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Krill herd algorithm (KHA) is a novel meta-heuristic approach that is influenced from the herding beha-
viour of the krill swarms searching for food or communication with each other. The proposed opposition
based KHA (OKHA) is intended here, for solving the optimal power flow (OPF) problem of power system,
incorporating flexible AC transmission systems (FACTS) devices, namely, thyristor controlled series
capacitor and thyristor controlled phase shifter. In the proposed OKHA, the concept of opposition based
population initialization and opposition based generation jumping are employed in the basic KHA to
enhance its computational speed and convergence profile. The potential of the proposed OKHA is
assessed, successfully, on modified IEEE-30 bus and IEEE-57 bus test power systems. The four different
objective functions are formulated here that reflects the minimization of fuel cost, active power
transmission loss, emission and combined economic and environmental cost, separately. Simulation
results, presented in this paper, indicate that the proposed approach yields superior solution over the
other popular methods surfaced in the recent state-of-the-art literature including basic KHA and also
show its effectiveness for the solution of OPF problem of power system equipped with FACTS devices.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Optimal power flow (OPF) is a useful tool in modern energy
management system. It plays an important role for secure opera-
tion of power system operation, control and planning. The prelim-
inary goal of generic OPF is to minimize the total production cost of
the entire system for fulfilment of the load demand of a particular
power system by maintaining the security of the system operation
[1,2]. At steady state condition, each device in the power system
should be within its desired operating range. These include mini-
mum and maximum limits of (a) generators’ real and reactive
power outputs, (b) load voltage magnitudes of each bus in the net-
work, (c) apparent power flows of power transmission lines, (d)
transformers’ tap setting and (e) reactive power injection. This
method has been studied, rigorously, over the past few decades
and it has been solved, successfully, by a wide variation of conven-
tional optimization techniques such as Newton method [3], linear
programming, dynamic programming and interior point method
[4]. Many evolutionary optimization techniques such as genetic
algorithm (GA) [5], evolutionary programming [6], artificial bee
colony, bacteria foraging optimization, gravitational search
algorithm [7] have been proposed in the literature assuming the
OPF problem as continuous, differential and having monotonically
increasing cost function. However, practical systems consider
higher order non-linearity effect of thermal generating units and
discontinuities due to valve point loading effect. Therefore, new
optimization methods are required to solve such difficulties. Some
of these population based methods are tabu search [8], particle
swarm optimization (PSO) [9], biogeography based optimization
(BBO) [10–12], etc. These methods can solve non-convex, non-
smooth and non-differentiable optimization problems efficiently
and effectively.

But in the deregulated power industry, flexible AC transmission
systems (FACTS) are being extensively used in the recent days to
increase the power transfer capability of long transmission line as
well as to improve the system stability. These devices are capable
to control current, voltage, impedance and phase angle of the trans-
mission system for increasing the system stability, power factor cor-
rection, loss minimization and most importantly management of
active and reactive power flow and voltage profile [13]. Hence, the
conventional OPF problem, incorporated with FACTS devices
[14,15], has opened new opportunities for controlling the real and
reactive power flow and various optimization techniques like
hybrid GA [16], simulated annealing [17], real coded GA [14], differ-
ential evolution (DE) [14], dynamic strategy based fast decomposed
GA [18], craziness PSO and turbulent crazy PSO [19], PSO with
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Nomenclature

ap, bp, cp fuel cost coefficients of the pth generator
dp, ep fuel cost coefficients with valve point loading effect of

the pth generator
E(Pg) total emission
FC total fuel cost of generating units
g(u, v) set of equality constraints
Gk conductance of the kth line connected between the pth

and the qth buses
Gpq, Bpq conductance and susceptance between bus p and q,

respectively
h(u, v) set of inequality constraints
NB total number of buses
NC number of capacitor banks
NL number of transmission lines
NPQ number of load buses
NPV number of generator buses
NT number of tap setting transformer branches
NTCPS number of TCPS devices installed in the test power sys-

tem
NTCSC number of TCSC devices installed in the test power sys-

tem
of objective function to be minimized
OF(FU, E) combined economic environmental cost
PGp, QGp active and reactive power generations of the pth bus,

respectively
Pmin
Gp , Pmax

Gp minimum and maximum limits of active power of the
pth generating unit, respectively

PLoss total power loss
PLp, QLp active and reactive power demands of the pth bus,

respectively
Ppk, Qpk injected real and reactive powers of TCPS at the pth bus,

respectively
Ppq, Qpq active and reactive power flows from pth to qth bus,

respectively

Pps, Qps injected real and reactive powers at bus p due to TCPS,
respectively

Pqs, Qqs injected real and reactive powers at bus q due to TCPS,
respectively

Qmin
Cp , Qmax

Cp minimum and maximum VAR injection limits of pth
shunt capacitor, respectively

Qmin
Gp , Qmax

Gp minimum and maximum limits of reactive power of
the pth generating unit, respectively

Rpq, Xpq resistance and reactance of the transmission line,
respectively

SLp apparent power flow of the pth branch
Smax
Lp maximum apparent power flow limit of pth branch

Tmin
p , Tmax

p minimum and maximum tap setting limits of pth
transformer, respectively

u vector of dependent variables
v vector of independent variables
Vmin
Lp , Vmax

Lp minimum and maximum load voltage of the pth load
bus, respectively

Vp, Vq voltage magnitudes at bus p and q, respectively
XC reactance of TCSC placed in the transmission line con-

nected between pth and qth bus
Xmin
Tp , Xmax

Tp minimum and maximum reactance of the pth TCSC,
respectively

Ypq the total admittance of the transmission line connected
between pth and qth bus

ap, bp, cp, gp, kp emission coefficients of the pth generator

/min
Tp , /max

Tp minimum and maximum phase shift angle of the pth
TCPS, respectively

hpq admittance angle of the transmission line connected
between pth and qth bus
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ageing leader and challengers (ALC-PSO) [20] have been employed
for solving this type of OPF problem of power system.

KHA [21], a new bio-inspired and swarm intelligent approach,
has been proposed by Gandomi and Alavi for global optimization
problem in 2012. This technique is based upon the analogy of sim-
ulating the herding behaviour of krill swarms in nature. The posi-
tion for each individual krill is determined from three different
actions viz. (a) motion induced by other krill, (b) foraging activity
and (c) random diffusion. Recently, KHA has been used in some
areas of research interest like multimodal numerical optimization
problems [22], portfolio optimization problems [23], combined
heat and power dispatch problem [24], structural optimization
problems [25] and optimum design of truss structures [26]. A
few variants of hybrid KHA have been proposed in the literature
like chaos theory based KHA for solving the benchmark functions
problem [27], optimal reactive power dispatch problems [28],
fuzzy KHA (that uses fuzzy system as parameter tuner) for bench-
mark test function optimization [29], stud KHA (that introduces
stud selection and crossover operator for numerical optimization
process) [30] and DE assisted KHA for economic load dispatch
problem of power system [31]. Thus, literature survey reveals that
this algorithm or its any variant are yet to apply in the OPF prob-
lem of power system equipped with FACTS devices. Thus, the moti-
vation of the proposed work gets developed.

In the present work, the concept of opposition based learning
(OBL) [32] and opposition based generation jumping are combined
with the basic KHA for achieving enhanced computational speed
and improved convergence speed. OBL is proved in the literature
to be an effective solution technique applied with various optimiza-
tion approaches [33–35]. Thus, this paper proposes a novel opti-
mization technique termed as oppositional KHA (OKHA) for the
solution of OPF problem of power system equipped with FACTS
devices.

In this article, two FACTS devices, namely, thyristor controlled
series capacitor (TCSC) and thyristor controlled phase shifter
(TCPS) are considered for the solution of OPF problem of modified
IEEE-30 bus and IEEE-57 bus test power systems. These two
FACTS devices are considered to be located at fixed strategic loca-
tions of the considered power networks. The proposed OKHA
aims to determine the optimal settings of variables with four dif-
ferent objectives, separately, such as minimization of (a) fuel cost
(with and without considering valve point effect), (b) active
power transmission loss, (c) emission and (d) combined fuel cost
and emission while maintaining all the equality and inequality
constraints as well as physical limits of FACTS devices. The results
obtained are compared with those reported in the recent state-of-
the-art literature.

The rest of the paper is organised as follows: Section ‘Steady
state models of FACTS devices’ represents the modelling part of
FACTS devices. Problem formulation part is presented in section
‘Mathematical problem formulation’. ‘KHA’ portion describes the
basic KHA. ‘OKHA’ illustrates the proposed OKHA. The implemen-
tation part of the proposed algorithm is described in ‘Implementa-
tion of OKHA for OPF problem with FACTS’. Simulation results are
presented and discussed in section ‘Simulation results and discus-
sion’. Finally, conclusions of the present work along with scope of



Fig. 2. Circuit model of TCPS connected between pth and qth bus.
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future work are presented in ‘Conclusion and scope of future work’
section.

Steady state models of FACTS devices

Modelling of TCSC

The effect of TCSC on a power system network may be repre-
sented by a controllable reactance which is inserted in series with
the related transmission line. The static model of the network with
TCSC connected between the pth and the qth bus is shown in Fig. 1
[13,36]. The corresponding power flow equations of the line having
TCSC may be derived as follows [15,20]:

Ppq ¼ V2
pGpq � VpVqGpq cosðdp � dqÞ � VpVqBpq sinðdp � dqÞ ð1Þ

Qpq ¼ �V2
pBpq � VpVqGpq sinðdp � dqÞ þ VpVqBpq cosðdp � dqÞ ð2Þ

Pqp ¼ V2
qGpq � VpVqGpq cosðdp � dqÞ þ VpVqBpq sinðdp � dqÞ ð3Þ

Qqp ¼ �V2
qBpq þ VpVqGpq sinðdp � dqÞ þ VpVqBpq cosðdp � dqÞ ð4Þ

where

Conductance of transmission line ðGpqÞ ¼ Rpq

R2
pq þ ðXpq � XCÞ2

ð5Þ

Susceptance of transmission line ðBpqÞ ¼ � Xpq � XC

R2
pq þ ðXpq � XCÞ2

ð6Þ

Ppq, Qpq are the real and reactive power flows between the pth and
the qth bus, respectively; Vp, Vq are the voltage magnitudes at bus p
and q, respectively; Gpq, Bpq are the conductance and susceptance
between bus p and q, respectively; dp, dq are the voltage angles at
the pth and the qth bus, respectively; Rpq, Xpq are the resistance
and reactance of the transmission line, respectively and XC repre-
sents reactance of TCSC placed in the transmission line connected
between pth and qth bus.

Modelling of TCPS

TCPS may be modelled by a phase shifting transformer having a
complex tapping ratio of 1 : 1\/ and series admittance of
Ypq( = Gpq � sqrt(�1)Bpq), connected between pth and qth bus as
shown in Fig. 2. [13,36]. The corresponding power flow equations
of the line may be expressed as follows [15,20]:

Ppq ¼
V2

pGpq

cos2/
�VpVq

cos/
½Gpq cosðdp�dqþ/ÞþBpq sinðdp�dqþ/Þ� ð7Þ

Qpq ¼ � V2
pBpq

cos2 /
� VpVq

cos/
½Gpq sinðdp � dq þ /Þ � Bpq cosðdp � dq þ /Þ�

ð8Þ

Pqp ¼V2
qGpq�VpVq

cos/
½Gpq cosðdp�dqþ/Þ�Bpq sinðdp�dqþ/Þ� ð9Þ

Qqp ¼�V2
qBpqþVpVq

cos/
½Gpq sinðdp�dqþ/ÞþBpq cosðdp�dqþ/Þ� ð10Þ
Fig. 1. Circuit model of TCSC connected between pth bus and qth bus.
The static model of TCPS is shown in Fig. 3. [13,36]. The injected
active and reactive powers of TCPS at the pth and the qth bus may
be derived as follows [15,20]:

Pps ¼�GpqV
2
p tan

2/�VpVq tan/½Gpq sinðdp�dqÞ�Bpq cosðdp�dqÞ�
ð11Þ

Qps ¼BpqV
2
p tan

2/þVpVq tan/½Gpq cosðdp�dqÞþBpq sinðdp�dqÞ�
ð12Þ

Pqs ¼ �VpVq tan/
h
Gpq sinðdp � dqÞ þ Bpq cosðdp � dqÞ

i
ð13Þ

Qqs ¼ �VpVq tan/
h
Gpq cosðdp � dqÞ � Bpq sinðdp � dqÞ

i
ð14Þ

Pps, Qps are the injected real and reactive powers at bus p due to
TCPS, respectively and Pqs, Qqs are the injected real and reactive
powers at bus q due to TCPS, respectively.

Mathematical problem formulation

The objective of OPF is to minimize an objective function while
satisfying all the equality and inequality constraints. The optimiza-
tion problem of the present work, i.e. OPF problem incorporated
with two FACTS devices like TCSC and TCPS deals with four differ-
ent objective function while satisfying all equality and inequality
constraints as well as the physical operating limits of the used
FACTS devices.

The general formulation of this type of problem may be
expressed as a constrained optimization problem as follows

Min of ðu;vÞ ð15Þ

Subject to :
gðu;vÞ ¼ 0
hðu;vÞ 6 0

� �
ð16Þ

where of is the objective function to be minimized; g(u, v) is the set
of equality constraints; h(u, v) is the set of inequality constraints; u
is the vector of dependent variables consisting of generator active
power output at slack bus PG1, load voltages ðVL1; . . . ;VLNPQ Þ, gener-
ators’ reactive powers ðQG1; . . . ;QGNPV

Þ, transmission line loadings
ðSL1; . . . ; SLNL Þ and v is the vector of independent variables consisting
of generators’ active powers except slack bus ðPG2; . . . ; PGNPV Þ, gener-
ators’ voltages ðVG1; . . . ;VGNPV Þ, transformers’ tap settings
ðT1; . . . ; TNT Þ and reactive power injections ðQC1; . . . ;QCNC

Þ. There-
fore, u and v may be expressed as [15,20]:

u ¼ bPG1;VL1; . . . ;VLNPQ ;QG1; . . . ;QGNPV
; SL1; . . . ; SLNLc ð17Þ

v ¼ bPG2; . . . ; PGNPV ;VG1; . . . ;VGNPV ; T1; . . . ; TNT ;QC1; . . . ;QCNC
c ð18Þ
Fig. 3. Power injected model of TCPS connected between pth and qth bus.
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where NPV is the number of generator buses, NPQ is the number of
load buses, NL is the number of transmission lines, NT is the number
of tap setting transformer branches and NC is the number of capac-
itor banks.

Constraints

Here, g is the set of equality constraints representing the load
flow equations as follows [15,20]:

XNB

p¼1

ðPGp � PLpÞ þ
XNTCPS

p¼1

Ppk ¼
XNB

p¼1

XNB

q¼1

jVpjjVqjjYpqj cosðhpq þ dp � dqÞ

XNB

p¼1

ðQGp � QLpÞ þ
XNTCPS

p¼1

Qpk ¼ �
XNB

p¼1

XNB

q¼1

jVpjjVqjjYpqj sinðhpq þ dp � dqÞ

9>>>>>=
>>>>>;

ð19Þ
where PGp, QGp are the real and reactive power generations of the
pth bus, respectively; PLp, QLp are the real and reactive power
demands of the pth bus, respectively; Ppk, Qpk are the injected real
and reactive powers of TCPS at the pth bus, respectively; Ypq is
the total admittance of the transmission line connected between
the pth and the qth bus; hpq is the corresponding admittance angle
of the transmission line connected between pth and qth bus; NB is
the total number of buses and NTCPS is the number of TCPS devices
connected in the power network.

In (16), h is the set of system operating limits that includes the
constraints as mentioned below:

Generator real and reactive power outputs
Generator real and reactive power outputs of the pth unit

should lie between their minimum and maximum limits as follows
[15,20]:

Pmin
Gp 6 PGp 6 Pmax

Gp ; p ¼ 1;2; . . . ;NPV ð20Þ

Qmin
Gp 6 QGp 6 Qmax

Gp ; p ¼ 1;2; . . . ;NPV ð21Þ

where Pmin
Gp and Pmax

Gp are the minimum and maximum limits of real

power of the pth generating unit, respectively and Qmin
Gp and Qmax

Gp are
the minimum and maximum limits of reactive power of the pth
generating unit, respectively.

Voltage magnitudes at each bus in the network
Load bus voltage should lie between its respective minimum

and maximum limits and may be represented as [15,20]:

Vmin
Lp 6 VLp 6 Vmax

Lp ; p ¼ 1;2; . . . ;NPQ ð22Þ

where Vmin
Lp and Vmax

Lp are the minimum and maximum load voltage
of the pth load bus, respectively.

Transformer tap settings
Transformer tap settings are bounded between minimum and

maximum limits as given below [15,20]:

Tmin
p 6 Tp 6 Tmax

p ; p ¼ 1;2; . . . ;NT ð23Þ

where Tmin
p and Tmax

p are the minimum and maximum tap setting
limits of the pth transformer, respectively.

Shunt VAR compensator constraints
Shunt compensation of the pth compensator are restricted by

their minimum and maximum limits as given by [15,20]:

Qmin
Cp 6 QCp 6 Qmax

Cp ; p ¼ 1;2; . . . ;NC ð24Þ
where Qmin
Cp and Qmax

Cp are the minimum and maximum VAR injection
limits of the pth shunt capacitor, respectively.

Transmission lines loading
Line flow through each transmission line must be within its

capacity limits and these may be represented as [15,20]:

SLp 6 Smax
Lp ; p ¼ 1;2; . . . ;NL ð25Þ

where SLp and Smax
Lp are the apparent power flow of the pth branch

and maximum apparent power flow limit of pth branch,
respectively.

TCSC reactance constraints
TCSC reactances should lie within their respective minimum

and maximum limits represented as [15,20]:

Xmin
Tp 6 XTp 6 Xmax

Tp ; p ¼ 1;2; . . . ;NTCSC ð26Þ

where Xmin
Tp and Xmax

Tp are the minimum and maximum reactance of
the pth TCSC, respectively, and NTCSC is the number of TCSC devices
installed in the test power system.

TCPS phase shift constraints
TCPS phase shifts should lie within their respective minimum

and maximum boundaries given by [15,20]:

/min
Tp 6 /Tp 6 /max

Tp ; p ¼ 1;2; . . . ;NTCPS ð27Þ

where /min
Tp and /max

Tp are minimum and maximum phase shift angle
of the pth TCPS, respectively, and NTCPS is the number of TCPS
devices installed in the test power system.

Objective function

In this article, four different objective functions are considered
separately, to determine the superiority and effectiveness of the
proposed algorithm. These objective functions are presented in
the next four sub-sections.

Minimization of fuel cost
In this simulation study, the total generation cost is considered

as an objective function. The fuel costs considered in this article
are, mainly, of two types viz. (a) fuel cost with quadratic cost func-
tion and (b) fuel cost with valve point loading effect.

Fuel cost with quadratic cost function. The total fuel cost of generat-
ing units having quadratic cost function without valve point effect
is given by [37,38]:

FC ¼
XNPV

p¼1

ðap þ bpPGp þ cpP
2
GpÞ ð28Þ

where ap, bp and cp are the fuel cost coefficients of the pth generator.

Fuel cost with valve point loading effect. In practical generator, mul-
tiple valve steam turbines may be incorporated to achieve more
accurate and flexible operation and, therefore, the valve point
effect should also be considered to represent accurate cost func-
tion. The total cost of generating units with valve point loading
effect is presented as [14,15]:

FC ¼
XNPV

p¼1

ap þ bpPGp þ cpP
2
Gp þ dp sinðepðPmin

Gp � PGpÞÞ
��� ��� ð29Þ

where dp and ep are the fuel cost coefficients with valve point load-
ing effect of the pth generator.
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Minimization of transmission loss
Mathematical formulation of this type of objective function is

given by [14,15]:

Min PLoss ð30Þ
It can also be, mathematically, formulated as:

PLoss ¼
XNL

k¼1

Gk½V2
p þ V2

q � 2jVpjjVqj cosðdp � dqÞ� ð31Þ

where PLoss is the total power loss and Gk is the conductance of the
kth line connected between the pth and the qth buses.

Minimization of emission
Mathematical formulation of this type of problem can be writ-

ten as:

Min EðPgÞ ð32Þ
where E(Pg) is the total emission.Thermal generating units emit
atmospheric pollutants like nitrogen oxides (NOx) and sulphur oxi-
des (SOx) which can be modelled separately. But for the sake of
comparison, the total emission of these pollutants (which is the
sum of a quadratic and an exponential function) may be expressed
as [14,15]:

EðPgÞ ¼
XNPV

p¼1

ap þ bpPGp þ cpP
2
Gp þ gp expðkpPGpÞ

� �
ð33Þ

where ap, bp, cp, gp and kp are the emission coefficients of the pth
generator.

Minimization of combined economic and environmental cost
The combined economic and environmental cost of OPF prob-

lem considers both cost and emission simultaneously. In this case,
both economic and environmental OPF problem has been con-
verted into a single objective optimization problem by introducing
price penalty factor (PF) [37] and may be described as [15,20]:

Min OFðFU; EÞ ð34Þ
where OF(FU, E) is the combined economic environmental cost and
it may be, alternatively, formulated as [15,20]:

Min OFðFU; EÞ ¼ Min fFU þ PF � Eg ð35Þ
KHA

The krill herd algorithm [21] is based on the herding behaviour
of krill swarms in response to specific biological and environmen-
tal processes. As KHA is a meta-heuristic one, two main character-
istics may be noted here as, one is exploration or random search
and other is exploitation or local search. Combination of these
two plays a very important role to achieve highest performance
in solving optimization problem.

In KHA, the objective function is, mainly, defined as the distance
of food from each individual krill and the highest density of the
herd. The time dependent position of each individual krill is deter-
mined by three main processes. These are [24]:

(a) movement induced by other krill individuals,
(b) foraging activity and
(c) random diffusion.

Regular KHA may be expressed by Lagrangian model in an n
dimensional decision space as shown below [21]:

dxi
dt

¼ Vnew
i þ Vnew

Fi
þ Vnew

Di
ð36Þ
where Vnew
i is the motion induced by other krill individuals, Vnew

Fi
is

the foraging motion and Vnew
Di

is the physical diffusion of the krill
individuals.
Motion induced by other krill individuals

In this process, the krill individuals try to maintain a high den-
sity and the velocity of each individual is influenced by the move-
ment of the others. The direction of motion induced (wi) is,
approximately, evaluated by the three effects namely (i) local
effect, (ii) target effect and (iii) repulsive effect. For an individual
krill i, this motion may be formulated as given below [29]:

Vnew
i ¼ wiV

max
i þ aVold

i ð37Þ
wi ¼
Xns
j¼1

zi�zj
zw�zb

� xi�xj
jxi�xjjþ randð0;1Þ

� �
þ2 randð0;1Þþ i

imax

� �
zbesti Xbest

i

ð38Þ

where Vmax
i is the maximum induced motion; a is the inertia weight

of the motion induced in the range [0,1]; Vold
i is the previous

induced motion of the ith krill individuals; zw and zb are the worst
and best position among all krill individuals of the population,
respectively; zi and zj are the fitness values of the ith and jth individ-
uals; ns is the number of krill individuals other than the particular
krill; i and imax are the number of current iteration and maximum
number of iterations, respectively, and x represents the related
positions.

For the determination of distance of individual krills and that of
neighbours, a parameter named as sensing distance (Ds) is used.
The sensing distance may be formulated as [31]:

Ds ¼ 1
5Ni

XNi

k¼1

jxi � xkj ð39Þ

where Ni is the total number of the krill individual and xk is the
position of the kth krill. It is noted that if the distance between
two individual krills has lesser values than the sensing distance
then they are neighbours.
Foraging activity

Foraging activity is based upon two main factors. First is the
present food location and second is the information about the pre-
vious food location. The foraging velocity may be expressed for ith
krill individual as follows [21]:

Vnew
Fi

¼ 0:02 2 1� i
imax

	 

zi

Pns
k¼1

xk
zkPns

k�1
1
zj

þ zbesti Xbest
i

" #
þ aFV

old
Fi

ð40Þ

where aF is the inertia weight of the foraging motion and Vnew
Fi

and

Vold
Fi

are the foraging motion of the ith krill, respectively.
Random diffusion

The random diffusion process of the krill individuals is, mainly,
considered to enhance the population diversity. It may be
expressed as follows [21]:

Vnew
Di

¼ nVmax
D ð41Þ

where Vmax
D is the maximum diffusion speed and n is the random

directional vector lies between [�1,1].
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Position update

In this process, the individual krill alters its current positions
and moves to the better positions based on induction motion, for-
aging motion and random diffusion motion. According to the three
above analysed motions, the updated position of the ith krill indi-
vidual may be expressed as [22]:

xnew
0

i ¼ xnewi þ ðVnew
i þ Vnew

Fi
þ Vnew

Di
ÞPC

Xnd
j¼1

ðuj � ljÞ ð42Þ

where nd is the total number of variables; uj and lj are the upper and
lower limits of the qth variables (j = 1, 2, . . . , nd), respectively and PC
is the position constant number between [0,2].
Fig. 4. Flowchart of KHA.
In order to improve the performance of the optimization prob-
lem and speed up the convergence property, the crossover and
mutation process of DE algorithm is incorporated in KHA [21].

Crossover
Crossover process is, mainly, controlled by a parameter (termed

as crossover probability (CR)). To update the position of own, each
individual krill interacts with others. In this process, the jth com-
ponent of the ith krill may be formulated as [31]:

xi;j ¼
xk;j if rand 6 CR

xi;j if rand > CR

�
where

k ¼ 1;2; . . . ;Np

k–p

�
ð43Þ

CR ¼ 0:2zbesti ð44Þ
Mutation
Mutation process is, mainly, controlled by a parameter (named

as mutation probability (MR)). This process may be formulated as
[31]:

xi;j ¼ xbest;j þ cðxm;j � xn;jÞ ð45Þ
where xbest,j is the global best vector; xm,j and xn,j are two randomly
selected vectors and c is a scalar number between 0 and 1.

The modified value of xi,j is formulated as follows [31]:

xmod
i;j ¼ xnewi;j if rand 6 MR

xi;j if rand > MR

(
ð46Þ
Computational procedure

The flowchart of the KHA is shown in Fig. 4. The computational
procedure of this algorithm is illustrated in Algorithm 1.
Algorithm 1: Computational procedure for KHA
Step 1
 Initialization. Set the parameters like; population
size (Np), maximum number of fitness function
evaluation (NFFEmax), maximum induced speed
ðVmax

i Þ, foraging speed (VF) and maximum diffusion
speed ðVnew

Di
Þ.
Step 2
 Fitness evaluation. Generate randomly the position
set of each krill individual and evaluate the fitness
function value for each krill individual
Step 3
 while the termination criteria is not satisfied or
t < NFFEmax do

Sort the population from best to worst.

Store the best krill in KEEP.

for i ¼ 1 : Np (all population) do

Calculate the following motions;

(a) induced motion

(b) foraging motion

(c) physical diffusion

Update the position of the krill individual in the

search space.

Evaluate each individual krill according to its

new position.

end for
Replace the KEEP with best value.

Sort the population from best to worst and find the
current best.

t = t + 1;
Step 4
 end while

Step 5
 Post-procession of the results.
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OKHA

OBL

OBL is, basically, a machine intelligence strategy which was
proposed by Tizhoosh in [32]. It considers the current individual
and its opposite individual simultaneously in order to get a better
approximation at the same time for a current candidate solution.
It has been also proved that an opposite candidate solution has a
greater opportunity to be closer to the global optimal solution
than a random candidate solution [39]. So, the concept of OBL
has been utilised to enhance population based algorithms in
[34,40–42].

The general, OBL concept has been, successfully, applied in
some areas of research work such as in reinforcement learning
[43], window memorization for morphological algorithms [44],
image processing using the opposite fuzzy sets [45,46] and also
in some popular optimization techniques like ant colony opti-
mization [47–49], GA [50], artificial neural networks with oppo-
site transfer function and back propagation [51,52], DE [41,42],
PSO with Cauchy mutation [34,53], gravitational search algorithm
[38], harmonic search algorithm [54], and BBO [55,56].

In proposing this technique, two definitions, namely, opposite
point and opposite number and two steps, namely, opposition
based population initialization and opposition based generation
jumping are clearly defined below:

Opposite number
Letm 2 ½x; y� be a real number. The opposite number ofm (m⁄) is

defined by:

M� ¼ xþ y�m ð47Þ
Opposite point
Let, M = (m1,m2, . . . ,md) be a point in d-dimensional search

space, where mr 2 ½xr ; yr � and d = {1, 2, . . . , d, . . . , n}. The opposite
point is defined by

m�
r ¼ xr þ yr �mr ð48Þ
Opposition based population initialization
By utilising opposite points, a suitable starting candidate solu-

tion may be obtained even when there is not a priori knowledge
about the solution. The main steps of the proposed approach are
listed as follows:

Step 1: Initialize the population set M(Nr) in a random manner.
Step 2: Calculate opposite population by:

OMa;b ¼ xb þ yb �Ma;b ð49Þ

where a = 1, 2, . . . , Np, b = 1, 2, . . . , n and Ma,b and OMa,b denote the
bth variable of the ath vector of the population and opposite popu-
lation, respectively.

Step 3: Select the fittest Np individuals from fM [ OMg as initial
population.
The computational procedure of the above method is depicted

in Algorithm 2.
Algorithm 2: Computational procedure for opposition based
population initialization
Step 1
 for a = 1: Np
for b = 1: N

OMa;b ¼ xb þ yb �Ma;b
end for

end for
Step 2
 Select Np fittest individuals from set of fM [ OMg.
Opposition based generation jumping
If we apply similar approach to the current population, the

whole evolutionary process can be forced to jump to a new solu-
tion candidate which is more suitable than the current one. Based
on a jumping rate (JR), after following the induction, foraging
action and random diffusion processes of KHA, the new popula-
tion is generated and opposite population is calculated. From this
comparison, the fittest Np individuals are selected. In each gener-
ation, search space is reduced to calculate the opposite points, i.e.

OMa;b ¼ Mingn
b þMaxgnb �Ma;b ð50Þ

a ¼ 1;2; . . . ;Np and b ¼ 1;2; . . . ;n

where bMingn
b ;Maxgnb c is the current interval in the population which

is becoming increasingly smaller than the corresponding initial
range [xb, yb].

The computational procedure of this algorithm is illustrated in
Algorithm 3.
Algorithm 3: Computational procedure for opposition based
generation jumping
Step 1
 if (rand1 < JR)% rand1 2 ½0;1�, JR: Jumping rate

for a = 1: Np
for b = 1: N

OMa;b ¼ Mingn

b þMaxgnb �Ma;b
% Mingn
b : minimum value of the bth variable

in the current generation (gn)

%Maxgnb : maximum value of the bth variable

in the current generation (gn)

Select Np fittest individuals from set of

fM [ OMg.

end for
end for

end if
Step 2
 Select Np fittest individuals from set of fM [ OMg.
Flowchart of OKHA
The flowchart of the proposed OKHA is shown in Fig. 5.
Implementation of OKHA for OPF problem with FACTS

The main steps of the proposed OKHA approach, as applied to
OPF problem with FACTS devices are described in Algorithm 4.
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Algorithm 4: OKHA for OPF problem with FACTS devices
Step 1
 Read the parameters of power system (line data,
bus data, fuel cost co-efficient, load flow
parameters, etc.) as well as those of the proposed
algorithm and specify the upper and lower limits of
each individual parameter like (a) active power
generation, (b) generator bus voltage, (c) load bus
voltage, (d) reactive power generation, (e) tap
changing transformers, (f) shunt compensating
devices, (g) line flow through each transmission line
and most importantly TCSC reactance and TCPS
phase shift constraints. Afterward, initialised again.
Now several initial set depending upon the
population size are generated. A feasible solution
set (control variables) represents the position of
different krill individuals.
Step 2
 For determining the feasible population set of OBL,
all the parameters of power system and the
proposed algorithm have to be initialized within its
upper and lower limit (refer Algorithm 1). Then,
Newton Raphson based load flow [36,57] method is
run to check if these constraints are within the
limits or not. If anyone of them violates the limits
then corresponding set is discarded and reini-
tialised. Thus, the feasible solution set is obtained.
Step 3
 Select the fittest individuals.

Step 4
 Sort them from best to worst.

Step 5
 Choose Np elite solutions based on the fitness value.

Step 6
 The position of krill individuals of non elite

population set is modified. Further, application of
crossover and mutation operation again modifies
the position.
Step 7
 Run Newton Raphson based load flow [36,57] to
determine the dependent variables of OPF problem
with FACTS devices and evaluate the fitness value of
population set.
Step 8
 Based on (JR), the new opposite population and
corresponding fitness values are calculated (refer
Algorithm 2). Newton Raphson [36,57] based load
flow is run to check if the constraints are within the
limits or not. If any one of them does not satisfy the
inequality constraints, then that particular set have
to be discarded and
Step 9
 Check for the constraints of the problem.

Fig. 5. Flowchart of OKHA.
Step 10
 Go to Step 6 until a stopping criterion is satisfied.
Simulation results and discussion

In order to demonstrate the applicability and validity of the pro-
posed OKHA algorithm for OPF problems having TCSC and TCPS
devices located at fixed locations, two different test systems viz.
modified IEEE-30 bus and IEEE-57 bus power systems are consid-
ered. All the simulations are carried out using MATLAB 2008a com-
puting environment on a 2.63 GHz Pentium IV personal computer
with 3 GB RAM. For establishing the superiority of the proposed
OKHA, thirty independent test trial runs are performed for all the
test cases and simulation results along with comparative discus-
sion are reported in this part. The value of NFFEmax is set as 500
for all the simulated test cases. To indicate the optimization capa-
bility of the proposed OKHA, the results of interest are bold faced
in the respective tables.
Test system 1: Modified IEEE-30 bus test power system

The modified IEEE-30 bus test system consists of six generating
units (at buses 1, 2, 5, 8, 11, 13) and twenty-four load buses
interconnected with forty-one transmission lines of which four
branches (6–9, 6–10, 4–12 and 28–27) equipped with tap
changing transformer and nine branches having shunt VAR
compensators (at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29) is
considered as test system 1. Bus 1 is selected as the slack bus.
The total system demand is 2.834 p.u. at 100 MVA base. The load
bus voltages have been constrained within the ranges of
0.95–1.05 p.u. In this test system, two TCSCs are incorporated in
the branches like {3,4} and {19,20} and two TCPSs are installed
in branches like {5,7} and {10,22}, respectively, in line with
[15,20].



Table 1
Best control variable settings for fuel cost (without valve point effect) minimization objective of modified IEEE-30 bus test power system offered by different algorithms.

Control variables TS/SA [17] DE [14] ALC-PSO [20] KHA (studied) OKHA (proposed)

PG1 (MW) 192.46 180.26 185.24 194.80 194.65
PG2 (MW) 48.38 49.32 46.33 49.65 49.76
PG5 (MW) 19.54 20.82 20.88 15.00 15.00
PG8 (MW) 11.60 17.61 15.64 10.00 10.00
PG11 (MW) 10.00 11.05 11.12 10.00 10.00
PG13 (MW) 12.00 12.69 12.58 12.00 12.00
Total PG (MW) 294.00 291.75 291.79 291.45 291.41
Xc3–4 (p.u.) 0.0200 0.0190 0.0192 0.0148 0.0157
Xc19–20 (p.u.) 0.0200 0.0243 0.0241 0.0201 0.0214
/5–7 (�) 1.9137 �0.5558 �0.5556 �0.5510 �0.5504
/10–22 (�) 0.8251 �0.0286 �0.0287 �0.0251 �0.0251

Cost ($/h) 803.84 797.29 796.93 796.408 796.289
Emission (ton/h) NR⁄ 0.3756 0.390207 0.424966 0.424469
PLoss (MW) 10.60 8.35 8.39 8.05 8.01
CPU time (s) 265.8 487.3 479.2 470.28 458.1

NR⁄ means not reported in the referred literature.

Fig. 6. Comparative convergence profile of fuel cost for fuel cost with quadratic fuel
cost minimization objective of modified IEEE-30 bus test power system.

Fig. 7. Comparative convergence profile of fuel cost for fuel cost with valve point
effect minimization objective of modified IEEE-30 bus test power system.
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Case study 1: Minimization of fuel cost

(i) Without considering valve point effect: Both KHA and OKHA
based results of OPF problem with FACTS devices for fuel
cost minimization objective of this test system is presented
in Table 1. These results are compared with TS/SA [17], DE
[14] and ALC-PSO [20] and these results are also featured
in the same table. It may be observed from this table that
the minimum fuel cost as obtained from the proposed OKHA,
is 796.289 $/h which is less by 0.08% compared to the previ-
ously reported best results of 796.93 $/h [20]. The fuel cost
Table 2
Best control variable settings for fuel cost minimization objective (with valve point effect

Control variables RCGA [14] DE [14]

PG1 (MW) 198.81 199.13
PG2 (MW) 38.96 38.32
PG5 (MW) 19.16 20.17
PG8 (MW) 10.64 11.43
PG11 (MW) 13.56 10.43
PG13 (MW) 12.03 12.66
Total PG (MW) 293.16 292.14
Xc3–4 (p.u.) 0.0185 0.0123
Xc19–20 (p.u.) 0.0247 0.0250
/5–7 (�) �0.5713 �0.1891
/10–22 (�) �0.0281 0.2177

Cost ($/h) 831.03 826.54
Emission (ton/h) 0.4366 0.4383
PLoss (MW) 9.76 8.74
CPU time (s) 714.8 505.6
for KHA is found to be 796.408 $/h. The comparative conver-
gence profile of fuel cost ($/h) for this power system, as
yielded by ALC-PSO, studied KHA and the proposed OKHA,
is presented in Fig. 6. From this figure it is observed that
the fuel cost function value converges smoothly at lesser
iteration cycles for OKHA than the other two.

(ii) With valve point effect: Table 2 represents the best control
variables for the solution of OPF problemwith FACTS devices
for fuel cost minimization objective considering valve point
loading effect for this test system. The results obtained from
both KHA and OKHA are compared with other optimization
) of modified IEEE-30 bus test power system offered by different algorithms.

ALC-PSO [20] KHA (studied) OKHA (proposed)

199.85 200.000 200.000
38.20 45.106 45.000
20.16 15.012 15.100
11.15 10.000 10.000
10.13 10.000 10.000
12.66 12.000 12.000
292.15 292.118 292.10
0.0122 0.0123 0.0119
0.0251 0.0251 0.0248
�0.1819 �0.1821 �0.1801
0.2148 0.2145 0.2114

825.89 824.18 824.09
0.441245 0.443735 0.443705
8.75 8.718 8.70
503.12 499.89 490.12



Table 3
Best control variable settings for active power transmission loss minimization objective of modified IEEE-30 bus test power system offered by different algorithms.

Control variables RCGA [14] DE [14] ALC-PSO [20] KHA (studied) OKHA (proposed)

PG1 (MW) 77.58 74.59 74.69 74.526 74.521
PG2 (MW) 69.58 67.30 67.30 67.601 67.590
PG5 (MW) 49.98 50.00 50.00 50.000 50.000
PG8 (MW) 34.96 34.85 34.66 34.431 34.322
PG11 (MW) 23.69 27.04 27.26 27.111 27.244
PG13 (MW) 30.43 32.36 32.22 32.454 32.431
Total PG (MW) 286.22 286.14 286.13 286.123 286.108
Xc3–4 (p.u.) 0.0193 0.0084 0.0081 0.0081 0.0071
Xc19–20 (p.u.) 0.0239 0.0045 0.0044 0.0041 0.0034
/5–7 (�) �0.5347 �0.5329 �0.5327 �0.5311 �0.5314
/10–22 (�) �0.0292 �0.4526 �0.4527 �0.4514 �0.4517

Cost ($/h) 985.21 992.30 992.18 992.14 992.43
Emission (ton/h) 0.2144 0.2109 0.210904 0.210920 0.210890
PLoss (MW) 2.82 2.74 2.73 2.723 2.708
CPU time (s) 711.7 497.4 490.1 482.15 468.41

Fig. 8. Comparative convergence profile of PLoss for PLoss minimization objective of
modified IEEE-30 bus test power system.

Fig. 9. Comparative convergence profile of emission for emission minimization
objective of modified IEEE-30 bus test power system.
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techniques such as RCGA [14], DE [14] and ALC-PSO [20]
including the basic KHA one. This table shows that a fuel cost
reduction of 0.2179% is accomplished from the previous best
of 825.89 $/h as reported by using ALC-PSO in [20] to 824.09
$/h. Fig. 7. shows the comparative ALC-PSO, studied KHA and
the proposed OKHA based convergence characteristics of
fuel cost for fuel cost minimization objective considering
valve point loading effect for this test system and the nature
of the characteristic yielded by the proposed OKHA is found
to be promising one.
Table 4
Best control variable settings for emission minimization objective of modified IEEE-30 bu

Control variables RCGA [14] DE [14]

PG1 (MW) 63.98 63.50
PG2 (MW) 67.75 67.92
PG5 (MW) 50.00 50.00
PG8 (MW) 35.00 35.00
PG11 (MW) 29.96 30.00
PG13 (MW) 40.00 40.00
Total PG (MW) 286.69 286.42
Xc3–4 (p.u.) 0.0192 0.0187
Xc19–20 (p.u.) 0.0246 0.0251
/5–7 (�) �0.5518 �0.5478
/10–22 (�) �0.0288 0.0293

Cost ($/h) 1015.80 1015.10
Emission (ton/h) 0.2049 0.2048
PLoss (MW) 3.29 3.02
CPU time (s) 707.6 511.3
Case study 2: Minimization of transmission active loss
Considering minimization of transmission active loss as one of

the objective function for this modified IEEE-30 bus power system,
obtained optimal values of the control variables from both KHA
and the proposed OKHA techniques are reported in Table 3 along
with the previously reported values yielded by RCGA [14], DE
[14] and ALC-PSO [20]. The minimum real power loss, as obtained
by using OKHA, is found to be 2.708 MW which is 0.8058% less
than previously published best result offered by ALC-PSO [20]. This
value of transmission active power loss is even found to be
less than KHA based one. Promising convergence profile of
s test power system offered by different algorithms.

ALC-PSO [20] KHA (studied) OKHA (proposed)

64.52 65.004 64.996
66.90 66.371 66.375
50.00 50.000 50.000
35.00 35.000 35.000
30.00 30.000 30.000
40.00 40.000 40.000
286.42 286.375 286.371
0.0185 0.0180 0.0181
0.0249 0.0245 0.0234
�0.5462 �0.5141 �0.5414
0.0291 0.0245 0.0245

1014.24 1013.61 1013.61
0.204758 0.204755 0.204754
3.020 2.975 2.971
506.1 500.14 490.12



Fig. 10. Comparative convergence profile of OF for combined economic and
environmental cost minimization objective of modified IEEE-30 bus test power
system.

Fig. 11. Comparative convergence profile of fuel cost for fuel cost minimization
objective of standard IEEE-57 bus test power system.

Table 5
Best control variable settings for combined fuel cost and emission minimization objective of modified IEEE-30 bus test power system offered by different algorithms.

Control variable DE [14] ALC-PSO [20] KHA (studied) OKHA (proposed)

PG1 (MW) 107.98 115.23 120.526 120.429
PG2 (MW) 58.57 56.57 53.278 53.371
PG5 (MW) 32.38 31.88 31.217 31.211
PG8 (MW) 27.61 27.54 27.240 27.237
PG11 (MW) 29.51 23.89 22.858 22.865
PG13 (MW) 33.27 34.22 34.212 34.208
Total PG (MW) 289.32 289.33 289.331 289.321
Xc3–4 (p.u.) 0.0024 0.0021 0.0021 0.0019
Xc19–20 (p.u.) 0.0170 0.0168 0.0157 0.0156
/5–7 (�) 0.6131 0.6128 0.5012 0.6117
/10–22 (�) �0.0745 �0.0743 �0.0732 �0.0712
OF 1238.099 1234.445 1232.942 1232.895

Cost ($/h) 922.36 907.17 897.41 897.51
Emission (ton/h) 0.2364 0.24302 0.249151 0.249045
PLoss (MW) 5.92 5.93 5.931 5.921
CPU time (s) 521.9 515.1 508.14 498.12
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PLoss (MW), as yielded by the proposed OKHA, is shown in Fig. 8. In
the same figure, ALC-PSO and the studied KHA based convergence
profiles of PLoss (MW) are also included for the sake of comparison.
Table 6
Best control variable settings for fuel cost minimization objective of IEEE-57 bus test pow

Control variables RCGA [14] DE [14]

PG1 (MW) 517.45 520.09
PG2 (MW) 0 0
PG3 (MW) 94.81 103.74
PG6 (MW) 0 0
PG8 (MW) 181.75 175.63
PG9 (MW) 0 0
PG12 (MW) 489.77 485.23
Total PG (MW) 1283.78 1284.69
Xc18–19 (p.u.) 0.0572 0.0604
Xc31–32 (p.u.) 0.0832 0.0199
Xc34–32 (p.u.) 0.0203 0.0015
Xc40–56 (p.u.) 0.0480 0.0932
Xc39–57 (p.u.) 0.0624 0.0466
/4–5 (�) �0.7678 �0.6131
/5–6 (�) �0.7620 �0.6188
/26–27 (�) �0.3438 �0.4698
/41–43 (�) �0.3953 0.5099
/53–54 (�) �0.4011 �0.1146

Cost ($/h) 8413.43 8309.27
Emission (ton/h) 2.4331 2.4333
PLoss (MW) 32.98 33.89
CPU time (s) 874.9 689.9
Case study 3: Minimization of emission
The best control variable settings for emission minimization of

this test system, as yielded by both KHA and the proposed OKHA,
are tabulated in Table 4. In this table, obtained KHA and OKHA
based results are compared with other optimization techniques
er system offered by different algorithms.

ALC-PSO [20] KHA (studied) OKHA (proposed)

514.26 516.493 510.672
0.00 0.000 6.321
123.53 129.603 130.256
0.00 0.000 0.000
159.67 155.214 155.792
0.00 0.000 0.000
486.89 482.261 482.650
1284.35 1283.571 1285.691
0.0519 0.0413 0.0402
0.0233 0.0197 0.0224
0.0104 0.0014 0.0136
0.0439 0.0729 0.0771
0.0555 0.0457 0.0431
�0.8170 �0.6127 �0.5647
�0.6489 �0.6107 �0.5452
�0.5478 �0.4617 �0.5525
0.4100 0.5067 0.1254
�0.2455 �0.1104 �0.1567

8103.18 8030.28 8029.64
2.397822 2.398339 2.361343
33.55 32.771 34.891
680.12 650.9 637.25



Table 7
Best control variable settings for active power transmission loss minimization objective of IEEE-57 bus test power system offered by different algorithms.

Control variables RCGA [14] DE [14] ALC-PSO [20] KHA (studied) OKHA (proposed)

PG1 (MW) 303.24 318.58 311.340 310.677 310.662
PG2 (MW) 0 0 0.000 0.000 0.000
PG3 (MW) 63.19 45.90 60.613 61.351 61.349
PG6 (MW) 0 0 0.000 0.000 0.000
PG8 (MW) 400.75 407.65 400.060 400.254 400.263
PG9 (MW) 0 0 0.000 0.000 0.000
PG12 (MW) 500.00 495.03 495.140 494.867 494.872
Total PG (MW) 1267.18 1267.16 1267.153 1267.149 1267.146
Xc18–19 (p.u.) 0.0593 0.0100 0.0451 0.0101 0.0214
Xc31–32 (p.u.) 0.0179 0.0004 0.0014 0.0003 0.0010
Xc34–32 (p.u.) 0.0189 0.0079 0.0124 0.0079 0.0017
Xc40–56 (p.u.) 0.0641 0.0819 0.0781 0.0804 0.0711
Xc39–57 (p.u.) 0.0055 0.0841 0.0664 0.0848 0.0245
/4–5 (�) �0.6532 �0.0745 �0.0245 �0.0755 �0.0772
/5–6 (�) �0.0917 �0.2807 �0.3458 �0.2827 �0.2447
/26–27 (�) �0.7620 �0.9798 �0.8745 �0.9777 �0.7964
/41–43 (�) 0.6933 �0.9053 �0.8974 �0.9054 �0.9047
/53–54 (�) 0.2406 0.9798 0.9947 0.9791 0.8467

Cost ($/h) 15423.88 15691.30 15348.11 15356.31 15356.77
Emission (ton/h) 1.906545 1.966905 1.917299 1.914837 1.914828
PLoss (MW) 16.38 16.36 16.353 16.349 16.346
CPU time (s) 881.3 701.7 691.045 671.2 654.11

Fig. 12. Comparative convergence profile of PLoss for PLoss minimization objective of
standard IEEE-57 bus test power system.
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recently published in the literature like RCGA [14], DE [14] and
ALC-PSO [20]. The value of emission yielded by OKHA
(0.204754 ton/h) is improved by 0.0019535% as compared to
ALC-PSO based result (0.204758 ton/h) reported in [20]. It is also
noted that this value of emission is even less than that offered by
KHA. ALC-PSO, studied KHA and the proposed OKHA based com-
parative convergence profile of emission for this test system is
given in Fig. 9 from which OKHA based one is found to be promis-
ing one.

Case study 4: Minimization of combined economic and environmental
cost

Results of both KHA and OKHA based OPF solution for combined
economic and environmental cost minimization objective for this
test system are presented in Table 5 and those are compared to
other optimization methods like DE [14] and ALC-PSO [20]. From
this table, it may be noted that 0.1256% reduction in combined
economic and environmental cost takes place by using the pro-
posed OKHA based algorithm may be noted as (1232.895) as com-
pared to ALC-PSO may be noted as (1234.445) counterpart
reported in [20]. The value of OF offered by KHA is found to be
1232.942 for this test system. Promising convergence profile of
OF, as yielded by ALC-PSO, studied KHA and the proposed OKHA
for this case study, may be observed from Fig. 10
Test system 2: Modified IEEE-57 bus test power system

The modified IEEE-57 bus test system consists of seven generat-
ing units at buses 1, 2, 3, 6, 8, 9, 12 interconnected with fifteen
transformers under load tap settings is chosen as test system 2.
Three reactive power sources are taken at buses 18, 25 and 53.
All the bus data, line data and initial values of control variables
are taken from [58,59]. The total system demand is 12.508 p.u. at
100 MVA base. In this work, TCSCs are incorporated in five lines
like {18,19}, {31,32}, {34,32}, {40,56} and {39,57} and TCPSs are
installed in five lines like {4,5}, {5,6}, {26,27}, {41,43} and
{53,54} [15,20].
Case study 1: Minimization of fuel cost
The objective in this case is to minimize the total fuel cost.

Table 6 depicts the comparative results of optimal settings of con-
trol variables for OKHA as well as KHA along with those offered by
RCGA [14], DE [14] and ALC-PSO [20]. From this table, the fuel cost
corresponding to OKHA may be noted as 8029.64 $/h (i.e. 0.9075%
less compared to ALC-PSO [20]). The same yielded by ALC-PSO [20]
may be noted as 8103.18 $/h. OKHA based results shows 0.008%
reduction in fuel cost as compared to KHA counterpart for this
objective function. The comparative convergence characteristic
offered by ALC-PSO, the studied KHA and the proposed OKHA is
portrayed in Fig. 11 which presents that OKHA based objective
function value converges faster as compared to ALC-PSO and
KHA counterpart.
Case study 2: Minimization of transmission active loss
The results obtained for the transmission active loss minimiza-

tion by the proposed OKHA are compared with other optimiza-
tion methods like KHA, RCGA [14], DE [14] and ALC-PSO [20]
(Table 7). It may be seen from this table that the obtained real
power transmission loss from the proposed OKHA is 16.346 ton/
h. This proves loss reduction of 0.0428% has taken place while
adopting OKHA as compared to the previous algorithm like
ALC-PSO [20]. The comparative ALC-PSO, studied KHA and pro-
posed OKHA based convergence profile of PLoss (MW), shown in
Fig. 12, presents that OKHA converges faster as compared to the
other two counterparts.



Table 8
Best control variable settings for emission minimization objective of IEEE-57 bus test power system offered by different algorithms.

Control variable RCGA [14] DE [14] ALC-PSO [20] KHA (studied) OKHA (proposed)

PG1 (MW) 341.91 298.12 300.23 294.373 294.300
PG2 (MW) 0 0 0.00 0.000 0.000
PG3 (MW) 91.90 83.24 91.43 92.421 92.480
PG6 (MW) 0 0 0.00 0.000 0.000
PG8 (MW) 419.25 413.63 406.26 411.000 411.000
PG9 (MW) 0 0 0.00 0.000 0.000
PG12 (MW) 418.45 474.14 472.08 472.102 472.091
Total PG (MW) 1271.51 1269.13 1270.00 1269.896 1269.871
Xc18–19 (p.u.) 0.0830 0.0830 0.0741 0.0819 0.0847
Xc31–32 (p.u.) 0.0672 0.0672 0.0789 0.0667 0.0554
Xc34–32 (p.u.) 0.0009 0.0009 0.0008 0.0008 0.0006
Xc40–56 (p.u.) 0.0437 0.0437 0.0450 0.0445 0.0552
Xc39–57 (p.u.) 0.0772 0.0772 0.0669 0.0766 0.0688
/4–5 (�) �0.8995 �0.8995 �0.8745 0.8937 �0.8966
/5–6 (�) 0.4297 0.4297 0.2564 0.4299 0.5467
/26–27 (�) �0.8079 �0.8079 �0.7914 �0.8047 �0.8137
/41–43 (�) �0.1375 �0.1375 �0.2456 �0.1365 �0.2561
/53–54 (�) �1.0313 �1.0313 �1.1140 �1.0324 �1.0447

Cost ($/h) 15856.14 15914.38 15577.34 15809.78 15809.82
Emission (ton/h) 1.889188 1.858705 1.838714 1.835159 1.834913
PLoss (MW) 20.71 18.33 19.20 19.096 19.071
CPU time (s) 878.7 694.2 690.14 675.3 666.12

Fig. 13. Comparative convergence profile of emission for emission minimization
objective of standard IEEE-57 bus test power system.

Table 9
Best control variable settings for combined economic and environmental cost minimizatio

Control variable DE [14] ALC-PSO [2

PG1 (MW) 475.68 480.93
PG2 (MW) 0.00 0.00
PG3 (MW) 80.64 82.14
PG6 (MW) 0.00 0.00
PG8 (MW) 276.03 270.42
PG9 (MW) 0.00 0.00
PG12 (MW) 447.20 446.04
Total PG (MW) 1279.55 1279.53
Xc18–19 (p.u.) 0.0077 0.0084
Xc31–32 (p.u.) 0.0360 0.0267
Xc34–32 (p.u.) 0.0832 0.0789
Xc40–56 (p.u.) 0.0221 0.0159
Xc39–57 (p.u.) 0.0521 0.0489
/4–5 (�) 0.8308 0.7795
/5–6 (�) �0.4526 �0.4697
/26–27 (�) �0.5500 �0.5459
/41–43 (�) �0.7277 �0.6987
/53–54 (�) 0.8136 0.8135

OF 13183.423 13032.568

Cost ($/h) 10408.49 10237.79
Emission (ton/h) 2.211635 2.227447
PLoss (MW) 28.750 28.73
CPU time (s) 702.9 700.5
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Case study 3: Minimization of emission
Table 8 compares the results obtained by both KHA and OKHA

along with the other previously reported results offered by popular
techniques like RCGA [14], DE [14] and ALC-PSO [20] considering
emission minimization as an objective function for this test case.
It may be noted from this table that an emission reduction of
nearly 0.21 ton/h is achieved while adopting OKHA
(1.834913 ton/h) over the ALC-PSO (1.838714 ton/h) [20]. Compar-
ative convergence profile, shown in Fig. 13, gives the effective con-
vergence result for OKHA one.

Case study 4: Minimization of combined economic and environmental
cost

The optimal values of control variables offered by both KHA and
OKHA techniques for combined economic and environmental cost
minimization objective function for this test power system are
n objective of IEEE-57 bus test power system offered by different algorithms.

0] KHA (studied) OKHA (proposed)

480.969 480.830
5.452 5.340
92.376 92.270
0.000 0.000
259.004 258.980
0.000 0.000
442.218 442.140
1280.019 1279.560
0.0061 0.0067
0.0445 0.0447
0.8842 0.0771
0.0415 0.0358
0.0481 0.0480
0.8745 0.8921
�0.3441 �0.3447
�0.4495 �0.4940
�0.6582 �0.6543
�0.8314 0.8245

12653.874 12649.060

9898.54 9895.01
2.196009 2.194986
29.219 28.760
694.12 685.12



Fig. 14. Comparative convergence profile of OF for combined economic and
environmental cost minimization objective of standard IEEE-57 bus test power
system.
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tabulated in Table 9. The other results like DE [14], ALC-PSO [20]
are also shown in the same table for the sake of comparison. In this
case, the obtained OKHA based obtained results indicate a reduc-
tion of 2.94% in the value of OF as compared to ALC-PSO [20].
For this case study, the proposed OKHA offers the value of OF as
12649.06 while the same offered by ALC-PSO [20] is 13032.568.
Fig. 14 portrays the comparative convergence characteristic of this
objective function yielded by ALC-PSO, the studied KHA and the
proposed OKHA and it is found that the proposed OKHA converges
smoothly as compared to ALC-PSO and KHA counterparts.

Conclusion and scope of future work

In this article, a novel meta-heuristic algorithm like OKHA is
proposed to solve the OPF problem of power system incorporated
with FACTS devices. Four different objective functions viz. (i) min-
imization of fuel cost, (ii) minimization of power transmission
active loss, (iii) emission reduction and (iv) combined economic
and environmental cost minimization problem are formulated,
individually, with due regard to the equality and the inequality
constraints. To check the superiority of the proposed OKHA, it is
tested on two different standard test power systems like modified
IEEE-30 bus and modified IEEE-57 bus with TCSC and TCPS
installed at fixed strategic locations. Simulation results offered by
both OKHA and KHA are compared to other popular techniques
recently reported in the recent state-of-the-art literature and it is
demonstrated that better efficiency, robustness, stability and faster
convergence rate are obtained while applying the proposed OKHA.
So, it is explicitly shown in this article that this new algorithmmay
be very much promising and encouraging for the future research
work. As some other scopes of future work, the following men-
tioned points may be noted down.

(a) The combined economic and environmental cost and trans-
mission active power loss are considered in the present work
separately. However, these two may be combined together
to form a single cost function which may be minimized.

(b) Within the periphery of the present work, the cost of FACTS
devices has not been considered. However, the same may be
incorporated to re-formulate the problem.
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