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Enhanced Load Profiling for Residential
Network Customers

Bruce Stephen, Member, IEEE, Antti J. Mutanen, Stuart Galloway, Graeme Burt, Member, IEEE, and
Pertti Järventausta, Member, IEEE

Abstract—- Anticipating load characteristics on low voltage
circuits is an area of increased concern for Distribution Network
Operators with uncertainty stemming primarily from the validity
of domestic load profiles. Identifying customer behavior makeup
on a LV feeder ascertains the thermal and voltage constraints
imposed on the network infrastructure; modeling this highly
dynamic behavior requires a means of accommodating noise
incurred through variations in lifestyle and meteorological condi-
tions. Increased penetration of distributed generation may further
worsen this situation with the risk of reversed power flows on a
network with no transformer automation. Smart Meter roll-out
is opening up the previously obscured view of domestic electricity
use by providing high resolution advance data; while in most
cases this is provided historically, rather than real-time, it permits
a level of detail that could not have previously been achieved.
Generating a data driven profile of domestic energy use would
add to the accuracy of the monitoring and configuration activities
undertaken by DNOs at LV level and higher which would afford
greater realism than static load profiles that are in existing use.
In this paper, a linear Gaussian load profile is developed that
allows stratification to a finer level of detail while preserving a
deterministic representation.

Index Terms—Automatic meter reading (AMR), domestic load
profiling, energy demand, low-voltage (LV) networks.

I. INTRODUCTION

T HE low-voltage (LV) network and the consumers on it
has been a relative unknown quantity in power system de-

sign and operation with highly generalized profiles of domestic
households being used to make decisions in all but a few excep-
tional cases [1]. The advent of smart metering has the poten-
tial to change much of that but with the increased volumes of
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household energy use data comes questions on how best to em-
ploy it and prior to that how to understand it in the first place. It
has been postulated in smaller scale studies that domestic cus-
tomers can be profiled according to energy usage time and mag-
nitude. How these profiles aggregate together on a low voltage
feeder is of interest to distribution network operators (DNOs)
who traditionally would assume load was merely a multiple of
a single homogenous domestic profile – Fig. 1 shows how this
is not necessarily the case. Even on similar dwellings the cus-
tomer behavior can be very diverse.
As some of the key technologies of smart grids are realized,

the concerns regarding legacy infrastructure become more
apparent. Increasing penetrations of micro-generation are chal-
lenging the usefulness of this assumption as excess domestic
generation tips residential feeders into reverse power flows.
While generation such as photovoltaic can be predicted to
some degree of accuracy, there needs to be further work on
modeling the loads that absorb them. Behavioral factors are
identified in [2] that influence the load profile breaking energy
demand into 2 root causes: behavioral determinants—habit
driven, relatively flexible; and physical determinants—driven
by environmental factors and building design. Behavioral
drivers are the one which invoke most variability, [3] noted in
an overview of advanced tariffs (e.g., real time pricing) that
not all customers could be suited to these; demographics such
as young families—no flexibility, constant temperature and the
elderly who also require constant temperature. Then there are
those who maintain a constant load already with the only losses
stemming from dwelling disrepair/insulation shortcomings (cf.
the “physical determinants” of [2]).
With consumer technology acquisition at its highest ever

level, and expected to continue to grow, such profiles can
only become invalid quicker thus reinforcing the case for data
driven methodologies to be used. In this paper, an alternative
representation of domestic load is considered, that of a compo-
sition of usage levels strata generated dynamically from Smart
Meter data. Embedding this representation in a probabilistic
model allows a quantifiable comparison to be made between
profiles generated by different dwellings and how these can
change. This paper will present a framework for analyzing
the consumption habits of domestic energy customers which
will be illustrated through the application to actual half hourly
metered properties.

II. RESIDENTIAL LOADS

The absence of low voltagemeteringmeans that until recently
very little knowledge exists on the low voltage customer’s true
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load profile. This section reviews some of the current practices
and looks at how larger loads are dealt with on the medium-
voltage (MV) network.

A. Current Profiling Practice

The current practices tend to involve metering relatively
small samples of households and then averaging over these.
The following outlines examples from the U.K. and Finland.
1) United Kingdom: For the U.K., it was decided in the mid-

1990’s that to facilitate market operation, 8 load profiles would
be used to represent the types of customers on the network.
Of these profiles, Profile Class 1 [4] is the only one that rep-
resents the residential customer unconstrained by usage times.
The form of the profile is 48 half hourly usage levels that corre-
spond to the market settlement periods for every settlement day
in a year. These are developed from recruited sample house-
holds with hi-resolution meters; homes in the samples for the
14 UK grid supply points are selected from rule-based stratifica-
tions (high medium low) of annual consumption obtained from
retail billing. Averages of the half hourly data are weighted by
the proportions of the population at a given grid supply point
in a given strata, yielding a load profile that takes the form of a
48 365 matrix.
2) Finland: Finnish electric utilities started to co-operate

in load research in the 1980s and in 1992 Finnish Electricity
Association (FEA) published customer class load profiles for
46 different customer classes, 18 of which are for housing and
the rest for agriculture, industry and services. The housing
profiles are further divided by dwelling-type, heating solution
and major appliances. Each load profile contains expectation
and standard deviation values for every hour of the year [5].
Although old, the FEA load profiles are still the only publicly
available load profiles. The most prominent shortcoming of
these profiles is their age; during the past 20 years electricity
consumption has experienced significant changes, the amount
of heat pumps and air-conditioners has multiplied, the use
of entertainment electronics has increased and electricity
consumption in recreational dwellings has changed [6]. Fur-
thermore, in the future, the changes will be even bigger if
plug-in hybrids, customer-specific distributed generation and
demand response activities become popular. The load profiles
also suffer from small sample sizes, short measurement periods
and errors caused by geographical generalization. The load
profiles are created to model the average Finnish electricity
consumption. They do not take into account the regional differ-
ences in electricity consumption, which originate from different
climate conditions and socioeconomic factors. Consequently,
the strategies used are error prone: the type of the customer is
usually determined through a questionnaire when the electricity
connection is contracted and then rarely updated. In reality, the
customer type may change, for instance, because of a change
in the heating solution, an addition of new devices, such as
air conditioning or the change of customer activity (e.g., from
agriculture to pure housing).

B. Related Load Profiling on MV Network

In [7], Probabilistic neural networks (PNNs) were used to as-
sign consumers to load profiles—these are closely related to a

Parzen Window and essentially smooth input data into a prob-
ability density function (PDF) of observations. 10 load profiles
resulted but different cluster validity measures resulted in con-
flicting optimal number of clusters. An assortment of clustering
techniques are used in [8] on 234 non-residential customers
metered on the MV network at 15-min intervals with the ob-
jective of grouping them into a small number of classes for
tariff formulation. Reference [8] noted that theoretically robust
means of choosing the number of clusters would be required as
conflicts between cluster validity criteria could arise [7]. Tech-
niques used include hierarchical clustering (with Euclidean dis-
tance), self-organizingmaps, K-Means and FuzzyK-Means. Di-
mensionality reduction of the 96-dimensional space into a more
manageable subspace was also performed allowing the “infor-
mative” hours/periods to be identified. Iterative Self Organizing
Data Analysis Technique (ISODATA) was used in [9] to cluster
industrial customers into load profile classes; outliers in training
data were defined as customers with high intraday variation and
customers with high monthly variation were discarded.
Although load profiling on the MV network has received at-

tention, the criteria associated with it are not the same; it was
noted in [9] that large customers tend to have a small standard
deviation in their load and hence produce a more accurate load
profile lessening the need to encode variability in the profile rep-
resentation thus emphasizing the need to encode variability in
the smaller residential customer profiles as outlined in [10].

III. AMI/AMR STATUS

A number of countries are committed to upgrading their
housing stock to AMR systems or smart meters. In the U.K.
and Finland, large electricity customers are already metered
on half hour or hourly basis but the state of domestic smart
metering is different [11].
In Finland, full smart meter roll-out is currently underway

and a significant number of meters have already been installed
[11]. Legislation requires electricity distribution network oper-
ators to equip at least 80% of their customers with hourly me-
tering by the end of the year 2013. Daily meter reading, support
to demand response, and outage registration are also required
[12]. One novel feature in Finnish AMR installations has been
to integrate AMR system with control center applications of
SCADA and distribution-management system (DMS) in order
to use AMR meters in real-time low-voltage network manage-
ment and fault indication [13].
For the U.K., AMR will provide advance data at a 30-min

resolution, most likely communicated at the end of a 24-h pe-
riod. Full scale roll-out is scheduled to begin in 2014 and finish
in 2019 although some crucial parts of the program, such as de-
tails concerning national data and telecommunication services,
are yet to be decided [14].

IV. RESIDENTIAL PROFILING REQUIREMENTS

Reference [15] identifies that “individual consumer behavior
and their everyday practices accounts for a substantial propor-
tion of household energy consumption.” In identical houses,
it was noted that this can vary by up to 300–400% as a result.
The drivers for variability are multi-factorial: [16] identifies
that different socio-economic types will contribute different
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amounts to energy demand using the local-area resource-access
model (LARA)—high levels of socioeconomic and geograph-
ical disaggregation were noted in the U.K. Although the credit
rating agency groups were noted, [16] uses U.K. output area
classification (OAC) to segment U.K. households into seven
groups with different socio-demographic characteristics with
largely self explanatory labels (e.g., “Blue Collar communi-
ties,” “City Living,” “Countryside,” “Prospering suburbs”). A
“Culture based approach to behavior” is explored in [17] by
identifying energy usage behaviors as a means of finding op-
portunities to invoke changes in behavior. In [17], the “Energy
Cultures” framework was proposed to explain different causal
facets of energy use which can be summarized as: Material
Culture which is characterized by: insulation, heating devices
and influenced by: Regulation, income, available technology;
Cognitive norms which are characterized by: social aspiration,
tradition, environmental concern and influenced by: Education,
upbringing, demographics; Energy Practices which are char-
acterized by: Number of rooms, Maintenance of technology
and influenced by: Social Marketing, Energy Price Structure.
As discussed, load profiles for the residential customer have
been largely homogenous arrangements that were calendar
based rather than behavior driven. With AMI/AMR/Smart
Metering measurements providing extensive and detailed load
and resulting variability, a representation is needed to capitalize
on this and provide utility stakeholders with the information
they require to increase reliability and efficiency. Regarding
actual behavior, it is highly unlikely that all residential cus-
tomers behave the same, so the representation must be able to
accommodate a finite number of heterogeneous behaviors and
do so in a compact manner thus enabling the representation
to be utilized without unfeasibly large computing resources.
For each heterogeneous behavior encountered, the traditional
quantity of interest is the expected value of load; time of use
is the other traditional concern so what is really required is a
coupling of time of use with load magnitude. AMI in the U.K.
and Finland provides data with half-hour or 1-h resolution
allowing this quantity to be represented as a discrete vector
rather than a functional approximation. Where curve fitting
or regressive approaches may not suffice is in the provision
for capturing load variability—the confidence with which a
given load’s expected value is expressed is also necessary.
For forecasting purposes, which may arise in highly localized
power systems, the relation between time of day loads can
inform a short term forecast (weather related behavior change).
Detection of anomalous behavior is another requirement that
would provide indication of fault condition or, over longer
terms, new classes of customer emerging (e.g., greatly reduced
loads through adoption of storage or uptake of more efficient
appliances). Additionally, the capture of changes in behavior
should be allowed through the representation.

V. LOAD MODEL DESIGN

A. Load Probability Distributions

In load research, electric loads are often assumed to have
a Gaussian distribution even though this is not the case. Pre-
vious studies [18]–[20] have tried to find the best probability

distribution to model electric load behavior. In these studies,
beta, gamma, and log-normal distributions have been found to
model electrical loads better than Gaussian distribution. Fig. 2
shows that, when scored with Bayesian Information Criterion
(BIC) [21], the log-normal distribution best describes U.K. res-
idential loads out of several candidate probability distributions
and is significantly better than the normal distribution. Also, by
log-normalizing the data, it can be transformed to behave like
a Gaussian distribution, which, in turn, enables the use of algo-
rithms designed for the more tractable Gaussian distribution.

B. Expressing Uncertainty Through Probabilistic Models

The general form of models proposed in this paper is one of a
non-stationary multivariate Gaussian distribution over 48 half
hourly advance periods. In [20], it was noted that variability
of even a single customer is such that an individual load pat-
tern cannot be obtained—thus the importance of modeling the
distribution rather than (just) the expected value. This section
discusses several model families that may be used to express
multimodality and dependence and in such a way that the rep-
resentation maintains its compactness.
1) Mixture Models: A finite mixture model permits an ar-

bitrary probability distribution to be approximated by a linear
combination of weighted likelihoods drawn from a set of simple
parametric distributions:

(1)

If this were a Gaussian mixture model, then the components
would be Gaussian parameterized as follows:

(2)

where is the observation variable, is the parameter vector
for the distribution, is the vector of mixing weights, and
is the number of distributions used to approximate the implied
observation distribution.
2) Factor Analysis: As daily meter advances are represented

as a 48 dimensional vector here, it is difficult to assess which
times of use influence each other and how. Multivariate data
can sometimes contain correlation between variables that are so
strong, these can be amalgamated allowing only the most infor-
mative or uncorrelated variables to be represented in a space of
reduced dimensionality. Two examples of models which can re-
duce the dimension of an observation space and thus discard un-
informative variables and reveal dependency structure are prin-
cipal component analysis (PCA) [22] and Factor Analysis [23].
PCA is based around the eigenvectors that correspond to the
eigenvalues of the covariance matrix of a multivariate observa-
tion. Factor Analysis assumes a linear mapping between such an
observation space and its lower dimensional representation :

(3)

where is the factor loading matrix that transforms observation
into a lower dimensional representation, and is the mean
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Fig. 1. The 30-min resolution residential loads over a single week from similar dwellings.

Fig. 2. Histogram and fitted distributions for the half–hour period 15:00–15:30
in January (weekdays only).

of the observation variable. is a diagonal covariancematrix at-
tached to the zero mean distribution from which Gaussian noise
is drawn

(4)

Factor Analysis does not impose the constraint of a common
variance for all features and furthermore has a probabilistic
model associated with it in the form of a multivariate Gaussian

(5)

Owing to the linear Gaussian semantics of the model, the obser-
vation space is also assumed to be Gaussian

(6)

where is of particular use as interpretation of its rows/columns
reveals the relations between variables in the observation space.
3) Mixtures of Factor Analyzers: For the situation where

sub-populations exist in the observed data and multivariate de-
pendency is non-homogeneous, the factor analysis model may
be embedded in a mixture model [24]

(7)

Extending the mixture model to factor analysis, allows multiple
sub-populations in a sub-space to be captured. The mixture of
factor analysers (MFA) model is particularly appealing to the
load profiling application as it encodes not only the broad cus-
tomer behaviors in the form of the model means but also ex-
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presses the variability over a day in a compact parameter set
which also relates the advance times in terms of their variability.

C. Parameter Estimation and Model Order Selection

Beginning with a set of smart meter data there are two stages
to go through before a model can be obtained: model selection
and parameter estimation. Model selection decides on the cardi-
nality of the model, the number of mixture components and the
number of factors in the case of the Gaussian Mixture and MFA
models previously discussed. Optimization techniques that es-
timate the parameters of statistical models from exemplar data
are often based around maximum-likelihood estimation (MLE).
Model order selection techniques often require parameters for a
set of models to be learned then the optimal one chosen using
some likelihood-based measure such as BIC or akaike informa-
tion criterion (AIC)

(8)

These select the most likely number of parameters M while pe-
nalizing overly complex models of a data population of size N.
Model complexity can harm the generalization capabilities of a
model by encoding too many specific eventualities in it.
While more complex parameter estimation techniques exist

such as Monte Carlo-based methods and variational inference,
for illustrative purposes, the simpler maximum likelihood esti-
mate-based formulation of the Expectation Maximization algo-
rithm [25] can be used on both the mixture models and the factor
analyzers.

VI. LEARNED RESIDENTIAL LOAD PROFILES

To illustrate the models proposed in this paper, load models
are learned for a group of 32 residential customers. Since load
behavior is seasonal, separate load models are formed for each
month. In the following examples, only January’s load models
are shown.

A. Gaussian Mixture Load Model

Using the January meter data for 32 residential properties,
50 Gaussian Mixture Models (GMM) were learned using max-
imum-likelihood EM; from these 50, the optimal number of
mixtures was selected using BIC, the results of which are shown
in Fig. 3. Fig. 3 demonstrates a pronouncedminimum at 16 com-
ponents but also reveals some important features of the data;
the asymptotic behavior of the left-most extreme indicates that
a single Gaussian distribution provides the poorest fit to the
data which reinforces the need to provide for multimodal be-
havior. Furthermore, a large number of behaviours does not
adequately represent the behavior of residential customers ei-
ther—domestic loads would appear to have, as far as a Gaussian
representation is concerned, a relatively small number of plau-
sible forms, although as stated in the outset, not a single one.
One advantage of the mixture model over say a neural net-

work–based clustering approach such as a self organizing map
is that an element of determinism can be obtained through in-
spection of the parameters. Fig. 4 shows the component means

Fig. 3. Selection of the optimal number of customer profiles a GMM load
model should represent.

Fig. 4. Sixteen profile means found by the Gaussian mixture.

for the optimal parameterized GMM load model. This demon-
strates the recurring load profile forms found in the 32 residen-
tial properties over the January period. One limitation of the
Gaussian Mixture Model load profile is that owing to the high
dimensionality of the data, it has difficulty expressing the de-
pendence between advance times present in residential loads.

B. Mixture of Factor Analyzers Load Model

For an MFA mixture, an additional consideration is added to
the model selection process in that one can trade off between
mixtures (which accommodate various expected load profiles)
and subspace dimensions (which capture the drivers of the cor-
relation and variance structure).TheMFAmodels offer even fur-
ther insight into the nature of the load profiles discovered. Full
covariance structure can be obtained for all mixture components
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Fig. 5. Example covariance matrix from one component of a GMM. Note the
very strong correlations for the advances in the early hours of the morning.

regardless of the dimensionality of the data or the sparseness of
the subpopulation that forms a mixture component. A covari-
ance matrix can be reconstituted from the factor loading ma-
trix as shown in (5), an example of such a covariance matrix
is shown in Fig. 5 as a heatmap representation: this shows how
meter advances across the 48 daily intervals influence each other
for a given load profile. Dark red areas are strong positive cor-
relations i.e., when a given (row) advance increases, the corre-
sponding (column) advance increases. Blue areas show negative
correlation—increases in (row) advance size result in decreases
in corresponding (column) advance. The 48-D representation
can pose difficulties in articulating in the relationships between
advances due to the high dimensionality of the data [26]. The ad-
ditional advantage of the MFA model is that the factor loading
matrix yields a representation of dependence between dimen-
sions as a vector plot in the low dimension subspace. Fig. 6
shows one example of this from a single component. The vectors
that correspond to each advance can be interpreted as follows
[27]: The arrows are the eigenvectors of a covariance matrix
with relative directions representing their implied linear depen-
dence: alignment is high correlation while opposition is high
negative correlation. Right angles imply linear independence.
It should be noted here that correlation i.e., linear dependence
is being modeled, this does not necessarily indicate the pres-
ence or absence of non-linear dependence—the MFAmodel ap-
proximates non-linear dependencies with piecewise linearity. In
the example in Fig. 6, advances at time periods 45–47 (10 P.M.
to 11:30 P.M.) show a strong correlation reflecting late evening
habits with little temporal variation and duration in the order of
hours. Similar dependence structures are exhibited during the
early hours of the morning as Fig. 5 demonstrates.

VII. RESULTS AND PRACTICAL CONSIDERATIONS

This chapter shows how the above presented load models
could be used in practice and compares their performance to
existing load models.

Fig. 6. Demonstration of the daily variability of four residential customers with
respect to day of the week.

A. Load Model Allocation

Before the learned load models can be used, they must be
compiled into customer specific monthly load profiles. Jan-
uary’s load profile for all 32 customers can be compiled from
the 16 previously learned day models, all we need to do is to
find out which models best describe the customer’s behavior
on each day of the week. As an example, Fig. 6 shows how
the Gaussian mixture load models are allocated for 4 different
residential customers. Customer 17 shows remarkably consis-
tent behavior, exhibiting the same profile for both weekday
and weekend usage. Customer 29 switches between multiple
profiles although does sometimes remain in the same one for
more than one day. Customer 5 exhibits a near perfect sepa-
ration in weekday/weekend electricity usage while Customer
31 switches between 3 profiles, always exhibiting the same
energy usage characteristics on a Sunday. A single Gaussian
distribution is not enough to describe a customer’s behavior on
each day of the week, so the final load model is constructed
as a weighted average over all the mixtures in the model. This
weighting is performed according to the occurrence counts of
particular mixtures/profiles seen for a given customer during
the period over which the training data was collected.

B. Comparison to Existing Load Models

In order to verify the accuracy of the proposed load modeling
methodology, a comparison is made between the current British
load modeling method (standard load profile), GMM and MFA.
February’s load forecasts are created using these methods and
the forecasts are then compared to the real measured values.
Since we have measurement data from only one year, the GMM
and MFA model parameters are learned from January’s data
while February’s measurements are reserved for verification.
The selected Standard Load Profile (SLP) corresponds to the
geographical location and type of the studied loads (domestic
unrestricted customers). Both the GMM and MFA models are
constructed using 16 mixtures. With 16 mixtures the AIC for
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Fig. 7. Single-line diagram of the simulation network.

MFA model is lowest with ten subspace dimensions. For com-
parison a MFA model with two dimensions is also built. The
load forecasts were scaled to match the estimated energy con-
sumption in February.

C. Load-Flow Calculation

In practical applications, it is often important to estimate
maximum (peak) or minimum (valley) loads. This is where
the models of load variability are needed. When we know the
load variability we can calculate peak or valley loads with
different confidence levels. In Finnish network calculation,
95% confidence is typically used when calculating maximum
line flows [28].
1) Simulation Network: The simulation network is based

on a test network presented in [29]. Only the LV part of the
test network is modeled in this study. The feeding MV net-
work is modeled with a voltage source with 90-MVA short-cir-
cuit power. The model incorporates a 500-kVA, 11-kV/433-V
ground mounted distribution transformer and four LV feeders
each supplying 96 domestic customers. One LV feeder is mod-
eled in detail and the other three are modeled as lumped loads,
as shown in Fig. 7. The LV feeder is 300 meters long, it com-
prises two segments of cable, 150 m of 185 mm and 150 m
of 95 mm cable. Single phase customer connections are dis-
tributed evenly along the feeder and are connected to the main
feeder with 30-m-long 35 mm service cables. Load points of
phase L1 are populated with real metered data.
2) Simulation Results: Statistical load flow was performed

on the simulation network. Since there is no explicit method for
summing log-normally distributed variables, the following sim-
plification was made when summing loads during the load-flow
calculation: Expectation values and variances were calculated
for the log-normally distributed loads, expectation values and
variances were then summed and log-normal distribution pa-
rameters were recalculated as in [30]. Load flow was calculated
for every half hour of February using three different load pro-
files: SLP, GMM, and MFA-based load profiles. With GMM
and MFA models, a 95% confidence level was used. Maximum
line currents and minimum node voltages were calculated and
compared with the values calculated with real measured loads.

Fig. 8. Load–flow comparison between SLP, GMM andMFAmodels A) Max-
imum currents on the LV main feeder (phase L1) B) Minimum voltages on the
LV main feeder (phase L1).

Fig. 8 shows the estimated and “measured” maximum currents
and minimum voltages on the phase L1 of the simulation net-
work main feeder. The current and voltage values achieved with
GMM andMFAmodels are very close to the real maximum and
minimum values. Designing or operating the LV network based
on Standard Load Profiles would be difficult since they do not
take the peak or valley load situations into account correctly.
GMM and MFA models were superior compared to SLP model
even though January’s load models were used to forecast Feb-
ruary’s load. More accurate models could have been created if
measurements from the previous February had been available.
Euclidean distance, Peak & Valley estimates and Peak &

Valley estimates with 95% confidence, were calculated for
both aggregated load estimates and their corresponding actual
values; this comparison is shown in Table I. With GMM and
MFA (2D) models, the smaller Euclidean distance demonstrates
they track aggregated load better than the ones calculated with
SLP. The MFA (10D) had a poor fit when evaluating per-
formance with Euclidean distance which may be down to
overfitting of the covariance matrices in the higher dimensional
space.
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TABLE I
ACCURACY METRICS FOR DIFFERENT LOAD MODELS

VIII. CONCLUSION

This paper has presented several Linear Gaussian
model-based load profiling techniques that compactly cap-
ture multiple behaviors exhibited by residential customers
who have traditionally been assumed to be homogenous. The
combination of the modeling strategy and the smart meter
advance data has permitted a representation that expresses
not only load magnitudes at given times of day but also their
variability and how these variabilities influence other times of
use. The mixture model framework in which this is embedded
allows multiple behaviors to be assumed with the statistically
most likely one being used to categorize a given residential
customer on a given day. In this way, dynamic customer be-
havior changes can be captured as they evolve with season or
changes in routine. Such models have theoretical properties that
permit ready use of sampling techniques that have been used to
demonstrate gains in accuracy over existing load profile tech-
niques. Such improvements are essential in the management
of smaller and islanded power systems. Loss of performance
in the MFA model may have stemmed from overfitting the
covariance matrices. In further work this could be prevented
by considering a Bayesian formulation of MFA such as that
proposed by [31], which has been shown to provide a more
reliable estimate of optimal subspace dimensions. Attention
should also now be turned to employing the computationally
tractable Gaussian models in temporal and spatial models
that could augment emerging state estimation tools [32] and
models of regional energy density [33]. Both applications are
increasingly important on LV networks as emerging services,
such as storage, distributed generation, and demand response
measures reach ever higher penetration levels.
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