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Abstract
Computer-aided diagnosis (CAD) is a field that is essentially based on pattern recognition that improves the accuracy of a 
diagnosis made by a physician who takes into account the computer’s “opinion” derived from the quantitative analysis of 
radiological images. Radiomics is a field based on data science that massively and comprehensively analyzes a large number 
of medical images to extract a large number of phenotypic features reflecting disease traits, and explores the associations 
between the features and patients’ prognoses for precision medicine. According to the definitions for both, you may think 
that radiomics is not a paraphrase of CAD, but you may also think that these definitions are “image manipulation”. However, 
there are common and different features between the two fields. This review paper elaborates on these common and different 
features and introduces the potential of radiomics for cancer diagnosis and treatment by comparing it with CAD.
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1 Introduction

Is “radiomics” just a paraphrase of “computer-aided diag-
nosis (CAD)”? The authors claim that there are common 
and different features between “current” radiomics and “con-
ventional” CAD. Table 1 shows the comparisons of current 
radiomics with conventional CAD, which will gradually be 
changing.

CAD has dealt with issues of radiological diagnosis such 
as missed or misunderstood lesions in terms of detection and 
differentiation [1–3]. On the other hand, radiomics addresses 
the issues of precision medicine [4, 5], which is a treatment 

strategy for making decisions about molecularly targeted 
agents based on genetic mutations rather than affected 
organs. However, there have been several issues with regard 
to precision medicine, e.g., the necessity for invasive biopsy, 
additional cost, and slow throughput procedures [6]. In addi-
tion, the information obtained from small pieces of hetero-
geneous tumor tissues extracted from a single biopsy speci-
men or from a blood sample could be inaccurate, because 
gene-expression signatures associated with good and poor 
prognoses may be detected in different regions of the same 
tumor [7]. The gene-expression signature is a set or com-
bined set of genes in a cell with a unique pattern of gene 
expression [8] and is considered prognostic biomarker. In 
contrast, medical images and their corresponding image 
features have great potential to capture possibly “entire” 
and prognostic information on intratumoral heterogeneity 
in non-invasive, low-cost, and rapid ways.

The purpose of CAD is to detect and/or differentiate 
among diseases, e.g., detection of lung cancer and differ-
entiation of Alzheimer’s disease. CAD has generally been 
defined as a diagnosis made by a physician, who takes into 
account computer outputs based on quantitative analyses 
(e.g., detecting or/and diagnosing lesions) of radiological 
images [1–3].

Radiomics aims to discover prognostic signatures 
extracted from multimodality images for decision making 
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of treatment-related actions such as treatment policies (e.g., 
surgery, radiotherapy, chemotherapy, and immune therapy) 
[4, 5]. The prognostic signatures could extensively charac-
terize cancer traits from the standpoint of medical imaging 
and predict patients’ prognoses. Therefore, the prognostic 
signatures are considered “surrogate imaging biomarkers”. 
The signatures are represented mathematically as vectors 
consisting of significant image features associated with 
patients’ prognoses. A number of imaging biomarkers based 
on radiomics in radiation therapy have been explored by 
assessment of several end points that indicate the feasibil-
ity of radiomics such as overall survival and disease-free 
survival of patients [9].

In my opinion, the fundamental approach of conventional 
CAD is algorithmically based on pattern recognition for 
developing diagnostic systems deductively [10]. Pattern rec-
ognition is the act of extracting features from objects (e.g., 
lesions) in the form of raw data and making a decision based 
on a classifier output, e.g., classifying each object into one of 
the possible categories of various patterns [11]. Many types 
of CAD systems or basic methodologies, including CADe 
(detection) of lung cancer, breast cancer microcalcifications, 
intracranial aneurysms [1], CADx (diagnosis or differen-
tiation) of breast cancer and Alzheimer’s disease [10, 12], 
temporal subtraction techniques [13], similar image tech-
niques [14], and CADx for pathological images [15], have 
been developed in the radiological and pathological fields. 
Computer-assisted radiotherapy (CART) is a field similar to 
CAD that is based on pattern recognition and image process-
ing for research on approaches for assisting radiation oncol-
ogy staffs by providing useful information on diagnosis, 
treatment planning, treatment execution, and follow-up [16].

On the other hand, the fundamental approach of radiom-
ics is based on data science that inductively and compre-
hensively analyzes a large number of medical images by 
extracting a large number of phenotypic features reflecting 
disease traits, and exploring the associations between imag-
ing signatures and patients’ prognoses [17]. The purpose of 
data science is to understand “what the data say”, i.e., the 
underlying theory or mechanism, by extracting important 
patterns and trends from comprehensive analyses of big data 

[18]. Figure 1 depicts the data science life cycle, which is 
utilized for radiomics. First, the data are comprehensively 
collected and processed. Second, the data are analyzed using 
statistical techniques and/or machine learning. Third, the 
underlying theory in the data is discovered by visualizing 
the data. Finally, a validation test is performed for a dataset 
different from a training dataset. If the results do not satisfy 
a certain criteria, the cycle will be repeated.

In a definition of the authors, data science is an interdis-
ciplinary field that includes mathematics, computer science, 
and domain knowledge such as medical physics and radio-
logical sciences, to discover inductively features or hidden 
meaningful patterns of natural, human, and social phenom-
ena by analyzing a vast amount of multidimensional data 
(big data). Similarly, the goal of radiomics is to discover 
prognostic signatures, which have strong associations with 
patients’ prognoses, as meaningful patterns, i.e., imaging 
biomarkers.

The radiomics is a compound word of ‘radio’, which 
refers to radiological images (medical images in a broad 
sense), and ‘omics’ [6, 17]. The omics includes several 
study fields (genomics, transcriptomics, proteomics, and 
metabolomics) for understanding the biology and clini-
cal management of a disease (e.g., cancer) by inductively 
and comprehensively analyzing the huge quantity of omics 
data [19]. The image features in radiomics are dealt with 

Table 1  A comparison between current radiomics and conventional CAD

Item Radiomics CAD

Addressed issues Issues in precision medicine Issues in radiological diagnosis
Major purpose Discovery of signatures (imaging biomarkers) for prognostic 

prediction or subtype classification
Development of methods for detection or dif-

ferentiation of diseases
Fundamental approach Data science including pattern recognition and image processing Pattern recognition with image processing
Related field Biology (omics), radiology, radiotherapy, pathology Radiology and pathology
Logical reasoning Inductive (data driven) Deductive (algorithm driven)
Types of data General medical images with histological images and omics data General medical images with histological images

Fig. 1  Data science life cycle, which is utilized for radiomics
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as omics-wise information like gene or protein. To provide 
insight into radiomics, the rest of this review paper consists 
of: 2. Fundamental approaches of radiomics, 3. Procedure of 
radiomic analysis, 4. Prediction of prognosis prior to treat-
ment using radiomics, and 5. Future of radiomics and CAD.

2  Fundamental approaches of radiomics

Figure 2 is a flowchart of general CAD approaches, which 
consist of extraction and selection of image features within 
a lesion using image processing [20], statistical learning 
[18], and detection and/or differentiation of a lesion using 
classifiers (or machine learning) [20]. Figure 3 depicts flow-
charts of discovery and test steps for general radiomics. In 
the discovery step, the extraction and selection of image 
features are the steps in common between CAD and radiom-
ics. In radiomics, a huge number of image features including 
shape, histogram, and texture features (e.g., more than 400) 
are extracted from medical images for stratification of the 
patients. Significant features are chosen by means of repeat-
ability and reproducibility tests [21–23] and further filtered 
through feature selection methods [18]. The patients are 
stratified into several subtypes by using a clustering method 
(e.g., simple thresholding with medians of image features) 
[6, 18]. The prognostic powers of the features were inves-
tigated specifically using a Kaplan–Meier survival analysis 
[24] or a Cox’s proportional hazards model [25], in which 
significant features reflecting the prognoses should be cho-
sen as a subset of significant features (a signature). The test 
step, therefore, indicates that patients’ prognoses could be 
predicted by use of simply signatures or generally machine 
learning, and physicians would make decisions on treatment 
policies for patients.

3  Procedure of radiomic analysis

3.1  Extraction of image features

Three major types of mathematical feature models, i.e., 
shape, histogram, and texture features, have been utilized in 
the radiomics field [17].

Shape features include diameter, surface area, sur-
face-area-to-volume ratio, sphericity, spherical dispropor-
tion, compactness, and others [26]. Histogram-based sta-
tistical features represent the overall heterogeneity using a 
graylevel histogram within the tumor without spatial infor-
mation. Texture features are calculated from a graylevel 
co-occurrence matrix (GLCM) [27], graylevel run-length 
matrix (GLRLM) [28], neighborhood gray-tone difference 
matrix (NGTDM) [29], and graylevel size zone matrix 
(GLSZM) [30], which represent various types of local spa-
tial inhomogeneities in terms of graylevels within a tumor. 
The GLSZM features were initially used for portraying the 
inhomogeneity of cell nuclei [30]. Since the image features 
depend on the quantization levels of medical images, optimal 
quantization levels should be investigated for the purpose 
and image type using reliability indices such as an intraclass 
correlation coefficient (ICC) [22, 23], which could reflect 
both the degrees of correlation and the agreement between 
measurements. According to our research [31], based on 
the ICC of the radiomic features, the optimal number of 
quantization levels for deriving radiomic features of lung 
cancer in two-dimensional (2D) dynamic electronic portal 
imaging device (EPID) images was 64 levels [31], whereas 
in 3D static computed tomography (CT) images, Shafiq-Ul-
Hassan et al. [32] recommended the normalization of the 
texture features based on the number of quantization levels 
to improve their stability. In a different study, we found that 
the optimal number of quantization levels for computation 

Fig. 2  A flowchart for conven-
tional computer-aided diagnosis 
(CAD) systems

Fig. 3  Flowcharts of discovery 
and validation steps for general 
radiomics
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of wavelet decomposition-based features in CT images of 
lung cancer was 128 levels [33].

Shafiq-Ul-Hassan et al. [32] found that some of the radi-
omic features depended on the voxel size and the number of 
quantization levels. These dependencies can be reduced or 
removed by introducing normalizing factors in their defini-
tions [32].

One of the powerful mathematical tools in radiomics is 
the 2D or 3D fast discrete wavelet transformation (fDWT) 
[34], which can decompose multiscale local intensity vari-
ations (intratumoral heterogeneity) in an image into several 
low- and high-frequency components [35]. The decomposi-
tions at different scales are performed by convolving the 
images with mother wavelets (basis functions) in a single 
down-sampling step at each direction of x, y, and z axes, 
which has been known as the ‘wavelet analysis filter bank’ 
approach [34, 35]. The mother wavelets have multiple char-
acteristics that have impacts on the computation of radiomic 
features, particularly the texture features on wavelet-trans-
formed images [36]. Therefore, we attempted to identify 
the optimal mother wavelets among 31 mother wavelets (5 
Daubechies, 3 Coiflet, 7 Biorthogonal, 8 Reverse Biorthogo-
nal, 4 Symlet, 4 Fejer-Korovkin) in the survival prediction 
of lung cancer patients with use of wavelet-decomposition-
based (WDB) radiomic features in CT images [33]. Symlet 
and Biorthogonal mother wavelets could have the potential 
to predict the survival of lung cancer patients by using WDB 
radiomic features in CT images [33].

Oakden-Rayner et al. [37] compared two approaches for 
the prediction of 5-year mortality with deep learning as well 
as three types of machine learning classifiers (random for-
ests, support vector machines and boosted tree algorithms) 
trained on the human-defined image features. They believe 
that deep learning can automatically create optimal low- and 
high-level features as mentioned by the Hinton’s review 
paper [38]. The areas under the curve (AUC) for predicting 
5-year mortality were 0.677 ± 0.214 with deep learning and 
0.646 ± 0.255 with human-defined features [37], where p 
values were not shown. The results showed still low AUC, 
so that it cannot be concluded that deep learning can pro-
duce image features superior to conventional features. Ning 
et al. [39] proposed a hybrid system that includes differ-
ent features selected with the radiomics model and convo-
lutional neural networks (CNNs) and that integrates both 
features to deal with the classification of gastrointestinal 
stromal tumors (GISTs). The radiomics model and CNNs 
were constructed for producing global radiomics and local 
convolutional features, respectively. The classification per-
formance of the combined features was an AUC of 0.882, 
which outperformed those of radiomics (AUC: 0.807) and 
CNNs (AUC: 0.826) approaches.

Shen et al. [40] compared the prognostic performance 
between 2D and 3D radiomics features in CT images of 

non-small cell lung cancer (NSCLC). They concluded that 
both 2D and 3D CT radiomics features had a certain prog-
nostic ability in NSCLC, but 2D features indicated a better 
performance. 2D features may be preferable from the point 
of view of the calculation cost.

3.2  Stability tests for image features

Stable radiomic features should be selected based on repeat-
ability and reproducibility tests.

Repeatability or test–retest reliability is the closeness of 
the agreement between the results of successive measure-
ments of the same measurand carried out under the same 
conditions of measurement (same measurement procedure, 
same observer, same measuring instrument, used under the 
same conditions, in the same location, with repetition over 
a short period of time) [41]. The reproducibility refers to the 
closeness of the agreement between the results of measure-
ments of the same measurand carried out under changed 
conditions of measurement (principle of measurement, 
method of measurement, observer, measuring instrument, 
reference standard, location, conditions of use, time) [41].

Repeatable and reproducible features are chosen by 
using evaluation indices such as ICC [22, 23] or the con-
cordance correlation coefficient (CCC) [23] computed on a 
test–retest and multiple segmentation datasets, respectively 
[33]. The publicly available online Reference Image Data-
base to Evaluate Response (RIDER) non-small cell lung 
cancer (NSCLC) dataset on The Cancer Imaging Archive 
(TCIA) [42, 43] can be employed as the test–retest dataset 
for the repeatability test [5, 21, 31, 33]. In the RIDER data-
base, patients were scanned twice (test–retest setting) with 
an interval of 15 min. A multiple-segmentation dataset in 
TCIA, including images obtained from several institutions, 
is available for testing the reproducibility [44, 45]. Each CT 
image includes several contours on each lung tumor region 
that was delineated by using different initial conditions of 
an algorithm at several institutions [33].

Berenguer et al. reported that the majority (94%) of the 
evaluated radiomics features for CT images were not repro-
ducible and were redundant [46]. If all of the CT imaging 
parameters were held constant, a smaller percentage (6%) 
of the radiomics features were reproducible and contained 
independent information.

Bologna et al. [47] developed a way to assess the stability 
and discrimination capacity of radiomic features on appar-
ent diffusion coefficient (ADC) maps without the need of 
test–retest or multiple delineations. Geometrical transforma-
tions (translations) of increasing entity were applied to the 
regions of interest (ROIs). The ICC was used to compare 
the features computed on the original and modified ROIs. 
The results suggested that the observed radiomic features are 
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mainly stable and discriminative, but the stability depends 
on the region of the body under observation.

Soufi et al. [31] explored the temporal stability of radi-
omic features in the presence of tumor motion in EPID 
images and the prognostic powers of temporally stable fea-
tures. Fifteen radiomic features were found to be temporally 
stable at various quantization levels. Among these features, 
seven features have shown potentials for prognostic predic-
tion in lung cancer patients.

3.3  Building of radiomic signatures

The major purposes of radiomics are the discovery of sig-
natures (imaging biomarkers) for prognostic prediction or 
subtype classification by measuring a large number of image 
features on a massive number of medical images as shown 
in Table 1. Even though unstable features are excluded by 
using the repeatability and reproducibility tests, the number 
of image features n could be larger than the number of obser-
vations N (e.g., number of patients), and some features may 
be redundant. Consequently, you may have an overfitting 
problem in prediction models with training data, which may 
produce large prediction errors in test data [18]. Therefore, 
to increase the prediction accuracy and model interpretation 
[18], the number of features n should be reduced to a rela-
tively smaller number compared with N, possibly n < N/10 
[48, 49]. In other words, significant and independent features 
should be selected subject to small prediction errors and 
n < N/10. Besides, Chow et al. suggested a formula of a sam-
ple size estimation for Cox’s proportional hazards regression 
model [50].

A simple feature selection method for discovery of the 
radiomic signatures is to evaluate the p values of statisti-
cally significant differences between the survival curves of 
two patient subgroups with either better or worse prognoses. 
The patients were stratified by thresholding a specific radi-
omic feature and could have different responses to the same 
treatment approach. Figure 4 shows the survival curves for 
high- and low-risk patients, which were determined based 
on a median of a radiomic feature (coarseness derived from 
NGTDM). Figure 5 shows the image features with prog-
nostic power based on p values. The image features show-
ing p values smaller than 0.05 (−  log10(p value) larger than 
1.3) could be considered significant features of radiomic 
signatures.

In addition, the image features can be chosen based on the 
association with patients’ prognoses. The signature is defined 
as a feature subset including significant features (like gene 
expression in the omics field). Many feature selection meth-
ods, e.g., Wilcoxon test-based feature selection method [51], 
Coxnet, elastic net [52], least absolute shrinkage and selec-
tion operator (LASSO) [53], feature selection method of joint 
mutual information [54], or logistic regression [55], have been 

employed with machine learning techniques. Several combi-
nations of feature selection methods with machine learning 
techniques were comprehensively compared with each other, 
because the most appropriate combinations for discovering 
signatures with prognostic powers depend on objectives and 
imaging modalities.

The feasibilities of shrinkage methods including LASSO, 
elastic net, and Coxnet have been proved in several studies [52, 
53, 55]. In particular, Coxnet is a powerful algorithm based on 
Cox’s proportional hazards model [25] for finding the signifi-
cant feature subsets (predictors) that have an impact on sur-
vival times. In Coxnet algorithm, Cox’s proportional hazards 
model with the radiomic signature (feature vector with a length 
of n ) xi ∈ Rn , where n is the number of image features and i 
is the patient number, is optimized by maximizing a partial 
likelihood. Cox’s proportional hazards model hi(t) for a patient 
i at a time t can be expressed as:

where ho(t) is the baseline hazard function, and � is the coef-
ficient’s vector with a length of n . To maximize the partial 
likelihood subject to a convex combination of L1 and L2 
norm penalties (elastic net penalty), the Lagrangian formula-
tion is constructed as follows [56]:

where

k is the scaling factor, ‖⋅‖1 indicates the L1 norm (LASSO 
penalty term), ‖⋅‖2 indicates the L2 norm (ridge regression 
penalty term), � is the Lagrange multiplier, and � ∈ [0, 1] 

(1)hi(t) = ho(t)e
xi

T� ,

(2)�̂ = argmax
�

[
k(log (partial likelihood)) − 𝜆P

𝛼
(�)

]
,

(3)P
�
(�) = �‖�‖1 +

1 − �

2
‖�‖2

2
,

Fig. 4  Survival curves for high- and low-risk patients, which were 
determined based on a median of a radiomic feature (coarseness from 
NGTDM)
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is the blending parameter for adjusting the impacts of the 
LASSO and ridge regression penalties on the overall reg-
ularization. A value � = 0 reduces the penalization into a 
ridge regression, and thus all of the radiomic features are 
included in the model. A value of � = 1 reduces the penaliza-
tion to the LASSO term, thereby reducing the number of the 
features by ‘shrinking’ the coefficients of highly correlated 
features to zero.

Soufi et al. [33] identified the optimal mother wavelets 
based on maximization of a ranking index (RI) incorporating 
Coxnet prediction error and the summation of the p values of 
the radiomic features in Cox’s proportional hazards model 
on training datasets. The prognostic performance of the opti-
mal mother wavelets was validated based on the concordance 
index (CI) of the Cox’s proportional hazards models. They 
revealed the potential of Symlet and Biorthogonal mother 
wavelets in the survival prediction for lung cancer patients.

Recently, deep learning algorithms have been widely used 
as one of the more useful tools for segmentation, extrac-
tion, and selection of image features, and for prediction of 
prognosis in the medical imaging field including CAD, radi-
omics, medical image analysis [57–59], and CART [60]. 
Deep learning is a type of mapping function f (⋅) from input 
image vectors 

{
xj
}
 ( j : input vector number) to output vectors 

y = f
(
xj, w

)
 ( w : weight vector) [61]. Therefore, you may 

think that most of the approaches except the production of 
input images can be replaced by deep learning. However, the 
authors believe that the entire discovery step should not be 
replaced, because the deep learning thus far cannot inher-
ently distinguish “causation” from “correlation” [62] in the 

mapping functions. According to the results of deep learn-
ing, you may mistakenly consider “correlation” as “causa-
tion”, which are quite different from each other. If the pur-
pose of your research is to find the “reason” or “cause” of the 
phenomena, deep learning might be inappropriate.

4  Prediction of prognosis prior to treatment 
using radiomics

Patients’ prognoses such as therapy responses can be pre-
dicted prior to treatment by imaging biomarkers derived 
from radiomics schemes. Qin et al. [63] investigated the 
utility of image features of the GLCM based on intravoxel 
incoherent motion diffusion-weighted imaging (IVIM-DWI) 
(81 patients) for predicting the early response to chemo-
radiotherapy for nasopharyngeal carcinoma (NPC). GLCM 
features based on IVIM-DWI, especially on a diffusion-
related map, may be a potential tool for predicting the early 
response of NPC before starting chemoradiotherapy.

Wang et al. [64] evaluated the ability of MR imaging 
radiomics for pretreatment prediction of the response to 
induction chemotherapy (IC) in 120 patients with NPC. 
The association between the early response and the radi-
omics signatures obtained from the LASSO logistic regres-
sion model to the IC was explored. For stratification of the 
patients into responders and non-responders, the radiomic 
score of each patient was calculated by use of linear combi-
nations of radiomic features weighted by coefficients from 
LASSO. As imaging biomarkers, the radiomics signatures 

Fig. 5  Image features with 
prognostic powers based on 
p values. The lower p values 
(stronger prognostic power) 
indicate a larger −log10p value
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may provide valuable and practical approaches to the char-
acterization of individual patients to guide each treatment.

Cui et al. [65] developed and validated a radiomics nomo-
gram incorporating multiparametric MRI-based radiomics 
signature and clinical factors for the preoperative predic-
tion of pathological complete responses of 186 patients with 
locally advanced rectal cancer (LARC). They also derived 
the radiomic signature from LASSO and calculated the 
radiomics scores to be used for the nomogram. This study 
suggested that the pretreatment radiomics nomogram could 
predict the complete responses in patients with LARC and 
potentially guide treatments to select patients for a “wait-
and-see” policy.

Crispin-Ortuzar et  al. [66] proposed a method for 
predicting the hypoxia status by use of a combina-
tion of contrast-enhanced computed tomography and 
 [18F]-fluorodeoxyglucose positron emission tomography 
(18F-FDG PET) radiomic features in 121 lesions from 75 
head and neck cancer patients. Seventy-nine lesions were 
used for training a cross-validated LASSO regression 
model based on radiomics features, whereas the remain-
ing 42 lesions were held out as an internal test subset. A 
radiomics signature built from hypoxia imaging 18F-FDG 
PET and contrast-enhanced CT features correlated with the 
maximum tumor-to-blood uptake ratio of 18F-fluoromiso-
nidazole (FMISO) PET in head and neck cancer patients. 
The 18F-FDG-PET imaging biomarker could be useful for 
personalization of head and neck cancer treatment at centers 
without the use of 18F-FMISO PET.

Larue et al. [67] explored the prognostic value of radi-
omics in CT images of esophageal cancer patients. They 
hypothesized that radiomics features could contain prog-
nostic information in addition to the conventional baseline 
clinical variables: gender, age, histology, and cTNM-stage, 
as well as the tumor regression grade (TRG) after neo-
adjuvant treatment. To verify the hypothesis, they trained 
and externally validated two random forest (RF) models 
(radiomics-based and clinical-data-based models) to predict 
3-year overall survival after the treatment of ‘Dutch Chemo-
Radiotherapy for Oesophageal cancer followed by Surgery 
Study’ based on either radiomics or clinical variables. In the 
validation dataset, the radiomic RF model yielded an AUC 
of 0.61 (95% CI 0.47–0.75), whereas the clinical RF model 
resulted in an AUC of 0.62 (95% CI 0.49–0.76).

Hou et  al. [68] reported on a radiomics method for 
predicting the treatment response to chemoradiotherapy 
(responders: patients with complete response and partial 
response; non-responders: patients with stable disease) in 
esophageal squamous cell carcinoma by use of T2-weighted 
and spectral attenuated inversion-recovery (SPAIR) 
T2-weighted MR images. The artificial neural network 
(ANN) and support vector machine (SVM) based on image 
features extracted from the SPAIR T2-weighted sequence 

(SVM: 0.929, ANN: 0.883) showed a higher accuracy than 
those based on the T2-weighted sequence (SVM: 0.893, 
ANN: 0.861).

Shiradkar et al. [54] identified a signature derived from 
pretreatment bi-parametric MR images (T2-weighted images 
and ADC maps of 120 patients) that may be predictive of 
prostate cancer biochemical recurrence (BCR). The BCR 
is the rise in the blood level of prostate-specific antigen 
in prostate cancer patients after treatment with surgery or 
radiation therapy. They employed three classifiers and three 
feature selection methods and found that SVM with joint 
mutual information produced the highest AUC of 0.73 for a 
validation dataset in the classification of BCR+ and BCR−.

5  Future of radiomics and CAD

As shown in Table 1, there are some differences between 
“conventional” CAD and “current” radiomics such as back-
ground and purpose, but both share common parts of image 
processing, feature extraction, feature selection, and clas-
sifiers. CAD has a history of more than 30 years, and its 
research field has accumulated abundant knowledge about 
it. Therefore, radiomics could accelerate precision medicine 
by standing on the shoulders of the giant of CAD.

The authors found several studies indicating some syner-
gistic effects between CAD and radiomics. Gangeh et al. [69] 
developed a computer-aided prognosis method for cell death 
categorization and prediction in vivo by using quantitative 
ultrasound images and machine learning techniques. Gian-
nini et al. [70] assessed whether a proposed CAD system 
can predict a pathological complete response to neoadjuvant 
chemotherapy prior to treatment by using texture features. 
Kai et al. [71] developed a radiogenomic CAD scheme to 
support personalized medicine by using a classifier to learn 
changes in image features of a lesion related to the difference 
between genotypes.

Radiogenomics [5] is a promising field to develop imag-
ing biomarkers incorporating both phenotypic and genotypic 
metrics that can predict patient outcomes, and thus can better 
stratify patients for more precise therapeutic care in preci-
sion medicine than the radiomics [72]. The phenotypic fea-
tures correlating with genotypes can be utilized as surrogate 
markers of the genotypes. Furthermore, a more advanced 
concept of panomics [73, 74] rather than radiomics has been 
suggested as a new omics field to discover integrated data 
with imaging features (radiomics) and biological markers 
(genomics, proteomics, metabolomics) to be used for preci-
sion medicine.
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