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A B S T R A C T

In recent years, we have witnessed dramatic developments of mobile healthcare robots, which enjoy many
advantages over their human counterparts. Previous communication networks for healthcare robots always
suffer from high response latency and/or time-consuming computing demands. Robust and high-speed
communications and swift processing are critical, sometimes vital in particular in the case of healthcare robots,
to the healthcare receivers. As a promising solution, offloading delay-sensitive and communicating-intensive
tasks to the robot is expected to improve the services and benefit users. In this paper, we review several
state-of-the-art technologies, such as the human–robot interface, environment and user status perceiving,
navigation, robust communication and artificial intelligence, of a mobile healthcare robot and discuss in
details the customized demands over offloading the computation and communication tasks. According to the
intrinsic demands of tasks over the network usage, we categorize abilities of a typical healthcare robot into
alternative classes: the edge functionalities and the core functionalities. Many latency-sensitive tasks, such
as user interaction, or time-consuming tasks including health receiver status recognition and autonomous
moving, can be processed by the robot without frequent communications with data centers. On the other hand,
several fundamental abilities, such as radio resource management, mobility management, service provisioning
management, need to update the main body with the cutting-edge artificial intelligence. Robustness and safety,
in this case, are the primary goals in wireless communications that AI may provide ground-breaking solutions.
Based on this partition, this article refers to several state-of-the-art technologies of a mobile healthcare robot
and reviews some challenges to be met for its wireless communications.
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1. Introduction

Edge computing is expected to be a key enabler of processes where
a rapid response to sensor input is necessary, such as wireless health
monitoring, virtual reality, and robotics. Providing such healthcare gets
expensive on a daily basis, especially for the elder population around
the world. This is important in particular when dealing with chronic
and psychological diseases. Nursing and carereceiving often require
long-term intensive human labor. Robotics, as a promoting solution,
has open a way to explore a constantly-accompanying and automatic
caregivers to help provide ‘‘a mobile healthcare robot’’.

A mobile healthcare robot enjoys enormous superiorities over
human-labor in healthcare, including but not limited to the following.
Under the support of artificial intelligence, a robot can learn massive
intelligence and experience from human medical experts, or sometimes
even outperforms their human counterparts. Such intelligent robots
can provide more efficient diagnosis and treatment than a human
caregiver. Subsequently, a healthcare robot either autonomously moves
or is incorporated into a mobile digital device. Mobility of the robot
means superior adherence anywhere at any time. For example, a
psychological therapy robot can be a table-top device connected with a
smart phone [1]. Afterwards, a robot is equipped with various sensors
and enabled to capture excessively more details of the care-receiver and
the environment than a human care-giver. The captured information
is vital for improving the health condition of a care-receiver [2].
Finally, a robot is more adept at repetitive work and less error-prone
than humans. For instance, a robot can remind a care-receiver of the
medication schedule at any given time [3].

Efficient communications between robots and data centers are es-
sential for improving customer services. However, the risk of potential
high response latency at the data center end is critical for healthcare
robot, especially in the case of emergency aid. In addition, many time-
consuming tasks, such as human understanding. Such tasks can be
completed by the robot and only summarized messages. Such messages
as the category of behaviors, are communicated with the centers with
very limited communication burden. A careful design of the framework
in balancing edge computing and centralized computing is important
for researchers from both robotics and communication communities [4–
7].

The rapid development of Internet of Things (IoT) [8–10] is getting
a wide acceptance and a growing adoption in many aspects of our daily
life. By applying IoT technologies to healthcare, it is expected to witness
dramatic improvement of healthcare and thus increase the service qual-
ity to humans [11–13]. To release the heavy communication burden of
healthcare robots, in particular from their various equipment. It is pre-
ferred to pre-process the huge amount of data by the robots, or the edge
computing [14–20]. In this paper, we aim to introduce applications of
edge computing scenarios of mobile healthcare robots and give details
on edge/centralized computing analysis in a task-driven fashion. The
main contribution of this paper are as follows:

• Investigate on the application and key technologies of mobile
healthcare robots.

• Discuss and analyze several peripheral and core functionalities
that the robot development will require.

• Embracing edge computing and healthcare robots in image un-
derstanding, sensor and path planning technologies will speedup
the progress toward practice.

The rest of this paper is organized as follows. Section 2 summarizes
typical needs and functionalities of the robot. Section 3 points out the
task-driven demands of healthcare robots in edge computing. Section 4
analyzes the centralized case. Section 5 gives the conclusion and future
work.

Fig. 1. Needs on mobile healthcare robots.

2. Typical applications of a mobile healthcare robots

The result of edge computing can be rapid machine-to-machine
communication or machine-to-human interaction. This paradigm takes
localized processing farther away from the network right down to the
sensor by pushing the computing processes even closer to the data
sources. The sensor can act as a dispatcher that can send information to
another edge device or to the cloud if need be. This allows each edge
device to do its part in processing information instead of sending all
its data to a centralized server. Edge computing help improve patient
care as well as increase efficiency from a business perspective. By
spreading out the network, organizations can enhance productivity by
concentrating resources on certain tasks and making health IT systems
more efficient by decentralizing IT infrastructure. Fig. 1 illustrates
representative application scenarios and functionalities of a mobile
healthcare robot. We have listed several applications that a mobile
healthcare robot may fit in.

2.1. Elder and chronic patient nursing

Seventy percent of U.S. citizens take at least one prescription med-
ication and over fifty percent take at least two, according to FDA and
CDC. Among these patients, forty percent arises from elders. Failing
to maintain medication adherence is a dramatic barrier to pursue
health for patients, in particular those of elder people or chronic
patients. A typical task consists of detection, communication with
cloud, processing and returning message. A healthcare robot in this
case is expected to be able to detect any abnormal actions, such as
falling down, faint or asking for help. The robot then processes the
raw detections and uploads compressed information to the cloud by
reliable wireless connections. Messages are sent back to the robot to
act properly. Frequently missing of medication doses, consequently and
unfortunately, will likely lead to diseases aggravation.

2.2. Unhealthy habit recognition

Healthy lifestyle plays an important role in health maintenance.
Harmful habits may lead a person towards unhealthy conditions even if
he/she is temporarily healthy. However, a habit is an unconscious be-
havior. One usually fails to realize that a negative habit is doing harm.
Professional suggestions, in this case, are essential for early-preventing.
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Fig. 2. Key technologies of mobile healthcare robots in edge/centralized computing.

2.3. Mental healthcare

Although psychological issues like depression are increasingly
prevalent, many people still face high barriers to access mental health-
care facilities. Some suffers do not realize the necessity of mental
healthcare for fear of the social stigma associated with receiving
psychotherapy. Other suffers desire healthcare but are impeded by high
financial costs of mental health services.

3. Edge-computing-friendly functionalities

According to the tasks a healthcare robot may meet, many func-
tionalities of a robot are edge-computing-friendly in nature. In this
section, we list and analyze this kind of tasks and discuss the corre-
sponding edge computing techniques. In general, many user-orientated
applications, such as user-friendly interfaces, intelligent perceptions,
automatic navigations and innovations, as shown in Fig. 2, can be
computed and processed on the robot rather than uploading to the
center.

3.1. Interactivities

Typical interactivities between a robot and its users are commonly
accomplished by the robot although several intelligent interfaces are
more data-center-orientated. Traditional reaction of a robot to a hu-
man behavior is often defined off line and fixed in operation. Very
limited communications, always a pre-defined message in describing
user activities is sent to the center for services’ improvement. However,
as the rapid growth of customized services with support from the
cutting-edge AI techniques, robot–human interactivity demands more
communications than before [21]. For example, Google Siri, a popular
virtual assistant, employs the state-of-the-art AI and machine learning
technologies to recognize speech and answer questions and prefer
to link to the data center for an accurate reaction. It is a common
choice in using the combination of an on-line and off-line interactive
algorithms [22], in which in common scenes, the well-trained off-line
model is adapted for the purpose of efficiency and on-line is selected
in some special applications. Human–robot interactivities are also the
main source of data stream in an edge computing environment, where
the state-of-the-art resource allocation [23] or computation offloading
strategy [24] can be applied.

3.2. Perception

Perception is capable of capturing passive inputs and enhances
the ability of data collection. This edge function should preliminarily
understand the perceived data, which is the basis of further analysis on
the cloud.

Mobile-phone-based method: A virtual agent installed in a smart
phone can directly collect incoming and outgoing text messages of all

online-chatting APPs [1]. Thus, the virtual agent can simply perceive
the user’s activities through text messages. Obviously, this method is
limited to text information and inevitably omits a lot of user behaviors,
which may be important, sometimes even fatal, to healthcare-receivers.
The virtual agent extends its perception capability by capturing the
user’s facial expressions using the front camera of a smart phone.

Facial recognition: Under the support of facial recognition technol-
ogy, a tabletop healthcare robot can monitor each family member and
his or her medications [3]. The robot reminds patients in pursuing
their medication schedule, recognizes a patient’s health crisis and
contacts a healthcare provider if necessary. Moreover, such robot is
enabled to connect to wireless networks and serves as interchanging
communication medium between patients and healthcare providers.
State-of-the-art facial recognition technologies can further improve
recognition accuracy [25].

Special sensors: Human activity recognition is an essence to enable
a robot to identify the behavior of a specific care-receiver [26]. Rather
than facial expressions, an activity recognition can perceive behaviors
of a care-receiver, who may be an elder adult, a children or a chronic
patient. By activity recognition, a robot tacks the care-receiver’s action
and recognize human behaviors such as anomalous activities and un-
healthy habits. To ensure a robust and accurate recognition, sensors
like accelerometers and gyroscopes are important in autonomously
detecting human behaviors under certain scenarios.

Although the equipment of special sensors may improve human ac-
tivity recognition performance, those sensors are still not user-friendly
and, as a result, not welcome in industry [27]. Special sensors are typ-
ically not pressure-free to the wearer, which means low comfort level
or restriction of the care-receiver mobility. In addition, deployment and
maintenance of such sensors commonly induce heavy financial burden.
Consequently, a more feasible approach is camera surveillance and
image-classification-based human behavior recognition. Nevertheless,
recognizing human activities solely from images is an extremely chal-
lenging task. Many challenges, such as background disarray, diversity
of viewpoint, resemblance of distinct human behavior, may dramati-
cally depress classification performance. Thanks to the rapid develop-
ment of cutting edge machine learning schemes, promising solutions
may arise from several state-of-the-art deep learning algorithms, includ-
ing Convolutional Neural Network (CNN) [28], Generative Adversarial
Network (GAN) [29].

CNN and GAN models enable robots make informed decisions based
on the tasks they’re presented with. CNN-based framework is able of
navigate an endovascular surgery robot based on surgeons’ skill learn-
ing. CNN-based method shows its capability of adapting to different
situations and achieves similar success rate and average operating time.
Robotic operation performs similar operating trajectory and maintains
similar level of operating force with manual operation. The CNN-based
method can be easily extended to many other surgical robots. A semi-
supervised learning approach with generative adversarial networks
GANs that enables a robot to learn from unlabeled tactile sensory data
from interactions with everyday objects. By leveraging unlabeled sensor
data that are more abundant in unstructured environments, we mitigate
the need for massive labeled training sets [30,31].

The application of deep learning in robotics has also greatly im-
proved the accuracy of the robot’s work. The robot’s understanding
of complex environments is the first step in intelligence. Vision-based
scene recognition and understanding is important to the robot’s under-
standing of the surrounding environment and improving its intelligence
level. Obtaining real-time data in the current environment is of great
importance for the robot to construct the current working environ-
ment map. It is also necessary to consider the situation of the robot
in the room. It is necessary to realize the correlation between the
indoor three-dimensional map and the semantic information, not only
the aforementioned ring needs to be considered. The map of the en-
vironment also needs to be classified to identify the scene in the
scene.
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Feature extraction is a key step in scene recognition. In this step,
we do not use the traditional method of applying local features through
human intervention, but apply the convolutional neural network model
in deep learning to the scene recognition of the robot so that it can au-
tomatically capture the hidden in the original image. Number of feature
information according to. In the process of object recognition and large-
scale natural scene image processing, the convolutional neural network
and superpixels can be combined with the depth Boltzmann machine
respectively, wherein the large-scale scene image is preprocessed by
the convolutional neural network to obtain a volume. After the product
feature, the result is used as the depth visual layer input of the Boltz-
mann machine, feature extraction, and then use the softmax classifier
implements the classification of the scene. In the indoor scene, it is
necessary to realize the correlation between the three-dimensional map
and the semantic information in the room, and use the decentralized
modular technology to enable the robot to simultaneously perform
scene object recognition and map reconstruction, thereby realizing its
indoor recognition function.

3.3. Navigation

Navigation is a user-specific function and directly determines the be-
havior of the robot. Consequently, navigation is an edge functionality.
However, this functionality may need support from the cloud.

Some mobile healthcare robots need to autonomously move, espe-
cially when they perform tasks like touring the care-receiver’s activity
area or tumble prevention [32,33]. Such robots usually need to find
an optimal routine linking the destination and avoid obstacles in a
crowded environment like a living room. Therefore, many research
topics still need further investigation to achieve efficient navigations.
Among these topics, one vital problem is endowing a robot with
the ability to move through narrow spaces between two barriers and
effectively avoid collision with them. Among numerous existing anti-
collision methods, the artificial potential field method (PFM) enjoys the
following promising characteristics: being comparatively simple to im-
plement, high efficiency, high speed and accuracy in most application
scenarios.

Despite the advantages, traditional PFM suffers from local minima
in the potential field, which leads to a couple of restrictions: failing to
pass a narrow space between obstacles and oscillations in narrow pas-
sages. An improved PFM in [34] is shown to ease the aforementioned
burden and validated on a mobile-robot-developing platform (Turtlebot
2). This robot captures visual information via a RGB-D Kinect sensor
and converts to 3D images using Point Cloud Library (PCL). Then, the
barrier detection is completed based on the 3D images.

Traditional supporting techniques of robot navigation cannot han-
dle dynamic environments, i.e., the obstacles or people are moving
stochastically. Furthermore, a perfect navigation system not only finds
the right routine but also enhances comfort of care-receivers. Such
high-level demand base support of novel path planning methods.

3.4. Innovation

Similar to navigation, innovation is also tightly tied to user require-
ments. This functionality furnishes an upgrading interface for the whole
system. In the literature, several work aimed to design an integrated
information architecture that effectively facilitates a remotely teleoper-
ated mobile health robot at home [35–41]. This kind of work interprets
the robot developing task from the perspective of software engineering.
Systematic technology renovation like teleoperated healthcare robot
should consistently fit into the requirements of healthcare delivery.

The development of integrated information architecture, which may
link with health professionals or technical personnel, is necessary for
healthcare robots. The main challenge is prioritizing various possible
functionalities of a robot and handling the complexity of home physical
environments. The main constraints include limits on the structural,

perceptual and processing technologies of the robot. A teleoperated
robot is a realistic choice that leverages currently mature technologies
and depends on human operations to overpass existing limitations.

A mobile healthcare robot is a data-centric system. A usable and
extensible system supports all information flows and their integration
fitting into a consistently integrated, unitary and secure information
system. In this manner, this architecture enables all stakeholders to
felicitously access the system at any proper moment.

4. Data-center-orientated communications

Core functionalities rely on the support of artificial intelligence
techniques, including machine learning, semantic model, sentiment
analysis and so on. These techniques put forwards high demands on
hardware platform as well as artificial intelligence abilities. To meet
the extreme requirements for user experience, efficiency, performance
in wireless robot networking environments, novel designs, configura-
tions and optimizations for wireless communications and networking
are in great need to satisfying the service requirements. As a result,
the core functionalities run on the cloud and provide support to the
edge functionalities. Fig. 3 summarizes the core functionalities and
representative supporting technologies.

4.1. Uncertainty handling

Uncertainty handling is a critical issue especially when we refer
to healthcare tasks, in which an unexpected operation may cause
disastrous consequences. As an example, Fig. 4 demonstrates sensor
uncertainty in a mobile healthcare robot system. Edge computing can
solve the inefficiency of moving all data to a centralized point by
creating a network of smaller datacenters with dedicated purposes and
features that are tailored to meet specific demands. Digital projects
that create or require data can be processed much faster when the
computing power is close to the device or person generating it. By
spreading out the network, organizations can enhance productivity by
concentrating resources on certain tasks and making health IT systems
more efficient by decentralizing IT infrastructure.

Inevitability of sensor uncertainty : Sensors suggest a promising solu-
tion to convey human’s physical, physiological or even psychological
activities to a robot. Internet of Things (IoT) integrates heterogeneous
wearable or mobile sensors and creates a huge amount of opportunities
to recognize human activities and collect human life logging data.
With the support of IoT, physical activities can be remotely logged.
Consequently, care-receivers are able to obtain more opportunities to
enjoy a personalized healthcare.

Nevertheless, leveraging IoT in healthcare systems is challenging
due to the fact that various sensors (wearable devices) of IoT are
generating massive high-dimensional heterogeneous data all the time.
Effectively validating such data becomes an essential task. Owing to
advances in accelerometer technologies and GPS, physical activities
are generally well-observed. Life-logging physical activity data (LPD)
exhibits remarkable uncertainty due to various reasons such as diver-
sity and alterations of personal living habits, sensor errors (battery
depletion, inaccurate outputs, etc.) and communication malfunction.
Consequently, a mobile healthcare robot is required to make right
decisions based on uncertain inputs, i.e., incomplete and inaccurate
sensor data. The next generation of communication networks, such as
the global centralized Software Defined Network (SDN) [42,43], pro-
vide robust link for IoT connections. Other cutting-edge technologies,
such as cognitive radio sensor networks [44], may also improve the
robustness and efficiency of a public network.

Knowledge-based and Data-driven solutions: In order to recognize
human activities and handle sensor uncertainty, popular solutions al-
ways adopt data-driven or knowledge-based methods. The primary
superiority of data-driven methods is their capability to deal with
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Fig. 3. Core functionalities and representative supporting technologies.

Fig. 4. Sensor uncertainty in a mobile healthcare robot system.

uncertainty. Knowledge-based methods utilize prior knowledge to con-
struct semantic activity models and perform inference processes on
input sensor data. Such methods enjoy superior interoperability and
wide adaption to diversified application scenarios, which are vital
for a context-aware system. Additionally, knowledge-based methods
leverage formal data structures to denote sensor data and contexts
under the support of semantic descriptions, which make sensor data
and contexts comprehensible to both developers and robots. Ontology-
based activity recognition is a typical knowledge-based method and

possesses advantages of expressiveness and comprehensive reasoning
mechanisms [45–47]. A barrier to its broad application is the imperfect
observations which may depress the activity recognition performance.

Data-driven and knowledge-based methods have shown their suc-
cess in many applications. Data-driven methods adopt supervised ma-
chine learning algorithms to categorize sensor data into groups, each
of which represents one kind of human activity. For instance, Hidden
Markov Models (HMM) and Support Vector Machine (SVM) are two
widely used classifiers. Despite the success of data-driven methods,
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such methods fail to work efficiently with limited size of training data
because they require large volume of training data to guarantee the
classification accuracy. Moreover, it is difficult to acquire adequate
training data because users may implement activities in various ways.
In addition, gathering and manually labeling large volume of sensor
data are known for their tremendous time-consumption. Furthermore,
data-driven methods are difficult to process high-dimensional data.

In view of disadvantages of data-driven and knowledge-based meth-
ods, a combination of both methods enjoys broad prospects. Some
recent works design hybrid models to recognize human activities. How-
ever, existing hybrid models lack specialized solutions to uncertainty
handling. A hybrid model named AGACY Monitoring can cope with
the inherent uncertainty of sensor data. This model handles long-
enduring activities and their uncertainty values by adopting a new
feature extraction method. Along with this model, a novel algorithm
called AGACY infers activities by probing the collected uncertainty
values [48]. Currently, the primary drawback of this method is that it
lacks the ability to reuse existing upper ontology like DOLCE ontology.

A validation-rule based method can eliminate irregular uncertainty
as well as relieve the negative influence of regular uncertainty [2]. This
kind of methods still faces some challenges despite its success in exper-
iments. First, extensibility should be enhanced to flexibly incorporate
new validation rules. Second, a formal rule of human-in-loop valida-
tion needs to be investigated so that the method can more efficiently
leverage user feedbacks to update validation rules. Third, the flexibility
of the method needs to be validated by more users.

4.2. Social-aware path planning

A mobile healthcare robot may work in a crowd environment. The
issue of path planning thus extends far beyond a collision-free and
shortest path if a care-receiver requires high-quality user experiences. A
robot needs to obey social conventions and avert collision with human,
in particular in walking. Path planning in dynamic environment aims
at human–robot mutual understanding, i.e., social-aware path planning,
with highlights such as comfort, naturalness and sociability.

A social-aware path planning framework typically contains the fol-
lowing components [49–52]. First, a global planner provides to an
robot the optimal path linking to the destination. Similar to traditional
path planning like PFM, a global planner demands that a static map
of the environment is at least partially prior known. Second, a local
planner takes in charge collision avoidance with regards to moving
obstacle. A typical method adopted by a local planner is the dynamic
window approach (DWA). DWA prunes non-reachable velocity values
and thus shrinks the searching space. Afterwards, DWA minimizes
an objective function by choosing possible velocity values from the
shrunk searching space. Third, prediction model will forecast human
movements and further raise efficiency of path planning in a crowded
dynamic environment. A simple way to predict human movement is
leveraging the linear model where human motion trajectories mostly
constitute of straight lines. An efficient social-aware path planning
framework is required to properly unify all these components.

In terms of the three-component social-aware path planning frame-
work, there still exist open questions. First, response should be as fast
as possible. For example, the local planner should swiftly adjust the
routine of a fast-moving robot when an obstacle abruptly blocks the
way. Second, new patterns of human motion may keep arising in the
dynamic environment. Therefore, the local planner should be capable
of updating collision avoidance models accordingly. This capability
means a lifelong ability that can update a learning model using data
collected. Third, it is a challenge to move in a crowded dynamic
environment. In addition, it is even more complicated to plan the
optimal paths for a swarm of robots, a trend in robotics with promising
performance. The primary topic, in the case of swarm robotics, is
fusing the latest refreshed collision avoidance models of all robots into
one. Subsequently, all robots abide the fused model and achieve their
globally optimal paths.

Fig. 5. State-of-the-art supporting technologies of mobile healthcare robots.

4.3. Psychotherapy

Although psychological issues like depression are increasingly
prevalent, many people still face high barrier to access mental health-
care. Mobile phone based socially assistant robot provides a promising
solution to depress the accessibility barrier due to the ubiquity of
mobile phone. A mobile mental therapeutic system consists of an active
mobile phone and a tabletop robot connected by specific APP(s). This
kind of APP records all incoming and outgoing text messages and
capture the care-receiver’s facial expression through the front camera
of a mobile phone, and further analyzes messages and facial images
for automatic psychological analysis [1]. Thus, the system selects
therapeutic interventions in pursuant to the analysis results. The system
adopts State–Action–Reward–State-Action (SARSA) algorithm to learn
a customized intervention strategy regarding a care-receiver. A robot
can make the care-receiver more engaged than a virtual agent thanks
to physical presence of the robot.

Currently, the psychological status of users are usually inferred from
text message or facial expressions, which restricts the effect of ther-
apy. Improving existing therapies demands novel perception interfaces
as well as supporting psychology analysis methods. Possible future
works include leveraging various devices to collect human data, such
as heartbeat, blood pressure, and constructing more powerful mental
health intervention technologies. In summary, we list state-of-the-art
supporting technologies in Fig. 5.

5. Conclusion and open research issues

In this article, we investigated on the application and key technolo-
gies of mobile healthcare robots. We also pointed out several peripheral
and core functionalities that the robot development will require. Fun-
damental development in communication, IoT, image understanding,
sensor and path planning technologies will speedup the progress toward
practical robots.

Open research issues include intelligent communications, ground-
breaking biosensors, cutting-edge AI and state-of-the-art deep learning
algorithms. However, each of the open issues still lacks advanced
development, requiring further research and implementations. To this
end, both academic and industrial research and development activities
are highly recommended to overcome the limitations of the existing
systems.
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