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Abstract

Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data from
clinical images. The radiomic process can be divided into distinct steps with definable inputs and outputs, such
as image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, and
model building. Each step needs careful evaluation for the construction of robust and reliable models to be
transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and evaluation of
disease response to treatment. After the definition of texture parameters (shape features; first-, second-, and higher-
order features), we briefly discuss the origin of the term radiomics and the methods for selecting the parameters
useful for a radiomic approach, including cluster analysis, principal component analysis, random forest, neural
network, linear/logistic regression, and other. Reproducibility and clinical value of parameters should be firstly tested
with internal cross-validation and then validated on independent external cohorts. This article summarises the major
issues regarding this multi-step process, focussing in particular on challenges of the extraction of radiomic features
from data sets provided by computed tomography, positron emission tomography, and magnetic resonance imaging.
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Key points

� Radiomics is a complex multi-step process aiding
clinical decision-making and outcome prediction

� Manual, automatic, and semi-automatic segmentation
is challenging because of reproducibility issues

� Quantitative features are mathematically extracted
by software, with different complexity levels

� Reproducibility and clinical value of radiomic
features should be firstly tested with internal
cross-validation and then validated on independent
external cohorts

Background
In the new era of precision medicine, radiomics is an
emerging translational field of research aiming to find
associations between qualitative and quantitative infor-
mation extracted from clinical images and clinical data,

with or without associated gene expression to support
evidence-based clinical decision-making [1]. The con-
cept underlying the process is that both morphological
and functional clinical images contain qualitative and
quantitative information, which may reflect the under-
lying pathophysiology of a tissue. Radiomics’ analyses
can be performed in tumour regions, metastatic lesions,
as well as in normal tissues [2].
The radiomics quantitative features can be calculated

by dedicated software, which accepts the medical images
as an input. Despite many tools developed for this spe-
cific task being user-friendly in terms of use, and well
performing in terms of calculation time, it is still chal-
lenging to carefully check the quality of the input data
and to select the optimal parameters to guarantee a reli-
able and robust output.
The quality of features extracted, their association with

clinical data, and also the model derived from them, can
be affected by the type of image acquisition, postproces-
sing, and segmentation.
This article summarises the major issues regarding this

multi-step process, focussing in particular on the challenges
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that the extraction and radiomics’ use of imaging features
from computed tomography (CT), positron emission tom-
ography (PET), and magnetic resonance imaging (MRI)
generates.

Definition and extraction of image features
Different kind of features can be derived from clinical
images. Qualitative semantic features are commonly
used in the radiology lexicon to describe lesions [3].
Quantitative features are descriptors extracted from the
images by software implementing mathematical algo-
rithms [4]. They exhibit different levels of complexity
and express properties firstly of the lesion shape and the
voxel intensity histogram, secondarily of the spatial ar-
rangement of the intensity values at voxel level (texture).
They can be extracted either directly from the images or
after applying different filters or transforms (e.g., wavelet
transform).
Quantitative features are usually categorised into the

following subgroups:
Shape features describe the shape of the traced region

of interest (ROI) and its geometric properties such as
volume, maximum diameter along different orthogonal
directions, maximum surface, tumour compactness, and
sphericity. For example, the surface-to-volume ratio of a
spiculated tumour will show higher values than that of a
round tumour of similar volume.
First-order statistics features describe the distribution

of individual voxel values without concern for spatial rela-
tionships. These are histogram-based properties reporting
the mean, median, maximum, minimum values of the
voxel intensities on the image, as well as their skewness
(asymmetry), kurtosis (flatness), uniformity, and random-
ness (entropy).
Second-order statistics features include the so-called

textural features [5, 6], which are obtained calculating
the statistical inter-relationships between neighbouring
voxels [7]. They provide a measure of the spatial ar-
rangement of the voxel intensities, and hence of
intra-lesion heterogeneity. Such features can be derived
from the grey-level co-occurrence matrix (GLCM),
quantifying the incidence of voxels with same intensities
at a predetermined distance along a fixed direction, or
from the Grey-level run-length matrix (GLRLM), quanti-
fying consecutive voxels with the same intensity along
fixed directions [8].
Higher-order statistics features are obtained by statistical

methods after applying filters or mathematical transforms
to the images; for example, with the aim of identifying re-
petitive or non-repetitive patterns, suppressing noise, or
highlighting details. These include fractal analysis, Min-
kowski functionals, wavelet transform, and Laplacian
transforms of Gaussian-filtered images, which can extract
areas with increasingly coarse texture patterns.

Considering that many parameters can be tuned by
the user, hundreds of variables can be generated from a
single image.
Most of the abovementioned features are neither ori-

ginal nor innovative descriptors. Indeed, the definition
and use of textural features to quantify image properties,
as well as the use of filters and mathematical transforms
to process signals, date back a few decades [6]. There-
fore, the main innovation of radiomics relies on the –
omics suffix, originally created for molecular biology
disciplines. This refers to the simultaneous use of a large
amount of parameters extracted from a single lesion,
which are mathematically processed with advanced stat-
istical methods under the hypothesis that an appropriate
combination of them, along with clinical data, can ex-
press significant tissue properties, useful for diagnosis,
prognosis, or treatment in an individual patient (person-
alisation). Additionally, radiomics takes advantage of the
full use of large data-analysis experience developed by
other -omics disciplines, as well as by big-data analytics.
Some difficulties arise when the user has to choose

which and how many parameters to extract from the im-
ages. Each tool calculates a different number of features,
belonging to different categories, and the initial choice
may appear somehow arbitrary. Nonetheless, methods
for data analysis strictly depend on the number of input
variables, possibly affecting the final result. One possible
approach is to start from all the features provided by the
calculation tool, and to perform a preliminary analysis to
select the most repeatable and reproducible parame-
ters; to subsequently reduce them by correlation and
redundancy analysis [9]. Another approach is to make
an a priori selection of the features, based on their
mathematical definition, focussing on the parameters
easily interpretable in terms of visual appearance, or
directly connectable to some biological properties of
the tissue.
Alternatively, machine-learning techniques, underlying

the idea that computers may learn from past examples
and detect hard-to-discern patterns from large and com-
plex data sets, are emerging as useful tools that may lead
to the selection of appropriate features [10–12].

Analysis and model building
Many of the extracted features are redundant. Therefore,
initial efforts should focus on identifying appropriate
endpoints with a potential clinical application, to select
information useful for a specific purpose. Radiomics’
analysis usually includes two main steps:

1. Dimensionality reduction and feature selection,
usually obtained via unsupervised approaches; and

2. Association analysis with one or more specific
outcome(s) via supervised approaches.
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Different methods of dimensionality reduction/feature
selection and model classification have been compared
[13, 14]. The two most commonly used unsupervised ap-
proaches are cluster analysis [7, 14, 15] and principal
component analysis (PCA) [13, 16]. Cluster analysis aims
to create groups of similar features (clusters) with high
intra-cluster redundancy and low intercluster correl-
ation. This type of analysis is usually depicted by a clus-
ter heat map [17], as shown in Fig. 1. A single feature
may be selected from each cluster as representative and
used in the following association analysis [14, 15]. PCA
aims to create a smaller set of maximally uncorrelated
variables from a large set of correlated variables, and to
explain as much as possible of the total variation in the
data set with the fewest possible principal components

[18]. Graphically, the output of PCA consists of score
plots, giving an indication for grouping in the data sets
for similarity.
All selected features considered reproducible, inform-

ative, and non-redundant can then be used for association
analysis. According to our experience, an important cav-
eat for univariate analysis is multiple testing. The most
common way to overcome the multiple testing problem is
to use Bonferroni correction or the less conservative false
discovery rate corrections [19].
Supervised multivariate analysis consists of building a

mathematical model to predict an outcome or response
variable. The different analysis approaches depend on
the purpose of the study and the outcome category,
ranging from statistical methods to data-mining/

Fig. 1 Graphic representation of radiomic-feature clustering. This example graph displays the absolute value of the correlation coefficient
(ranging from 0 to 1, on the right side, indicating increasing degree of correlation) between each pair of radiomic features (shown as numbers
on the two axes). The heat map gives a good visual representation of the high correlation observed for most radiomic features that may be
grouped in the same cluster to avoid redundancy. The yellow blocks along the diagonal graphically identify the clusters including highly
correlated radiomic features. Blue blocks outside the diagonal visualise the low correlation observed between radiomic features belonging to
different clusters. In the present example, two major clusters with different information may be identified, with very high redundancy for radiomic
features in the first cluster (high homogeneity of the yellow blocks)
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machine-learning approaches, such as random forests [14,
20], neural networks [21], linear regression [21], logistic
regression [15], least absolute shrinkage and selection op-
erator [22], and Cox proportional hazards regression [23].
Previous studies comparing different model-building ap-
proaches found that the random forest classification
method had the highest prognostic performance [13, 14].
Unquestionably, the stability and reproducibility of the

model must be assessed before applying a predictive
model in a clinical setting. Indeed, it is well known that
model fitting is optimal in the training set used to build
the model, while validation in an external cohort pro-
vides more reliable fitting estimates [24]. The first step
in model validation is internal cross-validation. However,
the best way to assess the potential clinical value of a
model is validation with prospectively collected independ-
ent cohorts, ideally within clinical trials. This introduces
the issue of data sharing among different institutions, cre-
ating the need for shared databases to be used as valid-
ation sets. To help solve this issue, there are large, publicly
available databases, such as The Cancer Genome Atlas
(TCGA), including comprehensive multidimensional gen-
omic data and clinical annotations of more than 30 types

of cancer [25]. Likewise, the Cancer Imaging Archive is a
publicly available resource hosting the imaging data of pa-
tients in the TCGA database. These images can be used as
valuable sources for both hypothesis generating and valid-
ation purposes [26].
Notably, patient parameters may influence image features

via a direct causal association or exert a confounding effect
on statistical associations. For instance, smoking-related
lung cancers differ from lung cancers in non-smokers [27].
Moreover, since models need validation to be prefera-

bly performed on external and independent groups of
patients, the comparability of features extracted from
images with different parameters and segmented with
different techniques is challenging and may affect the
final performance of the model itself.

Impact of image acquisition and reconstruction
Routine clinical imaging techniques show a wide vari-
ation in acquisition parameters, such as: image spatial
resolution; administration of contrast agents; kVp and
mAs (among others) for CT (Fig. 2); type of sequence,
echo time, repetition time, number of excitations and
many other sequence parameters for MRI. Furthermore,

Fig. 2 Axial computed tomography images showing differences in the same acquisition plane between a contrast-enhanced (a) and an
unenhanced image (b), as well as for different radiation doses, lower in (c), and higher in (d)
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different vendors offer different reconstruction algorithms,
and reconstruction parameters are customised at each in-
stitution, with possible variations in individual patients.
All these variables affect image noise and texture, and
consequently the value of the radiomic features. As a re-
sult, features obtained from images acquired at a single in-
stitution using different acquisition protocols, or acquired
at different institutions with different scanners in different
patient populations, may be affected by different parame-
ters, rather than reflecting different biological properties
of tissues. Finally, some acquisition and reconstruction
settings may yield to unstable features, thus showing dif-
ferent values when extracted from repeated measurements
under identical conditions.
An approach to overcome this limitation may be to ex-

clude from the beginning the features highly influenced
by the acquisition and reconstruction parameters. This
can be achieved by integrating information from the lit-
erature and from dedicated experimental measurements,
taking into account the peculiarity of each imaging
modality.

CT
Standard CT phantoms, like those proposed by the
American Association of Physicists in Medicine [28],
allow the evaluation of imaging performance and the as-
sessment of how far image quality depends on the
adopted technique. Despite not being intended for this,
they may provide useful information on the parameters
potentially affecting image texture. For instance, a de-
crease in slice thickness reduces the photon statistics
within a slice (unless mAs or kVp are increased accord-
ingly), thereby increasing image noise. The axial field of
view and reconstruction matrix size determine the pixel
size and hence the spatial sampling in the axial plane,
which has an impact on the description of heterogeneity.
The reduction of pixel size increases image noise (when
the other parameters are kept unchanged), but increases
spatial resolution.
When considering spiral CT acquisition, pitch is a

variable that influences image noise, making difficult the
comparison between different scanners and vendors.
Thus, non-spiral (axial) acquisitions are necessary for
these comparisons. Likewise, clinical conditions, such as
the presence of artifacts due to metallic prostheses, may
affect image quality and impair quantitative analysis [29].
Furthermore, electronic density quantification expressed
as Hounsfield Units may vary with the reconstruction al-
gorithm [30] or scanner calibration.
Thus, to study in detail the effects of acquisition set-

tings and reconstruction algorithms on radiomic fea-
tures, more sophisticated phantoms are required. For
example, the Credence Cartridge Radiomics phantom,
including different cartridges, each of them exhibiting a

different texture, was developed to test inter-scanner,
intra-scanner, and multicentre variability [31], as well as
the effect of different acquisition and reconstruction set-
tings on feature robustness [4]. Another possibility is to
develop customised phantoms [32] resembling the
anatomic districts of interest, embedding inserts simu-
lating tissues with different texture and size, and lo-
cated at different positions, to test protocols under
real clinical conditions.
Alternatively, many authors have investigated features

of robustness and stability on clinical images by under-
taking test-retest studies [33], or comparing the results
obtained with different imaging settings and processing
algorithms [34]. These studies conclude that there is still
the need for dedicated investigations to select features
with sufficient dynamic range among patients, with
intra-patient reproducibility and low sensitivity to image
acquisition and reconstruction protocols [15].

PET
Texture analysis on PET images poses additional chal-
lenges. PET spatial resolution is in general worse than
that of CT, because of low accuracy in describing the
spatial distribution of VI, which radiomic features aim to
quantify. This relies on different physical phenomena,
different technologies used for radiation detection, and
patient motion. Less accurate data may fail in generating
significant association with biological and clinical end-
points, or may require an increased number of patients.
Of note, the VI, expressed in terms of standardised up-

take value (SUV) can be scanner dependent. For example,
modelling or not the detector response in the reconstruc-
tion algorithm leads to a lymph node SUVmean difference of
28% [35]. Furthermore, for the same scanner model, SUV
differences (hence radiomic-feature differences) may be due
to acquisition at different times post injection, patient blood
glucose level and presence of inflammation [36].
Previous studies provided data to select the most appro-

priate procedures and radiomic PET features [37–39]. For
example, voxel size was shown to be the most important
source of variability for a large number of features,
whereas the entropy feature calculated from the GLCM
was robust with respect to acquisition and reconstruction
parameters, post-filtering level, iteration number, and
matrix size [35].
For dedicated experimental measurements, phantoms

routinely used for PET scanner quality control may be
used. For instance, the NEMA Image Quality phantom
has been used to assess the impact of noise on textural
features when varying reconstruction settings [37, 40],
whereas homogeneous phantoms have been used to test
stability [41]. To our knowledge, commercial phantoms
customised for testing radiomic-feature performance in
the presence of inhomogeneous activity distributions are
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not yet available, but home-made solutions have been
described [41].
Scanner calibration and protocol standardisation are

necessary to allow for multicentre studies and model gen-
eralisability [9, 42]. Harmonisation methods are emerging
to allow gathering and comparing data from different
centres, although they are not yet largely applied in
clinical studies [35].

MRI
The signal intensity in MRI arises from a complex inter-
action of intrinsic tissue properties, such as relaxation
times as well as multiple parameters related to scanner
properties, acquisition settings, and image processing.
For a given T1- or T2-weighted sequence, voxel intensity
does not have a fixed tissue-specific numeric value. Even
when scanning the same patient in the same position
with the same scanner using the same sequence in two
or more sessions, signal intensity may change (Fig. 3),
whereas tissue contrast remains unaltered [43].
Without a correction for this effect, a comparison of

radiomic features among patients may lose significance
as it depends on the numeric value of voxel intensity.
One possibility is to focus texture analysis on radiomic
features quantifying the relationship between voxel in-
tensities, where numerical values do not depend on the
individual voxel intensity; another is to make a compen-
sation (normalisation) before performing quantitative
image analysis [43].
Current studies investigating the impact of MRI acqui-

sition parameters on radiomic-feature robustness ad-
dress the complexity of the technique and the low
availability of proper phantoms. The available data sug-
gest that texture features are sensitive to variations of ac-
quisition parameters: the higher the spatial resolution,
the higher the sensitivity [44]. A trial assessing radiomic
features obtained on different scanners at different insti-
tutions or with different parameters concluded that
comparisons should be treated with care [45].

Impact of image segmentation
Segmentation is a critical step of the radiomics process
because data are extracted from the segmented volumes.
This is challenging because many tumours show unclear
borders. It is contentious because there is no consensus
on the need to seek either the ground truth or reprodu-
cibility of segmentation [1]. Indeed, many authors con-
sider manual segmentation by expert readers the ground
truth despite high inter-reader variability. This method is
also labour intensive (Fig. 4) and not always feasible for
radiomics’ analysis, requiring very large data sets [46].

Fig. 3 Axial T2-weighted images of the pelvis, acquired keeping unchanged all the parameters, with only exception of the echo time, which was
34 ms in (a), 90 ms in (b), and 134 ms in (c), showing that even one single parameter can change the signal intensity of tissues and fluids, as
clearly depicted by the signal of the bladder (white star), with higher and higher signal intensity from a to b to c

Fig. 4 An example of manual segmentation of lung cancer on
computed tomography images. Although manual segmentation is
often considered ground truth, this image shows red and black
regions of interest delineated by two different readers for the
same tumour
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Automatic and semi-automatic segmentation methods
have been developed across imaging modalities and dif-
ferent anatomical regions. Common requirements in-
clude maximum automaticity with minimum operator
interaction, time efficiency, accuracy, and boundary re-
producibility. Some segmentation algorithms rely on
region-growing methods that require an operator to se-
lect a seed point within the volume of interest [47].
These methods work well for relatively homogeneous le-
sions, but show the need for intensive user correction
for inhomogeneous lesions. For example, most stage I and
stage II lung tumours present as homogenous, high-inten-
sity lesions on a background of low-intensity lung
parenchyma [48, 49] and, therefore, can be automatically
segmented with high reproducibility and accuracy. How-
ever, for partially solid, ground-glass opacities, nodules at-
tached to vessels and to the pleural surface, automatic
segmentation is burdened by low reproducibility [50].
Other segmentation algorithms include level-set methods

that represent a contour as the zero-level set of a higher di-
mensional function (level-set function), then the method
formulates the motion of the contour as the evolution of
the level-set function [51]. Graph-cut methods con-
struct an image-based graph and accomplish a globally
optimal solution of energy minimisation functions, but
they are computationally expensive [52] and may lead
to over-segmentation [53]. Active contour (snake) algo-
rithms work like a stretched elastic band. The starting
points are drawn around the lesion; then move through
an iterative process to a point with the lowest energy
function value. These algorithms may lead the snake
to undesired locations because they depend on an op-
timal starting point and are sensitive to noise [54].
Semi-automatic segmentation algorithms do a graph
search through local active contour analysis, while
their cost function is minimised using dynamic pro-
gramming. Nonetheless, the semi-automaticity still re-
quires human interaction [55].
As shown, there is still no universal segmentation al-

gorithm for all image applications, and new algorithms
are under evaluation to overcome these limitations
[56–58]. Indeed, some features may show stability and
reproducibility using one segmentation method, but
not another.

Conclusions
To summarise, staying in the present while looking into
the future, on the one hand, investigators should put ef-
forts in careful selection of robust features for their own
models; on the other hand, the scientific community
should put efforts towards standardisation, keeping in
mind that appropriate statistical approaches will minim-
ise spurious relationships and lead to more accurate and
reproducible results.

These will be unavoidable steps towards the construc-
tion of generalisable prognostic and predictive models that
will effectively contribute to clinical decision-making and
treatment management.

Abbreviations
CT: Computed tomography; GLCM: Grey-level co-occurrence matrix;
GLRLM: Grey-level run-length matrix; MRI: Magnetic resonance imaging;
PCA: Principal component analysis; PET: Positron emission tomography;
ROI: Region of interest; SUV: Standardised uptake value; TCGA: The Cancer
Genome Atlas

Availability of data and materials
Not applicable.

Funding
The authors state that this work has not received any funding.

Acknowledgements
The English text has been edited by Anne Prudence Collins (Editor and
Translator Medical & Scientific Publications).

Authors’ contributions
SRi, FB, and SRa contributed to conception and design, interpretation of
data, manuscript preparation and editing. DO and CF revised critically the
intellectual content of the manuscript and contributed to interpretation of
data, manuscript preparation and editing. AGM and MB contributed to revise
critically the intellectual content of the manuscript. Each author has participated
sufficiently in the work to take public responsibility for appropriate portions of
the content and have given final approval of the version to be published.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Radiology, IEO, European Institute of Oncology, IRCCS, Milan,
IT, Italy. 2Medical Physics, European Institute of Oncology, Milan, Italy.
3Division of Epidemiology and Biostatistics, European Institute of Oncology,
Milan, Italy. 4Università degli Studi di Milano, Postgraduate School in
Radiodiagnostics, Milan, Italy. 5Radiation Oncology Center, School of
Medicine, Department of Experimental, Diagnostic and Specialty Medicine –
DIMES, University of Bologna, Bologna, Italy. 6Department of Oncology and
Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.

Received: 9 July 2018 Accepted: 9 October 2018

References
1. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than

pictures, they are data. Radiology 278:563–577
2. Lambin P, Leijenaar RTH, Deist T et al (2017) Radiomics: the bridge between

medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762
3. Rizzo S, Petrella F, Buscarino V et al (2016) CT radiogenomic characterization

of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol
26:32–42

4. Larue RTHM, van Timmeren JE, de Jong EEC et al (2017) Influence of gray
level discretization on radiomic feature stability for different CT scanners,
tube currents and slice thicknesses: a comprehensive phantom study. Acta
Oncol 56:1544–1553

Rizzo et al. European Radiology Experimental            (2018) 2:36 Page 7 of 8



5. Ergen B, Baykara M (2014) Texture based feature extraction methods for
content based medical image retrieval systems. Biomed Mater Eng
24:3055–3062.

6. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image
classification. IEEE Trans Syst Man Cybern 3:610–621

7. Balagurunathan Y, Kumar V, Gu Y et al (2014) Test-retest reproducibility
analysis of lung CT image features. J Digit Imaging 27:805–823

8. Galloway MM (1975) Texture analysis using gray level run lengths. Comput
Graph Image Process 4:172–179

9. Ollers M, Bosmans G, van Baardwijk A et al (2008) The integration of PET–CT
scans from different hospitals into radiotherapy treatment planning.
Radiother Oncol 87:142–146

10. Suzuki K (2017) Overview of deep learning in medical imaging. Radiol Phys
Technol 10:257–273

11. Peeken JC, Bernhofer M, Wiestler B et al (2018) Radiomics in
radiooncology—challenging the medical physicist. Phys Med 48:27–36

12. Giger ML (2018) Machine learning in medical imaging. J Am Coll Radiol 15:
512–520

13. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) Radiomics-
based prognosis analysis for non-small cell lung cancer. Sci Rep 7:46349

14. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine
learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087

15. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics of high-grade serous
ovarian cancer: association between quantitative CT features, residual
tumour and disease progression within 12 months. Eur Radiol.

16. Huynh E, Coroller TP, Narayan V et al (2017) Associations of radiomic data
extracted from static and respiratory-gated CT scans with disease recurrence in
lung cancer patients treated with SBRT. PLoS One 12:e0169172

17. Wilkinson L, Friendly M (2009) The history of the cluster heat map. Am Stat
63:179–184

18. Jolliffe IT (2002) Principal component analysis, Series: Springer Series in
Statistics, 2nd edn. Springer, New York, p 487

19. Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple
significance testing. Stat Med 9:811–818

20. Breiman L (2001) Random forests. Mach Learn 45:5–32
21. Eschrich S, Yang I, Bloom G et al (2005) Molecular staging for survival

prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535
22. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat

Soc Series B Stat Methodol. 58:267–288
23. Shedden K, Taylor JM, Enkemann SA et al (2008) Gene expression-based

survival prediction in lung adenocarcinoma: a multi-site, blinded validation
study. Nat Med 14:822–827.

24. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues
in developing models, evaluating assumptions and adequacy, and
measuring and reducing errors. Stat Med 15:361–387

25. Lee H, Palm J, Grimes SM, Ji HP (2015) The cancer genome atlas clinical
explorer: a web and mobile interface for identifying clinical-genomic driver
associations. Genome Med 7:112

26. Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA):
maintaining and operating a public information repository. J Digit Imaging
26:1045e57

27. Panth KM, Leijenaar RT, Carvalho S et al (2015) Is there a causal relationship
between genetic changes and radiomics-based image features? An in vivo
preclinical experiment with doxycycline inducible GADD34 tumor cells.
Radiother Oncol 116:462–466

28. McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent
diameter for calculating patient size and size-specific dose estimates (SSDE)
in CT: the report of AAPM task group 220. AAPM Rep 2014:6–23

29. Dalal T, Kalra MK, Rizzo SM et al (2005) Metallic prosthesis: technique to
avoid increase in CT radiation dose with automatic tube current modulation
in a phantom and patients. Radiology 236:671–675

30. Rizzo SM, Kalra MK, Schmidt B et al (2005) CT images of abdomen and
pelvis: effect of nonlinear three-dimensional optimized reconstruction
algorithm on image quality and lesion characteristics. Radiology 237:309–315

31. Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography
scanner variability of radiomics features. Invest Radiol 50:757–765

32. Theodorakou C, Horrocks JA, Marshall NW, Speller RD (2004) A novel method
for producing x-ray test objects and phantoms. Phys Med Biol 49:1423–1438

33. van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2016) Test-retest data
for radiomic feature stability analysis: generalizable or study-specific?
Tomography 2:361–365

34. Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016)
Quantitative features of liver lesions, lung nodules, and renal stones at
multi-detector row CT examinations: dependency on radiation dose and
reconstruction algorithm. Radiology 279:185–194

35. Reuzé S, Schernberg A, Orlhac F et al (2018) Radiomics in nuclear medicine
applied to radiation therapy: methods, pitfalls and challenges. Int J Radiat
Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2018.05.022

36. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017)
Characterization of PET/CT images using texture analysis: the past, the
present…any future? Eur J Nucl Med Mol Imaging 44:151–165

37. Shiri I, Rahmin A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A
(2017) The impact of image reconstruction settings on 18F-FDG PET radiomic
features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509

38. Altazi BA, Zhang GG, Fernandez DC et al (2017) Reproducibility of F18-FDG
PET radiomic features for different cervical tumour segmentation methods,
gray-level discretization, and reconstruction algorithm. J Appl Clin Med Phys
18:32–48

39. Reuzè S, Orlhac F, Chargari C et al (2017) Prediction of cervical cancer
recurrence using textural features extracted from 18F-FDG PET images
acquired with different scanners. Oncotarget 8:43169–43179

40. Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE (2015)
Quantitative radiomics: impact of stochastic effects on textural feature
analysis implies the need for standards. J Med Imaging (Bellingham) 2:
041002. https://doi.org/10.1117/1.JMI.2.4.041002

41. Forgacs A, Pall Jonsson H, Dahlbom M et al (2016) A study on the basic
criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS
One 11:e0164113

42. Boellaard R (2009) Standards for PET image acquisition and quantitative
data analysis. J Nucl Med 50:11S–20S

43. Madabhushi A, Udupa JK (2006) New methods of MR image intensity
standardization via generalized scale. Med Phys 33:3426–3434

44. Mayerhoefer M, Szomolanyi P, Jirak D, Materka A, Trattnig S (2009) Effects of
MRI acquisition parameter variations and protocol heterogeneity on the
results of texture analysis and pattern discrimination: an application-
oriented study. Med Phys 36:1236–1243

45. Lerski RA, Schad LR, Luypaert R et al (1999) Multicentre magnetic resonance
texture analysis trial using reticulated foam test objects. Magn Reson
Imaging 17:1025–1031

46. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the
challenges. Magn Reson Imaging 30:1234–1248

47. Hojjatoleslami S, Kittler J (1998) Region growing: a new approach. IEEE Trans
Image Process 7:1079–1084

48. Kalef-Ezra J, Karantanas A, Tsekeris P (1999) CT measurement of lung
density. Acta Radiol 40:333–337

49. Sofka M, Wetzl J, Birkbeck N et al (2011) Multi-stage learning for robust lung
segmentation in challenging CT volumes. Med Image Comput Comput
Assist Interv 14:667–674

50. Knollmann FD, Kumthekar R, Fetzer D, Socinski MA (2014) Assessing
response to treatment in non-small-cell lung cancer: role of tumor volume
evaluated by computed tomography. Clin Lung Cancer 15:103–109

51. Gao H, Chae O (2010) Individual tooth segmentation from CT images using level
set method with shape and intensity prior. Pattern Recognit 43:2406–2417

52. Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image
segmentation by combining graph cuts and oriented active appearance
models. IEEE Trans Image Process 21:2035–2046.

53. Ye X, Beddoe G, Slabaugh G (2010) Automatic graph cut segmentation of
lesions in CT using mean shift superpixels. Int J Biomed Imaging 2010:
983963. https://doi.org/10.1155/2010/983963

54. Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M (2010)
Computer-aided measurement of liver volumes in CT by means of geodesic
active contour segmentation coupled with level-set algorithms. Med Phys
37:2159

55. Lu K, Higgins WE (2007) Interactive segmentation based on the live wire for
3D CT chest image analysis. Int J Comput Assist Radiol Surg 2:151–167

56. Tan Y, Schwartz LH, Zhao B (2013) Segmentation of lung lesions on CT scans
using watershed, active contours, and Markov random field. Med Phys 40:043502

57. Sun S, Bauer C, Beichel R (2012) Automated 3-D segmentation of lungs with
lung cancer in CT data using a novel robust active shape model approach.
IEEE Trans Med Imaging 31:449–460

58. Velazquez ER, Parmar C, Jermoumi M et al (2013) Volumetric CT-based
segmentation of NSCLC using 3D-slicer. Sci Rep 3:3529

Rizzo et al. European Radiology Experimental            (2018) 2:36 Page 8 of 8

https://doi.org/10.1016/j.ijrobp.2018.05.022
https://doi.org/10.1117/1.JMI.2.4.041002
https://doi.org/10.1155/2010/983963

	Abstract
	Key points
	Background
	Definition and extraction of image features
	Analysis and model building
	Impact of image acquisition and reconstruction
	CT
	PET
	MRI

	Impact of image segmentation
	Conclusions
	Abbreviations
	Availability of data and materials
	Funding
	Acknowledgements
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

