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H I G H L I G H T S

• A collaborative decision model to study energy sharing among buildings and charging stations.

• A customized solution approach to solve the optimization model in a realistic-size problems.

• Managerial insights drawn for decision makers to design an efficient collaborative scheme.
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A B S T R A C T

This paper studied a collaborative decision model to optimize electricity flow among commercial buildings,
electric vehicle (EV) charging stations, and the grid under power demand uncertainty. We propose a two-stage
stochastic programming model that realistically captures different operational constraints between multiple
commercial buildings and EV charging stations. We developed a customized solution approach based on Sample
Average Approximation method that can solve the proposed model efficiently and accurately. Finally, a real-life
case study is constructed that draws managerial insights into how different key input parameters (e.g., grid
power unavailability, power collaboration restriction) affect the overall energy network design and cost.

1. Introduction

Commercial buildings and surface transportation sectors utilize a
significant portion of energy causing a number of global challenges
such as climate change and resource scarcity. According to the U.S.
Energy Information Administration [1], buildings and surface trans-
portation sectors consume approximately 43.35% and 28.79% of total
energy generated in the United States, respectively. Regarding indirect
emissions, both sectors cause approximately 78.9% of greenhouse gas
(GHG) emissions, of which the building and transportation sectors are
responsible for 44.6% and 34.3%, respectively [2]. Recently, the
growing concerns of energy efficiency, dependence on fossil fuels, and
environmental impacts have attracted increasing attention on smart
buildings and electric vehicles (EVs) in relation to commercial building
and road transportation sectors, respectively.

A smart building is a structure utilizing automated processes to
control the building’s operations including heating, ventilation, air
conditioning, lighting, security, and other systems. According to [3], an
undeniable fact about smart building management is the need to

accurately coordinate its electrical and thermal loads. To achieve
greater economic performance and environmental sustainability, an
efficient energy management system is needed, which can optimally
coordinate the generation, consumption, and storage of energy across
the available resources [4,5]. On the other hand, electric vehicle sales in
the U.S. increased by 22% from 2015 to 2016 and it is anticipated that
there will be approximately 2.7 million EVs on the U.S. road by 2020
[6]. Furthermore, it is expected that the EV market share will hit 10%
by 2025 [6]. Higher EV market penetration brings both challenges and
opportunities in the area of power grid management. Unmanaged
charging of EVs might trigger an extreme swell in electricity demand at
peak hours and, consequently, negatively affect the stability and se-
curity of the power grid. This being the case, there is an urgent need to
manage EV charging activity efficiently to promote widespread adop-
tion of EVs. Towards this goal, this study investigates optimal opera-
tional strategies in relation to smart commercial buildings and electric
vehicle charging stations to optimize individual and integrated opera-
tions under systems uncertainty.

The power grid is currently experiencing a variety of challenges
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from the viewpoint of sustainable development of advanced technolo-
gies. The future power grid, known as the smart grid, together with
smart commercial buildings defines the next-generation of electrical
power generation and consumption systems. The smart grid can be
characterized by increased utilization of real time communications,
information technology, and control and management in the produc-
tion, distribution, and consumption of electrical energy. The aim of
employing an upgraded smart grid together with smart commercial
buildings is to allow two-way electricity and information flow between
them so that they are capable of monitoring and responding to demand
changes.

One possible way to alleviate excessive loads on the power grid is to
design EV charging stations that integrate renewable energy resources
(RES) with vehicle-to-grid (V2G) resources, while planning optimal
charging schedules for EVs. A stream of studies have addressed the
integration of the RES with V2G. Liu et al. [7] and Marmaras et al. [8]
study the effects of EV smart charging patterns on power system sche-
duling, while considering coordination of wind energy, thermal units,
and V2G. Likewise, He et al. [9] present a global and local scheduling
model that is capable of making charging and discharging decisions for
EVs with the goal of minimizing the overall system cost. Another study,
proposed by Ortega et al. [10], integrates V2G with power systems in
order to achieve better efficiency and security while operating under an
existing power infrastructure. Along the same line, Haddadian et al.
[11,12] study the effects of considering V2G and RES as viable re-
sources for the smart grid. Similarly, Fathabadi [13] studies the dif-
ferent effects of incorporating V2G and RES in a power network. The
goal is to identify the best coordination that is effective in sustaining the
system while reducing cost and loss of power production. Thomas et al.
[14] investigate the bi-directional capabilities of EV energy trading
with respect to renewable power uncertainty. In another study, De-
Forest et al. [15] show a day-ahead optimization of an EV fleet pro-
viding ancillary services at the Los Angeles Air Force Base vehicle-to-
grid demonstration, including a number of practical considerations and
scenario analysis. Jin et al. [16] and Hong et al. [17] propose a sto-
chastic optimization model to minimize the average cost of utilizing
RES under system uncertainty. Rahmani-Andebili and Fotuhi-Firuzabad
[18] propose a stochastic predictive control model for management
charging of plug-in EVs and distribution system reconfigurations con-
sidering driving patterns of the plug-in EV owners. Another study,
conducted by Zhang et al. [19], introduces a scheduling model to
minimize the mean waiting time for charging electric vehicles at EV
charging stations equipped with multiple plug outlets and the avail-
ability of RES. The authors consider arrival time of EVs, fluctuation in
grid power prices, and the RES generation level using a markov decision
process (MDP). The existing studies provided along this line attempt to
manage operational decisions for a single charging station while no
consideration is given to optimize integration decisions on cluster-
based EV charging stations.

Several studies attempt to optimize battery management related
decisions at battery swapping stations where an EV can quickly ex-
change its depleted battery with a fully-charged battery. Pan et al. [20]
present a two-stage stochastic programming model to determine the
optimal location of battery swapping stations and then make appro-
priate operational decisions (e.g., the number of charged and dis-
charged batteries) based upon realized battery demands, EV loads, and
production of RES energies. It can be note that decisions involving
discharging batteries to the power grid during peak hours is an im-
portant feature of the proposed model. Similarly, Worley and Klabjan
[21] present a dynamic programming model to determine the number
of batteries purchased and their charging times based on dynamic
changes in the power grid pricing rate. Along the same line, Mak et al.
[22] propose various models that aid the planning process for estab-
lishing battery swapping infrastructure based on a robust optimization
framework under demand uncertainty. The authors determine the po-
tential impact of battery standardization and other related technology

advancements on the optimal infrastructure establishment strategy.
Nurre et al. [23] develop an integer programming model to determine
the optimal operational decisions (e.g., the number of charged, dis-
charged, and exchanged batteries) of a battery swapping station over a
pre-specified planning horizon. Liu et al. [24,25] propose an optimi-
zation model to determine energy exchange strategies of a battery
swapping station considering solar energy availability and demand
management decisions (e.g., optimal pricing, charging and discharging
batteries). Recently, Widrick et al. [26] demonstrate optimal policies
for battery swapping station management, integrated with V2G cap-
ability, to control charging and discharging operations under non-sta-
tionary stochastic demand. Note that most of the existing studies pro-
vided along this line attempt to optimize battery management decisions
(e.g., hourly charging, discharging, storing, and exchanging) within a
single facility while no consideration is given to the integration be-
tween battery swapping and EV charging across multiple charging
stations.

In addition to power grid load reduction and EV charging station
management, another possible way to reduce the energy consumption
from the two main sectors (i.e., commercial buildings and surface
transportation) is via vehicle-to-building (V2B) connection capability.
In the V2B integration mode, a smart commercial building can co-
operate with an EV charging station(s) to achieve higher energy effi-
ciency and lower network costs. This being the case, two-way electricity
flow among related buildings and charging stations can help manage
demand fluctuations. Flores et al. [27] show that significant cost sav-
ings cost be achieved if a charging station can be integrated with a
commercial or industrial building using a coordinated operation
strategy. Karan et al. [28] investigate possible GHG emission reduction
and mitigation strategies based on the current trend of energy usage in
transportation and building sectors. In another study, Clarke et al. [29]
and Stadler et al. [30] demonstrate how the design of distributed en-
ergy systems can be improved by increasing participation of EVs battery
storage, which enhances system flexibility and facilitates integration of
further distributed energy resources such as solar and wind energy.
Pang et al. [31] and Su et al. [32] demonstrate that V2B connections
provide some benefits including backup power, high power quality for
buildings, and peak shaving in the power grid. Additionally, the authors
state that V2B integration can significantly improve demand side
management and power outage. Gough et al. [33] find that partici-
pating in both the peak power and the ancillary services market may
prove the most profitable for V2B connections. Sehar et al. [34] and Liu
et al. [35] propose a heuristic operation strategy for a commercial
building microgrid, equipped with EVs and a photovoltaic (PV) system,
to improve self-consumption capability of PV energy. Erdinc [36]
considers both pricing scheme and peak power limiting on demand
response, which can further improve the economic advantage of the
home energy management structure by increasing flexibility. Studies by
[37–39] investigate the impact of integrating the EVs into an office
building microgrid, which is supported by PV and combined heat and
power (CHP) units. Authors found that the EVs with optimal co-
ordinated charging strategies can help in reducing the fluctuation grid
energy during the peak hours. Recently, Robledo et al. [40] study the
performance of an integrated hydrogen fuel cell EV with V2G tech-
nology, PV power, and a residential building. The results show that
integrated model can reduce imported electricity from the power grid
by approximately 71%.

To the best of the author’s knowledge, none of the prior studies have
investigated the effects that integrated cluster-based smart commercial
buildings and EV charging stations will have on operational decisions
under uncertainty. To fill this gap in the literature, this study proposes a
novel collaborative energy sharing decision model to study energy
sharing among a cluster of commercial buildings and EV charging sta-
tions in concert with the power grid. In summary, the main contribu-
tions of this paper to the existing literature are summarized as follows:
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• Investigating the effects of integrated cluster-based smart commer-
cial buildings and EV charging stations on the overall system per-
formance under power demand uncertainty.

• Proposing a novel collaborative energy sharing decision model
which realistically captures the operational constraints for different
viable resources used in both commercial buildings (e.g., combined
cooling, heating, and power (CCHP) system, renewable energy) and
EV charging stations (e.g., renewable energy, V2G, battery swapping
capability).

• Implementing a customized solution approach where the perfor-
mance of the basic Sample Average Approximation (SAA) algorithm
is enhanced by adding some problem-specific valid inequalities to
solve our proposed optimization model in a large scale problem
setting.

• Constructing a real-world case study to test the performance of the
algorithms and reveal interesting managerial insights. We demon-
strate the computational performance of our customized hybrid al-
gorithm relative to its generic version. We use San Francisco,
California as a testing ground to visualize and validate the modeling
results. The outcome of this study provides a number of managerial
insights, such as the impact of demand variability, grid power dis-
ruption, power collaboration limit, and renewable energy cell sizes
on overall system performance, which can effectively aid decision
makers to design a cost-efficient collaborative system between
multiple commercial buildings and EV charging stations.

An outline of this paper is as follows. Section 2 introduces the
network structure, the problem description, and the model formulation.
A customized solution approach to solve the proposed mathematical
model is then presented in Section 3. The first part of Section 4 de-
scribes the input parameters used to construct the real-life case study
while the second and third part represent, respectively, the perfor-
mance of the customized solution approach and sensitivity analysis
results. Finally, Section 5 concludes our study by summarizing the key
managerial insights obtained from this study and offers possible future
research directions.

2. Problem description and model formulation

In this section, we first specify the network structure of the proposed
collaborative energy system consisting of EV charging stations, com-
mercial buildings, and a power grid. Next, a mixed-integer linear pro-
gramming (MILP) model is proposed to determine the optimal config-
uration between the energy sharing system under power demand
uncertainty. It is worth noting that the MILP model is proposed from a
system operator point of view for both commercial buildings and EV
charging stations. To the end of this section, few problem specific valid
inequalities are proposed to accelerate the computational performance
of the proposed optimization model.

2.1. Network structure

The electricity, cooling, and heating demands of a commercial
building and electricity demand of an EV charging station are primarily
supplied from a variety of internal and external energy sources. Internal
energy sources of a commercial building include but not limited to
renewable energy resources (RES), a thermal energy storage (TES), a
combined cooling, heating, and power (CCHP) system (consisting of a
power generation unit (PGU), a heat recovery subsystem (HRS), an
absorption chiller, and a heating exchanger), a battery storage (typi-
cally known as commercial-grade battery), and an auxiliary boiler.
Likewise, internal energy sources of an EV charging station include the
RES, vehicle-to-grid (V2G), and swappable batteries. The external en-
ergy sources for both commercial buildings and EV charging stations
are the power grid and the entities itself for each other (e.g., EV char-
ging station can exchange electricity with commercial buildings and

vice versa). Each EV charging station can be connected with one or
more commercial buildings and vice versa while it is assumed that both
are connected with one power grid. Fig. 1 provides a simple illustration
of energy collaboration between a power grid, a commercial building,
and an EV charging station.

In relation to a commercial building, the PGU supplies a significant
portion of electricity demand for the buildings while the surplus energy
is stored at a commercial-grade battery. Additionally, the PGU is cap-
able of supplying thermal energy to fulfill thermal demand for the
buildings. This is primarily due to the fact that the required thermal
energy of a commercial building may not be satisfied only via an aux-
iliary boiler due to its limited supply capacity. Further, we note that the
thermal load requirements of a building is fulfilled from the waste heat
of the PGU recovered through the HRS in the CCHP system and/or an
auxiliary boiler. The auxiliary boiler converts fuel into heat to com-
pensate the possible shortage of thermal load on the building. An ab-
sorption chiller and a heating exchanger are used as the cooling and
heating components (referred to as CC and HC, respectively) in the
CCHP system, while surplus thermal energies from both the PGU and
the auxiliary boiler are stored at the TES. Therefore, commercial-grade
battery and the TES have the capability to control any fluctuation that
results due to the stochasticity in the prime mover.

In relation to charging stations, electric vehicles have options either
to swap their batteries or charge through charging stations. As shown in
Fig. 1, both commercial buildings and EV charging stations are con-
nected with a power grid which supplies the electricity load require-
ments for the facilities. If the entities are unable to support each other,
then the power demand for the buildings and the charging stations can
be supplied from the main grid. In case if none of the sources are
capable of supplying energy demand for the buildings and the charging
stations (i.e., an extreme scenario such as hurricane), we assume that
the facilities still can satisfy the unmet energy demand via an external
energy source(s) by paying a high penalty cost. However, if the facilities
produce additional energy, they have the option to sell these energy
back to the grid or between each other which thereby can be treated as
an additional source of income for the facilities. Fig. 2 demonstrates the
structure and energy flow among different network entities along with
components of each facility.

2.2. Problem description

In this section, we present a two-stage stochastic mixed-integer

Fig. 1. A simple illustration of two-way energy collaboration between different
network entities.
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programming (MIP) formulation that minimizes the operational and
collaboration cost among a set of commercial buildings = … B{1, 2, , }B ,
EV charging stations = … I{1, 2, , }I , and power grid over a pre-speci-
fied planning horizon = … T{1, 2, , }T . Due to sparse location of the
facilities, we denote ⊂bI I to be the subset of charging stations that
are connected with a commercial building ∈b B while ⊂iB B to re-
present the vice versa. The operational decisions of a commercial
building ∈b B include energy flow via the CCHP system, the RES, the
TES, the boiler, and the commercial-grade battery. Further, the deci-
sions involving the number of batteries stored, charged, discharged, and
exchanged as well as the energy flow through V2G and the RES are
considered as the operational decisions for an EV charging station I .

Electricity demand for commercial buildings and charging stations
cannot be accurately predicted in advance. Let Ω be the set of scenarios
of different realization of power demand for the commercial buildings
and EV charging stations where ∈ω Ω defines a particular realization
and ∑ =∈ ρ 1ω ωΩ . Let dbtω be the total demand load in commercial
building ∈b B at time period ∈t T under scenario ∈ω Ω. We further
denote λδ ftω it be the power demand for each charging station ∈i I

which can be determined based on an assumption that δtω percentage of
the total EVs fit passes through the charging station ∈i I at time
period ∈t T may require charging while λ denote average unit power
required to charge each electric vehicle (kWh). In [41,42], the beha-
vioral of PEVs drivers are modeled with respect to the value of in-
centive, the distance from the parking lot, and aggregator’s viewpoint.
In this study, we first identified existing EV charging stations on target
area, denoted as a set I. Then, we define fit as the number of EVs passing
through the charging station ∈i I at time period ∈t T . Estimating fit
is a challenging problem, and it can be even more difficult depending
upon traffic and road geometry (e.g., curvy links). A rough estimation
of fit is obtained by developing a routing algorithm that deploys EVs
from multiple sources to destination points in order to get an estimation

of the number of vehicles, which are passed through each link of the
real-world physical network [43]. Depending on the fluctuations in
energy demand, commercial buildings and charging stations may ex-
change energy between them. We now make the following assumptions
to simplify our modeling approach without the loss of generality:

Assumption 1. Limited energy flow from/to power grid to/from
commercial buildings and EV charging stations and between
commercial buildings and EV charging stations.

Assumption 2. Maximum and minimum rate of charging/discharging
and SoC1 level for commercial-grade battery/TES.

Assumption 3. Limited storage availability and plug-ins for charging/
discharging of the batteries in an EV charging station

2.3. Model formulation

Let us now summarize the following notation for our proposed two-
stage stochastic programming model formulation. Note that we in-
troduce parameters by lowercase and Greek letters while decision vari-
ables as uppercase letters. Additionally, the superscript and subscript of a
parameter and decision variable represent their brief descriptions and
indices, respectively.

Sets and Indices:

• B : set of commercial buildings, indexed by b

• I : set of EV charging stations, indexed by i

• T : set of time periods, indexed by t

Fig. 2. Network illustration of energy flow among commercial buildings, EV charging stations, and grid.

1 Refers to state of charge which is the ratio of available energy to the max-
imum storage energy in commercial-grade battery/TES.
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• Ω: set of scenarios, indexed by ω

Subsets:

• bI : subset of EV charging stations associated with commercial
building ⊂b, bI I

• iB : subset of commercial buildings associated with EV charging
station ⊂i, iB B

For the sake of simplicity, in the definitions of parameters and de-
cision variables, commercial buildings and EV charging stations are
referred to as just buildings and charging stations, respectively.

Commercial Building Parameters:

• ψb
pgu/ψb

bo: PGU/boiler startup cost in building b

• sb
pgu/sb

bo: PGU/boiler fuel consumption capacity in building b

• ηpgu/ηbo: PGU/boiler system efficiency

• c f : unit fuel price for PGU/boiler ($/gl.)

• a b,pgu pgu: PGU electricity generation efficiency

• ab: RES size in building b

• dbtω: total demand load in building b in time period t under scenario
ω

• π π π/ /t
e

t
c

t
h: percentage of total demand load for electric demand/

cooling/heating in time period t

• ηcb/ηdb: commercial-grade battery charging/discharging efficiency

• ηce/ηde: TES charging/discharging efficiency

• ηcc/ηhc: CC/HC efficiency

• bbt
bp: availability of grid power for building b in time period t

• bbt
bn: maximum power flow to PG from building b in time period t

• +q b / +qb : maximum/minimum percentage of commercial-grade
battery charging capacity

• −q b / −qb : maximum/minimum percentage of commercial-grade
battery discharging capacity

• +q e / +qe : maximum/minimum percentage of TES charging capacity

• −q e / −qe : maximum/minimum percentage of TES discharging capa-
city

• sb
bs/sb

tes: commercial-grade battery/TES capacity in building b

• +sbt
bs / −sbt

bs : maximum/minimum SoC of commercial-grade battery in
building b in time period t

• +sbt
tes / −sbt

tes : maximum/minimum SoC of TES in building b in time
period t

• sb
bs
0 : initial SoC of commercial-grade battery in building b

• sb
tes
0 : initial SoC of TES in building b

EV Charging Station Parameters:

• ct
v g2 : unit V2G electricity energy cost in time period t ($/kWh)

• ct
s: unit battery storage cost in time period t

• ai: RES size in charging station i

• ui: maximum availability of batteries in charging station i

• bit
cp: availability of grid power for charging station i in time period t

• bbt
bn: maximum power that can be flowed to PG from charging station

i in time period t

• λ: average unit power required to charge each electric vehicle (kWh)

• γ : average unit power obtained from discharging each electric ve-
hicle (kWh)

• qi
in/qi

out : number of plug-ins available for charging/discharging
batteries in charging station i

• fit : electric vehicle flow around charging station i in time period t

• δtω: percentage of electric vehicles charged at an EV charging station
in time period t under scenario ω

• βt : percentage of electric vehicles discharged at an EV charging
station in time period t

Other Parameters:

• gt
pg: overall grid power availability in time period t

• g g/t
bp

t
cp: available grid power for buildings/charging stations in time

period t

• χbit
bc: maximum power that can flow from building b to charging

station i in time period t

• χibt
cb: maximum power that can flow from charging station i to

building b in time period t

• +ct : unit electricity purchasing price from power grid in time period t
($/kWh)

• −ct : unit electricity selling price to power grid in time period t
($/kWh)

• ct
t: unit electricity transaction price among any pair of building and

charging station in time period t ($/kWh)

• ct
us: unit penalty cost for power shortage in time period t ($/kWh)

• γc: carbon emission tax

• νetc: electricity-to-carbon conversion factor

• ν ftc: fuel-to-carbon conversion factor

• μt: solar radiation in time period t

• ηrr : RES electricity generation efficiency

• τ : energy conversion factor (kWh to Btu)

• ρω: probability of scenario ω

In the following, the first- and second-stage decision variables as-
sociated with commercial buildings and EV charging stations for our
proposed two-stage stochastic mixed-integer linear programming model
are briefly explained.

Commercial Building Decision Variables:
First-stage Decision Variables:

• Zbt
p: 1 if PGU state is on in building b at time period t; 0 otherwise

• Zbt
b : 1 if boiler state is on in building b at time period t; 0 otherwise

• +Sbt
e : 1 if TES charging state is on in building b at time period t; 0

otherwise

• −Sbt
e : 1 if TES discharging state is on in building b at time period t; 0

otherwise

• +Sbt
b : 1 if commercial-grade battery charging state is on in building b

at time period t; 0 otherwise

• −Sbt
b : 1 if commercial-grade battery discharging state is in at building

b in time period t; 0 otherwise

• +Ybt
p : 1 if electricity transaction state from power grid is on in

building b at time period t; 0 otherwise

• −Ybt
p : 1 if electricity transaction state to PG is on in building b at time

period t; 0 otherwise

• +Ybit
s : 1 if electricity transaction state to charging station i is on in

building b at time period t; 0 otherwise

Second-stage Decision Variables:

• +Hbtω: electricity flow from power grid to building b in time period t
under scenario ω

• −Hbtω: electricity flow from building b to power grid in time period t
under scenario ω

• Xbtω
pb : electricity flow from PGU to commercial-grade battery in

building b at time period t under scenario ω

• Xbtω
gb : electricity flow from power grid to commercial-grade battery in

building b at time period t under scenario ω

• +Mbitω: electricity flow from building b to charging station i at time
period t under scenario ω

• Zbtω
brr : Electricity generated in RES at building b in time period t under

scenario ω

• Xbtω
pgu: Electricity generated in PGU at building b in time period t
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under scenario ω
• Ubtω

bd : power shortage in building b at time period t under scenario ω

• Bbtω
bd : PGU fuel consumed in building b at time period t under sce-

nario ω
• Bbtω

bo : boiler fuel consumed in building b at time period t under sce-
nario ω

• Xbtω
cb : electricity flow from building b to its commercial-grade battery

at time period t under scenario ω
• Xbtω

db : electricity flow to building b from its commercial-grade battery
at time period t under scenario ω

• Xbtω
b : commercial-grade battery stored electricity in building b at

time period t under scenario ω

• Xbtω
e : TES stored thermal energy in building b at time period t under

scenario ω

• Xbtω
ce : thermal energy charged in building b at time period t under

scenario ω
• Xbtω

de : thermal energy discharged in building b at time period t under
scenario ω

• Qbtω
cc : thermal energy flow from HRS and boiler to CC in building b at

time period t under scenario ω

• Qbtω
sc : thermal energy flow from TES to CC in building b at time

period t under scenario ω
• Qbtω

ch : thermal energy flow from HRS and boiler to HC in building b at
time period t under scenario ω

• Qbtω
sh : thermal energy flow from TES to HC in building b at time

period t under scenario ω

• Qbtω
cs : thermal energy flow from HRS and boiler to TES in building b

at time period t under scenario ω

EV Charging Station Decision Variables:
First-stage Decision Variables:

• +Yit
c : 1 if battery charging state is on in charging station i at time

period t; 0 otherwise

• −Yit
c : 1 if battery discharging state is on in charging station i at time

period t; 0 otherwise

• +Yit
p : 1 if electricity transaction state from power grid is on in

charging station i at time period t; 0 otherwise

• −Yit
p : 1 if electricity transaction state to power grid is on in charging

station i at time period t; 0 otherwise

• −Yibt
s : 1 if electricity transaction state to building b is on in charging

station i at time period t; 0 otherwise

Second-stage Decision Variables:

• +Gitω: electricity flow from power grid to charging station i at time
period t under scenario ω

• −Gitω: electricity flow from charging station i to power grid at time
period t under scenario ω

• Vitω: electricity flow from V2G to charging station i at time period
∈t T under scenario ω

• −Mibtω: electricity flow from charging station i to building b at time
period t under scenario ω

• Uitω
cs : power shortage in charging station i at time period t under

scenario ω

• Zitω
crr : RES generated electricity in charging station i at time period t

under scenario ω

• Bitω: number of batteries swapped in charging station i at time period
t under scenario ω

• Witω: number of fully-charged batteries available in charging station i
at time period t under scenario ω

• Sitω: number of batteries charged in charging station i at time period
t under scenario ω

• Pitω: number of batteries discharged in charging station i at time
period t under scenario ω

The objective of model [BEV] is to minimize the first-stage and the
expected value of the random second-stage costs across all possible
electricity demand scenarios. Electricity demand for commercial
buildings and charging stations cannot be accurately predicted in ad-
vance. Therefore, the electricity demand is modeled as a random
variable of which probability distribution may not be known in ad-
vance. Thus, a set of scenarios Ω of different realization of power de-
mand for the commercial buildings and EV charging stations is defined,
where each scenario ∈ω Ω is associated with a positive probability ρω
(∑ =∈ ρ 1ω ωΩ ). It is important to note that, the first-stage minimizes the
costs associated with PGU and boiler startup prior to the realization of
any stochastic event (e.g., electricity demands for commercial buildings
and charging stations). However, after the uncertainty is revealed, the
second-stage decisions are made which include operational decisions in
the commercial buildings (e.g., thermal management decisions), char-
ging stations (e.g., battery management decisions), and the collabora-
tion between them and grid. These decisions depend on the first-stage
decisions which are made after the uncertainties are unveiled and
pertain to the real-time operation. In the following, the proposed two-
stage stochastic mixed-integer linear programming model, referred to
as [BEV], is provided.
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In [BEV], the first-stage represents the costs associated with PGU
and boiler startup, while the second-stage represents the costs asso-
ciated with commercial buildings electricity and thermal energy man-
agement costs, EV charging stations electricity and battery management
costs, and the benefits associated with selling/discharging electricity to
power grid by the commercial buildings and EV charging stations, re-
spectively. Electricity cost of a commercial building ∈b B represents
the costs associated with electricity flow to that building from the
power grid, connected EV charging stations, RES, PGU, and commer-
cial-grade batteries. On the other hand, thermal cost represents the
costs associated with thermal flow to the heating and cooling compo-
nents which are obtained from the HRS, boiler, and TES of a com-
mercial building ∈b B . Similarly, costs associated with electricity flow
(e.g., from V2G, power grid, RES, and commercial buildings) and bat-
tery charging/discharging/storing are considered as electricity cost and
battery management cost for an EV charging station ∈i I , respec-
tively.

Constraints associated with commercial buildings:
Constraints for Electric Load Balance: Constraints (1) ensure that

the power demand for commercial building ∈b B at time period ∈t T

and under scenario ∈ω Ω can be satisfied via grid, RES, commercial-
grade battery, PGU, EV charging station, and an external source(s) to
compensate power shortage. Note that the surplus electricity can be
sold back to the grid or to the EV charging stations or stored them on
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the commercial-grade batteries at building ∈b B .
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Constraints (2) restrict electricity flow from a commercial building
∈b B to an EV charging station ∈i I at time period ∈t T and under

scenario ∈ω Ω. Constraints (3) indicate that at any particular time
period ∈t T electricity can flow only one way between a commercial
building ∈b B and an EV charging station ∈i I .

⩽ ∀ ∈ ∈ ∈ ∈+ +M χ Y b i t ω, , , Ωbitω bit
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bit
s B I T (2)

+ ⩽ ∀ ∈ ∈ ∈+ −Y Y b i t1 , ,bit
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Constraints for Thermal Energy Load Balance: Constraints (4)
and (5) guarantee cooling and heating supply for cooling and heating
loads of each building ∈b B at time period ∈t T under scenario

∈ω Ω based on thermal energy flow from the HRS, boiler, and the TES.
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btω B T (5)

Constraints for RES: Constraints (6) indicate that the availability of
renewable energy to a commercial building ∈b B at time period ∈i T

and under scenario ∈ω Ω is restricted by the size of RES (ab), electricity
generation efficiency (ηrr), and the amount of solar radiation absorbed
by the RES (μt).

⩽ ∀ ∈ ∈ ∈Z a μ η b t ω, , Ωbtω
brr

b t
rr B T (6)

Constraints for Commercial-grade Battery: This set of constraints
(7)–(13) determine the states of commercial-grade battery for time
period ∈t T under scenario ∈ω Ω. More specifically, constraints (7)
indicate that a commercial-grade battery cannot be charged and dis-
charged simultaneously in a given time period ∈t T . Constraints (8)
restrict the electricity storage in a commercial-grade battery, while
constraints (9) and (10) determine the battery energy stored at time
period t based on the storage available at −t 1 along with the energy
charged or discharged at the batteries with respect to their charging and
discharging rates. Constraints (11) and (12) restrict the amount of
charged and discharged battery energy. Finally, constraints (13) de-
termine the stored battery energy available at time period ∈t T with
respect to the energy obtained from the commercial building, PGU, and
power grid.
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Constraints for PGU and Boiler: Constraints (14) and (15) restrict
the PGU and boiler fuel consumption with respect to their maximum

capacities (sb
pgu and sb

bo). Constraints (16) ensure electricity flow to
commercial-grade battery and corresponding building in terms of the
PGU fuel consumption and electricity generation efficiency. Constraints
(17) restrict thermal energy flow, generated by the PGU and boiler, to
the heating and cooling components and TES. It is worth noting that the
additional thermal energy is stored at the TES.
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Constraints for TES: This set of constraints (18)–(25) determine the
TES states for time period ∈t T under scenario ∈ω Ω. More specifi-
cally, constraints (18) indicate that the TES cannot be charged and
discharged simultaneously in a particular time period ∈t T . Con-
straints (19) restrict the thermal energy storage in the TES, while
constraints (20) and (21) determine thermal energy storage at time
period t based on the storage available at −t 1 along with the amount of
thermal energy charged or discharged in that time period. Constraints
(22) and (23) restrict the amount of charged and discharged TES
thermal energy at each building ∈b B in time period ∈t T . Con-
straints (24) indicate that the thermal energy passed to the heating and
cooling components is restricted by the TES’s discharging rate (ηde).
Finally, constraints (25) indicate that thermal energy flow from the HRS
and boiler to the TES is restricted by its charging rate (ηce).
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Constraints associated with EV Charging Stations:
Constraints for Electric Load Balance: Constraints (26) ensure

that the power demand for EV charging station ∈i I at time period
∈t T and under scenario ∈ω Ω can be satisfied via grid, V2G, bat-

teries, commercial buildings, and an external source(s) to compensate
power shortage. Note that the surplus electricity can be sold back to the
grid or to the commercial buildings. The power demand for EV charging
station ∈i I at time period ∈t T and under scenario ∈ω Ω can be
determined based on electric vehicle flow ( fit), percentage of charged
vehicles (δtω), and average unit power required to charge each vehicle
(λ).
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Constraints (27) restrict electricity flow to a commercial building
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∈b B from an EV charging station ∈i I at time period ∈t T and
under scenario ∈ω Ω. Constraints (28) restricts the availability of V2G
energy at any EV charging station ∈i I in time period ∈t T and
under scenario ∈ω Ω. This availability can be determined based on
electric vehicle flow ( fit), percentage of discharged vehicles (βt), and
average unit power required to discharge each vehicle (γ).
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cb
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Constraints for RES: Constraints (29) indicate that the availability
of renewable energy to a charging station ∈i I at time period ∈i T

and under scenario ∈ω Ω is restricted by the size of RES (ai), electricity
generation efficiency (ηrr), and the amount of solar radiation absorbed
by the RES (μt).
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Constraints for EV Charging Station Batteries: This set of con-
straints (30)–(37) determine the utilized battery states for time period

∈t T under scenario ∈ω Ω. More specifically, constraints (30) in-
dicate that each charging station ∈i I begins with ui number of fully-
charged batteries. Constraints (31) indicate that batteries cannot be
charged and discharged simultaneously in a particular time period

∈t T . Constraints (32) and (33) restrict the number of batteries that
can be charged and discharged at time period ∈t T by the availability
of plug-ins (q q/i

in
i
out) in each EV charging station ∈i I . Constraints

(34) are flow balance constraints which ensure that the number of fully-
charged batteries available in time +t 1 depends on the fully-charged
batteries stored in time period t along with the batteries charged, dis-
charged, and demanded in that time period. Constraints (35) indicate
that no batteries are charged at the beginning of the planning horizon.
Constraints (36) restrict the number of charged batteries to the number
of depleted batteries. Finally, constraints (37) restrict the number of
discharged batteries and battery demanded to available fully-charged
batteries.
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Constraints associated with Power Grid:
This set of constraints (38)–(46) determine the power grid states for

time period ∈t T under scenario ∈ω Ω. More specifically, constraints
(38) restrict the availability of grid power (gt

pg) for all commercial
buildings and EV charging stations while constraints (39) and (40),
respectively, provide an individual grid power utilization restriction for
commercial buildings (gt

bp) and EV charging stations (gt
cp). Constraints

(41) indicate that only one-way of electricity flow is possible between
power grid and a commercial building ∈b B in time period ∈t T .
Constraints (42) and (43) restrict the electricity flow among the power
grid and commercial buildings ∈b B at time period ∈t T and under
scenario ∈ω Ω. Likewise, constraints (44) indicate that only one-way
of electricity flow is possible between power grid and an EV charging
station ∈i I in time period ∈t T . Finally, constraints (45) and (46)
restrict the electricity flow among the power grid and EV charging

stations ∈i I at time period ∈t T and under scenario ∈ω Ω.
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Binary and Non-negativity Constraints: Constraints (47) define
binary restrictions for the first-stage decision variables. Likewise, con-
straints (48) and (49), respectively, define standard integrality and non-
negativity constraints for the second-stage decision variables.
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2.4. Valid inequalities

We can exploit the special structure of our problem [BEV] by
generating a set of valid inequalities that restrict the search space of few
binary variables without eliminating the optimal solution. To enhance
the performance of the branch-and-bound process, the following valid
inequalities are added in [BEV].

• A commercial-grade battery at building ∈b B is not capable of
discharging electricity in a given time period t if no charging is made
up to time period −t( 1).
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• The TES at building ∈b B is not capable of discharging thermal
energy in a given time period t if no charging is made up to time
period −t( 1).
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• A battery at EV charging station ∈i I is not capable of charging
electricity in a given time period t if no discharging is made up to
time period −t( 1).
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• There is no thermal energy flow to the TES, heating, and cooling
components if the PGU and/or boiler state is not switched to on at
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building ∈b B in time period ∈t T under scenario ∈ω Ω.
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3. Sample average approximation algorithm

Electricity and thermal demands (e.g., heating and cooling de-
mands) of commercial buildings, dbtω, differ significantly from one hour
to the next depending on different timetable of working hours, usage
intensity of equipment and lighting facilities, air conditioning require-
ments, and many others. Likewise, the percentage of electric vehicles
charged in EV charging stations, δtω, differs significantly due to variable
electric vehicle flows at EV charging stations at different time period of
the day. Therefore, an extremely large number of demand scenarios
need to be investigated to derive meaningful results. This not only in-
creases the problem size for [BEV] but also pose serious challenge from
solution standpoint. To alleviate this problem, we propose to use
Sample Average Approximation (SAA) algorithm that approximates the
expected second-stage operational and collaboration costs with a cor-
responding sample average function. The procedure is repeated with
different samples until a stopping criterion (a pre-determined optim-
ality gap) is reached. The SAA method has been successfully im-
plemented for solving large-scale supply chain network flow related
problems in [44–48]. In relation to the convergence properties and
statistical performance of the SAA method, readers are referred to re-
view the studies by Kleywegt et al. [49], Mak et al. [50], Norkin et al.
[51,52].

The electricity demand for commercial buildings,
∀ ∈ ∈ ∈d b t ω; , , Ωbtω B T , and the percentage of electric vehicles

charged in a charging station ∈i I at time period
∀ ∈ ∈t δ t ω, ; , Ωtω T are assumed to follow a normal distribution. The

SAA method generates N samples ( <N| | |Ω|) and approximates the
objective function value of the second-stage problem as follows:
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where Q ωZ( , )n is a solution of the second-stage problem for a given
value of Z under scenario ωn. Problem BEV[ ] is now approximated by
the following SAA problem:
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As the sample size increases, the optimal solution approximated by
the above equation converges with probability one to an optimal so-
lution of the original problem BEV[ ] [49]. By solving the SAA problem
within an absolute optimality gap ⩾δ 0, the sample size N| | is estimated
to guarantee an ∊-optimal solution to the true problem with probability
at least equal to ( −α1 ) as follows:

⩾
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δ
log logα| |

3
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(| || |( 2) )max
2

2 B T

where ∊ > ∈δ α, (0, 1), and σmax
2 is a maximal variance of certain

function differences [49]. It is worth noting that choosing sample size
N| | is a trade-off between the solution quality and required computa-
tional time. Note that the above formula may provide a conservative
sample size estimation for practical applications [49]. In each iteration
of the SAA method, valid statistical lower and upper bounds are pro-
vided for the original problem BEV[ ] and the process terminates when
the gap between the bounds falls below a pre-determined threshold
value. The following steps briefly summarize the SAA method to solve
problem BEV[ ].

Step 1: Generate set M of independent commercial building load
and percentage of electric vehicles charged in an EV charging sta-
tion scenarios, each of size N| |, i.e.,

… ∀ ∈ ∈ ∈d d d m M b t{ , , , }, , ,ω ω ωbt bt btm m m
N1 2 | | B T and δ{ ,ωt m

1

… ∀ ∈ ∈δ δ m M t, , }, ,ω ωt tm m
N2 | | T , respectively. Then, solve the cor-

responding SAA for each generated sample consisting of N| | reali-
zations of independently and identically distributed (i i d. . .) random
scenarios. The optimal objective function value and the optimal
solution are denoted by ZN

m and ̂ZM , respectively.
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Step 2: Compute the average of all optimal objective function values
obtained from the SAA problems, ZN

M , as follows:
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where, ZN
M provides a statistical lower bound on the optimal ob-

jective function value for the original problem [BEV] [52]. Since
…Z , Z , ,ZN N N

M1 2 generated samples are independent, the corre-
sponding variance of ZN

M , i.e., σZ
2

N
M , is given by:
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Step 3: Generate set ′N i.e., a large sample size where ′ ≫N N| | | | to
compute the estimated optimal objective solution of the SAA
method [49]. This estimator, which is the upper bound of the op-
timal solution on the generated sample size ′N| |, is obtained by one
of the solutions of ̂ZM as follows:

̂ ∑ ∑ ∑= + +
′

′
∈ ∈ ∈ ′

ψ Z ψ Z
N

Q ωZZ (Z ) ( ) 1
| |

( , )N M
b t
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n N

n

B T

In each iteration, the estimator upper bound ̂′Z (Z )N M is updated. The
variance of this estimator upper bound is calculated as follows:

̂
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Step 4: Compute the SAA gap, ′Gap N N( , ), and the variance of this gap,

′
σGap

2
N N( , )

, using the estimators determined in Steps 2 and 3.

̂
̂

= −−

= +

∼
′ ′

′′

Gap Z

σ σ σ

( ) Z (Z ) Z

(Z )
N N N M N

M

Gap N M
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2 2

Z
2

N N N
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The confidence interval for the optimality gap is then calculated as
follows:

̂ ̂− + +′ ′z σ σZ (Z ) Z { (Z ) }N M N
M

α N M
2

Z
2 1/2

N
M

with ≔ −−z αΦ (1 )α
1 , where zΦ( ) is the cumulative distribution

function of the standard normal distribution.
Step 5: Define the best solution among the solutions of

̂ ∀ ∈m MZ ( )M that represents the lowest upper bound ̂′Z (Z )N M .

4. Computational study and managerial insights

This section utilizes SAA method to solve model [BEV] and to draw
managerial insights from a real life case study. We use the city of San
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Francisco as a testbed to visualize and validate the modeling results.
The proposed mathematical model and the solution algorithm are
coded in GAMS 24.2.1 [53] on a desktop computer equipped with an
Intel Core i7 3.50 GHz processor and 32 GB RAM. The optimization
solver used is ILOG CPLEX 12.6.2 All costs are calculated based on 2018
dollars value. The following subsections describe the input parameters
used in this study, present the computational performance of solving
model [BEV] using the SAA algorithm, and to the end draw managerial
insights from a real life case study.

4.1. Data description

Since San Francisco has a strong-growing EV population, it was
chosen as a testing ground to visualize and validate the modeling re-
sults. In addition, it has a reputation as being one of the nation’s most
environmentally conscious cities. Several factors contribute to this
status, not the least of which San Francisco also recognizes as one of the
wealthiest cities in the country. Furthermore, San Francisco offers some
of the most electric vehicle-friendly incentives for EV owners at both
the state and local levels. For example, under the Bay Area Air Quality
Management District’s EV Rebate Program, public agencies can receive an
additional $2500 and $1000 for the purchase of an EV and plug-in
hybrid EV, respectively [54]. Surplus electricity from one or more
commercial buildings ∈b iB may be able to share with a nearby EV
charging station(s) ∈i bI and vice versa. This being the case, 11 fast EV
charging stations ( =| | 11I ) and 43 commercial buildings ( =| | 43B ),
located near those charging stations, are selected from San Francisco to
construct a real life case study [55]. Fig. 3 demonstrates the distribution
of fast EV charging station locations along with their nearby commer-
cial buildings.

The availability of electricity obtained from a solar panel during a
typical day in San Francisco is obtained from a study by [56]. We set
the size of solar panels 100m2 and 75m2 for commercial buildings (ab)
and EV charging stations (ai), respectively. Commercial and industrial
time-of-use (TOU) rates are adopted from [57] to determine unit elec-
tricity transaction prices for + −c c,t t , and ct

t . Based on the TOU rate,
1:00 P.M. through 8:00 P.M. are the peak hours of electricity usage
when the electricity transaction price is high. On the other hand,
5:00 A.M. through 12:00 P.M. along with 9:00 P.M. through 11:00 P.M.
are the sub-peak hours of electricity usage when the electricity trans-
action price is lower compared to peak hours. All other hours
throughout a day are off-peak hours with the lowest price. Fig. 4 re-
presents different electricity usage hours. The hourly electricity pricing

plan for V2G (ct
v g2 ) is obtained from [58].

The values of dbtω are estimated from the TOU rate, while fit is de-
termined based on the number of EVs available at San Francisco in
2016 [59]. Other factors such as population density along with the
number of hospitals and colleges located near major roads are con-
sidered to project fit. We set δtω and βt to be 40% and 5%, respectively,
for the base case scenario. The average unit power charging require-
ment λ and power discharged from each car γ are set to be 25.7 kWh,
respectively. The daily fuel consumption capacity of the PGU (sb

pgu) is
set to be 200 gallon. The grid power availability for each commercial
building (bbt

bp) and EV charging station (bit
cp) are set to be 200 kWh and

250 kWh, respectively. The commercial-grade battery capacity (sb
bs) is

set to be 100 kW. For simplification purposes, the minimum and max-
imum percentages of SoC/charging capacity/discharging capacity of a
commercial-grade battery/TES are set to be 20% and 90%, respectively,
while their charging and discharging efficiencies (η) are both set to be
90%. Unit penalty cost of power shortage (ct

us) is determined based on
the following formula: > +c max c c c{ , , }t

us
t t

t f . Finally, the unit battery
storage cost in an EV charging station (ct

s) is set to be 0.02 $/h.
A study, performed by Gamou et al. [60], proposes an optimal unit

sizing method for co-generation. It reveals that energy demand roughly
follows a normal probability distribution in which 95% of the whole
area is within the range of ±20% of the average energy demands. This
being the case, the energy demand of each commercial building ∈b B

follows a multivariate normal distribution μ Σ( , )1 1N in each time
period ∈t T , where vector μ1 and matrix Σ1 define the projected de-
mand and forecasting error, respectively. Based on this commercial
building demand distribution, Monte Carlo simulation is employed to
generate scenarios for dbtω.

Uncertainty exists in the percentage of EVs that require charging in
a given time period ∈t T . This percentage varies significantly from
hour to hour due to various reasons such as remaining state of charge
(SoC3) of EV batteries, car owner’s willingness to stay at an EV charging
station, and the timing for charging and discharging EV cars (e.g., peak,
sub-peak, and off-peak hours). Therefore, a large set of scenarios are
required to accurately estimate δtω. Likewise, Monte Carlo simulation is
implemented to generate scenarios for δtω. The generated samples are
independent and identically distributed (iid) random variables. There-
fore, δtω follows a multivariate normal distribution μ Σ( , )2 2N in each
time period ∈t T , where vectors μ2 and Σ2 are defined as the fore-
casted EV charging percentage and forecasting error, respectively. It is
worth noting that the error terms are also considered to be independent
and normally distributed with mean zero and variance σ2. The Monte

Fig. 3. EV charging station distribution with nearby commercial buildings in San Francisco.

2 Available from: https://www.ibm.com/products/ilog-cplex-optimization-
studio.

3 SoC is the ratio of available energy to the maximum storage energy in
electric vehicle battery.
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Carlo simulation generates a large number of scenarios with equal
probabilities N1/| |, where N is a set of sample scenarios.

4.2. Computational performance of the SAA algorithm

The subsection presents how the valid inequalities and SAA method,
proposed in Sections 2.4 and 3, impact the computational performance
of model [BEV]. To help the readers follow our approaches, we have
used the following notations to represent the algorithms:

• [CPLEX]: Model [BEV] is solved by CPLEX

• [CPLEX-VI]: Model [BEV] is solved by CPLEX+valid inequalities
(VI)

• [SAA]: The SAA method

• [SAA-VI]: The SAA method+valid inequalities (VI)

Table 1 presents the deterministic equivalent problem size for
model [BEV]. We vary the number of charging stations | |I , commer-
cial buildings | |B , and time period | |T to obtain 30 different problem
instances. These problem instances are broadly classified into three
different sizes: small, medium, and large. The maximum size for the small

problem instance is set up to 6 charging stations, 24 commercial
buildings, and 24 h i.e., = =| | 6, | | 24I B , and =| | 24T . Likewise, a
maximum of 12 charging stations, 48 commercial buildings, and 72 h
(3 days) i.e., = =| | 12, | | 48I B , and =| | 72T are considered for
medium problem instance, and 25 charging stations, 100 commercial
buildings, and 360 h (15 days) i.e., = =| | 25, | | 100I B , and =| | 360T

are considered for large problem instance to solve model [BEV], re-
spectively.

Table 2 presents the computational performances from [CPLEX],
[CPLEX-VI], [SAA], and [SAA-VI] under three different test sizes as
reported in Table 1. The performance of each approaches are re-
presented by percentage deviation (gap) fΔ i (in %) and running time T (in
seconds). The gap between the upper and lower bound of the ith solution
approach, denoted by UBi and LBi, respectively, is used to calculate fΔ i

i.e., = × ∀ ∈−( )f iΔ (%) 100% ;i
UB LB

LB
i Best

Best
S , where =S

− −CPLEX CPLEX VI SAA SAA VI{[ ], [ ], [ ], [ ]} and =LBBest

∀ ∈Max LB i{ } ;i S . All solution approaches are terminated when at
least one of the following criteria is satisfied: a( ) the gap falls below a
threshold value ε, i.e., ⩽f εΔ (%)i or b( ) the maximum running time
limit, CTmax , is reached. In this study, the stopping criteria are set as

=ε 1.0% and =CT 3600 smax . Additionally, we set =N 20 and

Fig. 4. Electricity usage hours.

Table 1
Deterministic equivalent problem size for model [BEV].

Sizes Instances | |I | |B | |T Variables Total constraints

Binary Integer Continuous Total

Small 1 2 8 12 480 96 2520 3096 5754
2 2 8 24 960 192 5040 6192 11,526
3 3 12 12 720 144 4068 4932 8901
4 3 12 24 1440 288 8136 9864 17,829
5 4 16 12 960 192 5808 6960 12,240
6 4 16 24 1920 384 11,616 13,920 24,516
7 5 20 12 1200 240 7740 9180 15,771
8 5 20 24 2400 480 15,480 18,360 31,587
9 6 24 12 1440 288 9864 11,592 19,494
10 6 24 24 2880 576 19,728 23,184 39,042

Medium 1 8 32 24 3840 768 29,376 33,984 55,104
2 8 32 72 11,520 2304 88,128 101,952 165,456
3 9 36 24 4320 864 34,776 39,960 63,711
4 9 36 72 12,960 2592 104,328 119,880 191,295
5 10 40 24 4800 960 40,560 46,320 72,702
6 10 40 72 14,400 2880 121,680 138,960 218,286
7 11 43 24 5160 1056 45,696 51,912 80,351
8 11 43 72 15,480 3168 137,088 155,736 241,247
9 12 48 24 5760 1152 53,280 60,192 91,836
10 12 48 72 17,280 3456 159,840 180,576 275,724

Large 1 15 60 168 50,400 10,080 526,680 587,160 864,729
2 15 60 360 108,000 21,600 1,128,600 1,258,200 1,853,145
3 17 68 168 57,120 11,424 642,600 711,144 1,025,655
4 17 68 360 122,400 24,480 1,377,000 1,523,880 2,198,007
5 20 80 168 67,200 13,440 836,640 917,280 1,287,204
6 20 80 360 144,000 28,800 1,792,800 1,965,600 2,758,500
7 22 88 168 73,920 14,784 979,440 1,068,144 1,475,010
8 22 88 360 158,400 31,680 2,098,800 2,288,880 3,160,962
9 25 100 168 84,000 16,800 1,213,800 1,314,600 1,776,879
10 25 100 360 180,000 36,000 2,601,000 2,817,000 3,807,855
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′ =N 1000 to evaluate the performance of the [SAA] algorithm. In re-
porting the computational performance of the approaches, we highlight
the approach which is solved in less than the stopping criteria ∊ while
simultaneously producing the smallest running time (represented by
T s( ) in Table 2) for a given test instance. Otherwise, if such a quality
solution is not found within the maximum time limit, then the algo-
rithm with the smallest optimality gap (represented by fΔ (%) in
Table 2) is highlighted. In the following, we summarize our observa-
tions for Table 2.

• [CPLEX-VI] demonstrates high quality in solving [BEV] for small
scale problem instances. However, both [CPLEX] and [CPLEX-VI]
are unable to produce satisfactory optimality gaps to solve medium
scale problem instances within the prespecified time limit CTmax . On
average, we observe a 10.37% and 6.93% optimality gap for
[CPLEX] and [CPLEX-VI], respectively, while 8/10 medium scale
problem instances remain unsolved within the time limit. For large
scale problem instances, both [CPLEX] and [CPLEX-VI] gets out of
memory in 9/10 instances indicating their inability to solve model
[BEV] in large scale problem settings.

• [SAA-VI] appears to be the best option to solve model [BEV] for
medium and large scale problem instances. For medium scale pro-
blem instances, on average [SAA-VI] saves 62.15% time over

[SAA] while producing 0.45% optimality gap within the time limit.
For large scale problem instances, when both [CPLEX] and
[CPLEX-VI] gets out of memory and [SAA] is unable to solve any
problem instances within the time limit, [SAA-VI] solves 7/10 in-
stances within the time limit and the remaining 3 instances within a
reasonable optimality gap.

To summarize, [SAA-VI] seems to offer high quality solutions
consistently over its counterparts in solving model [BEV] within the
experimental range.

4.3. Experimental results

4.3.1. Base case results
The first set of experiments report the base case results obtained

from solving model [BEV] using the real life case study developed for
San Francisco. Fig. 5(a) and (b) show the average utilization of the
various power sources (e.g., power grid (PG), PGU, RES, battery, and
energy collaboration between commercial buildings to charging sta-
tions (CS) and vice versa) to satisfy electricity demand for a commercial
building and an EV charging station under the base case scenario.
Further, Fig. 5(c) shows the average number of batteries swapped (Bitω),
charged (Witω), charging (Sitω), and discharging (Pitω) at a given charging

Table 2
Result comparison from [CPLEX], [CPLEX-VI], [SAA], and [SAA-VI].

Size [CPLEX] [CPLEX-VI] [SAA] [SAA-VI]

Case fΔ (%) T (s) fΔ (%) T (s) fΔ (%) T (s) fΔ (%) T (s)

Small 1 0.09 6.63 0.16 7.04 0.08 8.61 0.11 8.91
2 0.13 11.24 0.17 13.47 0.14 15.66 0.19 13.87
3 0.14 9.57 0.15 8.25 0.23 11.47 0.34 12.62
4 0.23 19.79 0.33 12.98 0.29 22.64 0.27 20.74
5 0.16 11.78 0..64 14.82 0.18 16.85 0.42 14.97
6 0.28 27.02 0.49 19.88 0.44 32.87 0.16 29.14
7 0.34 17.64 0.67 10.24 0.36 19.64 0.27 18.35
8 0.46 38.06 0.34 24.38 0.28 42.05 0.25 33.64
9 0.35 22.09 0.75 15.09 0.74 25.67 0.55 23.78
10 0.24 49.87 0.41 38.54 0.68 30.41 0.28 35.64

Average 0.24 21.37 0.39 16.47 0.34 22.59 0.28 21.17

Medium 1 0.51 865.06 0.38 425.08 0.25 171.73 0.77 188.69
2 12.95 CTmax 7.63 CTmax 0.76 1336.87 0.39 589.67
3 0.85 2912.59 0.73 3152.67 0.37 1187.63 0.14 468.97
4 14.25 CTmax 9.49 CTmax 0.84 1763.87 0.64 785.41
5 7.12 CTmax 4.97 CTmax 0.53 1587.09 0.26 597.28
6 15.63 CTmax 10.23 CTmax 0.84 2364.43 0.72 987.68
7 8.02 CTmax 5.34 CTmax 0.65 1873.04 0.38 653.41
8 16.52 CTmax 11.41 CTmax 0.84 3174.58 0.12 1009.34
9 9.12 CTmax 6.58 CTmax 0.58 2141.78 0.62 763.14
10 18.71 CTmax 12.54 CTmax 0.46 3374.21 0.44 1143.81

Average 10.37 3257.77 6.93 3237.78 0.61 1897.52 0.45 718.74

Large 1 22.88 CTmax 17.54 CTmax 1.89 CTmax 0.63 1244.35
2 OM – OM – 2.24 CTmax 0.41 1465.38
3 OM – OM – 3.14 CTmax 0.83 1301.41
4 OM – OM – 5.73 CTmax 0.67 2354.25
5 OM – OM – 2.12 CTmax 0.29 1423.12
6 OM – OM – 8.67 CTmax 1.09 CTmax

7 OM – OM – 3.54 CTmax 0.38 1478.63
8 OM – OM – 15.96 CTmax 1.27 CTmax

9 OM – OM – 4.63 CTmax 0.89 1396.54
10 OM – OM – 18.54 CTmax 1.64 CTmax

Average 22.88 CTmax 17.54 CTmax 6.65 CTmax 0.81 2146.37

Total average 6.14 1732.92 4.52 1721.07 2.53 1840.04 0.51 962.09

CTmax : maximum time limit.
OM: out of memory.
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station ∈i I in different time period ∈t T of a day.
Results in Fig. 5(a) and (b) clearly indicate that the electricity de-

mands for commercial buildings and EV charging stations are primarily
satisfied via power grid (PG) during the time period from 5:00 P.M. to
8:00 A.M. (almost at the end of peak hours, whole off-peak hours, and
at the beginning of the first sub-peak hours). Note that the electricity
purchasing price from the power grid ( +ct ) is minimum during this time
period of the day. Additionally, it is observed that the electricity flow
from power grid to commercial buildings ( +Gitω) and EV charging stations
( +Hitω) reaches it’s minimum during 11:00 A.M. to 2:00 P.M. i.e.,

= ≃+ +G H 0itω itω , primarily, due to high +ct price and the peak availability
of RES during that time period of the day. It is worth noting that
commercial buildings share electricity with EV charging stations during
the off-peak hours while the reverse occurring during the peak hours.
Finally, Fig. 5(c) shows that majority of the battery swapping Bitω and
charging operations Sitω are performed during the day time period to
satisfy the peak energy demand for the charging stations.

4.3.2. Impact of power transaction restriction (χbit
bc and χibt

cb) on system
performance

This set of experiments study the impact of power transaction re-
strictions between related commercial buildings and EV charging sta-
tions and vice versa i.e., χbit

bc and χibt
cb, on overall energy network cost.

We set the base case values for χbit
bc and χibt

cb to 100 kWh. We then vary

this value to ±10% and ±20% and observe their impact on overall
energy network cost. Table 3 shows the operation costs of commercial
buildings, EV charging stations, and overall network costs based on
changes in the power transaction limits. Results in Table 3 indicate that
if the values of χbit

bc and χibt
cb are relaxed, then significant cost savings can

be achieved from the proposed collaborative system. For instance, if the
values of χbit

bc and χibt
cb are relaxed by 20%, we then observe an additional

6.72% cost savings from the proposed collaborative system. We con-
struct another scenario where it is assumed that no energy collaboration
is permitted between the commercial buildings and EV charging

Fig. 5. Average resource power utilization in a typical day for a building and a charging station under the base case scenario.

Table 3
System performance under changes in χbit

bc and χibt
cb.

% change in

χbit
bc/χibt

cb
Cost ($) Cost savings

(%)
Buildings Charging

stations
Overall
network

−20% 15,813 1095 16,908 −6.88
−10% 15,326 1023 16,349 −3.35

0% (Base case) 14,878 941 15,820 0.00
10% 14,464 873 15,338 3.04
20% 13,941 816 14,757 6.72

No power
transaction

16,896 1,176 18,073 −14.24
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stations i.e., = = ∀ ∈ ∈ ∈χ χ b i t0 ; , ,bit
bc

ibt
cb B I T . Results show

that a 14.24% increase in energy cost which could have been saved if
collaboration exists between the commercial buildings and EV charging
stations. In overall, we observe that the power transaction limits (χbit

bc

and χibt
cb) have a considerable effect on the overall energy network cost.

4.3.3. Impact of demand variability on system performance
This set of experiments examine the impact of demand variability on

overall system performance. Let dbt and σbt
2 be the mean and variance of

demand related to commercial buildings ∈b B at time period ∈t T ,
respectively. Likewise, we define δt and σt

2 to be the mean and variance
of the percentage of electric vehicles charged at time period ∈t T ,
respectively. We set three different demand variation levels: low
( =σ d5%bt bt

2 and =σ δ5%t t
2 ), medium ( =σ d15%bt bt

2 and =σ δ15%t t
2 – set

as base case), and high ( =σ d50%bt bt
2 and =σ δ50%t t

2 ). We then imple-
ment Monte Carlo simulation techniques to generate scenarios for those
different variation levels.

Demand variability significantly impacts the electricity and thermal
energy management for a building. Demand fluctuations in electricity
and thermal energy are usually controlled via a commercial grade
battery system and the TES where a high level of demand variation
leads to more energy storage in the commercial-grade battery and TES
while less electricity flow to the power grid and associated EV charging
stations. Similarly, low demand variation levels lead to less storage in

the buffers and more electricity flow to the power grid and associated
EV charging stations. Likewise, decisions about the number of charged,
discharged, and exchanged batteries and, consequently, the number of
stored batteries at the EV charging stations changes significantly de-
pending upon the variation in the percentage of EVs that need to be
charged in a give time period. Thus, a high level of demand variation
may lead to less electricity flow to the power grid and related com-
mercial buildings while higher number of batteries stored at any EV
charging stations and vice versa. This is reflected in Figs. 6 and 7 where
it can be seen that how decisions such as average number of batteries
charged (Sitω) and discharged (Pitω) at EV charging stations and elec-
tricity flow from commercial buildings ( −Hbtω) and EV charging stations
( −Gitω) to power grid are impacted by different demand fluctuation le-
vels. Experimental results clearly indicate that −S P H, ,itω itω btω, and

−Gitω
decisions are highly impacted by different demand variation levels. It is
observed that high level of demand fluctuations mandate more batteries
to charge (Sitω) in a given charging station (shown in Fig. 6(a)). This
indirectly results less electricity flow from EV charging stations to
power grid ( −Gitω) and vice versa (shown in Fig. 7(b)). Finally, we ob-
serve that majority of the electricity flow from commercial buildings
and charging stations to power grid occurs during 10:0 A.M. till
3:0 P.M. This may be due to the fact that both the availabilities of re-
newable energy resources and V2G power become peak during that
time period of the day which can support the energy demands for the

Fig. 6. Impact of charging station demand variability on charged and discharged EV batteries.

Fig. 7. Impact of buildings and charging stations demand variability on electricity flow to the power grid.
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commercial buildings and EV charging stations.

4.3.4. Impact of power grid disruption on system performance
Transmission line failure might occur due to excessive power flow

between the power grid (PG) and a commercial building or EV charging
station, or by a man-made/natural disaster. Since the failure of power
grid connection has an important effect on the utilization of different
other power resources, we perform sensitivity analysis on its impact of
the overall system performance. A commercial building or an EV
charging station is selected randomly and its connection with the power
grid is terminated for several consecutive time periods. Table 4 de-
scribes the different grid power unavailability scenarios constructed to
run the case experiments. The experimental results under these sce-
narios are then presented in Table 5. Table 5 reports the percentage
changes in utilized resources (from the base case results as discussed in
Section 4.3.1) at a commercial building and an EV charging station
under different power grid disruption scenarios.

Results in Table 5 clearly indicate that the utilization of different
power resources (e.g., PGU, RES, V2G, battery) are significantly im-
pacted by the time when the grid power becomes unavailable. For in-
stance, if the grid power becomes unavailable between 5:0 and 8:0 P.M.
(scenario 5) of a regular day, the overall utilization of grid power drops
by 24.89% and 21.23% from the base case scenario for commercial
buildings and EV charging stations, respectively. It can be observed that
to offset this power unavailability, PGU and battery for commercial
buildings and V2G and buildings for EV charging stations are primarily
used. It can also be noted that upon disruption, charging stations rely
more on commercial buildings than vice versa. For instance, depending
on the type of scenario, the increment of energy sharing from charging
station to commercial buildings (denoted by column heading CS (%) in
Table 5) lies in between (2.68–3.87)%. On the other hand, the number
varies between (4.37–8.91)% for the EV charging stations under the
same experimental conditions. Finally, it can be noted that we observe
no significant changes in RES utilization from the base case scenario
even after the grid power becomes unavailable under different sce-
narios. This may be due to the fact that the RES is already utilized
almost on its maximum capacity under the base case scenario.

4.3.5. Impact of changes in RES size (ab/ai) on system cost
The last of experiments study the impact of changes in RES sizes

(ab/ai) on overall system cost. The sizes of RES play an important role
on the utilization of other energy sources (e.g., grid, V2G), particularly

during the first sub-peak hours and peak hours on a regular day.
Therefore, sensitivity analyses are conducted (shown in Table 6) to
examine the impact of changes in ab and ai sizes on overall system cost
with and without the collaboration between the commercial buildings
and EV charging stations. To run these experiments, we vary the sizes of
ab and ai by ±25% and ±50% from the base case settings. Results in
Table 6 clearly indicate that significant cost savings can be achieved
(shown in the last column of Table 6) with an increase in ab and ai sizes
and for the case when collaboration exists between the commercial
buildings and EV charging stations. For instance, approximately 23.7%
cost savings can be achieved if energy collaboration exists between the
commercial buildings and EV charging stations and when ab and ai sizes
are increased by 50% from the base case sizes. To summarize, we ob-
serve that the overall system cost is highly sensitive to the changes in ab

and ai sizes and the existence of collaboration between the commercial
buildings and EV charging stations.

5. Conclusion

This study proposes a novel two-way collaborative energy sharing
optimization framework between power grid and multiple commercial
buildings and EV charging stations. A two-stage stochastic mixed-in-
teger linear programming model [BEV] is formulated to determine the
key operational factors with an aim of minimizing the overall system
cost under power demand uncertainty. The key operational decisions
for commercial buildings include the optimal time to startup/shutdown
the PGU and boiler, RES usage, charging/discharging state of a com-
mercial-grade battery and the TES, amount of electricity flow from/to
the power grid and related charging stations, and the amount of elec-
tricity and thermal energy charged, discharged, stored, and transmitted
from/to any component of the system. Likewise, the hourly operational
decisions of the charging stations include electricity flow from/to the
power grid and related buildings, RES usage, V2G power usage, and
battery management decisions (e.g., number of batteries charged, dis-
charged, swapped, and stored). To alleviate the computational com-
plexity associated with handing large number of scenarios, we employ a
customized solution approach commonly known as the Sample Average
Approximation (SAA) method. Computational results indicate that the
SAA method is capable of producing high-quality solutions consistently

Table 4
Description of the grid power unavailability scenarios.

Scenario Explanation

1 Grid power unavailable between 1:0 and 4:0 A.M.
2 Grid power unavailable between 5:0 and 8:0 A.M.
3 Grid power unavailable between 9:0 A.M. and 12:0 P.M.
4 Grid power unavailable between 1:0 and 4:0 P.M.
5 Grid power unavailable between 5:0 and 8:0 P.M.
6 Grid power unavailable between 9:0 P.M. and 12:0 A.M.

Table 5
Percentage changes in utilized resources at a commercial building and an EV charging station under different power grid disruption scenarios.

Scenario Commercial building EV charging station

PG (%) PGU (%) RES (%) Battery (%) CS (%) PG (%) V2G (%) RES (%) Building (%)

1 −17.69 11.57 −0.52 18.65 2.68 −19.83 10.35 −0.47 8.91
2 −20.22 12.17 0.78 19.65 3.14 −21.98 11.35 0.33 8.52
3 −11.24 9.63 0.46 15.67 3.15 −7.65 4.82 0.67 5.64
4 −5.75 7.68 0.25 9.68 2.98 −5.69 3.12 0.32 4.37
5 −24.89 14.74 0.16 22.52 3.03 −21.23 11.21 0.63 7.25
6 −21.53 13.54 0.67 20.68 3.87 −22.93 12.67 0.84 8.62

Table 6
Impact of changes in RES size on system cost.

Change in
ab/a (%)i

Operating cost ($) Cost
savings
(%)With collaboration Without collaboration

Building CS Total Building CS Total

−50% 16,954 1215 18,170 17,865 1347 19,213 5.7
−25% 15,581 1135 16,717 17,123 1203 18,327 9.6

0% (Base
case)

14,878 941 15,820 16,896 1176 18,073 14.2

25% 14,123 836 14,960 16,763 1104 17,868 19.4
50% 13,563 781 14,344 16,684 1062 17,747 23.7
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to realistic large-size problem instances within reasonable computa-
tional times. Finally, we use San Francisco as a test bed to visualize and
validate the modeling results. A number of managerial insights are
drawn, such as the impact of demand variability, power transaction
limit, power grid disruption, and renewable resource size on the overall
energy network cost and design.

The sensitivity analysis on parameters provide the following man-
agerial insights for practitioners: (i) The overall energy network cost is
increased by 14.24% when no energy collaboration is permitted be-
tween related commercial buildings and EV charging stations; (ii) A
high level of demand variation on a commercial building leads to more
energy storage in the commercial-grade battery and TES while less
electricity flow to the power grid and associated EV charging stations.
Likewise, a high level of demand variation on an EV charging station
may lead to less electricity flow to the power grid and related com-
mercial buildings while higher number of stored batteries and vice
versa; (iii) During power grid disruption, charging stations rely more on
commercial buildings than vice versa; (iv) The RES is already utilized
almost on its maximum capacity; (v) The overall system cost is highly
sensitive to the changes in RES sizes and the existence of collaboration
between the commercial buildings and EV charging stations.

To summarize, the key contributions of this research to the existing
literature are as follows: (i) proposing a novel collaborative decision
model to study energy sharing among a cluster of commercial buildings
and EV charging stations; (ii) modeling and realistically capturing dif-
ferent operational constraints that exist between multiple commercial
buildings and EV charging stations; (iii) developing and testing a cus-
tomized solution approach to solve the optimization model in a rea-
listic-size network design problems; and (vi) developing a real-life case
study based on the data from San Francisco, California. We believe the
proposed optimization framework and managerial insights obtained
from this study will help decision makers to design an efficient colla-
borative scheme between the charging stations and commercial build-
ings.

This research can be extended in several directions. A first would be
to include consideration of the impact of EV congestion at the charging
stations. Next, prevention and disruption models can be surveyed with
respect to limited power grid utilization. Finally, it would be interesting
to see how the stochastic nature of other parameters (e.g., renewable
energy availability, state-of-charge for the batteries) impact the pro-
posed collaboration scheme. These issues will be examined in future
studies.
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