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SUMMARY

Genetically identical cells contain variable numbers
of molecules, even if the cells share the same envi-
ronment. This stochastic variability is prominent
when molecules have low abundance, which is the
case for mRNA noise. Most studies focused on how
transcription affects mRNA noise, and little is known
about the role of RNA degradation. To discriminate
the fluctuations in these processes during the decay
of a pair of reporter mRNAs, we quantified the uncor-
related intrinsic and the correlated extrinsic noise
using single-molecule RNA FISH. Intrinsic noise con-
verges to the Poisson level during the decay. mRNAs
that have a short half-life are more susceptible to
extrinsic noise than stable mRNAs. However, the
Xrn1 exonuclease and the NMD pathways, which
degrade mRNAs rapidly, were found to have lower
fluctuation, which mitigates the noise of the short-
lived mRNAs. This permits low variability across the
entire range of mRNA half-lives.
INTRODUCTION

Single-cell studies have revealed a substantial cell-to-cell vari-

ability in the expression of genes (Gasch et al., 2017; Newman

et al., 2006; Symmons and Raj, 2016). This variability, noise in

gene expression, can significantly alter the behavior of regula-

tory networks, causing deviations from the familiar deterministic

dynamics (Hsu et al., 2016a, 2016b; Shahrezaei et al., 2008).

A main cause of the stochastic variability is the low number of

molecules in a cell, which is typically the case for nucleic acid

polymers, exemplified by genes and mRNA molecules. There

are one to four copies of each gene in a cell, depending on the

cellular ploidy and replication state. Similarly, most mRNA mole-

cules are present at less than 10 copies in unicellular organisms,

such as yeast or bacteria (Arbel-Goren et al., 2016; Wadsworth

et al., 2017; Zenklusen et al., 2008). Since both components of

transcription, genes and mRNAs, have low numbers in a cell,

transcription is a noisy process. Noise in the expression of one

gene can also propagate to another gene through biochemical

control. Thus, noise has multiple sources and can be decom-
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posed in different ways (Mitchell andHoffmann, 2018). A dual-re-

porter method has been developed to distinguish two sources of

noise, the intrinsic and extrinsic noise (Elowitz et al., 2002). The

random collision of molecules that triggers the biochemical reac-

tions introduces substantial fluctuations when the copy number

of the molecule is low; these fluctuations are not shared by the

two alleles of the gene due to their distinct spatial localization

and thus are uncorrelated (Shahrezaei et al., 2008). At the

same time, fluctuations in the molecular pathways controlling

the expression of both alleles of a gene generate correlated fluc-

tuations (Hilfinger and Paulsson, 2011). Generally, the uncorre-

lated and correlated fluctuations correspond to the intrinsic

and extrinsic noise measured with the dual-reporter method

(Shahrezaei et al., 2008). The determination of the origins of

the extrinsic noise has been a main goal of single-cell systems

biology (Shahrezaei and Swain, 2008).

Most studies have focused on how stochasticity is affected by

transcription, including the control by promoters, replication, elon-

gation,andchromatindynamics (Huberetal., 2016;Petersonetal.,

2015; Tripathi andChowdhury, 2008; Yanget al., 2014). In addition

to the above processes that affect the rate of RNA synthesis, RNA

degradation is the second determinant of RNA abundance. How-

ever, it is less clear how mRNA degradation affects noise.

All mRNAs in the budding yeast are transcribed by theRNApo-

lymerase II, whereas two different, evolutionarily conserved, en-

zymes can degrade them. The Xrn1 exonuclease degrades them

in the 50-to-30 direction, while the exosomeproceeds in the oppo-

site, 30-to-50 direction. Recent evidence suggests that mRNA

turnover in yeast is very rapid, with a median half-life of around

2 min (Baudrimont et al., 2017; Wada and Becskei, 2017). Most

mRNAs with short half-lives are degraded by the Xrn1 exonu-

clease. Stable mRNAs, as well as all mRNAs in the absence of

Xrn1, are degraded by the exosome.While all mRNAs are subject

to physiological turnover, mutated or defective mRNAs are

recognized by surveillance pathways, which can steer even sta-

blemRNAs to rapid degradation. The nonsense-mediated decay

(NMD) is a classical surveillance pathway, which targets mRNAs

with premature stop codons (PMS). PMS frequently occurs in un-

spliced mRNAs that leak from the nucleus into the cytoplasm or

can also arise due to transcriptional infidelity (Bonde et al.,

2014; He and Jacobson, 2015). mRNAs recognized by NMD

are degraded also by the Xrn1 (He et al., 2003).

In this work, we showwith the help of stochastic modeling that

the major sources of noise in mRNA expression, transcription
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and degradation, can be distinguished by measuring noise in

mRNA expressed from a dual-reporter system upon shutting

off their expression. The dual-reporter method has been mainly

used with fluorescent proteins (Raser and O’Shea, 2004) and

rarely with mRNAs encoding the fluorescent proteins (Raj

et al., 2006). Here, we adapted the two-reporter method to mea-

sure the endogenous mRNAs with single-molecule fluorescence

in situ hybridization (FISH).

RESULTS

Fluctuations in RNA Synthesis and Decay Generate
Similar Distributions of Steady-State RNA Expression
We simulated simple models of gene expression to assess how

RNA degradation affects noise. Here, we quantified noise, htot,

in terms of the coefficient of variation (CV), htot = CVðRNAÞ =
sdðRNAÞ=hRNAi; sdðRNAÞ and hRNAi denote the SD and the

mean of the distribution of RNA numbers in a cell population,

respectively. In this work, we use the term noise for the

steady-state variability in the RNA abundances. We reserve the

term fluctuation to denote the variations in the activity of tran-

scription and degradation, which we estimate by modeling.

If an RNA species is synthesized constantly and degraded by a

first-order process, the copy number adopts a Poisson distribu-

tion (Thattai, 2016). We decomposed noise into intrinsic and

extrinsic components, as defined in Equation 1. The squared to-

tal noise is the sum of the squared intrinsic and extrinsic noise:

h2tot = h2int + h2ext (Swain et al., 2002). When the stochastic expres-

sion of the two alleles is independent (Figures 1A and 1B, birth-

death model), the number of the two RNA reporters displays a

round scatter, and thus noise is purely intrinsic (Figure 1B).

In the more complex two-state promoter model, RNA is syn-

thesized only when the promoter is activated. The active state

is established through the random molecular encounter of the

promoter and the activator (Peccoud and Ycart, 1995). The acti-

vation is reversible: the promoter becomes inactive when the

activator dissociates from it. In this two-state promoter model,

the noise is stronger but the stochastic gene expression of the

two alleles remains independent (Figure 1B, with no shared fluc-

tuations), meaning that all noise is intrinsic. Next, we extended

the two-state promoter model to include the natural fluctuations

in the activity of the enzymes that synthesize and degrade the

RNA. These natural fluctuations can arise due to the stochastic

synthesis, decay, or biochemical control of enzymes. The

intrinsic noise did not change considerably but the scatter

became elongated reflecting the appearance of the extrinsic

noise, which arises due to the correlated fluctuations in RNA syn-

thesis or degradation since each of these processes affects both

RNA reporters (Figure 1B). The intrinsic and extrinsic noise is

similar independently of whether the fluctuations are introduced

through RNA synthesis or degradation (Figures 1B and S1). This

similarity makes it difficult to determine the origin of RNA

extrinsic noise from steady-state measurements.

Increase in Extrinsic Noise over the Course of RNA
Decay Is a Hallmark of Fluctuations in RNA Degradation
Therefore, we examined how noise varies during RNA decay

upon shutting off gene expression (Figures 1C–1E, S2, and S3;
Table S1). In the birth-death model, the intrinsic noise increases

throughout the time course of the decay as the number of RNA

molecules declines. There is an inverse relation between them,

h2int = 1=hRNAi, which is characteristic of the Poisson distribu-

tion. With the two-state promoter model, intrinsic noise is initially

super-Poisson, which reflects the fact that multiple mRNAs are

transcribedwhile the promoter is active; in other words, the burst

size is larger than 1. This initially super-Poisson intrinsic noise

converges to a Poisson noise level, as the decay goes on (Fig-

ure 1C). A similar convergence can be seen when the RNA syn-

thesis or degradation rate fluctuates (Figures 1D and 1E). Thus,

intrinsic noise behaves relatively uniformly across the models.

On the other hand, the extrinsic noise displays amarked differ-

ence with respect to the origin of fluctuations. When the RNA

synthesis rate fluctuates, the extrinsic noise remains approxi-

mately constant over the course of the decay (Figure 1D).

Conversely, extrinsic noise increases when the concentration

of the RNA-degrading enzyme fluctuates (Figure 1E). The differ-

ential effect of these fluctuations can be understood intuitively.

The fluctuations in transcription do not play a role after shutting

off gene expression, and thus mRNAs inherit the cell-to-cell vari-

ability they experience in steady state. Thus, extrinsic noise due

to transcription remains constant during decay. On the other

hand, the cell-to-cell variability of the RNA abundance can be

further amplified during the course of the decay when the degra-

dation rate fluctuates. This effect is particularly strong, when the

fluctuations in RNA degradation are slow and the RNA half-life is

short (Figure S2). Thus, we argued that fluctuations in transcrip-

tion and degradation can be distinguished by measuring the

extrinsic noise with the dual-reporter assay over the time course

of the RNA decay.

The Adoption of the Dual-Reporter Method to RNA
Molecules Permits the Measurement of Intrinsic and
Extrinsic Noise in RNA Expression
The dual-reporter method was developed to measure noise

using fluorescent proteins. Its adoption to endogenous mRNAs

requires an appropriate design and detection. In order to be

distinguishable with single-molecule FISH (smFISH), the two

RNA reporters must contain sufficiently long heterologous se-

quences. At the same time, they have to be kinetically similar.

In order to meet these two opposing requirements, we have

relied on a strategy that we developed to preserve the dynamic

range of RNA expression when parts of the gene sequence are

replaced (Hsu et al., 2016b). We have inserted a GFP or mCherry

sequence into the middle part of a gene of interest and placed

each allele under the control of the GAL1 promoter (Figure 2A;

Tables S2 andS3). Their expression did not cause growth defect.

Each reporter construct was transformed into a haploid strain,

which were then mated to obtain the dual-reporter diploid

strains. Each allele was integrated into identical chromosomal

loci. The heterologous sequences permitted the clear distinction

of the two mRNA reporters by smFISH (Figure 2B).

Most of the mRNAs in yeast have short half-lives (<5 min) and

few have long ones (>5 min) (Baudrimont et al., 2017). We have

selected the unstable TSL1 and stable PGK1 mRNAs to

construct the respective reporter genes. Next, we measured

their half-lives: cells were induced by galactose, which activates
Cell Reports 26, 3752–3761, March 26, 2019 3753



Figure 1. Fluctuations in RNA Synthesis and Degradation Each Have Their Characteristic Effects on Extrinsic Noise during Simulated RNA

Decay

(A) Models of expression of kinetically equivalent mRNAs. The simplest model (birth-death, left panel) includes RNA synthesis and degradation. This model was

extended with the following reactions (two-state promoter, right panel): transitions between active and inactive states of the promoter, and birth and death of

enzymes that synthesize and degrade RNAs. These enzymes introduce fluctuations that affect both RNA reporters. The reaction parameters are indicated for the

extendedmodel. kON and kOFF are the promoter activation and inactivation rate constants, respectively. kt and dRNA are the RNA synthesis (transcription) and RNA

degradation rate constants, respectively. hðESYNÞand hðEDEGÞ denote the fluctuation intensities in RNA synthesis and degradation, respectively. tðESYNÞ and
tðEDEGÞ denote the lifetimes of the respective fluctuations (see also Quantification and Statistical Analysis).

(B) Distribution of molecule numbers of mRNA alleles. The following noise values were obtained in steady state with the indicatedmodels: birth-death (h2int = 0.01,

h2ext = 0; red), two-state promoter (h2int = 0.05, h2ext = 0; green), two-state promoter with fluctuations in transcription (h2int = 0.057, h2ext = 0.106; yellow), and two-

state promoter with fluctuations in degradation (h2int = 0.047, h2ext = 0.137; blue). The half-life of the mRNA is 10min. Transcription rate constant (kt) was set so that

RNA = 100 molecules in the deterministic model. Further parameter values are described in Table S1. The inset illustrates the copy number scatter characteristic

of the intrinsic and extrinsic noise.

(C–E) Intrinsic and extrinsic noise as a function of the RNA molecule numbers over the course of RNA decay. The decay is started by setting kt to a basal value,

which is 500 times less than the initial value. The same model parameters were used as in (B). The difference between the measured intrinsic noise and Poisson

noise is denoted by green shading. In the two-state promoter model with no shared control, all noise is intrinsic (C). The shared control in transcription (D) or

degradation (E) generates extrinsic noise, which is approximately constant or increasing, respectively, over the course of the decay.
the GAL1 promoter through the Gal4 activator (Figure 2C). Upon

the rapid replacement of the galactose-containing medium with

a galactose-freemedium, gene expression was shut off. We then

quantified RNA by qPCR (Table S4). The estimated half-lives of

the two mRNA reporters were essentially identical, and similar

to that of the respective parent mRNA. Thus, this strategy per-

mits the adoption of the dual-reporter assay to RNAs.

The Combination of Noise Time Series with the
Histogram Dataset Improves the Parameter Estimation
First, we studied the stable PGK1mRNA. The steady-state noise

of the two PGK1RNA reporters was similar (CV = 0.349 and CV =

0.318). Furthermore, the molecule numbers of the two reporters
3754 Cell Reports 26, 3752–3761, March 26, 2019
displayed strongly overlapping distributions (Figure 3A), an

important experimental criterion for the quantification of the

intrinsic and extrinsic noise.

To estimate the fluctuations in transcription and degradation

and the parameters in the two-state promoter model, we pro-

gressively constrained the range of parameter values to improve

the fit to the observations. This was done in three stages: we

used analytical formulas in the first stage, and stochastic simula-

tions in the second and third stages (Table S5; Quantification and

Statistical Analysis).

In the first stage, we took advantage of an analytical expres-

sion, which links parameters of the two-state promoter model

(with no shared fluctuations) to noise (see Equation 10). Since



Figure 2. The Decay of the RNA Expressed

from the Two Alleles of the Dual-Reporter

System

(A) The two reporter alleles were obtained by the

insertion (::G and ::C) of heterologous sequences

(GFP and mCherry). The probes hybridizing to these

sequences were used to detect the RNAmolecules.

(B) Fluorescence microscopy images of cells ex-

pressing the TSL1::G and TSL1::C mRNAs. The

cells were imaged 10 min after shutting off

gene expression induced by 0.5% galactose. Scale

bar: 5 mm.

(C) The decay of the mRNAs with and without the

inserted heterologous sequences (GFP or Cherry),

upon shutting off expression driven by the GAL1

promoter. The following half-lives (t1/2) were fitted

for the mRNAs quantified by qPCR: TSL1::G

(3.6 min), TSL1::C (3.6 min), and TSL1 (2.5 min);

PGK1::G (17.9 min), PGK1::C (16.3 min), and PGK1

(16.6 min) mRNAs.
this model does not contain extrinsic source of fluctuations, the

measured intrinsic noise was substituted into this equation.

Three parameter values were also substituted into the equation.

The decay rate was fitted with the exponential function, and the

mean copy number of the RNA was measured. A third param-

eter, the fractional saturation of the GAL1 promoter, was con-

strained based on an earlier study (Gencoglu et al., 2017). The

fractional saturation reflects the percentage of promoters bound

by the transcription factor Gal4 averaged over a cell population

or a time period. Upon these substitutions, we constrained the

domain of parameter values in the two-state promoter model

and transferred it to the second stage.

In the second stage, we extended the two-state promoter

model with fluctuations in RNA synthesis and degradation. We

simulated this model stochastically with a matrix of parameter

values and assessed how the solutions fit the observed

steady-state histograms and the extrinsic noise as it varies

over the decay time series. When we calculated fits separately

to each of these datasets, the parameter values that generated

good fits occupied different but overlapping domains in the

parameter space (blue and yellow in Figure 3B). When we per-

formed the fitting with the combined dataset, the fluctuation

intensity was restricted to a narrower domain of values (red in

Figure 3B), implying that the power of the fitting is better when

performed with both observations. In contrast to the intensity,

the lifetime of the fluctuations was spread all over the parameter

space (Figure S4A). The best-fit values for the promoter satura-

tion were high, larger than 0.9 (Figure S4C).

The Stochastic Deviant Effect Slows Down the RNA
Decay but Only Minimally
In the third stage, we sampled parameter values randomly from

this narrower domain defined with the joint fit and fitted the sto-

chastic model to the RNA decay profiles, as well. This is impor-
tant because the decay can deviate from an exponential

function when the fluctuations in the degradation are strong,

especially when the RNA half-life is short (Figure S3). By letting

the half-life vary around the value fitted with the exponential

function, we fitted the half-life based on the stochastic model,

which generates the decay profile as the mean RNA changes

over the course of the decay. Upon obtaining the best fit, we

used the same value to plot the exponential function (yellow

thick line in Figure 3D) and the mean RNA obtained with the

stochastic model (black line in Figure 3D). Despite the identical

parameters, a small but increasing deviation can be observed

between the deterministic and stochastic decay profiles with

the progress of the time because the fluctuations slow down

the decay.

As the PGK1 RNA number declines, noise increases (Fig-

ure 3C). The initially super-Poisson intrinsic noise converged to

the Poisson level ðh2int = 1=hRNAiÞ, confirming expectations

based on the two-state promoter models. Furthermore, the

extrinsic noise increased markedly over the course of the decay,

which is a hallmark of the fluctuations in RNA degradation. In the

late stage of the decay, the extrinsic noise declined because the

mean RNA number converges to the basal expression (Fig-

ure S2). The best-fit parameters reveal strong fluctuations both

in RNA synthesis and degradation.

NMD Is Subject to Small Fluctuations
Next, we studied how fluctuations change when the RNA is

degraded rapidly. Short-lived mRNAs have higher intrinsic and

extrinsic noise (Figure S1). Thus, they are inherently more sus-

ceptible to fluctuations. In order to assess this effect with a min-

imal change in the reporter construct, we inserted a PMS into

the open-reading frame, which will steer the PGK1 mRNA to

the NMD pathway (Figure 4A). Indeed, the PMS reduced the

mRNA half-life around five times.
Cell Reports 26, 3752–3761, March 26, 2019 3755



Figure 3. Intrinsic and Extrinsic Noise in the

Expression of the PGK1 mRNA over the

Course of the Decay

The thick black or blue lines denote the best fit

(parameter values in Table S6). The gray or blue

bands denote the model solutions with the 30 best

parameter fits.

(A) Steady-state distribution of the PGK1 mRNAs

expressed from the two insertional alleles. The two

distributions are identical. (The null hypothesis that

the datasets have the same distributions is not re-

jected at the 5% level based on the Kolmogorov-

Smirnov test; p = 0.81.)

(B) The histogram shows the distribution of the

200 best fits for the fluctuation intensities. The

goodness of model fits (RSSE) was calculated

separately for the steady-state distribution (blue)

and the extrinsic noise time series (yellow), and for

their combination (red).

(C) The intrinsic (triangles) andextrinsic (quadrilaterals)

noise measured in two biological replicates (first

replicate: downward triangle and diamond; second

replicate: upward triangle and square). The Poisson

noise,h2int = 1= RNAh i, is indicatedbyadarkgreen line.

(D) Mean of the distribution of RNA reporter mole-

cules expressed from each allele, during the decay.

The thick yellow line is the solution of the deter-

ministic exponential function (Equation 2) with the

same parameters as the respective stochastic

model (black line).
The intrinsic noise of PGK1-PMS was similar to that of its

parent RNA, PGK1. We plotted the noise expected from the

change in the RNA half-life due to the PMS. This change,

including a compensation of the transcription rate to reflect the

new mean RNA, is expected to increase extrinsic noise around

four times. Surprisingly, the measured extrinsic noise was sub-

stantially lower than the expected one (Figure 4B). Indeed, the

fitted fluctuations in the degradation were lower in the PGK1-

PMS mRNA (Figure S4B), which implies that the surveillance

pathway operates at a lower noise level than the pathway target-

ing the stable wild-type (WT) PGK1 mRNA.

Fluctuation Intensities in RNA Degradation Estimated
Based on the Dual-Reporter System Are Corroborated
by the Observations with the Semi-shutoff System
Next, we wanted to see whether the promoter de-induction

methodwe employed to study the decay interferes with themea-

surement. Therefore, we compared the existing dual-reporter

method to an alternative system to shut off gene expression (Fig-

ures 5A and 5B). In these cells, the expression of one of the RNA

reporters is constant, and thus remains in stationary state, while

the expression of the second one is shut off. Therefore, these

cells were dubbed the ‘‘semi-shutoff’’ system (Figures 5A and

5C). To build this strain, we retained the original reporters but

placed them under the control of different promoters. One of

them was driven by the TET-OFF system, in which the transcrip-

tional activator tTA binds to the tet operators in the promoter.

Gene expression was shut down by adding doxycycline, which

dissociates tTA from the promoter. The reporter with the con-

stant expression was controlled by GEV, a synthetic transcrip-
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tional activator whose activity can be tuned with estradiol (for

more details, see Experimental Model and Subject Details).

The two reporters were driven by promoters of very similar se-

quences, in which only the transcription factor binding sites

differed. The GEV recognizes the original Gal4 binding sites in

the GAL1 promoter. In the modified GAL1 promoter, the Gal4

binding sites were replaced with tet operators to be recognized

by tTA. The activator domains of the transcription factors GEV

and tTA are also identical in this system. With this system, we

analyzed TSL1, a representative of the mRNAs with rapid turn-

over. By adjusting the estradiol concentration, we obtained

similar steady-state expression levels of the two RNA reporters

(Figure 5C, at 0 min). The half-life we measured was similar to

that obtained using the GAL system (Figures 5C and S5C).

As a substitute for extrinsic noise, we calculated the correla-

tion coefficient from the single-cell abundances of the two

RNA reporters (see Quantification and Statistical Analysis). The

correlation declined gradually from around 0.6 to one-half of

this value around 10 min after the shutoff (Figure 5D). The fitted

fluctuation intensities in the RNA degradation obtained with the

dual-reporter and the semi-shutoff system were similar (Figures

5D and 5E), confirming the low-intensity fluctuations in the

degradation of TSL1 mRNA.

Degradation by the Xrn1 Exonuclease Is Subject to
Low-Intensity Fluctuations, Which Mitigates the High
Noise Susceptibility of Short-Lived mRNAs
Our results so far indicate that fluctuations are stronger in the

degradation of the stable PGK1mRNA in comparison to the un-

stable PGK1-PMS and TSL1mRNAs (Figure S6A). In the case of



Figure 4. Changes in Noise Due to the Intro-

duction of the PMS into the PGK1

The blue line denotes the best fit (parameter values

in Table S6). The gray or blue bands denote the

model solutions with the 30 best parameter fits.

Symbols and fits used as in Figure 3.

(A) Scheme of the dual-reporter system expressing

thePGK1-PMS (toppanel). ThePMS (yellow stripe in

the scheme) is positioned225 triplets downstreamof

the start codon in the context of thePGK1 sequence.

The thick yellow line in the plot is the solution of the

deterministic exponential function with the same

parameters as in the stochastic model.

(B) The intrinsic and extrinsic noise measured in two

biological replicates. The dashed blue and green

lines represent the extrinsic and intrinsic noise ex-

pected fromchanging solely theRNAhalf-life among

the PGK1 parameters, owing to the PMS. With the

exceptionof thecompensatory transcription rate kt =

9.71min�1, all parameters are the sameas forPGK1.
the TSL1 and PGK1–PMS, the estimated fluctuation lifetimes

were scattered broadly in the parameter space (Figure S6B);

only in the case of the PGK1 did it occupy a narrower range.

Next, we examined whether the estimated intensities of the

fluctuations depend on the lifetimes. Therefore, we restricted

the parameter domain of the lifetimes to around 10 min and

plotted the corresponding fluctuation intensities. The fluctua-

tions in the RNA degradation of PGK1 were significantly higher

than for PGK1-PMS (Figure S6C), which confirms our prior

conclusions.

Both NMD targets and naturally short-lived mRNAs are

degraded predominantly by the 50/30 exonuclease Xrn1 (Fig-
ure 6A) (Baudrimont et al., 2017). Thus, we argued that Xrn1

may account for the low fluctuation in the degradation of these

mRNAs. Therefore, we deleted XRN1 and examined TSL1 decay

in this cell background (Figure S7A). The decay was, as ex-

pected, substantially slower (Figure S5). The intrinsic noise was

similar to the other examined mRNAs: it converged to the

Poisson level, which suggests that the deletion does not intro-

duce uncorrelated fluctuations (Figure 6D). However, the

extrinsic noise was considerably higher than expected from

the change in the half-life. This confirms our hypothesis that

Xrn1 activity is affected by small fluctuations, which mitigates

the noise of short-lived mRNAs (Figures 6B and S7B).
Figure 5. Estimation of Fluctuations in TSL1

RNA Degradation by Shutting Off the Expres-

sion of One or Two mRNA Reporters

(A and B) In the dual-reporter strain (B and E), the

expression of both reporters is shut off since Gal4

controls both GAL1 promoters. In the semi-shutoff

strain (A, C, and D), the level of only one of the re-

porters declines upon dissociation of tTA from the

promoter.

(C) The decay of the mRNA upon shutting off the

expression of the P[tetO]4inGAL1 – TSL1::G. The esti-

mated RNA half-life is 2.7 min.

(D) Correlation between the decaying TSL1::G and

the stationary TSL1::C. Further details as in Figure 3.

The parameter estimation was performed as with

the dual-reporter system, but the Pearson correla-

tion coefficient was used instead of the extrinsic

noise.

(E) The intrinsic and extrinsic noise measured in the

dual-reporter system (two biological replicates: tri-

angles and quadrilaterals).

Cell Reports 26, 3752–3761, March 26, 2019 3757



Figure 6. Relative Contribution of Fluctua-

tions in mRNA Synthesis and Degradation to

Noise in RNA Expression

(A) The scheme of the RNA degradation pathways.

Xrn1 degrades unstable mRNAs in 50-to-30 direc-
tion, while the exosome degrades all mRNAs in

30-to-50 direction. The larger size of the exosome

indicates that it is a multi-subunit complex.

(B and C) The 30 best fits for the intensities of the

fluctuations in the RNA degradation (B) and syn-

thesis (C) (CV, whisker-boxplots with 25th to 75th

percentiles). The following mean values (with 95%

confidence intervals) of the hðEDEGRADATIONÞ were

obtained: 0.37 (0.34, 0.40) for PGK1, 0.16 (0.15,

0.17) for PGK1-PMS, 0.20 (0.18, 0.21) for TSL1, 0.15

(0.13, 0.18) for TSL1 (semi-shutoff), and 0.35 (0.34,

0.36) for TSL1 (Dxrn1) mRNAs. The estimates for the

hðESYNTHESISÞ: 0.26 (0.24, 0.28) for PGK1, 0.46 (0.45,

0.47) for PGK1-PMS, 0.28 (0.26, 0.29) for TSL1, 0.49

(0.47, 0.50) for TSL1 (semi-shutoff), and 0.38 (0.33,

0.43) for TSL1 (Dxrn1) mRNAs.

(D) The intrinsic and extrinsic noise measured (two

biological replicates: triangles and quadrilaterals) in

the TSL1 dual-reporter system in Dxrn1 cells. The

blue line denotes the best fit (parameter values in

Table S6). The dashed blue and green lines represent the extrinsic and intrinsic noise expected from changing solely the RNA half-life among the TSL1 pa-

rameters, owing to the deletion of XRN1. With the exception of the compensatory transcription rate kt = 3.20min�1, all parameters are the same as for TSL1 in WT

cells (Figure 3).
DISCUSSION

UnstablemRNAs aremore susceptible to noise than stable ones.

Our results suggest that cells counter this susceptibility by low-

noise degradation pathways. This has important theoretical and

practical implications.

Fluctuations in degradation rate can cause a deviation from

the classical exponential decay profiles (Figure S3) and can

interfere with the discrimination of noise sources when using

the dual-reporter system (Shahrezaei et al., 2008). Extrinsic

noise reflects normally the fluctuations shared by the two

alleles. However, a theoretical analysis revealed that shared

fluctuations could leak into the intrinsic noise, especially,

when the activity or amount of the enzyme that degrades the

RNA or proteins strongly fluctuates (Shahrezaei et al., 2008).

In this case, a stochastic deviant effect makes the mean value

of a variable in the stochastic model differ from the value of the

same variable in the deterministic model. This effect can be

observed both in steady state (Figure S1) and during decay

(Figure S3). A strong deviant effect can arise in models in which

two components, such as RNA and a RNA-degrading enzyme,

interact multiplicatively, and the activity of both of them fluc-

tuate or alternate between two states. (Deneke et al., 2013;

Kuwahara and Schwartz, 2012; McShane et al., 2016). It is

important to note that the decay profile can deviate from an

exponential function due to causes other than the deviant

kinetics.

The observed decay profile deviated from the expected deter-

ministic exponential only minimally in our measurements. Simi-

larly, the intrinsic noise approached the Poisson level over the

course of RNA decay in all our constructs, which implies sto-

chastic deviant effect is small. Thus, the intrinsic noisemeasured
3758 Cell Reports 26, 3752–3761, March 26, 2019
with the dual-RNA reporter construct is not disturbed by the

leakage of shared fluctuations.

In a genome-wide study of fluorescent protein fusions, low-

and high-noise proteins were found to have a CV of around 0.1

and 0.3, respectively (Newman et al., 2006). The enzyme

involved in the degradation of short-lived mRNAs, Xrn1, has a

particularly low noise (CV = 0.13–0.15 in cells grown in synthetic

and rich media), which is in good agreement with our estimates.

The exosome is a multi-subunit complex (Kowalinski et al.,

2016). Interestingly, the components of the exosome, which

targets the more stable mRNAs, have higher noise levels (CV =

0.15–0.19) (Newman et al., 2006), which is in a qualitative agree-

ment with our findings. We estimated even stronger fluctuations

in the pathway targeting stable RNAs (CV = 0.3–0.4). Some of the

differential noise level is likely to be copy-number dependent:

Xrn1 is present at around 700–1,000 copies per cell, while the

above exosome components are present only at 150–200 copies

per cell (Newman et al., 2006). It is important to note that we esti-

mated activity fluctuations and not merely concentration fluctu-

ations, and the activity is influenced by multiple factors, such as

localization, binding interactions, and covalent modifications.

The multimerization of the stochastically expressed subunits of

the exosome may further amplify noise in the enzymatic activity.

The fluctuations in RNA synthesis were strong in our gene con-

structs (Figure 6C), which is not surprising since the strongGAL1

promoter that drives the transcription has been known to be rela-

tively noisy (Blake et al., 2006). Interestingly, the fluctuations in

synthesis are stronger in PGK1-PMS than in PGK1 despite the

similarity of the two genes. The PGK1-PMS has a considerably

shorter half-life and it reacts more sensitively to fast fluctuations.

Live imaging of fluorescent proteins revealed that the fluctua-

tions are best described by a range of fluctuation lifetimes as



Figure 7. Scheme of Stochastic Regulatory Combinations in RNA Degradation

Stable (long-lived) mRNAs are inherently less susceptible to noise, while unstable (short-lived) mRNAs are more susceptible to noise. Consequently, when a

short-lived mRNA is degraded by enzymes with large fluctuations (gray Pac-Man symbol), noise in RNA expression is large. We have not observed this com-

bination (hypothetical case). Unstable mRNAs are degraded by enzymes with small fluctuations, which mitigates noise (right panel). Stable mRNAs are degraded

by enzymes with large fluctuations but the inherently low noise susceptibility of stable mRNAs yields moderate noise in RNA expression.
characterized by a power spectrum (Austin et al., 2006). Thus, it

is plausible that fast components of the fluctuations in RNA syn-

thesis are strong in the GAL1/PGK1 hybrid promoter but only

PGK1-PMS reacts to them in a detectable way since they are

averaged out by the more stable PGK1. For the TSL1 mRNA in

Dxrn1 cells, the estimated lifetime and the intensity of the tran-

scriptional fluctuations were even linked, as evidenced by a

negative correlation between them (Figure S6D).

The model we use for the parameter estimation is concise and

supported by multiple observations. However, future studies will

be required to refine the model and parameters. Without aiming

at a comprehensive list, we mention four aspects below. First,

we obtained well-constrained estimates for the intensities of

the fluctuations in RNA degradation, but the estimated lifetimes

were scattered more broadly. Thus, live imaging will be required

in future studies to estimate the lifetime of the fluctuations. Sec-

ond, we assume that the RNA degradation rate is linearly propor-

tional to the concentration of the ribonucleases. Saturation of

these enzymes or the interaction between the enzymes and

the genes or mRNAs encoding the enzymes (Sun et al., 2012)

may cause deviations from linearity, but this is unlikely to influ-

ence the relative values of the estimated fluctuation intensities.

Third, the value we use for the promoter saturation was esti-

mated in our earlier study employing protein mass spectrometry

(Gencoglu et al., 2017). This helped to restrict the range of the

promoter deactivation rates. It is important to note that the pro-

moter deactivation rate and the RNA synthesis rate are strongly

coupled, and it is difficult to determine their independent abso-

lute values (To and Maheshri, 2010). This coupling is particularly

evident at low transcription rates: even when the promoter is

active, transcription occurs randomly, with the possibility of hav-

ing long intervals without mRNAs being synthesized. Fourth, the

RNA half-lives we obtain with gene control are shorter than those

obtained in most prior studies, including those using transcrip-

tional inhibition and metabolic labeling (Carneiro et al., 2019).

However, our gene control method is consistent because the

half-lives estimated upon shutting off gene expression with syn-
thetic promoters are similar to the values obtained when the

expression of the endogenous genes was shut off (Baudrimont

et al., 2017; Wada and Becskei, 2017).

In summary, we show that the fluctuations in the RNA

degradation pathway are moderate enough not to cause major

stochastic deviations but strong enough to cause substantial

cell-to-cell variability upon shutting off gene expression. These

findings have important physiological implications. The fluctua-

tions in RNA degradation are particularly relevant for those

genes whose transcription undergoes rapid temporal changes.

For example, many genes are transcribed only for a short

period of time during the cell cycle whereupon the expressed

RNA decays. A large cell-to-cell variability in this period

would interfere with the precision required to orchestrate the

events in the cell division cycle (Barik et al., 2016). The low

fluctuations in the Xrn1 activity are of benefit not only to the

regular RNA targets but also to mRNAs with nonsense codons

(NMD). Thus, the surveillance pathway does not only reduce

genetic noise, in terms of aberrant messages, but also the

gene expression noise due to the small fluctuations in the

pathway.

We have found two regulatory combinations in this work (Fig-

ure 7): unstable mRNAs subject to small fluctuations and stable

mRNAs subject to strong fluctuations in the RNA degradation

pathways. We did not detect a combination where strongly fluc-

tuating pathways degrade unstable mRNAs. Therefore, we

expect that a pronounced deviant effect is unlikely to be com-

mon. In this way, noise in RNA expression is low in the whole

range of RNA half-lives observed in the genome.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Doxycycline hyclate Formedium CAT# DOX25

b- Estradiol Sigma-Aldrich CAT# E8875-250MG

Formaldehyde solution Sigma-Aldrich CAT# F8775

Poly-L-lysine Sigma-Aldrich CAT# P4707

D(+) – raffinose pentahydrate Formedium CAT# RAF04

Critical Commercial Assays

ProLong Gold medium Thermo Fisher Scientific CAT# P36930

Deposited Data

RNA expression measured by single molecule RNA

FISH (mean value, intrinsic and extrinsic noise).

This paper; Mendeley Data https://data.mendeley.com/datasets/jpd7jmsj95/

draft?a=3819df83-93a8-48ea-8721-167196bf2999

Experimental Models: Organisms/Strains

S. cerevisiae strains (see Table S3) This paper N/A

Oligonucleotides

Primers for qPCR (see Table S4) This paper N/A

Probe sequence for smFISH (see Table S7) This paper N/A

Recombinant DNA

Plasmid integrated in S. cerevisiae (see Table S2) This paper N/A

Software and Algorithms

Stellaris RNA FISH Probe Designer LGC Biosearch Technologies https://www.biosearchtech.com/support/tools/

design-software/stellaris-probe-designer

FISH-Quant Mueller et al., 2013 V2d http://bitbucket.org/muellerflorian/fish_quant/src

MATLAB MathWorks RRID:SCR_001622

WOLFRAM MATHEMATICA Wolfram Research RRID:SCR_014448

SoftWorx 4.1.2 GE Healthcare (previously

Applied Precision)

http://incelldownload.gehealthcare.com/bin/

download_data/SoftWoRx/7.0.0/SoftWoRx.htm

StochKit Sanft et al., 2011 https://github.com/StochSS/StochKit

Fiji Schindelin et al., 2012 RRID:SCR_002285
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Attila

Becskei (attila.becskei@unibas.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Construction of plasmids and strains
The plasmids expressing the WT and insertional RNAs (Table S2) were integrated into the chromosome of the BY4741 and BY4742

strains (Table S3). These strains are derivatives of the yeast Saccharomyces cerevisiae S288C. Upon transformation of the cells, we

selected reporter constructs having a single-copy integration at the FIG1 locus. Bymating the two haploid cells, each containing one

reporter, we obtained diploid cells.

To construct the plasmids, a GFP (denoted as::G) or a mCherry (denoted as::C) sequence was inserted into the mid-part of the

TSL1, PGK1 or PGK1-PMS open-reading frames (ORF). In the PGK1-PMS, the PGK1 ORF was mutated at position 225 codons

(i.e., 675 bp) downstream of the start codon to create a PMS. The GFP and mCherry were used solely as hybridization sequences

for the single molecule FISH (smFISH). The promoter PGAL1 controlled the RNA expression in the dual-reporter strains. In the GAL1

promoter, we replaced the 87 bp sequence upstream of the start codon by a 130 bp PGK1 or a 60 bp TSL1 sequence upstream of the
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start codons in order to include the respective 50UTR sequences. To include the 30UTR sequences, 239 and 200 bp sequences down-

stream of the PGK1 and TSL1 coding sequences were cloned.

In the semi-shutoff strain, theRNA reporter was expressed under the control of PGAL1 or P[tetO]4inGAL1. These related promoterswere

regulated by the transcription activators GEV and tTA, respectively. The original GAL1 promoter was controlled by GEV (Gal4-DBD –

ER–VP16),which is a fusionproteinof aGal4DNA-bindingdomain, anestradiol receptor (ER) andaVP16activationdomain (Hsuet al.,

2016b). The second promoter, P[tetO]4inGAL1, was obtained by replacing the four Gal4p binding sites in the GAL1 promoter by tet op-

erators. The resulting P[tetO]4inGAL1 was controlled by tTA, which is a fusion protein consisting of the TetR DNA-binding protein and the

VP16 activation domain. Thus, the expression of the twoRNA reporterswas driven by similar promoter sequences andwas controlled

by the same transcriptional activation domain (VP16). The P[tetO]4inGAL1 was placed upstream of the TSL1::G ORF. The TSL1::C

construct is identical to that in the dual-reporter assay. The strains expressed constitutively the tTA and GEV activators.

Growth conditions and shut-off experiments
When the cells are grown in synthetic complete (SC, 2% raffinose, 0.005% glucose) medium containing 0.5% galactose, the Gal4p

activates the expression of reporter genes under the control of the GAL promoter. The overnight culture was refreshed and let to grow

for 4 hours to reach an OD600 of around 0.5. At this mid-log phase, the decay was initiated by filtering the culture through a cellulose

acetate membrane. The cells were resuspended in the same medium without galactose. The amount of the GAL1 mRNA started to

decline exponentially after a time lag. The half-lives of the mRNAs were determined using the time points after this lag.

The semi shut-off cells were grown in SC media with 60 nM estradiol to maintain the constitutive expression of TSL1::C. The

expression of the TSL1::G RNA was shut off by adding doxycycline at a final concentration of 10 mg/ml to dissociate tTA from the

promoter.

METHOD DETAILS

RNA extraction, reverse transcription and qPCR
The collection of the sample, RNA extraction, reverse transcription and qPCR were performed as previously described (Baudrimont

et al., 2017), with the following modification: oligo(dT) was used to prime reverse transcription. The sequences of the qPCR primers

are shown in Table S4.

Single molecule mRNA FISH
Collection of samples, cell preparation and quantification of mRNA were performed as described (Baudrimont et al., 2017), with a

modification to allow the detection of two different fluorescent probe sets. Briefly, cells were fixed in 3.7% formaldehyde and trans-

ferred to coverslips coatedwith poly-L-lysine. After the hybridization of the probes andwashing of the samples, cells weremounted in

Prolong� Gold medium and cured overnight at room temperature before imaging.

The Quasar 670 (LGC, Biosearch technologies, US) probes, which recognize the mCherry sequence were imaged with the CY5

channel and the Quasar 570 probes, which recognize the GFP sequence, were imaged with the TRITC channel. meGFP andmCherry

probes are labeled at their 30 ends with Quasar� 570 and 670 (Stellaris probes), respectively. Each sequence was covered with 34

probes (Table S7). The probes were designed with the Stellaris RNA FISH Probe Designer. The cells were imaged with an Olympus

Plan Apo N (60x, Numerical Aperture: 1.42) objective, with an auxiliary magnification of 1.6x. The DAPI, FITC, TRITC and CY5 filters

were usedwith 100%ND, bin 1, exposure time of 0.8 (32%), 1, 0.8, 1 s respectively. SoftWorx 4.1.2 was used for the deconvolution of

the images. The auto-fluorescence of the cells (FITC) was used to define the cell boundaries in cells that contained a nucleus as visu-

alizedwith theDAPI filter, whichwas performedwith Fiji (Schindelin et al., 2012). The RNAmolecules were identifiedwith FISH-Quant,

a MATLAB toolbox (Mueller et al., 2013).

QUANTIFICATION AND STATISTICAL ANALYSIS

Measurement of noise
The intrinsic and extrinsic noise was calculated according to the dual-reporter method (Elowitz et al., 2002), in both the simulations

and experimental measurements:

h2
int =

D
ða� bÞ2

E
2hai$hbi ; h2

ext =
habi � hai$hbi

hai$hbi ; (1)
Analysis of time series and determination of mRNA half-lives
To estimate mRNA half-life, we used the exponential function (Equation 2) for themeasurements with the qPCR and for the first stage

of the fitting with the stochastic model with smFISH data (see below).

RNAðtÞ=RNAb +RNAð0Þe�dRNAt (2)
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RNAð0Þand RNAb denote the initial and basal expression, respectively. The fitting was performed with Mathematica. The fitted RNAb

can differ when measured with qPCR and smFISH because qPCR can detect antisense RNA in addition to sense RNA. Furthermore,

the qPCR measurements can be affected by concentration dependent self-priming during the reverse transcription (Haddad et al.,

2007; Moison et al., 2011), which is not the case for smFISH.

Stochastic models
To assess how fluctuations in RNA synthesis and degradation affect stochastic gene expression, we have constructed simple sto-

chastic models of gene expression. Each model describes the expression of RNA variants from the two gene alleles (i = 1, 2). In the

two simplest models ((3) and (6)), the birth-death and the two-state promoter models, there are no reactions shared by both alleles. In

the extended models, the fluctuations introduced through the shared process of RNA synthesis and degradation affect both alleles,

which leads to the appearance of extrinsic noise, in the sense of the dual reporter method.

The models include variables and parameters (rate constants). The variables denote the following components: RNA (RNA), I (pro-

moter in the inactive state),A (promoter in the active state), ESYN (Enzyme that synthesizes the RNA) and EDEG (Enzyme that degrades

the RNA). The subscript i denotes the allele. The parameters denote the following rate constants: kt (RNA synthesis), dRNA (RNA

decay), kON (promoter activation), kOFF (promoter inactivation), kE (enzyme synthesis) and dE (enzyme degradation).

Birth-death model

Each RNA allele ðRNAiÞ is synthesized constitutively and is degraded by a first order process.

Ø/
kt
RNAi

RNAi/
dRNA

Ø (3)

This birth-death model results in a Poisson distribution:

PðRNA= jÞ=

�
kt

dRNA

�j

e
� kt
dRNA

j!
; j = 0;1;2; 3; :: (4)

The mean of the RNA is equal to the variance of the distribution, mRNA = VarRNA. Therefore, the Fano-factor and the noise (coefficient

of variation, CV) are characteristic of the Poisson distribution:

FanoRNA =
VarRNA
mRNA

= 1

h=CVRNA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarRNA

p
mRNA

=
1ffiffiffiffiffiffiffiffiffiffi
mRNA

p
(5)
Two-state promoter model
The RNA is transcribed only when the promoter is in the active state. The RNA is degraded by a first order process. The conservation

equation, Ii + Ai = 1, indicates that the total number of the promoter is one.

Ii/
kON

Ai

Ai/
kOFF

Ii

Ø/
Aikt

RNAi

RNAi/
dRNA

Ø (6)

The Fano-factor is greater than one for all positive values of the parameters in Equation 10, which implies a super-Poisson

distribution.

Two-state promoter model with fluctuations in degradation

The enzyme that degrades the RNA is modeled explicitly. The enzyme is produced and degraded in a birth-death process, kE;DEG =

mE;DEG,dE;DEG, where mE;DEG = hEDEGi denotes the mean steady-state concentration of the enzyme. Thus, intensity of fluctuations is

tuned by varyingmE;DEG. The EDEG=mE;DEG ratio represents the dimensionless fluctuations. t1=2ðEDEGÞ = Ln½2�=dE;DEG.
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Ii/
kON

Ai

Ai/
kOFF

Ii

Ø/
Aikt

RNAi

RNAi/

EDEG

hEDEGidRNA
Ø

Ø/
kE;DEG

EDEG

EDEG/
dE;DEG

Ø (7)
Two-state promoter model with fluctuations in RNA synthe
sis

The enzyme that synthesizes the RNA, the RNA polymerase, is modeled explicitly. The enzyme is produced and degraded in a birth-

death process, kE;SYN = mE;SYNdE;SYN, where mE;SYN denotes the mean steady-state concentration of the enzyme.

Ii/
kON

Ai

Ai/
kOFF

Ii

Ø/

Ai

ESYN

hESYNikt
RNAi

RNAi/
dRNA

Ø

Ø/
kE;SYN

ESYN

ESYN/
dE;SYN

Ø (8)
Two-state promoter model with fluctuations in RNA synthe
sis and degradation (Complete model)

The complete model combines the fluctuation in RNA synthesis and degradation in the models (7) and (8). We used this model to

estimate the fluctuations in RNA synthesis and degradation based on the experimental data.

Parameter estimation to characterize the fluctuations in RNA synthesis and decay
The parameter estimation was performed in three stages (Table S5). First, analytical approaches were used, followed by stochastic

simulations - a common approach in the parameter estimation of stochastic models (Aguilera et al., 2017).

In the first stage, we constrained the parameter values in the two-state promoter model with no external fluctuations (‘‘Two-state

promoter model,’’ (6)). The mean value of the RNA number mRNA is given by:

mRNA =
kON

kON + kOFF

kt
dRNA

(9)

An explicit analytical expression is known for the variance of the RNA distribution (Peccoud and Ycart, 1995), from which the Fano-

factor can be obtained.

FanoRNA =
VarRNA
mRNA

= 1+
kOFF

kON + kOFF

kt
kON + kOFF + dRNA

(10)

The Fano-factor is a useful measure of variability when the absolute molecule numbers are known (Paulsson, 2004; Thattai and van

Oudenaarden, 2001). The mean and variance are determined by four parameters (the relevant rates are indicated in the parenthesis):

kt (RNA synthesis), dRNA (RNA decay), kON (promoter activation), kOFF (promoter inactivation). The mRNA half-life (and thus dRNA) was

fitted directly (Equation 2). Thereafter, three unknown parameters remain in the equations, kON, kOFF and kt. In order to determine the

values of these three parameters, three equations with three measured variables have to be set up. Two of the variables were deter-

mined experimentally in this study, the FanoRNA and mRNA, since smFISH delivers absolute numbers. As the third variable, we have

taken the fractional saturation of the promoter (sat), which has been measured for related GAL promoters by titration experiments

(Gencoglu et al., 2017).

sat =
kON

kON + kOFF

(11)
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sat = 0.62 for a GAL promoter with a single binding site. Promoters with multiple binding sites, such as the GAL1 promoter, reach a

higher saturation (Gencoglu et al., 2017). Thus, we have taken a realistic range: sat = 0.7 and 0.95. Solving the system of three equa-

tions, (9), (10) and (11), yields the three parameters in the two-state promoter model, as a function of saturation.

In the second stage, we extended the model with fluctuations in the RNA synthesis and degradation, and estimated the relevant

fluctuation parameters by scanning. We simulated the steady-state and decay (see Complete model) for all parameter combinations

in a 4-dimensional matrix ðn,n,m,mÞ. The n,n,m,m matrix was defined for each value of the promoter saturation (sat), with the

following ranges unless stated otherwise. n = 1.25, 2.5, 5, 10, 20, 40, 80, 160 and 320 for hESYNiandhEDEGi, which determine the in-

tensity of the extrinsic fluctuations. m = 4, 8, 16, 32, 64 and 128 min for Ln½2�=dE;SYNand Ln½2�=dE;DEG, which determine the life-time

(and hence the frequency) of the fluctuations.

We used the sum of squared error (SSE) to assess the goodness of the fit, calculated separately for each dataset (time series of

extrinsic noise, histograms and mean decay profile). In this second stage, we calculated the SSE for two observations: (1) initial,

steady-state distribution of mRNAs expressed from both alleles in a single replicate and (2) the extrinsic noise as a function of the

mean as it changes over the decay time course, including the initial time point (t = 0), performed in two replicate experiments.

The SSE was then normalized to the lowest SSE value for each observation, yielding the relative SSE, RSSE. Thus, the theoretical

minimal value (possible best fit) for the combined RSSE is 2.

As the output of the second stage, the 20 best fits, based on the combined RSSE, were collected and their extremal values defined

the constrained parameter range for the third stage.

In the third stage, we simulated 5000 random parameter values from the ranges as defined below. For the enzyme fluctuation pa-

rameters, we have taken the ranges defined at the end of stage two and extended it by a factor of
ffiffiffi
2

p
on each side of the range. We

have taken the most representative saturation. Furthermore, we have permitted the half-life to vary by a factor of
ffiffiffi
2

p
on each side to

allow for the deviation between the deterministic value and stochastic mean RNA numbers. To compensate this variation, the tran-

scription rate was determined so that the mean steady-state value of the RNA is restricted to the range between 0.83mRNA and

1.1mRNA.

At the end of the third stage, the RSSE was calculated for three datasets. In addition to the two RSSEs as defined in the second

stage (extrinsic noise time series and steady-state histogram), we fitted the half-life to the decay time series, using the complete sto-

chastic model. The best fit represents the parameter combination in this refined range with the lowest sum of RSSEs.

Analysis of the single cell data
For the estimation of the half-life and basal expression, we have used the mean RNA values over the entire time-series. In the second

and third stages of the fitting, we have applied two criteria to exclude data points of insufficient quality. First, we calculated noise only

for those time points when the mean value of each RNA reporter was at least 0.8 molecule / cell. In this way, the fitting is not affected

by measurements errors due to the low RNA numbers, which becomes more frequent at the later points of the time series. Second, if

the mean value of the two reporter genes differed by more than 1.42 times then we excluded those data points from the analysis.

The parameter estimation of the semi-shutoff system was performed similarly as with the dual-reporter system but the extrinsic

noise was substituted by the Pearson correlation coefficient. We estimated the parameters by fitting to the three observations:

the initial steady-state distribution, the correlation as a function of themean during the decay and themeanmRNA value as a function

time. The correlation here is reminiscent of autocorrelation since one of the gene reporters remains in the steady-state.

Stochastic simulation
For each simulation, 10,000 runs were performed using StochKit (Sanft et al., 2011). Before the simulation of the decay process, the

steady-state expression was reached by a pre-run. The initial value of the RNA in the pre-run was equal to the deterministic steady-

state values (Equation 2). The following durations were defined for the pre-runs: 60 min for TSL1 (WT) and PGK1-PMS, 240 min for

PGK1 and 360 min for TSL1 (Dxrn1).

The RNA decay was initiated by lowering the value of ktso that the new steady-state expression is defined by the basal expression,

RNAb (fitted in (2)).
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