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Abstract–Alternating current (AC) power flow (PF) presents dif-
ficulties for power system analysis and optimization due to its 
nonlinearity. Progress has been made to approximately linearize 
AC PF in recent decades. However, few studies have reported the 
simultaneous accurate approximation of reactive power and 
transmission losses. To bridge this gap, this paper investigates the 
linear approximation of AC PF considering the accuracy of the 
reactive load flows and transmission losses. Using the logarithmic 
transform of voltage magnitudes, a linear PF (LPF) model involv-
ing tap changers and phase shifters is derived from the approxi-
mation analysis of general branch flows. Transmission power loss 
and loss-concerned complex branch flow are also formulated. 
Cold-start and warm-start LPF calculation methods associated 
with injection compensation are also developed. Numerical simu-
lations are performed to compare the proposed models and sev-
eral state-of-the-art LPF models using 25 practical-scale test sys-
tems. The simulation results demonstrate the advantages of the 
proposed model over the other models for approximating voltage 
magnitudes, branch flows and power losses. The effectiveness of 
using proper compensation injection in improving the solution 
accuracy is also verified. 
 

Index Terms—DC power flow, linearization, load flow analy-
sis, power loss, voltage, reactive power 

I.  INTRODUCTION 

OWER flow (PF) plays a fundamental role in various ad-
vanced applications of energy management systems, such 

as state estimation, optimal power flow (OPF), contingency 
analysis (CA), and reliability assessment [1]. Due to its non-
linearity, the analysis of alternating current (AC) PF can be 
computationally intensive in multistage or online applications, 
particularly for large-scale power systems. When involved in 
optimization-based applications, the inherent nonconvexity of 
PF could make the optimization intractable. The difficulty in 
handling AC PF has become one of the binding factors for 
power system analysis and optimization as interconnected 
power systems have expanded in recent years. 

As an alternative to the full AC PF, linear approximation is 
one method for relieving the numerical burden of PF modeling 
and analysis. The direct-current (DC) PF has become one of 
the most widely used linear approximate models since it was 
first developed decades ago. With the assumption of flat volt-
age profiles and neglecting reactive power conditions, the MW 
flow of each branch is approximately proportional to the phase 
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angle difference across the branch, and the resultant DC PF 
model is a set of linear equations that involve only the active 
power injections and phase angles of the bus voltages [2]. The 
DC PF method is simple to implement and has been extensive-
ly used or embedded in power system analysis and optimiza-
tion, such as in sensitivity analyses [3], CA [4], electricity 
market clearing and power system scheduling [1], [5]. Alt-
hough the DC PF method provides a good approximation of 
active load flow under certain assumptions, it may fail to yield 
acceptable solutions for networks with large R/X ratios [2] or 
with insufficiently flat voltage profiles [6]. In addition, this 
model is not suitable for applications where reactive branch 
flows or voltage magnitudes are primary concerns, such as au-
tomatic voltage control (AVC) [7]. 

Because the DC PF method is limited in many practical sit-
uations, efforts have recently been made to develop other 
types of linear PF (LPF) models. A linearized PF model that 
preserves the effect of reactive power is developed in [8]. Sine 
and cosine functions of phase angles are approximated using 
linear functions, by which the PF model is reformulated as lin-
ear equations of squared voltage magnitudes and-modified 
phase angles. The results of this model have not been reported 
for either voltage magnitudes or reactive branch flow. An ap-
proximate PF solution for a distribution network was analyti-
cally derived in [9]. Under certain assumptions, the voltage 
phasor can be approximated as a linear function of load de-
mands at PQ buses with guaranteed error bounds. The accura-
cy of this approximation regarding voltage phase angles and 
magnitudes is verified using a modified IEEE 123-feeder test 
system. Reference [10] employed curve fitting to linearize the 
nonlinear terms of voltages in the PF model of a distribution 
system. The approximation errors of the active and reactive 
branch flows were not analyzed in [9] or [10]. An LPF model 
considering voltage magnitude was derived in [11]. The model 
in [11] includes both active and reactive power equations and 
assumes that the branches are lossless. The errors of the volt-
age magnitudes and active branch flows were small, while the 
results for reactive branch flows are not provided in [11]. Ref-
erence [12] developed a network model considering reactive 
power and transmission losses for convex relaxation in AC PF. 
The model is composed of two terms: one for the PF distribu-
tion that is linear to the squared voltage magnitudes and phase 
angles and another for the network losses that is quadratic to 
the same set of variables. The linear component of that model 
could potentially be applied in an approximate PF calculation. 
The quadratic network loss component was linearized in [13] 
using the sensitivity matrix. The resultant PF model in [13] is 
linear to the state variables, and it is essentially a warm-start 
version because a predefined base case is required to compute 
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the sensitivities. The effects of network losses are explicitly 
involved in the models of [12]-[13]. 

Progress in LPF modeling considering voltage magnitudes 
has been reported in recent literature; however, a limited num-
ber of studies have estimated reactive branch flows accurately. 
In certain security-related applications (e.g., CA and AVC), 
inaccurate reactive branch flows can result in misleading anal-
ysis results or even risky control decisions because both reac-
tive and active PF contribute to the branch current. In addition, 
the estimation of power loss based on LPF modeling is seldom 
discussed in the existing related references; such estimations 
would be of considerable interest in economic dispatch (ED), 
unit commitment (UC), or cost allocation in electricity mar-
kets. To bridge these gaps, this paper presents a novel linear 
approximation method for the PF model. The major contribu-
tions of this paper are two-fold: 

1. An approximate LPF model is derived using the loga-
rithmic transform of voltage magnitudes (LTVM). The pro-
posed model considers the voltage magnitudes, phase angles, 
and effects of active and reactive power simultaneously. The 
effect of network losses is also implicitly embedded in the 
proposed linear model. LTVM preserves part of the nonlinear 
effects of voltage magnitudes on both the active and reactive 
load flows, and the proposed model provides more accurate 
solutions for voltage magnitudes, branch flows and transmis-
sion power losses than the state-of-the-art LPF models. The 
transmission losses and active and reactive branch flows are 
formulated based on the LTVM. The proposed formulation of 
branch flows considers the transmission power loss and can be 
regarded as a generalization of several linear formulations of 
branch flows derived in the literature. 

2. Two versions of the PF calculation method are developed 
based on the proposed linear models. As a cold-start method, 
the first method solves the proposed LPF directly. As a warm-
start version, the second method introduces injection compen-
sation (IC) to the LPF equations to potentially improve the so-
lution quality given that an initial estimation of the PF solution 
is predefined. 

The remainder of this paper is organized as follows. In Sec-
tion II, the LPF models are developed, and the power loss and 
branch flows are formulated. In Section III, two versions of 
the PF methods based on the linear models are developed. In 
Section IV, comparative case studies are conducted to demon-
strate the performance of the proposed LPF models and meth-
ods. Section V concludes this paper with discussions. 

II.   APPROXIMATE LPF MODEL 

To convey the basic idea of LTVM, the LPF model without 
tap changers and phase shifters is derived in abstract in Sec-
tion II-A. A full version of the LPF model that considers tap 
changers and phase shifters is developed in detail in Section 
II-B. The power loss and branch flow are formulated in Sec-
tions II-C and II-D, respectively.  

A.  Abstract of the LPF Derivation Using LTVM 

The basic idea of deriving the LPF based on LTVM is in-
troduced briefly in this subsection. The units of all variables 
involved are p.u. unless otherwise noted. Symbols in bold de-
note matrices or vectors. The well-known AC PF in polar form 
can be expressed as follows: 
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where Pi and Qi denote the net power injection of active and 
reactive power at bus i, respectively; Gij and Bij denote the real 
and imaginary part of nodal admittance Yij, respectively; Vi 
denotes the voltage magnitude of bus i; ij denotes the voltage 
phase angle difference between buses i and j. 

 To focus on the basic idea of LPF derivation, we do not 
consider the effects of tap changers and phase shifters tempo-
rarily. For normally operating power systems, we have ij ≈ 0 
rad, Vi ≈ Vj ≈ 1 p.u. The modified voltage magnitude, symbol-
ized as ui, is defined as a logarithmic transform of the original 
voltage magnitude from the V-space into the u-space: 

ln , ln lni i ij i j i ju V u u u V V     , (2)
where uij is called the modified voltage magnitude difference. 
Obviously, Vi ≈ Vj ≈ 1 implies ui ≈ 0 and uij ≈ 0; therefore, 
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Employing the LTVM and substituting (3) into (1) yields: 
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 After a simple manipulation of (4), we obtain the following: 

 

 
i ij i ii i ij jj j i

ij i ij jj i j i

P G P G u G u

B B 



 

   

 

 
 

, (5)

 
 
2i ij i ij i ij jj j i j i

ij i ij jj i j i

Q B Q B u B u

G G 

 

 

   

 

  
 

, (6)

where i denotes the voltage phase angle of bus i. 
As boundary conditions for the AC PF computation, the 

nodal net power injections of the PQ buses and the nodal net 
active power injections of the PV buses are predefined. There-
fore, the approximate nodal power equations of the PQ and PV 
buses presented in (5) and (6) are linear to the transformed 
state variables. Equations (5) and (6) constitute an LPF model 
for the approximate PF computation. 

Discussions: 1. Preserved nonlinearity. Although the equa-
tions in (5) and (6) are linear to u and , the nonlinearity of the 
PF equations are still preserved. Starting from (4), we obtain 
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Obviously, V and  still hold a nonlinear relationship in (7), 
although (5) and (6) are linear equations. Due to the preserved 
nonlinearity, the effects of the voltage magnitudes and phase 
angles on the active and reactive load flows as well as the 
power losses are reflected approximately in (5) and (6). This 
feature enables the proposed model to provide good approxi-
mations of the PFs. 
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2. The effect of nonlinear transformation. The LTVM is ap-
plied in the proposed model to transform the coordinates of 
state variables, with which the LPF model is derived. Indeed, 
other types of nonlinear transformation of state variables have 
been performed to derive different LPF models in the litera-
ture [8],[12]. As numerically demonstrated in Section IV-D, 
LTVM can be used to approximate the nonlinear terms in AC 
PF more accurately than other state-of-the-art methods. In ad-
dition, the nonlinear terms in P and Q equations are handled in 
different ways, although both are based on LTVM, by exploit-
ing the physical features of practical power networks. This 
scheme provides accurate approximations of both P and Q 
equations, In addition, it preserves the linearizability of the 
proposed LPF model. Detailed analysis of the effect of using 
the proposed nonlinear transformation technique is referred in 
Section IV-D. 

3. Comparison with [14]. In our paper, the log-voltage 
magnitudes are defined in place of the original voltage magni-
tudes to derive the linear approximation of PF, and the result-
ant LPF model is described in the (u,) space. LTVM is also 
involved in the recent work of [14], where it is employed to 
define the objective function or energy function instead of per-
forming linearization. In [14], the original voltage magnitudes 
are not replaced with their logarithmic values, and the AC PF 
model is still formulated in the (v,) space.  
 The derivation of the LPF model in this subsection does not 
consider tap changers and phase shifters for simplicity. The 
involvement of these elements would cause nontrivial changes 
in the coefficients in (5) and (6) and requires a thorough anal-
ysis regarding the branch flows. Based on the concept of 
LTVM, a full version of the LPF model with tap changers and 
phase shifters will be derived in detail in the next subsection. 

B.  Detailed Derivation of LPF with General Branches 

An approximation analysis of the general branch model is 
performed before the development of the full LPF model.  
    1)  Approximate Analysis of a General Branch 

The branch model shown in Fig. 1 consists of a -type line 
and an ideal phase-shifting transformer, and this model is gen-
eral enough to describe the transmission lines, transformers 
and phase shifters [15]. The branch model is directed with 
buses i and j, which are denoted as the from-end and to-end 
buses, respectively. The currents in this branch are approxi-
mately analyzed in the following diagram.  
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Fig. 1. General branch with a tap changer and a phase shifter.  

The branch currents in both directions are as follows: 
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where ijI  denotes the branch current from bus i to bus j; sh
ijy , 

yij, tij, and ij denote the shunt admittance, serial admittance, 
tap ratio, and phase shift angle of the general branch (i,j), re-
spectively. 

The voltage phasors iV  in (8) are replaced with its exponen-

tial form j i
i iV V e  , which yields 
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 In normal operation conditions for practical power systems, 
it is reasonable to assume that Vi ≈ 1, Vi tij ≈ 1, and ij ij ≈ 0 
[16]. The first-order expansion is applied to the exponentials 
in (10) to yield the following phase-shifted from-end current 
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where ui=lnVi, uij=ui uj, and tij’=lntij. The phase-shifted to-
end current in (9) can be similarly approximated by 
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Dividing both sides of (8) by iV  yields 
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where the approximation holds because the voltage magnitude 
difference across a transmission line is typically small, i.e., Vi / 
tij ≈ Vj. Similarly, (9) can be simplified to the following: 
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Equations (11)-(14), which are linear to the modified volt-
age magnitudes and phase angles, will be utilized in the fol-
lowing derivation of the approximate LPF model. 
    2)  Derivation of the Approximate LPF Model 

(a) Nodal Active Power Equations 
The nodal complex power injection is as follows: 

       j j* * * 1i i
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where iS  and iI  denote the net injection of complex power 

and current at bus i, respectively.  
According to Kirchhoff’s current law (KCL), the net current 

injection at each bus i is subject to the following: 
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where the three terms on the right denote the current through 
the shunt branch at bus i, the summed currents of the branches 
with from-end buses i, and those with to-end buses i, respec-
tively; TE(i) denotes the index set of the to-end buses of the 
directed branches with from-end bus i. Because Vi ≈ 1, we ob-
tain the following: 
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Substituting (11)-(12) and (16)-(17) into (15) yields  
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 In (20), yi0 denotes the shunt admittance at bus i. Let 
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 Equation (22) is the active power equation of the proposed 
LPF model, where the modified active power injection is line-
ar to the modified voltage magnitudes and phase angles.  

(b) Nodal Reactive Power Equations 
    By starting from (15) and combining (16), we obtain 
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Let ji i iS P Q     and jij ij ijy g b    . Taking the imaginary 

part of both sides in (27) yields 

i ii i ij j ij jj i j
Q B u B u G 


        , (30)

where 

( ), 2ij ij ii i ijj i
B b j i B Q b


         , (31)

( ),ij ij ii ijj i
G g j i G g


       . (32)

Equation (30) is the reactive power equation of the pro-
posed LPF model. The proposed LPF model considering tap 

changers and phase shifters is described by (22) and (30) to-
gether. 

C.  Formulation of the Power Loss in the Branches 

    1)  Power Loss in a Series Branch 
The current ijI   through the series branch in Fig. 1 is ex-

pressed as follows: 

( )

j j( )

j( )j( )

ij ij

ij ij i

ij i

j iji i
ij j ij j

ijij

ij
ij ij ij ij

yV V
I V y V e

tt e e

y
u t

e

 
  

  

 




   
            

      

 

. (33)

The complex power loss in the series branch loss
ijs  is formu-

lated as follows: 
2loss

2 2

2 2 *

( j )

j( ) ( j )

( ) ( )

ij ij ij ij

ij ij ij ij ij ij ij

ij ij ij ij ij

s I r x

u t y r x

u t y

 

 

  

      

      



, (34)

from which the active and reactive power losses are obtained: 
loss 2 2( ) ( )ij ij ij ij ij ijp g u t        , (35)
loss 2 2( ) ( )ij ij ij ij ij ijq b u t          (36)

where rij, xij, gij, and bij denote the resistance, reactance, con-
ductance, and susceptance of the general branch (i,j), respec-
tively. 
    2)  Power Loss in a Shunt Branch 

The complex, active and reactive power losses in the aggre-
gated shunt admittance are calculated as follows: 

lsh 2 sh* 2 sh*(1 )i i i i is V y u y     , (37)
lsh sh 2(1 )i i ip g u   , lsh sh 2(1 )i i iq b u    , (38)

where sh
iy , sh

ib  and sh
ig  denote the total shunt admittance, 

conductance, and susceptance at bus i, respectively. 

D.  Formulation of Branch Flow with Power Loss 

The branch flows at both ends of the series branch in Fig. 1 
are subject to the KCL: 

* *

j 0
/ ij

ij ji
ij ji

ji ij

S S
I I

VV t e 

    
            

 
 

 . (39)

The branch flows at both ends are also subject to the law of 
energy conservation: 

loss
ij ji ijS S s     . (40)

Combining (39) and (40), we can solve for the branch flows: 
1

loss loss
1 1

,ij ij
ij ij ji ij

ij ij ij ij

K K
S s S s

K K K K



 
   

 

 
      , (41)

where 
1/2

j( ) 1
1 j( )

2
ij iji

ij ij ij ij ij
ij j

V
K e u t

t V
    

           
 , (42)

1/2

j( )1 1
1 j( )

2
ij iji

ij ij ij ij ij
ij j

V
K e u t

t V
   




 

           
 . (43)

Substituting (34) and (42)-(43) into (41) yields 
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* j( )
1 j

1 ( ) ( )
2 2ij ij ij ij ij ijij ij ij ijS y u tu t        

         
 , (44)

* j( )
1 j

1 ( ) ( )
2 2ji ij ij ij ijij ij ij ij ijS y u tu t                  

 . (45)

 Equations (44) and (45) represent the complex branch flow 
with power loss. By taking the real and imaginary parts, we 
can obtain the following expressions: 

loss0.5ij ij ijP p p   , loss0.5ji ji ijP p p   , (46)
loss0.5ij ij ijQ q q   , loss0.5ji ji ijQ q q   , (47)

where  
( ) ( )ij ij ij ij ij ijij ji g u t bp p        , (48)

( ) ( )ij ij ij ij ij ijij ji b u t gq q         . (49)
 Equations (46) and (47) denote the active and reactive 
branch flows with power losses, respectively. In either equa-
tion, the first term on the right of the equality denotes the loss-
less component, and the second term accounts for the branch 
power loss. 
 Discussions: The branch flow formulation can be further 
simplified with additional assumptions. For example, if 
branches are assumed lossless, the second term in (46) can be 
omitted. Thus, the active branch flow becomes equal to its 
lossless component:  

( ) ( )ij ij ij ij ij ijij ji ij g u t bP P p          , (50)
which is similar to the lossless MW flow derived in [11]. 
 If the assumptions of DC PF are made, i.e., gij=0, bij=1/xij, 
ui=0, and tij’=0, the active branch flow reduces to 

( )ij ijij ji ijP P x     , (51)
which is the branch flow formulation in the DC PF model [2]. 
The proposed branch flow formulation is indeed a general ver-
sion that can be fitted into various situations in the literature 
with additional assumptions and boundary conditions. 

III.  LPF METHODS WITH THE LINEARIZED MODEL 

Two methods for the approximate LPF calculation are de-
veloped. Section III-A presents the cold-start version that in-
volves the proposed LPF models without IC. Section III-B de-
scribes the warm-start method that incorporates the proposed 
LPF models with IC to further improve the solution quality. 

A.  Approximate LPF Without IC 

Let the phase angles of the PQ, PV, and V buses be PQ, 
PV, and V, respectively, and the corresponding modified 
voltage magnitudes of the three types of buses be uPQ, uPV, and 
uV, respectively. Based on the LPF model derived in Section 
II, the PF equations for the PQ and PV buses can be stylized in 
a matrix form: 

PQ PQ,PQ PQ,PV PQ,PQ PQ

PV PV,PQ PV,PV PV,PQ PV

PQ PQ,PQ PQ,PV PQ,PQ PQ

       
             
            




 

P B B G θ

P B B G θ

Q G G B u

, (52)

where PQ PV PQ[ , , ]T T T T   P P Q  are calculated using the predefined 

conditions of a PF problem as follows: 

PQ PQ PQ,Vθ PQ,PV PQ,Vθ Vθ

PV PV PV,Vθ PV,PV PV,Vθ PV

PQ PQ PQ,Vθ PQ,PV PQ,Vθ Vθu

           
                  
                

 
 

  

P P B G G

P P B G G u

Q Q G B B

. (53)

All symbols in (52), except the unknown state variables [T 
PQ, 

T 
PV, uT 

PQ]T, are constants determined by network parameters and 
other known operation conditions. Hence, (52) is a set of LPF 
equations that yields an approximate solution of unknown var-
iables to the original AC PF. This set of linear equations can 
be solved in one shot without any iterations. After solving (52), 
the phase angles of the PQ and PV buses (i.e., PQ, PV) are 
obtained directly, and the voltage magnitudes of the PQ buses 
can be recovered by taking the exponential of uPQ. Then, the 
load flows and power losses of the branches can be computed 
using the formulations in Sections II-C and II-D. 
    The LPF equation in (52) is free of any predefined opera-
tion points in the power system; hence, the LPF equation is a 
cold-start version of the LPF model [2]. Equation (52) is 
called the linear approximate PF without IC (LPF-NIC). 

B.  Approximate LPF With IC 

The LPF equations in (53) are rewritten in an abstract form: 
Ax d , (54)

where x denotes the unknown variables and A and d are the 
constant coefficients. The full version of the nonlinear AC PF 
equations in polar form is also expressed in an abstract form: 

( ) 0F x . (55)
 Assume that x* is a solution to the AC PF equations, i.e., 
F(x*)=0. It can be verified that x* also satisfies the following: 

* [ * ( *)] ( *)      Ax d Ax d F x d d x . (56)
Equation (56) demonstrates that the AC PF solution x* does 

not satisfy the LPF model in (54) unless d(x*) is added to the 
right-hand vector. Physically, d denotes the modified nodal 
power injections in the LPF model. In addition, d(x*), which 
is called the IC, can be viewed as the gap in the nodal power 
injections between the linearized and the original nonlinear 
models. Solving the following equation yields an accurate so-
lution to the AC PF: 

( *)  Ax d d x . (57)

 The introduction of d(x*) helps improve the solution qual-
ity of the LPF model. However, knowing x* beforehand is 
seldom realistic. Alternatively, an approximate solution of x(0) 

to the AC PF is accessible. Given that x(0) is close to the accu-
rate solution, it could still be used to approximate the IC 
d(x*), and the following linear equation is formulated: 

(0)( )  Ax d d x , (58)
which is called the approximate LPF with IC (LPF-IC).  

Here, x(0) is used to induce the IC and is called the compen-
sation point, and x(0)

 can be base case operating points of the 
power system or obtained by any available LPF technique. 
The selection of x(0) affects the quality of the solution to (58), 
and this effect depends on the similarity between x(0) and x*. 
Because a priori knowledge of the compensation point is re-
quired, the LPF-IC is a warm-start linearization technique. 

IV.  CASE STUDY 

Case studies were performed to demonstrate the perfor-
mance of the proposed LPF model. The first test, which is pre-
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sented in Section IV-A, was conducted to compare the differ-
ent cold-start LPF models, including the proposed LPF-NIC 
model, several state-of-the-art LPF models and the DC PF 
model. The second experiment, which is presented in Section 
IV-B, was conducted to compare the proposed LPF-IC with 
another warm-start LPF model developed in [13]. Section IV-
C studies the influence of the initial points on the performance 
of the warm-start LPF-IC method. The effect of approximation 
using nonlinear transformation is numerically investigated in 
Section IV-D. 

A total of 25 benchmark power systems are employed as 
test examples, the sizes of which range from 24 to 9,241 buses 
with different loading conditions. The configurations of the 
test systems are summarized in Table I, where columns 3 
through 8 indicate the number of corresponding elements. All 
of the test data can be accessed online in the package of 
MATPOWER without any modification [18]. All simulations 
are programed using MATLAB R2013a. 

 

A.  Comparison of the Cold-Start LPF Models 

The LPF-NIC model (M0) is compared with several state-
of-the-art cold-start LPF models, including the DC PF (DC) 
and those in [8] (S1), [11] (S2), and [12] (S3). Because the DC 
PF provides only an approximation of the active power, it is 
compared with the other models only in terms of the active 
branch flows. Although the reactive branch flow is not explic-
itly formulated in either [8] or [11], it can still be derived 
based on the concepts in these references as follows: 

S1: 
2 2 2 2 2( ) ( )

2
ij ij

ij i i j j i i j j
ij

b g
Q V V V V

t
        , (59)

S2: ( ) ( )ij iji
ij j ij ij

ij ij ij

b gV
Q V

t t t
      . (60)

As for the model in [12], we neglect its nonlinear loss compo-
nent and employ only its linear part to perform a fair compari-

son with the other linear models. The AC PFs are also solved 
by the Newton-Raphson method with flat starts to yield 
benchmarked solutions. As indices for evaluation, the root-
mean-squared (RMS) errors of a solution x with respect to the 
benchmarked solution x* are defined as follows: 

RMS * 2

1
( )

n

i ii
x x n


  x . (61)

 1) Voltage magnitudes. Fig. 2 presents the RMS errors of 
voltage magnitudes of different LPF models. The errors of S1 
are larger than those obtained using M0 in most cases. S2 has 
a similar performance to M0 and provides errors slightly larg-
er than those obtained using M0. S3 yields larger errors than 
M0 in a number of test systems, including the 3rd, the 7th, the 
8th, and the 20th through the 24th. Hence, M0 provides more 
accurate voltage magnitudes than the other three models. 
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Fig. 2. Voltage magnitude errors of the different cold-start LPF models. 

2) Branch flows. Fig. 3 displays the RMS errors of the ac-
tive flows obtained using M0, S1, S2, S3, and DC. The errors 
of S1 and S3 are higher than those obtained using M0. The er-
rors obtained using the S2 are typically larger than those of 
M0, although S2 performs better than S1. The DC PF provides 
comparable RMS errors to M0 in most cases for the active 
branch flows. Overall, M0 outperforms the other LPF models 
in approximating the active branch flows. 
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Fig. 3. Active branch flow errors of the different cold-start LPF models.

    Fig. 4 shows the reactive branch flow errors of the different 
LPF models. The RMS errors of M0 are smaller than those of 
the other models. Similar observations can be made for the 
complex branch flow errors in Fig. 5. The comparative results 
suggest that M0 outperforms S1, S2, and S3 in approximating 
the reactive and complex branch flows. 

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1 3 5 7 9 11 13 15 17 19 21 23 25

R
M

S
 E

rr
or

 o
f 

Q
ij

(p
.u

.)

Test System

M0 S1 S2 S3

Fig. 4. Reactive branch flow errors of the different cold-start LPF models.

TABLE I 
CONFIGURATION OF THE TEST SYSTEMS 

No. Name Bus Gen. Branch Tap 
Phase 
Shifter

1 IEEE RTS 24 33 33 4 0 
2 IEEE 30-Bus 30 6 41 0 0 
3 IEEE 57-Bus 57 7 80 15 0 
4 IEEE 118-Bus 118 54 186 9 0 
5 IEEE 145-Bus 145 50 453 52 0 
6 IEEE 300-Bus 300 69 411 62 0 
7 PEGASE 1354  1354 260 1991 234 6 
8 French 1888 1888 290 2531 405 4 
9 French 1951 1951 366 2596 486 4 
10 Polish 2383wp 2383 327 2896 170 6 
11 Polish 2736sp 2736 270 3269 167 2 
12 Polish 2737sop 2737 219 3269 168 2 
13 Polish 2746wop 2746 431 3307 170 1 
14 Polish 2746wp 2746 456 3279 169 1 
15 French 2848rte 2848 511 3776 558 6 
16 French 2868rte 2868 561 3808 606 6 
17 PEGASE 2869 2869 510 4582 496 12 
18 Polish 3012wp 3012 385 3572 201 0 
19 Polish 3120sp 3120 298 3693 206 0 
20 Polish 3375wp 3375 479 4161 383 2 
21 French 6468rte 6468 399 9000 1319 19 
22 French 6470rte 6470 761 9005 1333 16 
23 French 6495rte 6495 680 9019 1359 17 
24 French 6515rte 6515 684 9037 1367 16 
25 PEGASE 9241 9241 1445 16049 1319 66 
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Fig. 5. Complex branch flow errors of different cold-start LPF models.

 3) Active power losses. Fig. 6 exhibits the RMS errors of 
the branch active power loss given by M0, S1, and S3. Be-
cause the models of S2 and DC are assumed to be lossless, 
they do not yield any power losses. M0 yields the smallest ac-
tive power loss errors in all test cases, whereas the errors of S1 
and S3 are at least one order of magnitude larger than those of 
M0. This result indicates that M0 leads to more accurate active 
power losses than the other two models. 
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Fig. 6. Active power loss errors of the different cold-start LPF models.

 4) Solution time. The computation time of solving the dif-
ferent PF models, including the AC PF (AC), is presented in 
Fig. 7. Significantly more time is needed to solve the AC PF 
than the other LPF models because solving the AC PF numer-
ically requires an iterative procedure, whereas each of the LPF 
models, which are essentially linear equations, can be solved 
in one shot. The differences in the solution times required by 
the different LPF models are small, indicating that the compu-
tational efficiencies of the LPF models are similar. When M0 
provides more accurate PF results than the other LPF models, 
its computational performance is still as good as the other LPF 
models. 
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Fig. 7. Solution time consumed by solving the different cold-start PF models.

B.  Comparison of the Warm-Start LPF Models 

The warm-start LPF-IC (M1) is compared with the linear-
ized PF model in [13] (S4) by solving the PFs in different test 
systems. The solutions of the DC PFs with flat voltage profiles 
are employed as initial points for inducing the linearized mod-
els of M1 and S4. Fig. 8 through Fig. 12 present the RMS er-
rors of the voltage magnitudes, active branch flows, reactive 
branch flows, complex branch flows, and active power losses 
obtained by M1 and S4. Although S4 provides comparable re-
sults with M1 in several cases, it fails to produce reasonable 

results in some other cases, such as for test systems 20 through 
24, for which the errors of S4 could be one order of magnitude 
larger than those of M1. For the active power losses, M1 also 
results in apparently smaller errors than S4. On the whole, M1 
provides more accurate approximate PF solutions than S4. 
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Fig. 8. Voltage magnitude errors of the different warm-start LPF models. 
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Fig. 9. Active branch flow errors of the different warm-start LPF models. 
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Fig. 10. Reactive branch flow errors of the different warm-start LPF models. 
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Fig. 11. Complex branch flow errors of the different warm-start LPF models. 
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Fig. 12. Active power loss errors of the different warm-start LPF models. 

C.  Impact of the Compensation Points on the Performance of 
M1 

The performance of M1 with different compensation points 
x(0) was also investigated. Candidate x(0) includes the follow-
ing: (i) the flat start point with flat voltage profiles and zero 
phase angles, (ii) the solution to DC PF with flat voltage pro-
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files, and (iii) the solution to M0. Each of these points is em-
ployed to calculate d(x(0)) in (58), which is incorporated into 
the LPF-IC model. The LPF-ICs with these compensation 
points are denoted by M1-flat, M1-DC, and M1-M0, respec-
tively. These models are tested using all of the aforementioned 
test systems. 

Fig. 13 and Fig. 14 present the RMS errors of the voltage 
magnitudes and complex branch flows, respectively, obtained 
using different models, and the results from the cold-start M0 
are also plotted as a reference. The errors of M1-flat are rarely 
larger than those of M0 in the test cases. The flat start is only a 
rough approximation of the exact solution of the PF, and the 
gaps between them are typically large. Hence, a flat start could 
result in a misleading IC the LPF model and thus deteriorate 
the accuracy of the approximation. This conclusion is con-
sistent with the observation that the errors of M1-flat are larg-
er than those of M0, as shown in Fig. 13 and Fig. 14. 
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Fig. 13. Voltage magnitude errors obtained using the LPF-IC with different
compensation points.  
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Fig. 14. Complex branch flow errors obtained using the LPF-IC with different
compensation points. 

The M1-DC outperforms the M1-flat in terms of the errors 
in both the voltage magnitudes and branch flows. This result is 
reasonable because DC PF generally provides more accurate 
approximations than the flat start in terms of the active power 
conditions. As shown in the figures, the M1-DC improves the 
accuracy of the voltage magnitudes slightly in certain cases. In 
contrast, because a DC PF solution still provides a trivial ap-
proximation to the voltage profiles, it could impair the quality 
of the solution when incorporated into the IC, as shown by the 
branch flow errors in Fig. 14. 

As shown in Fig. 13 and Fig. 14, the errors are reduced sig-
nificantly by the M1-M0 in most cases, indicating that the M1-
M0 improves the accuracy of both the voltage magnitudes and 
branch flows in all test systems. This higher accuracy is 
achieved because M0, even without the IC, is able to yield an 
approximate PF solution that is close to the exact PF solution, 
as discussed in Section IV-A. Furthermore, solving M0 re-
quires only a set of linear equations to be solved, and it is as 
easy as solving the DC PF, as shown in Fig. 7. Therefore, it is 
computationally trivial to use the solution of M0 to calculate 
the IC. 

In summary, the compensation point must be selected care-
fully because it affects the solution quality of the LPF-IC. The 
solution to the LPF-NIC is typically a good choice that can po-
tentially improve the accuracy in a warm-start LPF model.  

D.  Effect of Approximation Using Nonlinear Transformation 

The AC PF model can be written in the following form: 
2 2

2 2

( cos ) sin

( cos ) sin

ii i ij i i j ij ij i j ij
j i

ii i ij i i j ij ij i j i

i

i j
j i

P

Q

g V g V VV b VV

b V b V VV g VV

 

 




    

     








. (62)

2
iV , V 2

0 cosi i j ijl V VV    and θ
0 sini j ijl VV   are the non-

linear terms in the AC PF equations presented in (62). To 
study the effect of nonlinear transformation, it is helpful to in-
vestigate the accuracy of approximating these nonlinear terms. 

Except for the LTVM presented in this paper, other nonlin-
ear transformation methods have also been applied to handle 
state variables and to approximate nonlinear terms. Table II 
summarizes the transformed state variables and approxima-
tions of nonlinear terms in AC PF using S1, S3 and the pro-
posed method, respectively. In the proposed method, the non-
linear terms in P and Q equations are approximated in differ-
ent forms, as indicated in the 3rd and 4th rows of Table II. 

In this section, we compare the proposed method with other 
state-of-the-art nonlinear-transformation-based methods (S1 
and S3) in terms of the accuracy of approximating these non-
linear terms. In real-life power networks, the shunt conduct-
ance (gii) and susceptance (bii) are typically small, so the influ-
ence of the term V2 

i  is negligible. We focus on the accuracy of 
approximating the other two terms. 

 
We define the following region of (Vi,Vj,ij) that covers 

most of the normal operating states in practical power systems: 




( , , ) 0.8 1.2, 0.8 1.2,

0.05, 6

i j ij i j

i j ij

V V V V

V V



 

     

  
, (63)

over which the following RMS errors of approximation by 
each method are numerically calculated: 

2

0 ( , , ) ( , , ) d d d

d d d

i j ij i j ij i j ij

i j ij

l V V l V V V V

V V

 


  







   



. (64)

In (64), the superscript  ∈{“V”, “”} refers to either type 
of the nonlinear terms, and the subscript  ∈{“S1”, “S3”, “P”, 
“Q”} represents the method for approximation. As shown in 

Table III, V
Ql
  and θ

Pl  provides the smallest RMS errors for V
0l  

TABLE II 
NONLINEAR TRANSFORMATION AND APPROXIMATION OF LPF MODELS  

Method

Independent 
variables 

Nonlinear terms 

Voltage Angle V 2
0 cosi i j ijl V VV    θ

0 sini j ijl VV   

S1 V2 V2 
V 2 2

S1 0.95( )i jl V V   θ 2 2
S1 0.95( )i i j jl V V  

S3 V2/2  
V 2 2

S3 0.5( )i jl V V   θ
S3 ijl   

M0 
(for P)

ln(V)  
V

P

ln( ) ln( )

1 ln( )
i j

i

V V
l

V





  θ

P 1 ln( )
ij

i

l
V





  

M0 
(for Q)

ln(V)  
V

Q

ln( ) ln( )

1 2 ln( )
i j

i

V V
l

V





  θ

Q 1 2ln( )
ij

i

l
V





  
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and θ
0l , respectively. This result reveals that the proposed 

method outperforms the others in approximating the nonlinear 
terms of AC PF within the predefined operating region. 

 
 We note that for the same type of equation, the terms that 
approximate θ

0l  and V
0l  should have the same denominator in 

order to achieve linearizability of the equations. To make a 
tradeoff between the linearizability and approximation accura-

cy, we choose to use θ
Pl  and V

Pl  to approximate θ
0l  and V

0l  in 

the P equations and θ
Ql
  and V

Ql
  to approximate θ

0l  and V
0l  in 

the Q equations. As numerically shown above, although θ
Ql
  

and V
Pl
  do not optimally approximate θ

0l  and V
0l , they do not 

have significant impact on the approximation accuracy be-
cause the P and Q equations are mainly affected by the terms 
associated with θ

0l  and V
0l , respectively, in strongly inductive 

power networks. 
In summary, the overwhelming performance of the pro-

posed model is attributed to the following two aspects. First, 
the nonlinear terms in the original AC PF equations are ap-
proximated more accurately using the proposed method than 
the other state-of-the-art methods. Second, in the proposed 
LPF model, different approximations are separately utilized in 
the P and Q equations, and they fit the dominating nonlinear 
terms in P and Q equations the best, separately. 

V.  CONCLUSIONS AND FUTURE WORK 

This paper proposes an approximate LPF method that con-
siders active and reactive power and transmission losses sim-
ultaneously. A general LPF model considering tap changers 
and phase shifters is derived using the LTVM. An approxima-
tion for branch power loss is developed, and approximate 
complex branch flows considering power loss are formulated. 
Two types of PF calculation methods are developed based on 
the proposed linear models, namely, cold-start without IC and 
warm-start with IC. Comparative simulations are conducted 
using a variety of large-scale test systems. The test results 
demonstrate that the proposed cold-start LPF-NIC and warm-
start LPF-IC models approximate the PF solution more accu-
rately than several state-of-the-art linear models in terms of 
the voltage magnitudes, branch load flows, and transmission 
power losses without additional computational burden. The 
compensation point does influence the solution quality of the 
LPF-IC significantly, and the proposed LPF-NIC can provide 
a proper compensation point to improve the accuracy of the 
LPF-IC. The overwhelming performance of the proposed 
model is due to its accurate approximation of nonlinear terms 
in AC PF equations. 

The proposed LPF method could be applied in power sys-
tem analysis and operation where PF modeling is needed. The 
proposed cold-start version model, i.e., the LPF-NIC, can be 
adopted in off-line applications where the base point of opera-

tion cannot be readily obtained, e.g., power system planning, 
day-ahead SCUC, CA, and reliability assessment. The pro-
posed warm-start LPF-IC is particularly suitable for real-time 
analysis and decisions, e.g., look-ahead power dispatch, AVC, 
and online CA. When adopted to replace the nonlinear AC PF 
model, the proposed linear models could reduce the computa-
tional burden or the complexity of the optimization models. 
These issues could be further explored in future work.  
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TABLE III 
RMS ERRORS OF APPROXIMATING NONLINEAR TERMS 

Method S1 S3 M0 (for P) M0 (for Q)

Nonlinear 
terms 

V
0l  0.02639 0.00737 0.00766 0.00681 

θ
0l  0.09428 0.02225 0.01110 0.11197 


