nodes, i.e., OBMs. Note
that, the baseline would always accurately detect the attack, since
all transactions in a block are verified. The results are shown in
Fig. 8. Observe that, as the number of OBMs increases, the like-
lihood of a successful attack reduces substantially. As expected,
the packet overhead increases linearly with the number of OBMs.
With 13 OBMs, all attacks are successfully detected. However, the
corresponding packet overhead (8497) is significantly lower than
that incurred in the baseline (54177).

The attack success percentage is directly impacted by the PTV.
To study this impact, we evaluate the attack success percentage
for different PTVs in a network with default configuration with
five overlay nodes acting as OBMs. The reason for choosing five
OBMs is to show the effect of PTV on the attack success. As is
evident from Fig. 8, the presence of a greater number of OBMs
improves the security considerably and these effects are not as
evident. The results are illustrated in Fig. 9. When PTV equals 100,
OBMs verify all transactions in a block, leading to zero attack suc-
cess percentage (i.e., the attack is always detected). As shown in
Fig. 9, as PTV decreases, the attack success percentage increases.
For the network configuration used in this simulation, the lowest
value of PTV that can guarantee security is 60. We have repeated
the same simulation for different number of OBMs to determine
the smallest value of PTV for which an attack can always be
detected. Table 4 shows the results of the simulation and can
be used as a guideline to configure the trust table (e.g. Fig. 2).
A PTV that is lower than the values in Table 4 will make the
network vulnerable to appending attacks. On the other hand, a
larger value increases the processing time for new blocks (as
more transactions need to be verified) and the packet overhead
in the network. A detailed study on determining the trust values
and its impact on blockchain security is provided in [20].

100
90
80
70
60
50
40
30
20
10

0

Attack Success Percentage

100 90 80 70 60 50 40 30 20 10 0
PTV

Fig. 9. Evaluating the impact of PTV on the ability to detect appending attacks.

Table 4
Minimum PTV for detecting appending attacks as a function of the number of
OBM:s.

Number of OBMs 3 5 7 10 13 15 17 20
Minimum PTV 80 60 60 40 20 20 20 10

4.2.4. DTM performance analysis

The DTM mechanism proposed in Section 2.5 aims to dy-
namically adjust the network utilization based on the total load,
i.e., the number of generated transactions. To illustrate the per-
formance of DTM, we simulate a network with the default con-
figuration with 13 overlay nodes acting as OBMs. As classical
blockchains have fixed throughput (e.g., the Bitcoin blockchain
has a fixed throughput of 7 transactions per second) there is
no baseline that we can use for comparison. Initially, a total of
10 cumulative transactions are generated in the overlay network
per second. We simulate situations where the network demand
fluctuates. The number of transactions per second increases to
32 for the entire time period from 5 s to 40 s. At 40 s, the load
increases further to 44 transactions per second until 45 s when
the load drops to 12 transactions per second. The changes in the
network load are illustrated in Fig. 10. Recall that DTM computes
the network utilization, «, at the end of each consensus-period
as the ratio between the number of transactions generated and
the number of transactions added to the overlay blockchain since
the last computation of «. Time intervals when « is computed
by OBMs are shown using gray dots in the figure. The consensus
period is initially set to 10 s, which is the default value. We
assume that a,i; and oy are set to 0.25 and 1, respectively.

At the end of the first consensus-period (i.e. 10 s), o is com-
puted to be 2.4, which is greater than o gy (1). This is because of
the sharp increase in the network load at 5 s. To reduce the net-
work utilization, DTM reduces the consensus-period to the newly
computed value of 2.5 s (see lines 2-5 Algorithm 2) using Eq. (1),
where « is set to 0.62, which is the mid point of oy and oex. The
consensus-period is also illustrated in Fig. 10. Subsequently, since
the network load remains stable until 40 s, the consensus period
also remains unchanged. At this time, the network load increases
further. Thus, at the end of the next consensus-period (43 s), « is
computed to be 0.84. As the computed value is still less than aax,
no further action is required. This highlights the effectiveness of
choosing the mid-point of o, and ame for recomputing «. The
value of « drops to 0.2 at 48 s resulting from the sharp decrease
in the number of transactions at 45 s. Since this value is less
than o, DTM increases the consensus-period (see lines 7-9
Algorithm 2) to a new value, which is computed as 7 s.

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 193

<

50

9 45
;:\ 8 40
15) =
g7 —— &
5 6 30 2
2 2
5 s 25 g
5 3
2 4 20 §
@ =
5 3 15 &
g =
32 10

1 5

0 0

1 6 11 16 21 26 31 36 41 46 51

Simulation Time (seconds)
==Consensus-period ==Transactions Computing o

Fig. 10. Evaluation of DTM in the overlay.

5. Discussion
5.1. OBM reward

In classical blockchains, e.g. Bitcoin or Ethereum, nodes that
generate new blocks are offered a monetary reward in the form
of coins as a form of compensation for expending their resources
to solve the computationally intensive puzzle associated with
block creation. This fee is paid as the transaction fee by the
users. However, there is now a growing consensus that for more
effective blockchain the transaction fee should be removed [55].
LSB employs a lightweight consensus algorithm and thus we do
away with explicit rewards and the transaction fee. Instead, an
OBM on generating a valid block gains reputation with other
OBMs (see Section 2), which could be construed as an implicit
reward.

Another way to incentivize OBMs could be to allow them
to place advertisements in the blocks that they append to the
blockchain. An explicit field within the block header could be
reserved for this purpose. The advertisements are displayed in the
wallet software and allow the entities acting as OBMs to publicize
their product that eventually results in increased revenue. The
tasks performed by OBMs for managing the blockchain including
forming new blocks (see Section 2), managing distributed trust
(see Section 2.4), and throughput management (see Section 2.5)
are not onerous. Thus, the operational cost for running an OBM is
significantly lower than Bitcoin. LSB comprises a large number of
IoT users, devices, and SPs. Thus, by acting as OBM, the companies
can advertise their product to a broad range of IoT users with
small operational cost. The authors in [40] have demonstrated
that the extensive uptake on IoT devices is having a significant
impact on the advertising industry and the business model. Some
entities, e.g., SPs or cloud storages, can apportion part of their
existing infrastructure to serve as OBMs and do not need to install
new equipment. This may be particularly attractive to service and
cloud storage providers.

5.2. Blockchain auditability

In recent years, there have been some instances where data
from IoT devices has been used as evidence in criminal cases [17].
For example, Fitbit data (steps walked) was used to contradict the
claims made by a suspect about the movement of the victim prior
to the crime [32]. These instances highlight the possibility of us-
ing IoT device data and records of interactions with these devices
for auditing purposes. In blockchain, all transactions are stored
permanently. Consequently, the history of transactions generated
by a node can be audited by exploring the corresponding ledger
of transactions of that particular node. Recall from Section 2.2

Table 5

Comparing the complexity of different gossiping algorithms [24].
Algorithm Time Messages
CK [16] O(polylog(n)) O(npolylog(n))
Trivial o(d + 6) 0(n?)
EARS O(ﬁlogzn(d +6)) Onlog3n(d + 8)
TEARS o(d +8) 0(n’ log?n)

that each transaction maintains the ID of its previous transaction
which makes it possible to trace through the entire ledger to
verify prior actions. As an example, in smart home, it is vital
for the home owner to know who has accessed his IoT devices
or their data. By keeping a record of all these interactions, LSB
affords an easy way for such users to perform an audit of their
IoT devices.

5.3. Complexity analysis

In this section, we analyze the complexity in the consensus
and the network overhead. The complexity analysis demonstrates
the rate with which the overheads grow as the network scales.
The delay in consensus algorithm refers to the delay for the
participating nodes to run the consensus algorithm and append
new blocks to the blockchain. This delay is not affected by the
scale of the network, thus, DTC functionality will not be impacted
by the network scale. Recall from Section 2.5 that when the
load in the network increases, the DTM adjusts consensus-period,
which potentially impacts the delay in consensus, or the number
of OBMs to manage the network throughput.

Given that the transactions are broadcast between the OBMs,
the communication overhead complexity is inherited from the
underlying peer-to-peer communication protocol. In [24] the
authors analyzed the complexity of four algorithms which are
shown in Table 5. The Time column in Table 5 represents the
delay in communications and the “Messages” column represents
the packet overhead.

In Table 5 n represents the number of processes, i.e., hops, d
represents the communication delay, § represents relative pro-
cessing speed and f represents crash failure of each hop. Ev-
idently, the time and message complexity are less in CK and
EARS algorithms. Recall that LSB clusters the network to increase
the scalability. This potentially significantly reduces n value in
LSB compared with the studied methods, which in turn reduces
the complexity of LSB. The complexity of the communication
varies based on the underlying algorithm used in the peer-to-peer
network.

6. Related works

In this section, we provide a literature review on IoT security
and anonymity and blockchain-based systems.

IoT security: Authors in [42] proposed an end-to-end host
identity protocol to secure IoT. The proposed method reduces
the header size of the 6LowPAN and Host Identity protocol (HIP)
from 40 bytes to a maximum of 25 bytes by eliminating un-
necessary header fields and thus reduces network overhead. The
authors also proposed a lightweight key distribution method for
distributing keys between low resource IoT devices and users. A
high resource available device is placed in the wireless range of
the low resource devices to perform resource consuming tasks
on behalf of the low resource devices. Although their approach
is computationally lightweight for their considered particular
application, removing the 6LowPAN and HIP header fields leads to
reduced functionality. Moreover, the scalability of this approach

194 A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

is limited due to the fact that the high resource device must be
within wireless range of all IoT devices.

The authors in [33] proposed a new authentication and access
control method to make IoT secure against unauthorized users
and access. The proposed method relies on two authentication
authorities namely: (i) Registration Authority (RA), and (ii) Home
Registration Authority (HRA). The RA is designed to facilitate the
authentication process for devices. All devices are registered with
the RA. Similarly, the HRA facilitates the authentication process
for the users. When a user wishes to access data from a particular
device, the request is first sent to the RA. The RA checks the
authenticity of the user with the HRA. Assuming the user is
authenticated, the RA generates a shared key for communication
between the user and the device. Security analysis shows that
the proposed method is secure against the man-in-the-middle
attack. However, the need for each device to have a RA and
correspondingly each user to have a HRA could be a bottleneck
for scalability. In LSB, we have rather proposed a structure where
a single blockchain is managed distributedly by the overlay nodes
and the devices authenticate other overlay nodes by updating
keylists in OBM. Our approach scales better while also achieving
protection against a broader range of attacks.

Blockchain applications: The notion of a blockchain was first
introduced in the landmark paper [38] on Bitcoin by Satoshi
Nakamoto. Bitcon aims to do away with centralized authorities
for money exchange while offering a high level of security and
privacy to the users. In 2013 a new blockchain platform, called
Ethereum, was introduced [51]. Ethereum users are able to gen-
erate smart contracts with a small fee but with high security and
privacy. Several applications have been proposed in recent years
that make use of the Ethereum blockchain including blockchain
in agriculture [3], crowd funding [5], and micro blogging [2].

Numerous other applications of blockchains have been pro-
posed recently. Authors in [10] proposed a novel application of
blockchain in energy trading. Using their proposed framework,
energy producers can negotiate the selling price with their cus-
tomers and also facilitate a smart contract to make a sale. A
Distribution System Operator (DSO) ensures that the trade is
secure and prevents the possibility for either a producer or cus-
tomer to not follow through with their part of the contract. A lock
key is used to prevent an energy producer from double spending
(i.e. selling the energy to more than one customer). Security
analysis shows that the framework is secure to a broad range
of attacks. However, the architecture suffers from low scalability
as a result of broadcasting all transactions and blocks to the
whole network. In LSB, we overcome this challenge by limiting
the number of nodes that manage the blockchain.

The authors in [27] proposed a blockchain-based multi-tier
architecture to share data from IoT devices with organizations
and people. The proposed architecture has three main compo-
nents namely: data management protocol, data store system,
and message service. The data management protocol provides a
framework for data owner, requester, or data source to commu-
nicate with each other. The messaging system is used to increase
the network scalability based on a publish/subscribe model. Fi-
nally, the data store system uses a blockchain for storing data
privately. As in our work, they do not rely on POW given the
associated overheads. In contrast to this work, we do not use
the blockchain for storing user data as it will consume large
bandwidth to store data in the distributed blockchain. Instead, we
store hash of the data in the cloud in the blockchain.

The authors in [41] proposed a new ledger based cryptocur-
rency called [oTA. By eliminating the notion of blocks and mining,
IoTA ensures that the transactions are free and verification is
fast. The key innovation behind IoTA is the “tangle”, which is
essentially a directed acyclic graph (DAG). Before a user can send

a transaction, he has to verify two randomly chosen transactions
generated by other users. As the number of nodes increases, the
transactions generated also increase but so do the number of
transactions that are verified. LSB shares some similarities with
IoTA such as zero transaction fees and both realize a self-scaling
network. However, LSB employs a blockchain unlike the DAG
employed by IoTA. LSB thus benefits from the inherent benefits
of a blockchain such as the auditability offered by an immutable
ledger.

The authors in [35] proposed a blockchain-based reputation
system to establish trust in vehicular networks. The reputation of
each vehicle is built progressively as the transactions generated
by the vehicle are verified by other participating nodes. The
transactions generated by more reputed nodes are accepted by
the participating nodes. Similar to this work, LSB uses distributed
trust. However, in LSB the trust is used to reduce the processing
overhead for verifying new blocks which potentially significantly
reduces the processing overhead in the blockchain.

In [7] the authors proposed GraphCoin, a scalable solution for
digital financial transactions. GraphCoin uses PoS as the underly-
ing consensus algorithm and therefore has the same limitations
for IoT as PoS (see discussion in the rest of this section). To ensure
the privacy of the users, GraphCoin employs Zerocoin technology
where tracing the identity of the nodes is no longer possible. This
increases the anonymity level for GraphCoin users.

In Catena [48], the authors proposed a method to reduce the
overhead for auditing transactions in blockchain and increasing
throughput. A server creates logs of a number of statements,
i.e., off-the-chain communications between multiple parties. The
logs, which are basically the hash of a number of statements,
are then broadcast in the form of transactions to the Bitcoin
blockchain. To audit blockchain transactions, the participants re-
quire to store the block headers and the Merkle tree of the
block. The existence of a transaction can be proved using the
Merkle tree. Catena increases the blockchain throughput as a
single transaction stored in the blockchain contains the hash of
a number of off-the-chain statements. However, Catena suffers
from the following limitations: (i) as a single hash is stored in
place of multiple statements, the blockchain participants can-
not verify the content of a statement. The blockchain only will
store the log of statements and is basically considered for log-
ging purpose, (ii) mining delay of Bitcoin will still impact the
stored transactions, as Bitcoin blockchain is used as the un-
derlying blockchain solution, (iii) usage of Catena is limited to
applications only where participants require to store a log in the
blockchain and it may not be applicable for transactions with
outputs, i.e.,, UTXO, or applications where participants need to
verify the content of transactions, e.g., smart contracts, (iv) it
relies on a central server to manage the logs.

In our recent work [22], we proposed a memory optimized
and flexible blockchain known as MOF-BC. Blockchain is an ap-
pend only database where removing transactions is not possible.
However, in IoT with millions of users and thus millions of
transactions, one can expect the size of the blockchain to increase
significantly. This makes blockchain management challenging.
MOF-BC enables the IoT users to remove their transactions from
the blockchain while maintain the blockchain consistency. In
MOF-BC, a user may store a single hash in place of multiple trans-
actions to reduce the blockchain memory consumption. How-
ever, similar to Catena, the auditability and applicability of these
transactions are limited.

Blockchain consensus algorithms: Ethereum is a blockchain
instantiation that allows the participants to run distributed ap-
plications. Ethereum uses Proof of Stake (PoS) as the underlying
consensus algorithm [51]. PoS requires miners to lock certain
assets to be able to mine blocks. The mining power of each

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

Table 6
A summary of the discussed consensus algorithms.

Miner Packet
Algorithm Mining Power Anonymity | Overhead
PoS [3] The amount of locked Anonymous | Low
assets
PoA [52] The reputation known Low
POET [53] | Time-based enforced by | Anonymous | Low
hardware
AlgoRand | Leader election based on | Anonymous | High
[54] voting
RepuCoin | The reputation Known High
[55]
FBA [56] Leader election based on | Anonymous | High
quorum intersections
DTC Time-based enforced by | Anonymous | Low

distributed neighbor
monitoring

node depends on the amount of locked assets. The miner with
more locked assets has higher weight in mining blocks. PoS
relies on the fact that the nodes that benefit most from the
blockchain, i.e., have more assets invested in it, are unlikely to
attack the blockchain (i.e., avoid self-harm). In IoT, large com-
panies, e.g., Google, can purchase large portion of assets and
thus eventually PoS may lead to centralization. Unlike PoS, the
proposed DTC does not require miners to pre-purchase any asset
in the blockchain, and thus all network participants can choose
to be miner. DTC allows each OBM to store one block in each
consensus-period.

Proof of Authority (PoA) is a consensus algorithm that can be
considered as a form of PoS, wherein, the mining power of each
miner is defined based on its identity in the network rather than
the amount of locked assets [19]. A pre-approved group of nodes
act as miner and their identity is known to all participants in the
network. The miner with higher reputation have higher chance in
mining new blocks. Unlike PoA, in DTC the miners are not limited
to a pre-approved list of nodes. Any node can be elected to act as
OBM and mine new blocks. Additionally, in DTC the PK of each
OBM is not linked to its real-world identity thus providing a level
of anonymity.

Recently Intel has designed a new consensus algorithm for
blockchain known as Proof of Elapsed Time (POET) which is
integrated with Hyperledger [12]. POET is a leader election algo-
rithm which is intended to run in a Trusted Execution Environ-
ment (TEE) in Intel CPUs. Before a node can store a block in the
blockchain, it must wait for a random time which is selected from
a trusted enclave. A TimeChecker function verifies the choice
of the random time. The block can only be appended to the
blockchain after this time period. DTC (see Section 2.3) used in
LSB is conceptually similar to POET. However, DTC does not rely
on a particular hardware platform and is thus more generalized.

AlgoRand [26] is a consensus algorithm based on Byzantine
agreement where the validators, i.e., miners, can reach agreement
in one round. The validator of the next block is chosen randomly.
The new block is propagated to the network and each validator
votes to one block. Once all validators vote to the block, the
agreement can be achieved. The block that has more votes is
chosen as the next block. Similar to DTC, in AlgoRand there
is no mining reward for validators. However, in IoT with large
number of validators the number of blocks that are broadcast
to the network significantly increases which in turn consumes
significant bandwidth overhead from the participants. DTC does

Proc
Ove

Med

Low

Med

High

Med

Med

Low

195

essing

rhead | Throughput loT Limitation

ium Low May lead to centralization
Requires the miners to pre-purchase

asset

Miners are known to the network
Mining is limited to pre-approved nodes

Medium

ium Medium Requires the miners to be equipped with

a particular hardware

Low Low scalability due to voting

Miners are known to the network
Low scalability due to voting

ium Low

ium Low Low scalability due to quorum formation

and finding intersections

Self-scalable In small networks may be vulnerable to

Sybil attack

not require miners to vote on new blocks and thus incurs little
packet overhead for achieving consensus.

The authors in [53] proposed a reputation-based consensus
algorithm known as RepuCoin. In this algorithm, the reputation
of the validators impacts their mining power, i.e., the more rep-
utable nodes have a greater chance of adding new blocks to the
blockchain. First, the highly reputable nodes create a group. The
identity of the members of this group is known to the partici-
pants to measure reputation. A leader is chosen randomly among
the members who is responsible for mining the next block. To
choose the leader, each member of the group votes for one of the
other members. The vote of each member is weighted using the
reputation of the node. The voting increases the packet overhead
particularly in IoT with large number of validators. The DTC
algorithm does not require any voting between participants thus
reduces the packet overhead as compared to RepuCoin. Unlike
RepuCoin, the identity of the OBMs is not required to be known
to other OBMs which in turns provides a level of anonymity.

In [36] the authors proposed Federated Byzantine Agreement
(FBA). This algorithm is a distributed version of BFT where any
node can choose to be validator. Each validator randomly selects
a group of other validators to form a quorum. If the quorums
have intersections, the nodes reach consensus on the leader who
is tasked with mining the next block. In case that there are no
intersections between the participants, the network might be
disjoint. Each disjoint quorum independently decides on a leader
to mine a new block, thus may potentially lead to inconsistency
between blocks. The process of forming a quorum and checking
for intersections incurs processing and packet overheads at the
participating nodes. However, in DTC the OBMs are not required
to form quorum.

One of the fundamental limitations of the existing consensus
algorithms (as discussed above) is their limited throughput. To
ensure the security of the blockchain, the existing solutions limit
the number of blocks that can be appended to the blockchain
which in turn limits the blockchain throughput. In the proposed
DTG, the rate of block generation can be adjusted, based on DTM,
while maintaining the blockchain security that in turn adjusts
the network throughput. Thus, DTC allows blockchain to scale for
larger networks as in IoT. Table 6 summarizes key properties of
the consensus algorithms outlined in this section and presents a
comparison with DTC.

196 A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197

7. Conclusion

In this paper, we argued that although Blockchain is an ef-
fective technology for providing security and anonymity in IoT,
its application in the IoT context presents several significant
challenges including: complexity, bandwidth and latency over-
heads and scalability. To address these challenges, we proposed
a Lightweight Scalable Blockchain (LSB) for IoT. LSB has an IoT
friendly consensus algorithm that eliminates the need for solving
any puzzle prior to appending a block to the blockchain. LSB
incorporates a distributed trust method whereby the processing
time for validating new blocks by the OBMs gradually decreases
as they build up trust in each other. A distributed throughput
management strategy adjusts certain system parameters to en-
sure that the network utilization is within a prescribed operating
range. Security analysis demonstrates that LSB is highly secure
against a broad range of attacks. In the instance when key nodes
fail, LSB operation exhibits graceful degradation, thus making it
highly fault tolerant. Simulation results show that the proposed
architecture decreases bandwidth and processing time compared
to the classical blockchains. Generally, LSB brings a high level of
security and anonymity for IoT users while enforcing a marginal
overhead.

In our future work, we plan to develop a prototype implemen-
tation of LSB to understand its performance in real-world settings.
We will also explore the suitability of LSB in other application
domains such as smart grids and vehicular networks.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.08.005.

References

[1] Open Shortest Path First(OSPF), R.F.C. 2328. https://www.ietf.org/rfc/

rfc2328.txt. (Online; Accessed 19 November 2016).

Eth-twitter, 2017, www.github.com/yep/eth-tweet. (Online; Accessed July

2017).

[3] Fullprofile, 2017, www.fullprofile.com.au. (Online; Accessed July 2017).

[4] NS3, 2017, https://[www.nsnam.org. (Online; Accessed July 2017).

[5] Wei-fund, 2017, www.weifund.io. (Online; Accessed July 2017).

[6] Blockchain explorer, 2019, https://www.blockchain.com/charts/hash-rate?
timespan=1year.

[7] Graph coin, 2019, https://graphcoin.net/graphcoinwhitepaper.pdf.

[8] Miner gate, 2019, https://minergate.com/.

[9] M. Abramaowicz, Cryptocurrency-based law, Ariz. L. Rev. 58 (2016) 359.

[10] N.Z. Aitzhan, D. Svetinovic, Security and privacy in decentralized energy
trading through multi-signatures, blockchain and anonymous messaging
streams, IEEE Trans. Dependable Secure Comput. (2016).

[11] Amazon, Amazon echo, 2018, https://www.amazon.com/Amazon-Echo-
And-Alexa-Devices/.

[12] A. Baliga, Understanding Blockchain Consensus Models, Tech. Rep.,
Persistent Systems Ltd, 2017.

[13] A. Bogdanov, M. KneZevi¢, G. Leander, D. Toz, K. Varici, 1. Ver-
bauwhede, Spongent: A lightweight hash function, in: B. Preneel, T. Takagi
(Eds.), Cryptographic Hardware and Embedded Systems - CHES 2011:
13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
pp. 312-325, http://dx.doi.org/10.1007/978-3-642-23951-9_21.

[14] C. Cachin, Architecture of the Hyperledger blockchain fabric, in: Workshop
on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[15] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, W. Shi, On security analysis of
proof-of-elapsed-time (poet), in: International Symposium on Stabilization,
Safety, and Security of Distributed Systems, Springer, 2017, pp. 282-297.

[16] B.S. Chlebus, D.R. Kowalski, Time and communication efficient consensus
for crash failures, in: International Symposium on Distributed Computing,
Springer, 2006, pp. 314-328.

[17] CNN, Suspect OKs Amazon to hand over Echo recordings in murder
case, 2018, https://edition.cnn.com/2017/03/07/tech/amazon-echo-alexa-
bentonville-arkansas- murder-case/index.html.

2

(18]

[19]

[20]
(21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]
(39]

[40]

[41]
[42]

[43]
[44]

[45]

D. Cooper, Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile, 2008.

S. De Angelis, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, V. Sassone,
PBFT vs proof-of-authority: applying the CAP theorem to permissioned
blockchain, 2018.

V. Dedeoglu, R. Jurdak, G.D. Putra, A. Dorri, S.S. Kanhere, A trust
architecture for blockchain in IoT, 2019, arXiv:1906.11461.

H. Delfs, H. Knebl, H. Knebl, Introduction to cryptography, Vol. 2, Springer,
2002.

A. Dorri, S.S. Kanhere, R. Jurdak, MOF-BC: A memory optimized and flexible
blockchain for large scale networks, Future Gener. Comput. Syst. 92 (2019)
357-373.

A. Dorri, C. Roulin, R. Jurdak, S. Kanhere, On the activity privacy of
blockchain for IoT, 2018, The 44th IEEE Conference on Local Computer
Networks (in press).

C. Georgiou, S. Gilbert, R. Guerraoui, D.R. Kowalski, On the complexity
of asynchronous gossip, in: Proceedings of the Twenty-Seventh ACM
Symposium on Principles of Distributed Computing, ACM, 2008, pp.
135-144.

A. Gervais, G.0. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, S. Capkun, On
the security and performance of proof of work blockchains, in: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2016, pp. 3-16.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling
byzantine agreements for cryptocurrencies, in: Proceedings of the 26th
Symposium on Operating Systems Principles, ACM, 2017, pp. 51-68.

S.H. Hashemi, F. Faghri, P. Rausch, R.H. Campbell, World of empowered IoT
users, in: 2016 IEEE First International Conference on Internet-of-Things
Design and Implementation (IoTDI), IEEE, 2016, pp. 13-24.

S. Huh, S. Cho, S. Kim, Managing IoT devices using blockchain platform,
in: Advanced Communication Technology (ICACT), 2017 19th International
Conference on, IEEE, 2017, pp. 464-467.

SJ. Koh, M.J. Chang, M. Lee, MSCTP for soft handover in transport layer,
IEEE Commun. Lett. 8 (3) (2004) 189-191.

A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts, in: Security
and Privacy (SP), 2016 IEEE Symposium on, IEEE, 2016, pp. 839-858.

A. Kousaridas, S. Falangitis, P. Magdalinos, N. Alonistioti, M. Dillinger, SYS-
TAS: Density-based algorithm for clusters discovery in wireless networks,
in: Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE
26th Annual International Symposium on, IEEE, 2015, pp. 2126-2131.
Lifewire, 10T device witness, 2018, https://www.lifewire.com/when-tech-
is-witness-to-murder-4149689.

J. Liy, Y. Xiao, C.L.P. Chen, Authentication and access control in the internet
of things, in: 32nd International Conference on Distributed Computing
Systems Workshops, 2012, pp. 588-592 http://dx.doi.org/10.1109/ICDCSW.
2012.23.

K. Lu, Y. Qian, M. Guizani, H.-H. Chen, A framework for a distributed
key management scheme in heterogeneous wireless sensor networks, IEEE
Trans. Wireless Commun. 7 (2) (2008).

Z. Lu, Q. Wang, G. Qu, Z. Liu, Bars: a blockchain-based anonymous
reputation system for trust management in vanets, in: 2018 17th IEEE
International Conference on Trust, Security and Privacy in Computing and
Communications/12th IEEE International Conference on Big Data Science
and Engineering (TrustCom/BigDataSE), IEEE, 2018, pp. 98-103.

D. Mazieres, The Stellar Consensus Protocol: A Federated Model for
Internet-Level Consensus, Stellar Development Foundation, Citeseer, 2015.
K. Mikhaylov,]. Petaejaejaervi, T. Haenninen, Analysis of capacity and
scalability of the LoRa low power wide area network technology, in:
European Wireless 2016; 22th European Wireless Conference; Proceedings
of, VDE, 2016, pp. 1-6.

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.

D. Ongaro, J.K. Ousterhout, In search of an understandable consensus
algorithm, in: USENIX Annual Technical Conference, 2014, pp. 305-319.
0. Petrovic, 3.3 the internet of things as disruptive innovation for the
advertising ecosystem, 2017.

S. Popov, The tangle, 2016, p. 131, cit. on.

S. Sahraoui, A. Bilami, Compressed and distributed host identity protocol
for end-to-end security in the IoT, in: 2014 International Conference on
Next Generation Networks and Services, NGNS, 2014, pp. 295-301. http:
//dx.doi.org/10.1109/NGNS.2014.6990267.

F.-S. sense, www.sense.f-secure.com. (Online; Accessed November 2016).
P.K. Sharma, S. Singh, Y.-S. Jeong, JH. Park, DistBlockNet: A dis-
tributed blockchains-based secure SDN architecture for IoT networks, IEEE
Commun. Mag. 55 (9) (2017) 78-85.

A. Sivanathan, D. Sherratt, H.H. Gharakheili, V. Sivaraman, A. Vishwanath,
Low-cost flow-based security solutions for smart-home IoT devices, in:
Advanced Networks and Telecommunications Systems (ANTS), 2016 IEEE
International Conference on, IEEE, 2016, pp. 1-6.

https://doi.org/10.1016/j.jpdc.2019.08.005
https://www.ietf.org/rfc/rfc2328.txt
https://www.ietf.org/rfc/rfc2328.txt
https://www.ietf.org/rfc/rfc2328.txt
http://www.github.com/yep/eth-tweet
http://www.fullprofile.com.au
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb4
http://www.weifund.io
https://www.blockchain.com/charts/hash-rate?timespan=1year
https://www.blockchain.com/charts/hash-rate?timespan=1year
https://www.blockchain.com/charts/hash-rate?timespan=1year
https://graphcoin.net/graphcoinwhitepaper.pdf
https://minergate.com/
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb9
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb10
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb12
http://dx.doi.org/10.1007/978-3-642-23951-9_21
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb16
https://edition.cnn.com/2017/03/07/tech/amazon-echo-alexa-bentonville-arkansas-murder-case/index.html
https://edition.cnn.com/2017/03/07/tech/amazon-echo-alexa-bentonville-arkansas-murder-case/index.html
https://edition.cnn.com/2017/03/07/tech/amazon-echo-alexa-bentonville-arkansas-murder-case/index.html
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb18
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb18
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb18
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb19
http://arxiv.org/abs/1906.11461
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb25
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb26
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb26
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb26
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb26
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb26
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb27
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb27
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb27
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb27
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb27
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb28
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb28
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb28
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb28
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb28
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb29
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb29
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb29
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb30
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb30
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb30
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb30
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb30
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb31
https://www.lifewire.com/when-tech-is-witness-to-murder-4149689
https://www.lifewire.com/when-tech-is-witness-to-murder-4149689
https://www.lifewire.com/when-tech-is-witness-to-murder-4149689
http://dx.doi.org/10.1109/ICDCSW.2012.23
http://dx.doi.org/10.1109/ICDCSW.2012.23
http://dx.doi.org/10.1109/ICDCSW.2012.23
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb34
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb34
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb34
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb34
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb34
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb35
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb36
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb36
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb36
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb37
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb38
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb40
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb40
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb40
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb41
http://dx.doi.org/10.1109/NGNS.2014.6990267
http://dx.doi.org/10.1109/NGNS.2014.6990267
http://dx.doi.org/10.1109/NGNS.2014.6990267
http://www.sense.f-secure.com
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb44
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb44
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb44
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb44
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb44
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb45

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

A. Dorri, S.S. Kanhere, R. Jurdak et al. / Journal of Parallel and Distributed Computing 134 (2019) 180-197 197

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord:
A scalable peer-to-peer lookup service for internet applications, ACM
SIGCOMM Comput.Commun. Rev. 31 (4) (2001) 149-160.

T.S. Telecommunications, I. converged Services, P. for Advanced Network-
ing (TISPAN), https://www.etsi.org/.

A. Tomescu, S. Devadas, Catena: Efficient non-equivocation via Bitcoin,
in: 2017 38th IEEE Symposium on Security and Privacy (SP), IEEE, 2017,
pp. 393-409.

F. Tschorsch, B. Scheuermann, Bitcoin and beyond: A technical survey on
decentralized digital currencies, IEEE Commun. Surv. Tutor. 18 (3) (2015)
2084-2123.

M. Vukoli¢, The quest for scalable blockchain fabric: Proof-of-work vs.
Bft replication, in: International Workshop on Open Problems in Network
Security, Springer, 2015, pp. 112-125.

G. Wood, Ethereum: A secure decentralised generalised transaction ledger,
Ethereum project yellow paper, 151, 2014.

L. Xu, S. Chainan, H. Takizawa, H. Kobayashi, Resisting sybil attack by social
network and network clustering, in: Applications and the Internet (SAINT),
2010 10th IEEE/IPS] International Symposium on, IEEE, 2010, pp. 15-21.
J. Yu, D. Kozhaya,]. Decouchant, P. Esteves-Verissimo, RepuCoin: Your
reputation is your power.

X. Yue, H. Wang, D. Jin, M. Li, W. Jiang, Healthcare data gateways: Found
healthcare intelligence on blockchain with novel privacy risk control, J.
Med. Syst. 40 (10) (2016) 218.

ZDNet, Zdnet, 2017, http://www.zdnet.com/article/a-better-blockchain-
bitcoin-for-nothing-and-transactions-for-free/.

Z.-K. Zhang, M.CYY. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, S. Shieh,
IoT security: ongoing challenges and research opportunities, in: Service-
Oriented Computing and Applications (SOCA), 2014 IEEE 7th International
Conference on, IEEE, 2014, pp. 230-234.

Ali Dorri is a Research Fellow at Queensland Uni-
versity of Technology (QUT), Brisbane, Australia. He
received his Ph.D. degree from the University of New

= South Wales (UNSW), Sydney, Australia. He was also
a Postgraduate research student at CSIRO, Australia.
%,;, His research interest includes blockchain applications

9

and challenges in adopting blockchian in large scale
networks including the Internet of Things, smart cities,
smart grid, and e-health. He has published over 20
peer-reviewed papers.

Salil S. Kanhere received his M.S. and Ph.D. degrees,
both in Electrical Engineering from Drexel Univer-
sity, Philadelphia, USA. He is currently a Professor in
the School of Computer Science and Engineering at
the University of New South Wales in Sydney, Aus-
tralia. His research interests include Internet of Things,
blockchain, applied machine learning and cybersecu-
rity. He has published over 200 peer-reviewed articles
and delivered over 35 tutorials and keynote talks on
these research topics. He is a contributing research staff
at Data61, CSIRO and the Cybersecurity Cooperative

Research Centre. He has held visiting positions at TU Darmstadt, TU Graz,
University of Zurich and the Institute for Infocomm Research, Singapore. Salil
regularly serves on the organizing committee of a number of IEEE and ACM
international conferences including IEEE PerCom, ACM MobiSys, ACM SenSys,
ACM CoNext, [IEEE WoWMoM, IEEE ICBC and IEEE LCN. He currently serves as the
Editor in Chief of Ad Hoc Networks and on the Editorial Board of Pervasive and
Mobile Computing, and Computer Communications. Salil is a Senior Member of
both the IEEE and the ACM and an ACM Distinguished Speaker. He is a recipient
of the Humboldt Research Fellowship.

Raja Jurdak received the MSc in electrical and com-
puter engineering, and the PhD degree in information
and computer science, both from the University of
California, Irvine. He is a Professor of Distributed Sys-
tems and Chair in Applied Data Sciences at Queensland
University of Technology. He previously established
and led the Distributed Sensing Systems Group at
CSIRO’s Data61, where he maintains a visiting scientist
role. His research interests include trust, mobility and
energy-efficiency in networks. Prof. Jurdak has pub-
lished over 150 peer-reviewed publications, including
a sole-authored book titled: "Wireless ad hoc and sensor networks : a cross-
layer design perspective”. He serves on the editorial board of 4 international
journals, including Ad Hoc Networks, and on the organising and technical pro-
gram committees of top international conferences, including Percom, ICBC, and
IPSN. He is an honorary professor with the University of Queensland, conjoint
professor with the University of New South Wales, and a senior member of the
IEEE.

Praveen Gauravaram is a Senior Scientist and Inno-
vation Evangelist at Tata Consultancy Services Limited
(TCSL), Australia and an Adjunct Senior Lecturer in the
School of Computer Science and Engineering at UNSW,
Australia. Praveen’s focus is on embedding innovation &
creativity into TCS’s customer deliverables and offerings
in Australia & New Zealand (ANZ) geography. While
his primary focus is on cyber security, Praveen leads
TCS’s Research & Innovation activities in other re-
search areas and programs that add immense value to
TCS’s business. Praveen has a PhD in Cryptology from
Queensland University of Technology, Brisbane, Australia. Praveen has held
scientific positions in India, Europe and Australia and is a recipient of research
grants and awards whist his postdoctoral fellowship at Technical University
of Denmark. Praveen’s significant scientific achievements include co-design of
Grostl cryptographic hash function, a finalist in the SHA3 cryptographic hash
competition conducted by US National Institute of Standards and Technology and
security evaluation of standard cryptographic designs. To date, Praveen has
published more than fifty research papers in several top conferences, journals
and research consortiums and has co-authored articles with at least fifty
researchers from several geographies including Asia, Asia-Pacific, Europe, and
North America.

http://refhub.elsevier.com/S0743-7315(18)30768-8/sb46
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb46
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb46
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb46
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb46
https://www.etsi.org/
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb48
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb48
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb48
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb48
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb48
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb49
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb49
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb49
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb49
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb49
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb50
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb50
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb50
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb50
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb50
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb51
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb51
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb51
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb52
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb52
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb52
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb52
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb52
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb54
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb54
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb54
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb54
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb54
http://www.zdnet.com/article/a-better-blockchain-bitcoin-for-nothing-and-transactions-for-free/
http://www.zdnet.com/article/a-better-blockchain-bitcoin-for-nothing-and-transactions-for-free/
http://www.zdnet.com/article/a-better-blockchain-bitcoin-for-nothing-and-transactions-for-free/
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56
http://refhub.elsevier.com/S0743-7315(18)30768-8/sb56

	LSB: A Lightweight Scalable Blockchain for IoT security and anonymity
	Introduction
	Lightweight Scalable Blockchain (LSB)
	Overview
	Transactions and blocks
	Distributed Time-based Consensus (DTC) algorithm
	Verification
	Distributed Throughput Management (DTM)
	Summary
	LSB compatibility

	Case study
	Scenario 1: High resource devices
	Scenario 2: Low resource devices

	Evaluation and discussion
	Security and privacy analysis
	Performance evaluation
	POW processing time
	Requesting an IoT device
	Evaluation of the distributed trust algorithm
	DTM performance analysis

	Discussion
	OBM reward
	Blockchain auditability
	Complexity analysis

	Related works
	Conclusion
	Declaration of competing interest
	References

