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A B S T R A C T

Distribution grids probabilistic analysis is an essential step in order to assess the daily network operability under
uncertain and stress conditions. It is also functional to the development of new services that require load growth
capacity or to the exploitation of new energy resources affected by uncertainty. Efficient numerical tools able to
forecast the possible scenarios while accounting for loads and sources uncertainty are thus of paramount im-
portance. The majority of available uncertainty-aware predictive tools are based on Monte Carlo analysis which
allows probabilistic evaluations of the network state at the price of time consuming simulations. In this paper, a
much more efficient simulation framework is presented. The proposed approach relies on the generalized
Polynomial Chaos algorithm and deterministic Power Flow analysis and allows achieving an at least ×100 ac-
celeration compared to standard Monte Carlo analysis for the same accuracy.

1. Introduction

Distribution networks probabilistic analysis is key to the develop-
ment of new services and ways to exploit the electrical infrastructures.
Most of such new services are associated to the low-voltage (LV) dis-
tribution network. Promising services are those related to the charging
of vehicles, the decentralization of resources and the diffusion of new
consumption patterns [1]. The widespread diffusion of such facilities is
expected to introduce a significant variability/uncertainty of power
load profiles compared to those of conventional users. For instance, the
increase of electric vehicles, especially considering their usage as sto-
rage systems, will presumably stress the physical limits (e.g., the
maximum current capability) of the lines. Due to the limited number of
monitoring devices that are commonly deployed along the LV feeders, a
comprehensive view of the overall network state requires the support of
effective computational tools able to predict bus voltages and line
currents under variable loading conditions [2–4]. Computational tools
should be able to deal with the uncertainty of power loads and the
trends of variation [5–7]. These techniques, commonly referred to as
Probabilistic Load Flow (PLF) analysis, consist in using appropriate
probabilistic models for the power load profiles as well as in replacing
deterministic load flow simulation with statistical Monte Carlo (MC)
analysis.

In order to account for the interplay of many independent uncertain

loads (i.e. variations in the active power demands at the different
phases of the network) a great number of MC runs is needed to achieve
a satisfactory statistical description. In fact, even though loads un-
certainty can commonly be modeled as Gaussian distributed parameters
[8] the nonlinear nature of the load flow problem leads to state variable
variations, e.g. maximum voltage at nodes or lines current, that are
nonGaussian-distributed. In this case, the statistical information about
mean value and variance of an electric variable is not enough to de-
scribe it properly and the detailed Probability Density Function (PDF)
shape is required for further meaningful inferences. The accurate de-
termination of PDF with MC method can require tens of thousands load
flow analyses thus becoming very time consuming. Other approximate
techniques for PLF analysis exhist, such as the Point Estimate method
and the Cumulant Tensor (CT) [9–15]. However, commonly such
techniques do not provide the detailed PDF shape which is instead re-
quired in our analysis.

In order to address the above issues, in this paper we describe an
innovative approach to PLF analysis which is based on generalized
Polynomial Chaos (gPC) algorithm and Stochastic Testing (ST) method
[16–19]. The relevant features of the proposed approach are: (a) the
implementation of the gPC+ST method does not need to modify the
code of the deterministic load flow solver employed; (b) gPC+ST
method allows handling strongly nonlinear problems, as it is the case
for PLF formulated in terms of node voltages and powers, and with
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many independent statistical parameters.
In this paper, we provide the following original contributions:

1. we present in an intuitive way the application of the gPC+ST
method to the PLF problem by considering data-based uncertainty in
the load profiles;

2. we describe a simulation framework where the gPC+ST algorithm,
implemented in Matlab, is interfaced with the deterministic load
flow solver OpenDSS [20,21], to prove how the metodology is not-
invasive and doesn’t require a direct access to the simulation kernel;

3. we show how the proposed method can be exploited to predict the
detailed probability distribution of monitor variables (e.g. Voltages,
Currents, Voltage Unbalance or whatever else is needed to be ob-
served) in the IEEE European low voltage test feeder while ac-
counting for the interplay of variability in the three phase loads.

The above contributions are organized as follows. In Section 2, we
review some background material about deterministic load flow ana-
lysis and its probabilistic extension with Monte Carlo method. In Sec-
tion 3, we describe load uncertainty modeling while in Sections 4 and 5,
we illustrate the gPC method and its computation details. The im-
plementation and simulation frame are discussed in Section 6. Finally,
Sections 7 and 8 report details about the considered test network and
the related numerical results.

2. Background material: Probabilistic load flow with Monte Carlo
method

2.1. Deterministic load flow

We consider the model of a distribution network made of N buses,
represented by nodes, and connected by Nl lines described by their
impedances. At each candidate node (a candidate is a node of the
network in wich we assign the power load profile), equipment are
connected that may supply or remove power from the electric network.
This is described by power profiles assigned to the candidate nodes (e.g
it is possible to choose the number of the nodes subjected to the var-
iation). Deterministic load flow analysis consists in calculating Voltages
and Currents by solving a set of nonlinear equations of the type:

= =
=

F V S V Y V 0( )n n n
i

N

ni i
1 (1)

for = …n N1, , . In (1), = +P jQSn n n denotes the complex power at
node n where Pn and Qn are the active and reactive powers respectively,
Vn is the node voltage phasor, while Yni are the entries of the bus ad-
mittance matrix. Node voltage phasors are collected into vector V .

Network terminations are specified at the buses by imposing the
known active and reactive powers P Q,n n absorved or delivered by
loads. Load conditions vary in time and thus the associated powers
become function of time, P t Q t( ), ( )n n . Let us consider a given time
window (e.g. a day or a week), that is discretized into a sequence of
Ntimes equally-spaced time instants =t m t·m , over which the load
profiles are given. Node voltage waveforms tV ( )n are calculated by re-
peatedly solving the nonlinear problem (1) over the sequence of time
instants tm. In doing that, the network state computed at time tm is used
as the solver initialization at next time +tm 1.

2.2. Monte Carlo analysis

Statistical fluctuations and uncertainty of loads can be accounted for
by including into the load flow analysis a set of l stochastic parameters

r that can be collected in the vector = …, , , l1 2 . More details

about probabilistic load modeling will be provided in the next section.
Mathematically, each r is a zero-mean stochastic variable described by

a given Probability Density Function (PDF) ( )r r [22]. Due to the un-
certainty of the power loads applied to the candidate nodes, each ob-
servable variable describing the state of the network at time t, e.g. the
magnitude of the nth node voltage =V t tV( ) ( )n n , becomes a stochastic
variable that depends on the uncertainties vector, i.e.

=V t tV, ,n n . In conventional MC implementations, the sta-

tistical description of V t,n is achieved by generating a very large

number Nmc of uncertainty vectors …, , ,
N1 2 mc

according to the
joint probability distribution of variables in . At time instant tm, For

each vector
k
, the physical quantity V t,n , sampled in time over

the tm, can be evaluated by running one deterministic LF analysis. As
the number Nmc of evaluations grows, at limit tending to infinity, the
distribution of values provided by LF analyses tends to the statistical
distribution ofV t( )n . However, due to the slow N1/ mc convergence rate
of MC method, the number of repeated LF simulations actually needed
to obtain a satisfactory statistical description of V t( )n (i.e., the detailed
shape of its PDF) can be very large. The PLF problem is made parti-
cularly critical by the nonlinear nature of Eqs. (1). In this case in fact,
Gaussian-distributed parameters can result in network state variables

Vn being not Gaussian distributed. A qualitative example of non

Gaussian-distributed variable is shown in Fig. 1. The statistical in-
ference about the variability interval (with a certain confidence level)

of the network observable Vn requires the complete information

about PDF distribution and it cannot only rely on mean value and
variance. As a result, even in the case of a few uncertainty parameters
(e.g. 2 or 3), several tens of thousands deterministic LF analyses are
required, making MC approach time consuming.

3. Modeling load uncertainty

Current practice in probabilistic load modeling relies on an ob-
servational approach where power profile datasets for different type of
utilities, area, and time periods are collected and analyzed in order to
extract the relevant information that should be reproduced in simula-
tions. The theme of loads or energy resources forecasting is a great issue
that goes beyond the scope of this article. There are several approaches
to forecast load variation with most of them being based on users be-
havior analysis [23,24] or on historical data [25], that could be used to
improve the probabilistic analysis. Here we will suppose to start from
the loads presented in the IEEE European low voltage test feeder [26]
introducing for each of them, or for groups of loads, a variation de-
scribed by a statistical parameter. In order to account for the potential
growth or reduction in the power demand, we adopt the following
expression for the active power at nth node in the network:

= +P t p t( ) ( )[1 ]n n n
p p0 (2)

Fig. 1. Qualitative example of a nonGaussian-distributed state variable in the
network: the area beneath the curve, over a given interval, provides the
probability for that variable of falling within the interval.
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where p t( )n
0 is the nominal power profile. In (2), p denotes a zero-mean

Gaussian-distributed statistical parameter having unitary variance, i.e.
= 0p and =( ) 1p 2 where · is the expectation operator. The

parameter n
p is a scaling constant that determines the coefficient of

variation.
As a consequence, the active power is a stochastic process whose

mean value and standard deviation are given by [22]:

=

=

P t p t

P t p t p t

( ) ( )

( ( ) ( )) ( ).

n n

n n n
p

n

0

0 2 0
(3)

In the analysis that follows, we also consider uncertainty in the power
factor cos( )n by adopting the following statistical model:

= +cos( ) cos( )[1 ],n n n
0 (4)

where cos( )n
0 is the nominal power factor at nth node while is a zero-

mean unitary-variance Gaussian-distributed statistical parameter and
n is the scaling constant that determines the power factor degree of
variability.

4. Uncertainty quantification with generalized Polynomial Chaos

We consider a probabilistic problem where the uncertainty in the
load power profiles is described by means of l stochastic parameters r
modeling active power and power factor variability as in (2) and (4),
respectively. The gPG method consists in adopting generalized poly-
nomial chaos expansions for the node voltages. Depending on the nu-
merical technique used to solve the gPC problem, the variables that
have to be expanded can be all of the node voltages (i.e. the complex
phasors including magnitude and phase information) in the network or
a subset of them. In some cases, the variables that we need to expand
are limited to the quantities that we want to monitor: they may be the
magnitude of some node voltages or line currents at a given time or the
peak or minimum value assumed over the time window. In what fol-

lows, we will generically denote as V t, one of such variable. Under

the mild hypothesis that V t, has finite variance (i.e. it is a second-

order stochastic process), it can be approximated by an order- trun-
cated series [16]

=
V t c t H, ( ) ,

i

N

i i
1

b

(5)

formed by Nb multi-variate basis functions Hi weighted by un-

known polynomial chaos coefficients c t( )i . The main feature in ex-
pression (5) is that the dependence of V (·) on the deterministic variable
time, which is incorporated into coefficients c t( )i , is separated by its
dependence on statistical parameters represented by basis functions

Hi .

Each multi-variate basis function is given by the product

=
=

H ( )i
r

l

i r
1

r (6)

where ( )i rr is a univariate orthogonal polynomial of degree ir whose
form depends on the density function of the rth parameter r . For in-
stance, ( )i rr are Hermite polynomials if r is a Gaussian-distributed
variable, while ( )i rr are Legendre polynomials if r is a uniformly
distributed variable. A complete list of correspondence between several
typical stochastic distributions and associated orthogonal polynomials
can be found in [16].

For a given number of parameters l and series expansion truncation

order , the degrees ir of univariate polynomials in (6) forming Hi ,

for = …r l1, , , satisfy the following relation

=
i .

r

l

r
1 (7)

As an example, in Fig. 2, we report the case of two independent
Gaussian-distributed parameters 1 and 2 (i.e. =l 2) and for expansion
order = 3. In this simple case, the basis functions are the product of
couples of Hermite polynomials

=H ( ) ( )i i i1 21 2 (8)

whose degrees are such that +i i 31 2 . In this example, the number Nb

of basis functions Hi is ten. For generic truncation order and

number of parameters l, the number of gPC basis functions is given by
[17]

= +N l
l

( )!
! !

.b (9)

Once the coefficients c t( )j are computed, (using one of the methods
described in the next section) the mean value and standard deviation of

V t, can easily be determined [17]. Furthermore, and even more

importantly, the gPC expansion (5) provides a compact model for the

V t, multi-dimensional dependence. For each realization of the

uncertainty vector = …, , , l1 2 , generated accordingly to the joint

probability distribution of variables in , the evaluation of polynomials

in Fig. 2 and gPC expansion (5) provides a realization of V t, . This

enables repeated evaluations of V t, for large numbers of un-

certainty vector realizations
k
in very short times (one million of

evaluations take a few seconds on a quad-core computer) and the de-
termination of the detailed PDF.

5. Computing the gPC coefficients

There are two different mainstream approaches for computing the

Fig. 2. Univariate Hermite polynomials and the set of multivariate gPC basis

functions for the case of two Gaussian-distributed parameters = ,1 2 and

truncation order = 3.
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gPC expansion coefficients in (5): Galerkin projection and collocation
method [27].

5.1. Galerkin Projection (GP)

Galerkin projection is an intrusive numerical technique that requires
modifying the LF code (1). According to this method, a gPC expansion
of the type (5) is adopted for each unknown nodal voltage tV ( )n , i.e.

=
t t HV c, ( ) ,n

i

N

i
n

i
1

b

(10)

leading to ×N Nb unknown ci
n coefficients that are complex variables.

Such coefficients are determined by plugging the expansions (10) into
(1) and then projecting the resulting nodal equations along the Nb basis
functions. This results in a very large nonlinear system of size ×N Nb ,
i.e.

=HF V 0, ,n i
(11)

for = …n N1, , and = …i N1, , b, where · denotes the inner product in
the stochastic space [17]. The solution of (11) requires a significant
computational effort both in terms of time and allocated memory. As an
example, consider the case of a distribution network with =N 100
nodes, and suppose to perform stochastic Galerkin with =l 3 statistical
parameters and expansion order = 3. In this case, =N 20b , so that the
nonlinear system to be solved has size × =N N 2000b . Due to the pro-
blem nonlinearity, equations (11) require a computational time for
solving the system that tends to grow as a power of two of the system
size, i.e. about ×N N( )b

2.
In our example, the computational time for solving Galerkin pro-

blem is about ×400 greater than that needed for a single LF analysis.
The GP computational time grows very rapidly with the number of
statistical parameters thus limiting the applicability of the method to
networks of small size and with a few statistical parameters (i.e. 2 3).

5.2. Stochastic Collocation (SC)

SC is a nonintrusive method that can be combined with any LF for-
mulation (1) without modifying the implementation codes. A second
advantage of SC method is that the gPC expansion (5) is adopted lim-
itedly to the set of network variables that we want to evaluate, i.e. the
peak value of some monitoring node voltages. In what follows, we will
focus on a recently proposed efficient implementation of SC method
referred to as Stochastic Testing (ST) method. According to collocation-
based Stochastic Testing (ST) [17], the Nb unknown coefficients c t( )j in
the series (5) are calculated by properly selecting =N Ns b testing points

k
, for = …k N1, , s in the stochastic space where =V t V t( ) ,k

k
is

calculated with a deterministic LF analysis.
At each testing point, the series expansion (5) is enforced to fit ex-

actly (i.e., the polynomials interpolate the samples) the values V t( )k .
Mathematically, this results in the following linear system

=c t V tM ( ) ( ), (12)

where = …c t c t c t( ) [ ( ), , ( )]N
T

1 b and = …V t V t V t( ) [ ( ), , ( )]N
T

1 s are the
column vectors collecting the unknown coefficients and node voltage
values respectively.

The ×N Nb b square matrix = =a HM { }k i i
k

, collects the gPC

basis functions evaluated at the testing points, i.e.

=

…

…

H H

H H

M .

N

N
N

N

1
1 1

1

b

s
b

s

(13)

It is worth noting that the M only depends on the selected basis func-
tions and testing points, so that it can be precalculated, inverted and
used for any =t tm as follows:

=c t V tM( ) ( ).m m
1 (14)

The ST method enables handling PLF problems with larger size and
larger number of parameters. As an example, for expansion order = 3
and number of stochastic parameters =l 6, the ST method needs only
repeating 84 deterministic LF analysis.

5.3. Testing points selection

The selection of the testing points
k
in the stochastic space is done

so as to ensure the highest numerical accuracy of the gPC-based in-
terpolation scheme and of the associated statistical description. This is
achieved by considering the highest order univariate polynomial ( )r
describing the rth parameter r with PDF ( )r r . For the univariate case,
the testing points are selected in correspondence of the +P( 1) Gauss
quadrature nodes used in numerical integration r

k [17]. When the
multivariate case with l parameters is considered, the testing points

vectors = …, , ,
k k k

l
k

1 2 are determined by considering the multi-

dimensional grid of all of the possible combinations (i.e. the tensor
product) of the univariate quadrature nodes.

The number +( 1)l of nodes in the multi-dimensional grid is
greater than the number Nb of basis functions defined in (9). For the
considered example with =l 2 and = 3, the number of Gauss nodes is

× =4 4 16 while the number of basis is =N 10b . To make problem (13)
well posed, a subset formed by =N Ns b quadrature nodes has to be
selected as testing points. A possible method for selecting the subset of
testing points among the quadrature nodes is presented in [17]. It relies
on the criteria of preferring those quadrature nodes with largest asso-
ciated Gauss weights and that lead to the best (smallest) condition
number for the matrix M. Fig. 3 shows the subset of testing points se-
lected for the example with 2 stochastic variables.

Fig. 3. (Black Cross Marker) The 2-dimensional grid of quadrature nodes. (Red
Circle Marker) Subset of nodes used as testing points in ST method. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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6. Implementation and simulation framework

In our implementation, the uncertainty about active power profiles
and power factor are modeled as described in Section 3 by means of l
independent Gaussian-distributed random variables r . Hence, varia-
bility analysis is performed for a set of node voltages and line current

Fig. 4. Flowchart of the simulation framework.

Fig. 5. Topology of the IEEE LV European test feeder. The numbered nodes are some of the nodes under observation in the implemented analysis.

Table 1
Number of loads per phase.

Phase A 21

Phase B 19
Phase C 15
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magnitudes, considered here as the output variables, by using the non-
intrusive ST method described in Section 4 and subsection V-C. This is
achieved by interfacing the gPC+ST code developed at Massachusetts
Institute of Technology [17] and written in Matlab with the Load Flow
deterministic solver OpenDSS. Fig. 4 shows the qualitative flowchart of
the implemented simulation framework. To this aim, we exploit the
OpenDSS internal interface DCOM which allows bidirectional in-
formation exchange between OpenDSS and Matlab. Such an informa-
tion flow is first used to import in OpenDSS the relevant information
about the load profiles, i.e. the active power time profiles and cos( ), at
all network nodes, generated with gPC+ST in the Matlab workspace.
Second, the information about the time waveforms of simulated net-
work voltages and currents are exported to Matlab for further proces-
sing. This includes extracting the ci expansion coefficients and using the
compact gPC model (5) to efficiently compute the detailed PDFs of the
network variables of interest.

7. Test network

The distribution network adopted in our simulations is the IEEE
European low voltage test feeder[26]. Such a test network, published
by the Test Feeders Working Group of the Distribution System Analysis
Subcommittee of the Power Systems Analysis, Computing, and Economics
Committee (PSACE), provides a valid benchmark for researchers willing
to study low voltage feeders which are common in Europe. The pre-
viously published test feeders were mainly focused on North American
style systems, which consists in radial, very wide medium voltage
networks with a large number of secondary service transformers, each
serving a couple of houses. In Europe instead the most common dis-
tribution system design is with medium voltage networks still radial, or
weekly meshed, but smaller in amplitude and serving few secondary
substations, which are larger with respect to the North American style.
Each substation supply a radial low voltage network. Residential and
small commercial loads are supplied by these networks.

The topology of the proposed network is reported in Fig. 5. The test
feeder is a radial distribution feeder with a base frequency of 50 Hz, at
240 V (phase voltage)/416 V (line to line voltage), which is typical of
the Italian low voltage distribution systems.

The medium voltage system supplying the substation is modeled as
a voltage source with an impedance (Thevenin equivalent). The im-
pedance is specified by short circuit current. The LV test feeder model is
composed of 906 low voltage nodes, connected by 905 branches. The
network is radial, with 55 load buses. The distribution lines are defined
by their codes and lengths. To each code specific line impedance and
shunt admittance values are assigned. Due to the short length of lines
(all branches are shorter than a hundred meters) the shunt admittance

is neglected and just the series impedance is considered.

7.1. Load data analysis

The test distribution network is a 3-phase/4 wire network, with the
possibility of assigning the terminal powers either as 3-phase or 1-phase
loads. In this work, we assume that all of the powers are given as 1-
phase loads which are distributed among the three-phase lines, i.e.
Phase A, Phase B and Phase C, in the numbers reported in Table 1.

Such loads are assigned to 55 nodes and their shapes are provided
by the benchmark, as 1min time series, for a day [26]. The aim of the

Fig. 6. Daily time evolution of the three phases at node 898 for one of the
testing points.

Fig. 7. PDFs for the peak and minimum values of the voltage phases at node
898: subfigures (a), (b) and (c) report phases A, B, C, respectively.
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analysis is to study, in a probabilistic sense, the fluctuations of the node
voltages which are induced by power loads variation in order to assess
the quality of the network, therefore we focus on the Voltage Unbalance
Factor (VUF). The percentage VUF is defined as the ratio of the negative
voltage sequence component Vn to the positive voltage sequence com-
ponent Vp [28], i.e.

= V
V

VFU ·100,n

p (15)

with

= + +V V a V a V· ·
3n

AB BC CA
2

(16)

and

= + +V V a V a V· ·
3

,p
AB BC CA

2

(17)

where V V V, ,AB BC CA are the phasors of the unbalanced line voltages
while = °a jexp( 120 ) and = °a jexp( 240 )2 .

8. Numerical results

In this section, we present fresh results provided by the application
of the proposed variability analysis to the IEEE European low voltage
test feeder.

Our goal is that of investigating the effects that the variability of the
total power assigned to a given phase induces on the node voltages. To
this aim, and accordingly to load model (2), we assume that the active
powers P t( )n of all of the nodes assigned to a given phase line, e.g. Phase
A, are scaled by the same p Gaussian statistical parameter, e.g. A

p. As a
result, three statistically independent parameters ,A

p
B
p and C

p are si-
mulated. In simulations the variability degrees = = = 0.2A

p
B
p

C
p are

adopted.This is a simplification that we adopt in order to show the main
features of the method. More complex scenarios could be implemented
where an independent statistical parameter is introduced for each load.

Assuming gPC expansion order = 3, twenty testing points are

Fig. 8. Detail of the distributions of the Phase-C peak value supplied by gPC and
MC (5000 samples) methods.

Fig. 9. Statistical distribution of the average value of the voltage unbalance
factor.

Fig. 10. Case with 6 Gaussian-distributed statistical parameters. PDFs for the
peak values of voltage at node 898 for the three phases A, B, C.

Fig. 11. Case with 6 Uniformly-distributed statistical parameters. PDFs for the
peak values of voltage at node 898 for the three phases A, B, C.

Table 2
Simulation times.

2 variables 3 variables 6 variables

Number of simulations 10 20 84
Total time elapsed [s] 40 80 336
Time per simulation [s] 4 4 4
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generated in the statistical space and for each one of them a determi-
nistic load flow analysis is performed. Fig. 6 reports the waveforms of
the three phase voltages at node 898, used here as the monitoring point,
simulated with OpenDSS in one of the testing points (i.e. for a given set
of parameters ). Such waveforms exhibit sharp fluctuations over the
considered time window with peaks (maxima) and valleys (minima)
that are significantly affected by the potential growth or reduction of
the loads. The probabilistic evaluation of the achievable daily peak and
minimum is thus crucial in order to assess the quality of the service
provided by the distribution infrastructure. To this aim, with the pro-
posed gPC+ ST method we calculate the detailed statistical distribu-
tion of the peak and minimum values in each node. As an example,
Fig. 7 shows the statistical distribution of the peak value of voltage at
node 898 for the three phases. For the assumed loads uncertainty, the
peak value of Phase A exhibits wide variability with an almost Gaussian
distribution. In fact, the peak of Phase A ranges within the interval
(254, 257) V with 90% probability. The peak values of Phase B and Phase
C, fluctuate within narrower intervals, i.e. about (252.5, 254) V, how-
ever their distributions are nonGaussian. This is due to the nonlinear
nature of the LF problem.

Similarly the statistical distributions of minimum voltage at the
same node shows as the greatest variability is seen for the minimum
value of Phase B that fluctuates into the interval (230, 243) V with 90%
probability.

In order to check the accuracy of the gPC+ST method we compare
it with a reference MC method that uses 5000 runs (i.e. deterministic
load flow analyses) selected with a latin-hypercube sampling. Fig. 8
shows the PDF for the peak value of the Phase C voltage provided by
proposed gPC and MC (5000 samples) methods. The two distributions
are almost superimposed, e.g. the Kullback Leibler [29] divergence
between them is 0.0161, and the associated standard deviations, i.e.

= 0.572gPC V and = 0.565MC V respectively, match within a relative
accuracy of 2%. As a further check, we also use the point estimate
scheme described in [14,30], which adopts a numerically efficient
samples selection method, to estimate the raw moments of the output
variables of interest. The standard deviation predicted by the numeri-
cally-efficient point estimate method for the peak value of Phase-C is

= 0.410PEM V so that the relative error compared to reference MC
analysis is about 27%.

Finally, Fig. 9 shows the distribution of the average value (over the
day window) of the Voltage Unbalance Factor (VUF) figure of merit: the
average VUF is always smaller than 2%.

As a second example, we repeat variability analysis also considering
the uncertainty of the power factors for the three phases. We thus add
three extra statistically-independent Gaussian distributed parameters

,A B and C scaling power factor accordingly to (4). We assume
nominal power factor values = = =cos( ) cos( ) cos( ) 0.925A B C

0 0 0 and
associated scaling constants = = = 0.01A B C . Such scaling con-
stants meet the constraint 0.9 cos( ) 1. We perform variability
analysis considering the mutual effect of the six statistical parameters.
The simulated distributions of the peak values at monitoring node are
collected in Fig. 10. The distributions for the case with six parameters
are quite similar to those for three parameters shown in (7) meaning
that, for the considered scenario, the power factor uncertainty is less
relevant than active power variability. Even though in this paper we
have focused on the case of Gaussian-distributed parameters, since this
is the most frequent case in applications, more complex scenarios may
arise where statistical parameters are not Gaussian distributed [31,32].

The generalized Polynomial Chaos method allows handling statis-
tical parameters with several nonGaussian statistical distributions as
listed in [16], and complex combinations of them [33]. As an example,
Fig. 11 shows the distributions of the peak values at monitoring node in
the case where the six parameters , ,A

p
B
p

C
p and , ,A B C scaling active

powers and power factors, respectively, are all uniformly distributed
into the interval [ 1, 1]. In this case, the expansion (5) is made of

Legendre-chaos polynomials [16].
Finally, in Table 2 we report the simulation times of the proposed

variability analysis for the cases = =l l2, 3 and =l 6 statistical para-
meters. The simulation times are dominated by the deterministic load
flow simulation with OpenDSS. For the case with =l 3 parameters, one
deterministic load flow analysis takes about 4 s and the whole varia-
bility analysis is completed in about 5min. By contrast, the same ana-
lysis performed with the reference Monte Carlo method require about
5000 load flow analyses and takes more than 5 h.

9. Conclusion

In this paper, we have described an innovative simulation frame-
work for the probabilistic analysis of power distribution networks
subject to load uncertainty. Our approach employes generalized
Polynomial Chaos (gPC) algorithm and Stochastic Testing (ST) method
combined with the deterministic load flow solver OpenDSS. We have
shown how the proposed method enables deriving in a very efficient
way the detailed information about the variability of a subset of electric
variables and figure of merits that are relevant for the quality of service.
The speed up factor in computation is about ×100 compared to standard
Monte Carlo simulations.
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