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The paper presents a data-mining model based adaptive protection scheme enhancing distance relay per-
formance during power swing for both compensated and uncompensated power transmission networks.
In the power transmission network, the distance relays are sensitive to certain system event such as
power swings, which drive the apparent impedance trajectories into the protection zones of the distance
relay (zone-3) causing mal-operation of the distance relay, leading to subsequent blackouts. Further,
three-phase balanced symmetrical fault detection during power swing is one of the serious concerns
for the distance relay operation. This paper proposed a new adaptive protection scheme method based
on data-mining models such as DT (decision tree) and RF (random forests) for providing supervisory con-
trol to the operation of the conventional distance relays. The proposed scheme is able to distinguish
power swings and faults during power swing including fault zone identification for series compensated
power transmission network during stress condition like power swing. The proposed scheme has been
validated on a 39-bus New England system which is developed on Dig-Silent power factory commercial
software (PF4C) platform and the performance indicate that the proposed scheme can reliably enhance
the distance relay operation during power swing.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Power swing is a phenomena occurs in an interconnected elec-
tric power transmission system due to sudden removal of faults,
loss of synchronism or changes in direction of power flow as a
result of switching and creates oscillations in power flow [1]. In a
stable power swing, these fluctuations die down whereas unstable
swings result in progressive separation of angle between the two
areas causing large oscillations of power flows, large fluctuations
of voltages (V) and currents (I) and eventually loss of synchronism
between such areas [1–3]. A CIGRE study found that major portion
of bulk power system disturbances resulted from false trips of the
protection system. This is mainly due to the fact that conventional
local protection devices are not able to consider a system view and
therefore, are not able to take optimized and coordinated actions.
Recent blackouts offer testimonies of the crucial role played by
protection relays in a reliable power system [4–6]. The most recent
blackout in India in July 2012 was initiated by the tripping of zone-
3 relay of the 400 kV Bina-Gwalior line due to load encroachment
[7,8]. Further, lack of real-time data and lack of coordinated con-
trols are also some of the major causes of blackouts [9].

There are numerous schemes available for fault detection and
power-swing blocking (PSB) with distance relays to identify the
power swing [10–22]. Concentric characteristic and blinder meth-
ods are based on the rate of change in apparent impedances [10–
13]. These methods require wide range offline stability study to
obtain the settings [11]. Again, these methods do not respond to
faults during a blocking period and fail to distinguish a fast swing
condition from the faults. Since resistance seen by the relay chang-
ing during power swing and remains constant during the fault per-
iod, the rate of change of resistance is a good indicator of a fault
[13]. However, the response time becomes a concern since the rate
of change in resistance becomes significantly slower in the tran-
sient period. To detect the power swing by combining concentric
characteristic and continuous monitoring of apparent impedance,
a method is proposed in [14]. A power swing detection scheme
based on swing centre voltage (SCV), is available in [15]. This tech-
nique takes more than two cycles to detect a fault during the
power swing.

In [16] an adaptive distance protection scheme resistant to the
power swing is presented. In [17,18], a supervised learning
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methods, such as support vector machine (SVM) and adaptive
neuro-fuzzy inference system (ANFIS), are applied to develop the
PSB function for distance relay utilizing several input signals. These
methods require many simulations to train for wide ranges of
faults and power-swing conditions, and suffers due to high compu-
tational time of SVM. A wavelet transform coefficients of the volt-
age and current signals are used to distinguish the power swing
from the fault proposed in [19]. In [20], a fault detector using
superimposed components of the current is proposed. In [21], a
cross-blocking method based on the derivative of the three-phase
active and reactive power is used to detect symmetrical faults dur-
ing the power swing. In [22], a symmetrical fault detector based on
the relative presence of decaying dc in the current waveforms dur-
ing the power swing is proposed. However, the challenges are com-
pounded when the transmission network is embedded with
Flexible AC Transmission Systems (FACTS) devices.

FACTs devices are increasingly for improving steady-state and
transient stability improvement. Among those Thyristor Controlled
Series Capacitor (TCSC) is used for enhancing power transfer
capability by variation of series compensation. However, varia-
tion in series compensation introduces number of protection chal-
lenges for the distance relay operation. Voltage inversion, current
inversion, reach measurement and relay coordination are some of
the major concerns in series compensated lines [23,24]. Overreach-
ing of distance elements is the most critical problem with series
compensated lines. Also the distance function may fail to pick up
for low-current faults [25]. The evaluation and performance assess-
ment of different power swing detectors for a series-compensated
line has been discussed in [26–28].

Looking at the aforementioned protection issues, there is a
strong motivation in building an intelligent protection relay that
can provide a comprehensive adaptive protection to prevent the
maloperation of distance relay during power swing for the both
compensated and uncompensated power transmission system.
The proposed scheme helps in minimizing the likelihood of mani-
festation of hidden failures and potential cascading events by
adjusting the security/dependability balance of protective relays
Fig. 1. (a) IEEE 39-bus New England syst
to suit prevailing system conditions. The main contribution of this
proposed research work is to demonstrate the effectiveness of the
data-mining model [29–35,17,36–38] approaches for symmetrical
fault detection and out-of-step detection during power swing.
Data-mining is a non-parametric statistical analysis which is best sui-
ted for power systems with complex nonlinear behaviours involved.

In the present study, the New England 39 bus system is consid-
ered (Fig. 1(a)) where a modification has been incorporated by pro-
viding 70% compensation at the beginning of line 16–17 (Fig. 1(b))
for evaluating the performance of the proposed technique. In
Section ‘‘Protection challenges with series compensated line and
power swing”, the protection challenges with SC-line during power
swing is defined. The proposed scheme for an adaptive and intelli-
gent security/dependability protection scheme is presented in
Section ‘‘Proposed scheme”. Simulation results and different case
studies are presented in Section ‘‘Results and analysis”. Perfor-
mance assessments and discussion presented in Section
‘‘Performance assessments and discussions”. Conclusions followed
by references are presented in section ‘‘Conclusion”.

Protection challenges with series compensated line and power
swing

Series compensation in power transmission network increases
power transfer capability and improves power system stability.
Series compensation imposes various protection problems as
discussed in literature [23–28]. The fault detection during the
power swing in a metal oxide varistors (MOV) protected series-
compensated transmission network is very challenging. The
variation of the fault current during such a period relies on the
operation of the MOV. To study the variation in the current signal
patterns for faults during the power swing, a symmetrical fault is
created at 1.9 s for two different locations of fault (20% and 75%)
from the relay end in T-16 following the removal of T29–T26.
The corresponding current signal are shown in Fig. 2(a) and (b),
respectively. It is clearly observed from Fig. 2(a) that in the case
of the a–b–c fault at the far end. The level of fault current is smaller
em, and (b) series compensated line.
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Fig. 2. Phase-a current at the relay bus for a three-phase fault during the power swing at 1.9 s at locations of (a) 20% and (b) 75%.
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than the power swing current which does not enable MOV conduc-
tion and results in sub-synchronous. However, in case of an a–b–c
fault at the near end (Fig. 2(b)), the current level as seen from the
graph is larger than the swing current which causes the MOV to
operate. As a result, in most portions of the fault, the series capac-
itor is bypassed and no oscillation is observed in the fault current.

Further, the impedance trajectory during power swing enters
zone-1 of the relay, as shown in Fig. 3 which corresponds to an
unstable power swing. In case of stable power swing the impe-
dance trajectory enters to the zone-3. However, for stable or unsta-
ble power swings, relays should not operate and the operation
must be blocked. This research work develops a data mining model
based fault/power swing detector to issue the trip/block command
accordingly for secured operation of the power system.
Proposed scheme

System studied

The New England 39 bus system shown in Fig. 1(a) has 10 syn-
chronous generators, 39 buses and 45 AC transmission lines with
constant active and reactive power loads distributed throughout
the network is considered for the study where a modification has
been incorporated by providing 70% compensation at the begin-
ning of line 16–17 as the test system for evaluating the perfor-
mance of the proposed technique. The studied power network is
developed using Dig-Silent power factory commercial software
package. A three-phase-to-ground fault with fault resistance of
1 O occurs on line T26–T29 at t = 0.5 s and cleared at t = 0.75 s by
disconnecting the line. This creates the power swing in intercon-
nected transmission line. Fig. 4 shows the schematic diagram of
the proposed data-mining model based intelligent differential pro-
tection scheme to prevent the maloperation of distance relay dur-
ing power swing for series compensated line. The inputs used for
building the intelligent relay are as follows:
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Fig. 3. Impedance locus during power swing.
� X1 = d(Psa � Pra)/dt: (Rate of change of active power phase-A
difference).

� X2 = d(Psb � Prb)/dt: (Rate of change of active power phase-B
difference).

� X3 = d(Psc � Prc)/dt: (Rate of change of active power phase-C
difference).

� X4 = d(Qsa � Qra)/dt: (Rate of change of reactive power phase-A
difference).

� X5 = d(Qsb � Qrb)/dt: (Rate of change of reactive power phase-B
difference).

� X6 = d(Qsc � Qrc)/dt: (Rate of change of reactive power phase-C
difference).

� X7 = d(I2s � I2r)/dt: (Rate of change of negative sequence current
difference).

� X8 = d(V2s � V2r)/dt: (Rate of change of negative sequence volt-
age difference).

� X9 = d(I1s � I1r)/dt: (Rate of change of positive sequence current
difference).

� X10 = d(V1s � V1r)/dt: (Rate of change of positive sequence volt-
age difference).

� X11 = d(I0s � I0r)/dt: (Rate of change of zero sequence current
difference).

� X12 = d(V0s � V0r)/dt: (Rate of change of zero sequence voltage
difference).

� X13 = d(Isa � Ira)/dt: (Rate of change of current IA difference).
� X14 = d(Isb � Irb)/dt: (Rate of change of current IB difference).
� X15 = d(Isc � Irc)/dt: (Rate of change of current IC difference).
� X16 = d(Vsa � Vra)/dt: (Rate of change of voltage VA difference).
� X17 = d(Vsb � Vrb)/dt: (Rate of change of voltage VB difference).
� X18 = d(Vsc � Vrc)/dt: (Rate of change of voltage VC difference).
� X19 = d(phis � phir)/dt: (Rate of change of phase angle
difference).

� X20 = d(deltas � deltar)/dt: (Rate of change of Load angle delta).

Differential feature selection

Conventionally, the phasor is defined for steady state sinusoidal
signals with constant amplitude and angle. In the dynamic condi-
tion, the amplitude and phase (angle) varies with time, which
introduces the concept of dynamic phasor [39]. Due to lack of rec-
ommended specific algorithm to estimate phasor in IEEE Std.
C37.118, phasor estimation has attracted a lot of attention [40].
Different algorithms are proposed to estimate the dynamic phasors
[41–46]. The performance of all these techniques depends on the
accuracy of phasor estimation. Because of substantial error in pha-
sor estimation during power swing, the negative sequence compo-
nent becomes significant even for non-fault situation, which may
lead to incorrect protection decision. Higher threshold value could
be set for sequence components to address such inaccuracies,
which may result in unreliable fault detection. In this paper, the



Fig. 4. Data-mining model based proposed intelligent differential protection scheme for symmetrical fault detection and out-of-step blocking.
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amplitude and phase of the power system variables are considered
as time dependent and the proposed study uses least squares (LS)
technique based PMUs [47,48] for phasor estimation and corre-
sponding feature extraction.

In the proposed study, 20 differential features are derived,
which could be mostly affected during the fault condition and
are measured locally as follows fi = fi,16 � fi,17, where fi is the differ-
ential feature, i = 1, 2, 3, . . . , 21 and (No. of features), fi,16 is the ith
feature estimated at bus-16, and fi,17 is the ith feature estimated at
bus-17. 16 and 17 are the buses at both ends of the target feeder,
on which the fault occurs.

Data sets generated for data mining model

The proposed study considers wide variation in operating con-
ditions during power swing as follows. (a) Variations in fault resis-
tance from 0 to 300 O; (b) variations in source impedance by 40%
from normal value; (c) variations in fault location: 20–95% of the
line; (d) variations in fault inception angle (FIA): 0–90�; (e) all
10-types of fault during power swing like ground fault (i.e. a–g,
b–g, c–g, a–b–g, b–c–g, a–c–g) and unground fault (i.e. a–b, b–c,
a–c, a–b–c) (f) three-phase fault in harmonic condition during
power swing; (g) three-phase fault in noisy condition during
power swing; (h) load increasing up to 50% during power swing;
(i) variations in compensation level: 50–70%.

Total simulations carried for fault during power swing are 5RF

(fault resistance) � 2ZS (source impedance) � 5(fault location) � 5
(FIA) � 11 (types of fault) � 2 (compensation level) + 50 (three-
phase fault in harmonic condition) + 45 (load increasing) = 5595.
The complete data set generated considering above variations are
used to train and test the data-mining model.

Proposed DT based scheme distinguishing faults and power swing

The classification approach using DTs to prevent distance relay
maloperation under power swing is shown in Fig. 6. Post fault dif-
ferential features (both end of compensated i.e. T-16 and T-17) are
used as inputs to the decision trees (i.e. DTs) against target outputs
‘‘1” for faults and ‘‘0” for power swing. The DT is trained to build a
data-mining model with an extensive data sets derived from a ser-
ies of fault simulations. The proposed technique is tested on wide
variations in operating parameters in the power system network,
including a noisy environment and, was found to be accurate and
robust for fault/power swing identification in series compensated
transmission lines.

The proposed scheme is divided into three stages (i.e. Fig. 5). In
the first stage based on input feature selection DTs-1 identify fault
(1)/power swing (0) and send accordingly tripping/blocking com-
mand. In the second stage DT-2 classify type of swing for unstable
power swing (Out-of-step) where the target output is ‘1’ and for
stable power swing with target output as ‘0’. Similarly, in the third
stage DT-3 classify type of fault during power swing for grounded
fault as target output ‘1’ and for ungrounded fault target output is
‘0’. The differential input features considered in the proposed study
are discussed in the earlier section. The hierarchical structure of
classification scheme using data-mining models to prevent dis-
tance relay maloperation under power swing is shown in Fig. 6
and the trained DT for the proposed scheme is shown in Fig. 7.
Results and analysis

The data-mining models are developed using the features
extracted from the least squares (LS) based PMU for deriving final
decision. Thorough comparisons are made between different data-
mining models such as DT, RF and SVM ranging from transparent
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to black-box solutions, respectively. It is observed that there is a
trade-off between transparency and accuracy while looking at
the performance of the data mining models. The data-mining mod-
els developed in this study use open-source software R [38], which
includes the implementation of conventional DT, RF and SVM.
Classifier-1:- fault versus power swing

In the proposed study, an extensive data set is generated to
train and test the data-mining model (DTs, RFs and SVM) for devel-
oping an accurate and robust classifier to prevent distance relay
maloperation under power swing. The data-mining model is
trained and tested for different combination of data sets, such as
(80–20), (70–30), (30–70), and (20–80) for training and testing
purpose, respectively. For example in combination of (70–30) data
set, 70% of data are considered for training purpose and 30% of data
for testing purpose. The confusion matrix generated for the above
system is depicted in Table 1, provides the comparison results
between the actual and predicted faults during testing for the
given data set. Data-mining model provides confusion matrix only
on testing data set. For example, (80–20%) data set mean, the con-
fusion matrix provides classification results on 20% of total data
set. Table 1 also shows the effect of increase in training data set
on the yield of Data-mining model and it is observed that either
for [70–30%] or [80–20%] combination of data set, the Data-
mining model provides three nine i.e. 99.9% accuracy in case of
ensemble decision tree (random forest) and 99.6%, 99.4% for DT
and SVM case respectively. Thus, further results assessment has
been carried out considering 80–20% training–testing data sets.

It is observed from Fig. 7 that the actual or optimal number of
features taking part in DT construction, for classification of fault
versus power swing, are X7, X10, X11, even though 20 features are
initially fed to the Data-mining model as inputs. This clearly shows
the optimal feature selection capability of DT for decision making.
The accuracy of the classification is strongly dependent on the
quality of the attributes or inputs. This complementary behaviour
is highlighted by the importance analysis results from the random
forest learning as shown in Fig. 8 for fault versus power swing (X10,
X11 and X17 in Mean Decrease Gini). Out-of-bag accuracy-based
ranking results in approximately the same top three, although X7

is substituted to the highly correlated X17. However, the difference
in accuracy loss between these three variables is so tenuous that
they are all equally important for achieving a predictor with good
generalization capabilities.

Classifier-2:- stable versus unstable power swing

If there is no fault exists during power swing then distance relay
output is ‘1’ and classifier-1 output is ‘0’ and thus, both output pass
through the AND logic gate which gives ‘0’ output for digital relay.
Its means that the relay block during power swing and power sys-
tem is in safe state during stress condition. Again, data-mining
model based classifier-2 used for classifying stable power swings
from unstable ones. The accuracy of different data-mining tech-
nique for 80–20% are depicted in Table 2, which gives the compar-
ison result between the DT, RF and SVM during testing period for a
given data set.

Classifier-3:- symmetrical versus unsymmetrical fault during power
swing

If the fault exists during power swing, then distance relay out-
put is ‘1’ and classifier-1 output is also ‘1’ and thus, both output
pass through the AND logic gate which gives ‘1’ output for digital
relay. Its means that the relay issues the tripping signal during
power swing. Again, data-mining model based classifier-3 used
for classification of symmetrical versus unsymmetrical fault during
power swing. The accuracy of different data-mining techniques
(80–20%) for this situation is depicted in Table 3, which provides
the comparison result between the DT, RF and SVM during testing
period for a given data set.

Fault zone identification during power swing

In the proposed study, an extensive data set is generated
to train and test the data-mining model for developing also an
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accurate and robust classifier for fault-zone identification in series
compensated transmission line during power swing. The total data
sets generated for series compensated lines is 800. It is observed
from Fig. 9 that the actual or optimal number of features taking part
in DT construction for fault-zone identification in series compen-
sated transmission are X1, X2, X8, X9, X11, X16 and X20, even though
20 features are initially fed to the Data-mining model as input. This
clearly shows the optimal feature selection capability of DT for deci-
sion making. The overall performance assessment for the above
combination is depicted in Table 4, which provides the comparison
result between the DT, RF and SVM during testing period for a given
data set. For fault-zone identification three data mining algorithms
are used, however there exists a trade-off in accuracy and trans-
parency between them. RF provides performance accuracy close to
DT, however, DT is transparent and finds easy implementation on
real time compared to other two black box solutions (SVM and RF).
Fault classification during power swing

In the proposed study, an extensive data set is generated to
train and test the data-mining model for developing an accurate
and robust classifier for single fault identification in series com-
pensated transmission line during power swing. The total data sets
generated for series compensated lines is 800. The overall accuracy
for the above combination is depicted in Table 5, which provides
the comparison result between the DT, RF and SVM during testing
period for a given data set.

Real time testing and validation

To test the robustness of the proposed adaptive protection
scheme, the validation is also carried out on field-programmable
gate array (FPGA) board. Performance testing on FPGA platform



Table 1
Confusion matrix for fault versus power swing.

Performance indices DT RF SVM
Actual Actual Actual

Predicted 0 1 0 1 0 1

Test 1 80% Training and 20% Testing
0 107 3 107 3 104 6
1 2 1007 0 1009 0 1009

Accuracy (%) 99.55 99.73 99.46
Misclassification 5 3 6

Test 2 70% Training and 30% Testing
0 155 3 157 1 149 9
1 3 1518 0 1521 0 1521

Accuracy (%) 99.64 99.94 99.46
Misclassification 6 1 9

Test 3 30% Training and 70% Testing
0 344 6 345 5 327 23
1 5 3562 0 3567 0 3567

Accuracy (%) 99.71 99.87 99.41
Misclassification 11 5 23

Test 4 20% Training and 80% Testing
0 397 6 397 6 374 29
1 5 4068 0 4073 0 4073

Accuracy (%) 99.75 99.844 99.353
Misclassification 11 6 29

Fig. 8. Top-down importance of the variables according to the accuracy loss or
misclassification rate reduction (gini) for fault vs. power swing.

Table 2
Stable versus unstable power swing results.

Method Accuracy (%)

DT 99.12
RF 100
SVM 100

Table 3
Symmetrical versus unsymmetrical fault during power swing results.

Method Accuracy (%)

DT 99.68
RF 99.11
SVM 89.21
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indicates the ability of the developed data-mining model based
intelligent relays to perform on real-time application. The pro-
posed decision tree classifier (DTC) architecture (Figs. 7 and 9)
was implemented on a Xilinx ML310 board which is a Virtex-II
Pro-based embedded development platform. It includes a Xilinx
XC2VP30 FPGA with two embedded PowerPC processors, 256 MB
DDR DIMM, 512 MB compact flash card, PCI slots, Ethernet and
standard I/O on an ATX board. The XC2VP30 FPGA contains
13696 slices and 136 Block RAM modules. We used Xilinx XPS
8.1i and ISE 8.1i software’s to implement our architecture on the
board. The results of FPGA testing (for proposed DT with 30% test-
ing dataset-1678 cases) are presented in Table 6. It is observed that
the dependability stays at >99% while the security stays at >97%.

Further, the response time of the proposed scheme is compared
with that of other differential existing schemes [49–52] along with
their dependability for 167 cases of crucial different fault situa-
tions during power swing. The comparative assessments based
on response time and dependability (in FPGA board) are presented
in Figs. 10 and 11 respectively. It is concluded that the proposed
scheme is most dependable among all the existing relaying
schemes with a faster response time. The response time of the pro-
posed relay is 1.75-cycles from the fault inception, which includes
30 ms (1.5 cycles) for LS-PMU for accurate phasor estimation dur-
ing power swing [48] and differential feature computation, and
5 ms for DT processing. It is observed that the dependability stays
at 99% against 85% and 80% for the remote end faults at 95% of the
uncompensated and compensated line, respectively as depicted in
Table 7.
Performance assessments and discussions

The previous section deals with building data-mining model for
(i) fault versus power swing classification, (ii) stable versus unsta-
ble power swing classification, (iii) symmetrical versus unsymmet-
rical fault during power swing classification, (iv) fault-zone
identification during power swing for series compensation at mid-
dle of the line T16–T17, (v) fault classification during power swing
and, (vi) real time testing and validation. Post fault differential fea-
tures from both the ends of compensated line to be protected are
used to build the classification data-mining model for disturbance
classification. To assess the performance of the proposed intelli-
gent relay, three statistical metrics are defined as follows:- (1)
Dependability: Total number of fault cases predicted correctly dur-
ing power swing/Total number of actual fault cases during power
swing. (2) Security: Total number of no-fault cases predicted cor-
rectly during power swing/Total number of actual no-fault cases
during power swing. (3) Accuracy: Total number of correctly pre-
dicted (fault + no fault) cases during power swing/Total numbers
of actual (fault + no fault) cases during power swing.

The performance comparison between DT, RF and SVM is
depicted in Table 6. Although RF, SVM provides similar perfor-
mance compared with DT, the model complexity makes the imple-
mentation difficult on the digital signal processor/field-
programmable gate array board in case of RF and SVM. At the same
time, DT, being the transparent tool, can be implemented based on
the set thresholds of the decision variables and thus attracts wide-
spread attention as one of the emerging data-mining tools for engi-
neering applications and their commercial implementations. The
scheme proposed in this article main aims to reduce the likelihood
of hidden failures and potential cascading events due to stress con-
dition like power swing by adjusting the security/dependability
balance of protection systems. Aided with wide-area measure-
ments based on PMU data, the methodology tailors the security/
dependability balance to suit prevailing system conditions. When
the power system is in a ‘‘safe” state (i.e. no power swing



Fig. 9. DT generated structure for fault zone identification.

Table 4
Fault zone identification results during power swing.

Method Accuracy (%)

DT 95.52
RF 95.62
SVM 81.87

Table 5
Single fault classification during power swing.

Fault cases Accuracy (%) (testing 20% and training 80%)

DT RF SVM

1(a–g) 99.31 100 100
2(b–g) 99.38 100 100
3(c–g) 99.04 100 100
4(a–b) 99.05 100 100
5(b–c) 99.7 100 100
6(c–a) 99.67 100 100
7(a–b–c) 99.67 100 100
8(a–b–g) 99.35 100 100
9(b–c–g) 99.7 100 100
10(c–a–g) 99.1 100 100
11(a–b–c–g) 99.67 100 100

Table 6
Performance assessments.

Sl. no. Relay performance DT (%) RF (%) SVM (%)

1 Dependability 99.80 100 100
2 Security 97.27 97.27 94.55
3 Accuracy 99.55 99.73 99.46

Fig. 10. Comparative assessments based on response time.

Fig. 11. Comparative assessments based on dependability.
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condition), a bias toward dependability is desired. Under such con-
ditions, not clearing a fault with primary protection has a greater
impact on the system than a relay misoperation due to lack of
security. However, when the power system is in a ‘‘stressed” state
(i.e. power swing condition), unnecessary line trips can greatly
exacerbate the severity of the outage, contribute to the geograph-



Table 7
Dependability comparison with respect to one both end features.

Conditions Proposed
method
(features)

Dependability
(fault at 30% of
line) (%)

Dependability
(fault at 95% of
line) (%)

Uncompensated
power
network

One end 99 85
Both end 99 99

Compensated
power
network

One end 99 80
Both end 99 99

Bold stands for ‘‘results of proposed scheme”.
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ical propagation of the disturbance, and may even lead to cascad-
ing events and subsequent blackouts. Under such states, it is desir-
able to alter the reliability balance in favour of security. The
proposed scheme alters the functionality of a group of relays with-
out directly modifying relay settings.

Conclusion

This paper presents a data-mining based intelligent differential
relaying scheme for series compensated transmission network. The
process starts at pre-processing the voltage and current signals
using least square (LS)-based PMU and the derived differential fea-
tures are used to generate the optimal data-mining models for dis-
tinguishing faults and power swing. The proposed scheme is
extensively tested for New England 39 bus test system which is
developed on Dig-Silent power factory commercial software
(PF4C) platform for evaluating the performance of proposed tech-
nique. The results obtained on security/dependability indicate
the effectiveness of the proposed relaying scheme in distinguishing
stressed conditions such as power swing from faults with a
response time 1.75-cycles from the fault inception. Furthermore,
testing on FPGA platform ensures the reliability of the proposed
relaying scheme.
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