
Received June 11, 2019, accepted July 3, 2019, date of publication July 23, 2019, date of current version August 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929205

A Secure Cloud Storage Framework With
Access Control Based on Blockchain
SHANGPING WANG 1, XU WANG 2, AND YALING ZHANG 2
1School of Science, Xi’an University of Technology, Xi’an 710048, China
2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Corresponding author: Xu Wang (xwang1628@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572019, and in part by the Key
Research and Development Program of Shaanxi under Grant 2019GY-028.

ABSTRACT Now more and more data are being outsourced to cloud services. In order to ensure data
security and privacy, data are usually stored on the cloud server in the form of ciphertext. When a user
requests access to the encrypted data, an access key distributed by a third party is needed. However, if the
third party is dishonest, the security of the system will be threatened. Faced with this problem, in this paper,
we propose a new secure cloud storage framework with access control by using the Ethereum blockchain
technology. Our new scheme is a combination of Ethereum blockchain and ciphertext-policy attribute-based
encryption (CP-ABE). The proposed cloud storage framework is decentralized, that is, there is no trusted
third party in the system. Our scheme has three main features. First, as the Ethereum blockchain technology
is used, the data owner can store ciphertext of data through smart contracts in a blockchain network. Second,
the data owner can set valid access periods for data usage so that the ciphertext can only be decrypted during
valid access periods. Finally, as the creation and invocation of each smart contract can be stored in the
blockchain, thus, the function of the trace is achieved. The analysis of the security and experiment shows
that our scheme is feasible.

INDEX TERMS Cloud storage, access control, Ethereum, blockchain, smart contract.

I. INTRODUCTION
Recently, with the rapid development of cloud computing and
big data technology, more and more businesses and individu-
als choose to outsource their data to the cloud service.Most of
the data stored in the cloud is highly sensitive, for examples,
personal medical records and internal data of a company.
In order to ensure the security of data and the privacy of users,
data is usually stored on the cloud server in the form of cipher-
text. In order to achieve access control of the data, encryption
technology can be regarded as a security guarantee. But how
to achieve access control for encrypted data is a big chal-
lenge. In 2007, ciphertext-policy attribute-based encryption
(CP-ABE) was firstly introduced by Bethencourt [1].
In CP-ABE mode, a ciphertext is associated with an access
policy, and a user’s private key is associated with an attribute
set. The user can decrypt the given ciphertext if and only
if his attribute set satisfies the access policy established by
the data owner. The data user obtains the corresponding key
from the attribute authority center according to the attribute

The associate editor coordinating the review of this manuscript and
approving it for publication was Petros Nicopolitidis.

set he owns. The data owner can control the access of the data
according to access policy.

In the CP-ABE scheme, one or more fully trusted attribute
authorities or center authority are required. If the center
authority is corrupted, it will endanger the entire system.
Therefore, in the field of access control technology, decen-
tralized system is urgent to get rid of the potential threat of
trusted center authority.

Although in recent years, some people have studied
blockchain-based access control schemes, most of them pro-
pose a framework or idea for such schemes. There is no spe-
cific solution to realize the integration of the decentralization
idea of blockchain technology and access control technol-
ogy. There is still a lot to be done in this area. Therefore,
the decentralized access control research based on blockchain
has important value and significance.

In this paper, we introduce the Ethereum blockchain tech-
nology to a ciphertext-policy attribute-based encryption algo-
rithm, and use Ethereum smart contract technology to store
the publicly available information into the blockchain net-
work, at the same time to achieve the role of supervision
and track the behavior of the data access. All access records

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 112713

https://orcid.org/0000-0002-8964-5328
https://orcid.org/0000-0003-4950-6013
https://orcid.org/0000-0002-1759-6678

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

are recorded in the blockchain network. In our framework,
decentralization of access control scheme is achieved without
any trusted center authority by using blockchain technology.

Our contributions
The contributions of this paper are as follows:

(1) A secure cloud storage framework with access control
based on blockchain is proposed, which is a combi-
nation of Ethereum blockchain and ciphertext-policy
attribute based encryption (CP-ABE) algorithm,
the aim is to realize fine-grained access control for
cloud storage. No trusted attribute authority is required
in our scheme. The key information is stored in the
blockchain network by Ethereum smart contract tech-
nology. Thus, decentralization is achieved in our cloud
storage framework.

(2) When an attribute set is assigned to the data user,
the data owner can append an effective access period
for the data user, and store an access period time of
information on the Ethereum blockchain. Only when
the valid access period time and the attributes of data
user satisfy the access control policy, the data user can
perform data decryption algorithm correctly.

(3) In the environment of Ubuntu linux system, smart con-
tracts were created and deployed on the local Ethereum
private network. The corresponding performance and
cost were analyzed, the experiment show that our
scheme is feasible.

The rest of the paper is organized as follows. In the
section II, related work is presented. The section III intro-
duces some basic knowledge of Ethereum blockchain. The
section IV shows the system model of our scheme. The
specific construction of our scheme is described in detail
in section V. And the performance and security analysis are
discussed in section VI. Finally, the conclusions and future
research directions are given.

II. RELATED WORK
The existing attribute-based encryption access control
scheme is mainly based on single-center authority. When
the center authority is untrusted or maliciously attacked,
it may lead to key leakage. In response to this problem,
some scholars have proposed a multi-authority attribute-
based encryption access control scheme to decentralize the
power of the center authority. In 2007, Chase [2] proposed
a multi-authority attribute-based encryption scheme so that
multiple authorities can assign attributes to users in the
system, easing the threat of a single center authority’s failure.
In 2010, Lin et al. [3] proposed a threshold multi-authority
fuzzy identity encryption scheme without center authority,
which improved the security level of multi-authority systems.
In 2011, Lewko and Waters [4] proposed a decentralizing
attribute-based encryption scheme, which is essentially a
multi-authority scheme without any center authority. In 2012,
Yang K and other scholars [5] designed a multi-authority
access control framework and constructed a specific multi-
authority access control scheme. This scheme not only

mitigates the threat of single point of failure brought by a
single authority, but also supports the attribute update of data
users in a multi-authority scheme. In 2016, Wei et al. [6]
proposed a safe and efficient multi-authority access control
scheme, which adopted linear secret sharing, in which multi-
ple authorities effectively reduced the pressure on individual
authority.

In 2008 Nakamoto [7] first introduced blockchain technol-
ogy, till now many applications based on blockchain technol-
ogy has penetrated into various industrial areas, especially in
those areas where a third trusted party is needed. The decen-
tralized and distributed structure of the blockchain can be
trusted in global. Since the blockchain technology is a useful
tool for large-scale collaboration between peoples without
mutual trust. It can therefore be used in many traditional cen-
tralization areas to deal with transactions that were originally
handled by intermediaries.

In 2015, Zyskind et al. [8] proposed a point-to-point decen-
tralized computing model that allows different parties to store
and run data together while keeping the data completely
private. This model achieves automatic control of personal
data by eliminating the need for trusted third parties. In 2017,
Jemel and Serhrouchni [9] introduced a decentralized access
control mechanism based blockchain. The blockchain nodes
verify the legitimacy of user and add a time dimension to the
shared file which is encrypted by ciphertext-policy attribute-
based encryption. Xia et al. [10] presented a data sharing
model between cloud service providers based blockchain.
The model leverages the advantages of smart contracts and
access control mechanisms to effectively track data access
behavior and revoke access authorization for violation of
access rules, addressing the problem of medical data sharing
in an untrusted environment. In 2018, Xu et al. [11] pro-
posed a decentralized capacity-based access control mecha-
nism (BlendCAC), which can effectively protect the security
of equipment, services and information in the large IoT
(Internet of things) system. Liu et al. [12] design a frame-
work using smart contracts and blockchain technology for
tracking, managing and enforcing such data sharing agree-
ments. Lin et al. [13] present a blockchain- based system
for secure mutual authentication to enforce fine-grained
access control policies, which provide privacy and security
guarantees.

Generally speaking, scholars have recognized that the
combination of blockchain technology with access control
scheme is an effective way to solve the trust problems
still existing today. For example, the literature [16] uses
blockchain technology to store user’s access control lists,
the literature [19] uses blockchain technology for biomed-
ical and health care applications, [20] uses three smart
contracts for access control for the Internet of Things.
However, blockchain technology has just emerging. Most
of the researches on the decentralization of access control
technology are just in the stage of framework, such as the
literatures [14], [15], [17], [18], and there are few specific
schemes.

112714 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

TABLE 1. The notation table.

Therefore, in this paper, we propose a new secure decen-
tralized cloud storage scheme with access control by using
Ethereum blockchain technology. In this scheme, by intro-
ducing the blockchain technology, the problem of potential
single point failure of the center authority in the original
scheme is solved to some extent. At the same time, the intro-
duction of a blockchain is equivalent to adding a logging
system to the access control scheme to record all access
operation records. The introduction of blockchain makes all
access operations records non-tamperable and undeniable,
which is more convincing as supervision.

III. PRELIMINARIES
In this section, we briefly review the relevant knowledge in
order to better understand our scheme. Table 1 presents some
of the notations used throughout the paper.

A. BILINEAR MAPPING
Let G and GT be two groups of prime order q. g is the
generator ofG. A bilinear mapping e : G×G→ GT satisfies
the following properties:

1. Bilinearity: For any u, v ∈ G, and a, b ∈ Zp, it has
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: There exists u, v ∈ G, such that
e(u, v) 6= 1.

3. Computability: For all u, v ∈ G, there is an efficient
computation for e(u, v).

B. ACCESS TREE
The access structure defines an authorized access set to
describe the access policy. Let 0 denote an access tree. The
tree contains leaf nodes and non-leaf nodes. The leaf nodes
are associated with attributes, and the non-leaf nod- es are
associated with threshold values. Let numx indicates the num-
ber of child nodes of the node x. Let kx denotes the threshold
of the node x, 1 ≤ kx ≤ numx . When kx = numx , the node
denoted ‘‘and’’ gate in the logic. When kx = 1, the node
denoted ‘‘or’’ gate in the logic.

FIGURE 1. An access tree.

parent(x) : It means the parent node for node x except the
root node.
att(x) : It represents the attributes associated with leaf

node x.
index(x) : It indicates the number of child nodes for each

non-leaf node x.
Figure 1 below is an access control tree based on an access

policy, where a leaf node represents an attribute and a non-leaf
node represents a threshold. Suppose that there are four
attributes in this access tree. Assume that the attribute set is
as follows: {graduate, professor, computer science, network
security}. As it can be seen in the figure, only two types of
people who satisfy the access tree. The first attributes set S1 is
{computer science, network security, professor}. It represents
the professors in the Institute of Network Security at the
School of Computer Science. The second attributes set S2 is
{computer science, network security, graduate}. It denotes
the graduate students in the School of Network Security at
the School of Computer Science.

C. BLOCKCHAIN TECHNOLOGY AND ETHEREUM
Blockchain technology [29] was introduced to the world by
‘‘Bitcoin’’. Bitcoin is a P2P encrypted digital currency. Since
‘‘Nakamoto’’ [7] developed Bitcoin in 2008, its popularity
have been increasing. In the Bitcoin system, the blockchain
supports payment systems and complete digital currency,
which is secure and decentralized. In other words, it is
a user-driven and peer-to-peer network with no center
authority.

As Bitcoin begins to draw attention, developers use the
advantages of blockchain technology to create their own
platform as an infrastructure (except for the primary use of
convenience in digital currency transfer in Bitcoin). On the
one hand, some platforms use the Bitcoin network as an
infrastructure for notarization, crowdfunding, dispute reso-
lution, and spam control. On the other hand, some plat-
forms have emerged and are in the form of tokens which
is a blockchain-based cryptocurrency designed to improve
Bitcoin’s capabilities by implementing its own features
and functions. Up to now, there are almost 2,000 kinds
of tokens, but the most attractive are Litecoin [23] and
Dogecoin [24]. In this paper, we will use the Ethereum
platform.

VOLUME 7, 2019 112715

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

In 2013, Ethereum [22], [25]–[27] was proposed by Vitalik
Buterin. Ethereum is a blockchain-based distributed comput-
ing platform with the ability to build and run decentralized
applications with smart contracts.

Ethereum’s development was successful through online
crowdfunding in mid-2014, and the platform went live
in 2015. Since then, Ethereum has received great attention
and is the pioneer of Blockchain 2.0 [27], which is said
to be the next generation of blockchain. D. ETHEREUM
VIRTUAL MACHINE

The core of Ethereum is the Ethereum Virtual Machine
(EVM) [22], [29], which can execute code with arbi-
trary algorithm complexity. Ethereum is ‘‘Turing complete’’.
Developers can use existing programming languages to create
applications that run on Ethereum virtual machines, such
as Javascript, Python, and more. In order to maintain the
consistency of the entire blockchain, each network node runs
an Ethereum virtual machine. The decentralized consistency
makes Ethereum extremely fault tolerant, guarantees zero
downtime, and data stored on the blockchain are immutable
and anti-censorship. The calculations in the Ethereum virtual
machine are paid for by ETH, which is the token used by
Ethereum.

D. ETHEREUM ACCOUNTS
A basic component of Ethereum [29] is account. Ethereum
uses two types of accounts, namely External Owned
Accounts (EOA) and Contract Accounts. The External
Owned Account (EOA) is controlled by a corresponding
private key. An EOA has an ether balance, and EOA can send
the transaction (forwarding some ether to another account
or triggering a contract code) and there is no relevant code.
An EOA is similar to a bitcoin address and consists of hex-
adecimal digits, such as 0x6695a16ef848d5fc520c2ea8a4-
f09406f2cc9b1b. Consequently, An EOA is anonymous and
can be shared publicly. A contract account has its own ether
balance and associated code, and all actions are performed
through the transactions created by EOAs. Execution of the
contract code means receiving a transaction from an EOA.
The contract code can also be triggered by messages from
other contract accounts. Compared to Bitcoin scripts, con-
tracts perform Turing-complete calculations and are written
in high-level languages such as Solidity [28], Serpent, and so
on. The behavior of a contract is entirely dependent on its
code and the transactions initiated to it, creating the possibil-
ity for a decentralized system.

E. SMART CONTRACT
A smart contract [22], [26] is essentially a program written in
a computing programming language that runs in a container
provided by the blockchain system. At the same time, this
program can also be automatically run under the activation
of some external and internal conditions. The combination of
those features of smart contract with blockchain technology
can not only avoid artificial malicious tampering to rules,
but also bring the high efficiency and low cost advantages

TABLE 2. The specific parameters of the transaction information.

of Smart Contracts into full play. Since the code of the
smart contract is stored in the blockchain, the operation of
the smart contract is also in the container provided by the
blockchain system. Combined with the cryptographic prin-
ciples used by blockchain technology, smart contracts are
naturally tamper-proof and anti-counter- feiting. The results
produced by the smart contract are also stored in the block,
so that the execution from the source, the execution process
and the result are all executed in the blockchain, which
ensures the authenticity and uniqueness of the release, exe-
cution and record of smart contract.

F. TRANSACTION INFORMATION
The deployment of smart contracts [22], [26] is essentially
a transaction initiated on Ethereum. Ethereum transaction
is a type of signature packet that allows some ether to be
transferred from one account to another. In addition to trans-
ferring ether, it can also trigger the execution of code in smart
contracts through transactions. The transaction includes the
account address of the transaction, the account address of the
transaction, gasPrice, gasLimit, the transferred ether value,
the additional data field, etc. (the specific parameters of the
transaction information are as shown in Table 2 below). The
account that initiated the transaction can put the data into
additional data field of the transaction. Similarly, in smart
contracts, the binary bytecode of the smart contract code is
placed in an additional data field. In this scheme, we mainly
store and acquire ciphertext information through smart con-
tracts. Each time a smart contract is called, it is an Ethereum
transaction and triggers the execution of the relevant code in
the contract.

IV. SYSTEM MODEL
In our scheme, we will use Smart Contract to store infor-
mation about encrypted file. More importantly, data users
and data owners use Ethereum smart contracts to store and
retrieve ciphertext data to run encryption and decryption
algorithms. Every contract call is recorded on the blockchain.

112716 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

FIGURE 2. System model.

Therefore, the information transferred between data users and
data owners is non-tamper with and non-repudiation.

There are four entities in our scheme, namely Cloud server,
Ethereum blockchain, Data owner and Data user.

Cloud server: Responsible for storing encrypted files
uploaded by data owners;

Ethereum blockchain: Deploy smart contracts on
Ethereum, the smart contracts is of interfaces to store data
and get data;

Data Owner(DO): Responsible for creating and deploying
smart contracts, uploading encrypted files, defining access
control policies, assigning attribute sets and appending valid
access periods to data users;

Data User(DU): Accessing an encrypted file stored in
the cloud server. When its attribute set satisfies the access
structure embedded in a given ciphertext, it can decrypt the
received ciphertext to obtain the content key to decrypt the
encrypted file.

The description of the steps in the Figure 2 is as follows:
¬ The smart contract named StorageSC is deployed byDO

in Ethereum.
­ After the smart contract is deployed successfully, the

contract address is returned.
® DO stores the file ID hash H(ID) in the smart contract.
¯ DO package the contract address contractAddress, file

ID, and encrypted file Eck (M) and then upload to the cloud
server.

° DO records file path returned by cloud server.
± DO stores the ciphertext of the encrypted document key

in the Ethereum.
² DU sends a access request to DO.
³ DO adds the effective period to DU and stores it in the

smart contract.
´ DO encrypts the secret key of DU and stores it in the

smart contract.

µ DO sends the contract address with user information
through a secure channel.
©11 DU downloads encrypted file from the cloud server.
©12 DU obtains effective period from the smart contract.
©13 DU obtains his secret key ciphertext from the smart

contract.
The secure cloud storage framework with access control is

based on blockchain is composed of the following algorithms:
Setup(1k ,U) → (PK ,MSK) : The setup algorithm is

executed by DO with the security parameters k and the uni-
versal set U of attributes as inputs. Through the execution of
the algorithm, the public key PK and the master key MSK
are generated. At the same time, the smart contract named
StorageSC is deployed in Ethereum. As shown in step ¬­ in
Figure 2.

Before DO uploads the encrypted file to the cloud server,
the fileM with the file ID is encrypted by the AES symmetric
encryption algorithm, and is recorded as Eck (M) (where ck is
the encryption key). At the same time, the file name ID is
hashed to H(ID) by a hash algorithm sha256. Next, the file
ID hash H(ID) is stored in the smart contract, and the contract
address contractAddress, file ID, and encrypted file Eck (M)
are packaged and uploaded to the cloud server. DO records
file path returned by cloud server. As shown in step ®¯° in
Figure 2.
Encrypt(PK , ck, 0) → CT . The encryption algorithm

takes the public key PK , access structure 0 and the symmet-
ric encryption key ck as inputs, and outputs the ciphertext
CT . The ciphertext CT is stored by DO in smart contract.
As shown in step ± in Figure 2.
KeyGen(MSK , S) → SK : The key generation algorithm

is still executed by the data owner DO.DU sends a access
request to DO, then DO assigns an attributes set to DU and
adds the effective access period to DU .The algorithm sets
the attribute set S of DU , the master key MSK as inputs,
and outputs the private key SK of DU . After DO and DU
share the common key (the common key is generated by the
Diffie-Hellman key exchange protocol), SK is symmetrically
encrypted by the AES algorithm with the common key as
encryption key. The ciphertext SK ′, which is the encrypted
private key, is stored in the smart contract to ensure its privacy.
As shown in step ²³´µ in Figure 2.
Decrypt(PK , SK ,CT) → ck : The decryption algorithm

is executed by DU . The DU obtains access period from
smart contract. Then DU performs decryption algorithm if
and only if the time is within the valid access period. DU
obtains CT and the private key’s ciphertext SK ′ from smart
contract. The SK ′ is decrypted as the private key SK by the
symmetric encryption algorithm AES by using the common
key as decryption key. The algorithm inputs the public key
PK , private key SK and ciphertext CT . If and only if SK
satisfies the access policy 0, DU can recover the key ck
of the encrypted document, so that the encrypted document
is decrypted, otherwise the decryption will fail. DU obtains
the encrypted document Eck (M) from the cloud server,
decrypts the encrypted document M ′ by using key ck , and

VOLUME 7, 2019 112717

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

outputs the document M before DO encrypts. As shown in
step©11 ©12 ©13 in Figure 2.

V. SCHEME CONSTRUCTION
Our proposed new secure cloud storage framework with
access control based on blockchain can be used in conjunc-
tion with most CP-ABE algorithm to achieve decentralized
fine-grained access control. The interaction between the data
owner and the data user is achieved through the Ethereum
smart contract technology, so that each data user’s access
is recorded in the Ethereum blockchain network. In order
to better illustrate our framework, The CP-ABE algorithm
in [30] is selected as an example in this paper, in which uses
access tree as access control policy to achieve fine-grained
access control of information.

A. CONCRETE CONSTRUCTION
Suppose that there are m attributes in the system, denoted as
U = {1, 2, · · · ,m}.
Let e : G0 × G0 → GT be a bilinear group, where G0 is

a bilinear group of prime order p with generator g. Let H :
{0, 1}∗→ G0 be a hash function, witch maps any attribute to
a random element of G0.
The details of our scheme are as follows:

1) PHASE 1: SYSTEM INITIALIZATION
Setup(1k ,U) → (PK ,MSK). The setup algorithm is exe-
cuted by DO, and outputs the public key PK and the master
key MSK of the data owner DO.

The system selects a CP-ABE algorithm, taking the
attribute-based encryption algorithm in [30] as an example.
The DO chooses a bilinear group G0 of prime order p with
generator g and two random elements α, β ∈ Zp. The public
key is published as: PK = {G0, g, gα, gβ , e(g, g)β ,H} and
the master key is MSK = {α, β ∈ Zp}.
In Ethereum, DO and DU create their own Ethereum

accounts separately and ensure that the account balance is
sufficient.

2) PHASE 2: FILE ENCRYPTION
Before DO uploads the file to the cloud server, the smart
contract named StorageSC (See the next section for details)
is deployed by DO to Ethereum, and smart contract address
named contractAddress is obtained. The smart contract
address, the smart contract ABI and DO’s Ethereum account
public key are published (ABI’s full name is Application
Binary Interface, which contains several functions expressed
in JSON format), and the following processing is performed
on the uploaded file M :

(1) The DO chooses a unique identifier ID for the
file M . After the ID is hashed by the hash func-
tion sha256, it is recorded as H(ID). The H(ID) is
stored in the Ethereum by the execution of function
setHashFileId(HashFileId) (see Algorithm 1 in the
next section for details) in smart contract.

(2) The DO encrypts the file M with the file ID using a
symmetric encryption algorithm named AES, in which
the content key ck is randomly obtained in the key
space, and the encryption result is recorded as Eck (M),
and upload {contractAddress, ID,Eck (M)} to the cloud
server.

(3) The DO defines an access structure for access the
encrypted content key ck , thus the content key ck is
encrypted by selected attribute-based encryption algo-
rithm with this access structure. The access structure
in this selected attribute-based encryption algorithm
is an access tree 0 whose leaf nodes are attributes.
The ciphertext CT is output by running the following
algorithm.

Encrypt(PK , ck, 0)→ CT . The DO selects a polynomial
qx with degree dx . For each node x in0, these polynomials are
chosen in the following way in a top-down manner, starting
from the root node R. For each node x in access tree 0, set
the threshold of the node to be (nx , kx). The threshold value
kx and the order dx of qx have the following relationship, kx =
dx + 1.
Starting from the root node R, the DO selects a random

number s ∈ Zp, and sets qR(0) = s. The DO then ran-
domly selects dR other coefficients of qR to obtain polynomial
qR(x). For any node x, set qx(0) = qparent(x)(index(x)),
where index(x) denotes the index of node x in its parent
node parent(x). Then randomly select dx other coefficients
to define qx until the leaf node is calculated.
For access tree 0, set X be its leaf nodes set and the key

ck’s ciphertext CT is created as

CT =
{
0, C̃ = ck · e(g, g)βs,C = gs,
∀x ∈ X : Cx = gαqx (0),C ′x = H (att(x))qx (0)

}
.

Because CT is stored as an object in experiments, it is
necessary to serialize ciphertext into binary files after gen-
erating CT . Finally, the hexadecimal encoding of the path
of the binary file containing the ciphertext is stored in
the Ethereum by the execution of the function named
setCipherText(HashFileId,CipherText) in the smart con-
tract. (The DO may upload more than one file. The DU can
return the corresponding ciphertext of different files by input-
ting different and valid file hashes HashFileId through the
execution of function named getCipherText(HashFileId). For
details, see Algorithm 5 and Algorithm 6 in the next section.)

3) PHASE 3: KEY GENERATION
The DU sends a request to the DO, including the Ethereum
account public key and its account address userAddress,
the expiration date of the access, and so on. The DO assigns
an attributes set S ⊆ U to the DU and adds the valid access
period for the DU through the execution of function named
setInterval(userAddress, Inerval) in the smart contract(See
Algorithm 7 in the next section for details). The key genera-
tion algorithm is executed by the DO, and the key by running
the selected attribute-based algorithm is generated as follows:

112718 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

KeyGen(MSK , S) → SK . The key generation algorithm
firstly choose a random number r ∈ Zp as a secret. Then for
each attribute j ∈ S, rj ∈ Zp is randomly selected. Finally, the
private key SK is generated as

SK = {D = gβ+αr ,∀j ∈ S : Dj = gr · H (j)rj ,D′j = gαrj}.

DO uses the Diffie-Hellman key exchange protocol to
calculate the common key based on the data user’s Ethereum
account public key. SK is symmetrically encrypted by the
AES algorithm with the common key as encryption key. The
ciphertext SK ′ of encrypted private key SK is mapped to the
corresponding Ethereum user DU with address userAddress,
and is stored in the blockchain by executing a function named
setSecretKey(useraddress, sec retKey) in the smart contract
(see the next chapter, Algorithm 3)

4) PHASE 4: FILE DECRYPTION
During the file decryption phase, the execution of the decryp-
tion algorithm requires the ciphertext CT and ciphertext SK ′.
Firstly, the DU obtains the contract address contractAddress
and file ID from {contractAddress, ID,Eck (M)} uploaded by
the DO in the cloud server. The file hash HashFileId is
checked to see if it exists in Ethereum through the execu-
tion of function named checkHashFileId(HashFileId) in the
smart contract. (This function needs to input the hash value
HashFileId after hashing it by the hash algorithm sha256.
See the algorithm in the next section for details.) If it does
not exist, it cannot be continued (because the file ID hash is
required as an index to obtain ciphertext information).

The DU obtains the access permission through the execu-
tion of the smart contract function getInterval() (see Algo-
rithm 8 in the next section). The DU can proceed if the time
is within the valid access period set by theDO. The ciphertext
CT and the private key’s ciphertext SK ′ are obtained through
the execution of functions getCipherText(HashFileId) and
getSecretKey() respectively (see Algorithm 4 and Algo-
rithm 6 in the next section for details). (The SK ′ here is
encrypted by the common key of bothDO andDU , so it needs
to be decrypted to SK by the symmetric encryption algorithm
AES.) After obtaining the CT and SK of the parameters
required by the decryption algorithm, the decryption process
of the selected attribute- based algorithm is as follows:
Decrypt(PK ,CT , SK) → ck. Decryption process

is a recursive algorithm. It is in a down-top man-
ner, and therefore need to define a recursive algorithm
DecryptNode(CT , SK , x).
(1) If x is a leaf node. Let j = att(x). If j /∈ S,

DecryptNode(CT , SK , x) = null. If j ∈ S,

DecryptNode(CT , SK , x) =
e(Dj,Cx)
e(D′j,C

′
x)

=
e(gr · H (j)rj , gαqx (0))
e(gαrj ,H (att(x))qx (0))

=
e(g, g)qx (0)·αre(H (j), g)qx (0)·αr

e(g,H (j))qx (0)·αr

= e(g, g)qx (0)·αr .

(2) If x is a non-leaf node, recursive algorithm Decrypt
Node (CT , SK , x) be defined as follows:

For all nodes z that are children of x, it performs Fz =
DecryptNode(CT , SK , z). Let Sx be an arbitrary kx− sized
child nodes set {z}, and Fz 6= null. If no such set exists then
Fx = null. Otherwise, Fx is calculated as follows:

Fx =
∏
z∈Sx

Fz
1j,S′x

(0)

=

∏
z∈Sx

(e(g, g)qz(0)·αr)
1j,S′x

(0)

=

∏
z∈Sx

(e(g, g)qx (index(z))·αr)
1j,S′x

(0)

=

∏
z∈Sx

(e(g, g)qx (j)·αr)
1j,S′x

(0)

= e(g, g)

∑
z∈S′x

αr ·qx(j)1j,S′x
(0)

= e(g, g)αrqx (0)

where j = index(z), S ′x = {index(z) : z ∈ Sx} and 1j,S ′x (x) =∏
j∈S ′x ,j 6=i

x−j
i−j is Lagrange interpolation coefficient.

Then the decryption process is as follows: it call function
DecryptNode for the root node R of 0. If the DU ’s attributes
set S satisfies 0, then

FR = DecryptNode(CT , SK ,R)

= e(g, g)αrqR(0)

= e(g, g)αrs.

Consequently, the content key ck can be pushed out: ck =
C̃ · FR

/
e(D,C).

After obtaining ck , the DU decrypts the encrypted doc-
ument Eck (M) obtained from the cloud server through a
symmetric encryption algorithm, and outputs the docu- ment
M .

B. SMART CONTRACT DESIGN
In this section, wemainly describe the interface and algorithm
logic related to smart contracts in our scheme. In Ethereum,
smart contracts are compiled in solidity [28] and deployed
on the Geth Ethereum client. In our scheme, smart contract
named StorageSC is created and deployed.
Smart Contract construction: This Contract defines some

variables of the contract and two structures when the contract
is created.

1) The DO is the creator of the contract, and its
Ethereum account address is recorded as owner. All Ethereum
account addresses that call smart contracts are recorded as
msg.sender .
2) The file ID hash is used as an index of file informa-

tion, and is recorded as HashFileId . DU’s Ethereum account
address is used as an index of user information, recorded as
userAddress.
3) The Smart Contract defines two structures: file infor-

mation named File and user information named User. File

VOLUME 7, 2019 112719

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

is used to store file related information, such as HashFileId .
User is used to store user related information, such as user-
Address.

There are eight function interfaces in this Smart Contract
named StorageSC listed as follows:

Algorithm 1 setHashFildId(HashFileId)
Input: HashFileId
Output: bool
1: if msg.sender is not dataOwner then
2: return false;
3: end if
4: HashFileIds[HashFileId]⇐ HashFileId;
5: return true;

Algorithm 2 checkHashFildId(HashFileId)
Input: HashFileId
Output: bool
1: if HashFileId is Null then
2: return false;
3: end if
4: if HashFileId does not exist then
5: return false;
6: else
7: return true;
8: end if

Algorithm 3 setSecretKey (user Address, secretKey)
Input: secretKey
Output: bool
1: if msg.sender is not dataOwner then
2: return false;
3: end. if
4: if user Address is Null then
5: return false;
6: else
7: mapping secretKey⇒ (userAddress);
8: and add it to User(userAddress, secretKey);
9: end if
10: return true;

1. setHashFileId(HashFileId) : This function can only
be executed by contract’s creator DO and is used to
store a hash H (ID) of unique identifier ID of the file M
uploaded by the DO. When the smart contract is invoked,
the caller’s Ethereum address will be retrieved and recorded
as msg.sender . The DO then uploads the smart contract
address contractAddress, file ID, and encrypted document
collection {contractAddress, ID,Eck (M)} to the cloud server.
2. checkHashFileId(HashFileId) :This function is called

by the DU to check whether the unique hash H (ID) of
the file ID uploaded by the DO exists in the Ethereum,
and the output is Boolean. The DU can download the

encrypted file in the cloud server to get the smart contract
address contractAddress. The file ID hash H (ID) stored in
the blockchain is retrieved by the contractAddress to check if
it exists in the Ethereum. If it does, proceed; otherwise ⊥.

3. setSecretKey(userAddress, secretKey) : This function
can only be executed by the contract’s creatorDO to store the
ciphertext SK ′ of the private key of the DO assigned to DU .
(The private key here is encrypted by the common key which
is negotiated by DO and DU with Diffie-Hellman protocol).
The SK ′ is stored in a structure named User . There are two
attributes in the structure: a private key of a string type, and a
valid access period of the string type. When storing the SK ′,
the data owner inputs the ciphertext of the Ethereum account
address userAddress of the DU and the SK ′ as a one-to-one
mapping relationship (EachDU has their own private key and
only needs their own account address userAddress to get the
private key).

Algorithm 4 getSecretKey()
Input: null
Output: secret Key
1: if msg.sender is not dataUser then
2: return false;
3: else
4: mapping ([msg.sender⇒ secretKey);
5: return secretKey;
6: end if

Algorithm 5 setCipherText(HashFileId,CipherText)
Input: HashFileId,CipherText
Output: bool
1: if msg.sender is not dataOwner then
2: return false;
3: end if
4: if HashFileId is not exist in HashFileIds[HashFileId]
then
5: return false;
6: end if
7: [HashFileId].CipherText⇐ CipherText;
8: return true;

Algorithm 6 getCipherText(HashFileId)
Input: HashFileId
Output: CipherText
1: if HashFileId does not exist then
2: throw;
3: else
4: return CipherText;
5: end if

4. getSecretKey() : This function is called by the DU to
obtain its own SK ′ (the ciphertext of the private key SK ′).
When the smart contract is invoked, the caller’s Ethereum

112720 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

address will be retrieved and recorded as msg.sender . There-
fore, the call of the function outputs the SK ′ by a one-to-one
mapping relationship of the account address of the calling
contract without inputting any parameters.

5. setCipherText(HashFileId,CipherText) : This func-
tion can only be executed by the DO to store the path of
the CT file obtained by the previous section of the encryp-
tion algorithm. This function needs to input the hash value
HashFileId of the file ID and the path to the CT with the
access policy. Since the CT exists in the form of an object,
the ciphertext object is serialized into a binary file format,
and its binary file path is converted into a hexadecimal format
encoding storage. The ciphertext path only needs to be stored
once, not limited by the number of accesses by DU .

Algorithm 7 setInterval (user Address, Interval)
Input: Interval
Output: bool
1: if msg.sender is not dataOwner then
2: return false;
3: end if
4: if user Address is Null then
5: return false;
6: else
7: mapping interval⇒ (userAddress);
8: and add it to User (user Address, Interval);
9: end if
10: return true;

Algorithm 8 getInterval()
Input: null
Output: Interval
1: if msg.sender is not dataUser then
2: throw;
3: else
4: mapping ([msg.sender]⇒ interval);
5: return Interval;
6: end if

6. getCipherText(HashFileId) : This function is called by
the DU to get the path of the CT stored in the Ethereum. The
corresponding hexadecimal ciphertext file path is obtained by
HashFileId , and then it needs to restore its hexadecimal to the
true ciphertext file path.

7. setInterval(userAddress, Inerval) : This function can
only be executed by DO, and DO adds a valid access period
for the DU making the request. The call to this function
inputs the public key address userAddress of the DU and the
valid access period Interval for that DU. The hexadecimal
encoding of the Interval is mapped to the userAddress in the
contract, and the userAddress and Interval are added to the
structure stored in the structure named User . If the addition
was successful, returns true; otherwise returns false.

8. getInterval() : This function is called by the data
consumer. The valid access period Interval (hexadecimal

coded form) set by the data owner for himself can be queried
through his own Ethereum account address. Valid access
period Interval can be obtained by hexadecimal decoding
into character type. And you can verify by code whether the
current time is within the valid access period. If the current
time is within the valid access period, the file is allowed to
access, otherwise access is not allowed.

In our scheme, the smart contract is mainly stored by two
mapping to the structure method, so that the data owner
can store multiple sets of data (that is, multiple encrypted
files can be uploaded). At the same time, the data user
obtains the corresponding key data through the file ID, and
obtains the corresponding effective access period through its
own public key address. In some cases, the contract cre-
ator needs to terminate the smart contract to get ether in
smart contract, and you need to call the self-destruct method
selfdestruct(). When the contract is self-destructed, if some-
one sends the Ethereum to the contract address, then the
Ethereum can no longer be redeemed and will disappear.
Therefore, the smart contract in this paper cannot easily
implement the self-destruction contract method to avoid eco-
nomic losses. The smart contract detailed code in this article
see https://github.com/xwangsharing/Storage.

VI. ANALYSIS AND EVALUATION
A. CASE EVALUATION
In our scheme, we introduces Ethereum’s smart contract tech-
nology to transform the traditional attributed based encryp-
tion scheme, the key interaction between the data owner node
and the data user node is realized by Ethereum network. Our
new scheme no longer relies on the attribute authority to
distribute the key.

1) ACCOUNT PROCESSING
All users, in this scheme, need to generate an Ethereum
account EOA, which is used to create smart contracts and
execute functions in contracts. Any of these users can upload
encrypted files as data owners and create smart contracts.
Other users need to call the method in the contract to access,
obtain the key information and execute the algorithm to
decrypt.

2) DATA OWNER COMPLETE CONTROL OVER DATA
After the DO uploads the encrypted file to the cloud server,
the setup algorithm is executed to obtain the public key and
the master key. After the DO formulates the access pol-
icy, the ciphertext is obtained through the execution of the
encryption algorithm. Through the execution of the smart
contract, the relevant information of the file, such as cipher-
text, is stored in the blockchain network, so that the data
cannot be tampered with and all of operations are transparent.
If aDU wants to access the data, the first thing need to do is to
get the decryption key, which requires the DU to request the
DO to assign the attribute set. According to theDU’s attribute
set, the DO generates a private key for DU and encrypts the

VOLUME 7, 2019 112721

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

private key, which is stored in the Ethereum through the smart
contract. The DU can obtain the private key’s ciphertext SK ′

simply by calling the contract. The private key SK is then
decrypted by the common key which is negotiated byDO and
DU with Diffie-Hellman protocol. Thereby the decryption
algorithm can be executed.

In addition, The data owner adds a valid access period
while assigning a attributes set to each data user. For example,
as a student, you can visit the e-school library, and the school
will add an expiration date to the student’s attribute each
semester. The effective access period for each data user’s
access is stored in the blockchain network through smart
contract, making it impossible to tamper with and transparent.
The setting of the effective access period can reduce the cost
of the data user’s attribute revocation to some extent.

The decryption can be successful if and only if the data
consumer is within the valid access period and its set of
attributes meets the access policy established by the data
owner. Therefore, in this scheme, the data owner’s complete
control over their data is implemented.

3) KEY SECURITY
This paper transforms the traditional ciphertext-policy
attribute based encryption scheme by introducing Ethereum’s
smart contract technology. More user access can overwhelm
the pressure of a single center authority that distributes keys
in the original solution. The key of the data user in this paper
is assigned by the data owner rather than the center authority.

The key of the data user of the scheme is assigned by
the data owner. Considering the security risks of the trans-
mission channel, the data owner and the data user negotiate
the encryption key using the Diffie-Hellman key exchange
protocol before transmitting the private key of the data user.
The data user obtains the encrypted private key ciphertext by
paying a small amount of ether and decrypts it to obtain its
own private key.

The smart contract in our scheme is implemented with the
function of restricted attribute. That is, the modifier in the
source code of the smart contract is implemented to restrict
the calls of the smart contract to specific users. For example,
a function in a smart contract that modifier is assigned to the
identity of the ‘‘onlyOwner’’ can only be called by the creator
of the contract. If a non-contract creator attempts to execute
these methods, the execution will fail.

Therefore, in this paper, the security of key information is
guaranteed.

4) LOG WITH PRIVACY PROTECTION
In this scheme, the deployment and invocation of smart
contracts are recorded in the Ethereum blockchain in the
form of transactions. The blockchain network is continuously
synchronized, so that the transaction information of all nodes
in the blockchain network is completely consistent. In other
words, the introduction of Ethereum blockchain technology
is equivalent to adding a log system to the access control
scheme of this paper to record all access operation records.

TABLE 3. Functional analysis and comparison.

The introduction of blockchain makes all access operation
records non-destructive and non-repudiation.

The execution of all functions in the smart contract is
reflected in the smart contract’s log file and the Ethereum
blockchain network. The data owner stores information such
as user information and uploaded files in ciphertext in the
blockchain network. Therefore, other users are unable to use
mandatory means to break the information on the blockchain.
The adversary cannot obtain user privacy information from
a large amount of transaction information in the Ethereum
blockchain network. In the transaction information of each
transaction, the transaction initiator’s account address can
be obtained. However, other related information of the user
cannot be obtained, so that the user information is effec-
tively protected. Therefore, the transaction information in the
Ethereum blockchain network can be used as a secure access
log for the user.

5) ALGORITHMIC FUNCTION ANALYSIS
The functional comparison with the attribute-based encryp-
tion scheme in recent years is shown in Table 3.

The performance of this scheme and the recent schemes
are compared by whether there is a center authority, whether
it is based on the blockchain, whether it has an access log,
and whether the validity period is added. Document [30] is a
traditional access control scheme for distributing keys by the
center authority. Document [4] is a multi-authority attribute-
based encryption access control scheme. Document [20] is a
smart contract-based access control scheme, which achieves
not only access control but also access log.

In this scheme, fine-grained access control is implemented,
and the center authority is removed, so that the access control
scheme is more dispersed. Thus, the problem of single point
of failure brought by the center authority in the original
scheme was solved. Because of the introduction of Ethereum
blockchain technology, the solution is indirectly accompa-
nied by incentives and access logs. Therefore, this solution
has better applicability and usability.

B. EXPERIMENT ANALYSIS
In this section, we give the experiment analysis of our
scheme. The specific configuration of the experimen-
tal platform and experimental environment is: Inter(R)
Core(TM)2 Duo CPU E8400@3.00GHz processor, 4 GB
RAM, and the system are Windows10 and Linux
ubuntu16.04 LTS. The programming language is java and
solidity. External helper is JPBC and web3j. The full name

112722 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

of the external auxiliary JPBC is Java Pairing-Based Cryp-
tography. JPBC is an implementation of the java version of
the bilinear pair encryption algorithm in cryptography. The
main encryption algorithm in this scheme is implemented
by relying on the jar package. Web3j is a lightweight Java
development library for integrating Ethereum functionality,
which is implemented in the Java version of the Ethereum
JSONRPC interface protocol. Web3j provides a package of
smart contracts for solidity that enables packaged objects
generated by web3j to interact directly with all methods of
smart contracts.

The implementation of this paper is based on the two oper-
ating systems, the Ethereum blockchain is deployed in the
Linux ubuntu16.04 LTS established in the virtual machine,
and the main encryption algorithm is implemented in the
Windows10 system. The smart contract was developed by the
Solidity programming language and deployed on the private
chain created by the Ethereum Geth client under the Linux
ubuntu 16.04 LTS system.

Under the Windows 10 system, use the development envi-
ronment of the Remix IDE to develop and test.This devel-
opment environment can be connected to the Ethereum Geth
client via IP to deploy the smart contract on the Geth client.
After the compilation is successful, use the web3j to gen-
erate the JavaBean from the smart contract to the Maven
project in eclipse. In the Maven project, the attribute encryp-
tion algorithm is written using eclipse by introducing the
jar package of JPBC. By relying on some jar packages of
web3j, the interaction between the data owner and the data
consumer for the smart contract is realized, which makes the
access control algorithm of this paper better by combining the
attribute encryption algorithm with the smart contract.

Taking the literature [30] as an example, the framework
is applied to the attribute-based encryption algorithm and
experiment. Because of the high value of the Ethereum, it is
necessary to test in the Ethereum private chain or the open test
chain before the smart contract is deployed on the Ethereum
main chain. The smart contract is deployed on the local pri-
vate chain of the Ethereum network to implement the solution
in this chapter. Compared with the traditional attribute-based
encryption scheme, the execution of the algorithm in this
chapter has additional consumption mainly reflected in the
gas consumption of the method call in the smart contract.

There are additional drains on the creation and execution
of smart contracts, and Table 4 lists the gas costs and costs of
some operations on smart contracts.

Since the price of the Ethereum in the Ethereummain chain
is erratic, in order to facilitate the analysis of the cost of the
experimental data in this section, the price of the Ethereum
is set to 1 ether ≈ 200 USD,and let 1 gasPrice ≈ 1 Gwei,
1Gwei = 109wei = 10−9ether .
Table 4 lists the costs of some operations for smart con-

tracts. The creation of a smart contract for each data owner
is created only once, consuming 1,272,934 gas and cost
about $0.50. After the data owner executes the key generation
algorithm, the ciphertext of data user’s private key is stored

TABLE 4. The smart contract cost (gasprice = 2 Gwei, 1 ether = 200 USD).

FIGURE 3. Run time of algorithm under different number of attributes.

in the Ethereum blockchain, and the setSecretKey operation
is performed, which requires a cost of about $0.36; After
the data owner uploads the encrypted document, the cost
of executing the setHashFileId operation is approximately
$0.027; The data owner assigns a valid access period to
the data consumer, and the cost of executing the setInterval
operation is approximately $0.035; The data owner develops
an access policy and stores the encrypted ciphertext in the
Ethereum blockchain. The cost of executing the setCipher-
Text operation is approximately $0.044.

Generally speaking, whenever the data owner uploads a
file as a share, he needs to spend less than $1 to deploy
a smart contract. Similarly, every time a data user accesses
data, he spend about $0.048. These costs are based on pro-
totypes deployed on the blockchain and can be reduced with
optimized code. If the size of the input parameters for these
functions is smaller, the cost can be further reduced.

Experiments have shown that the cost paid by data owners
to share files is small and will be further reduced as data users
increase. The more data users access, the more benefits the
data owner receives. Of course, the cost to the data user to
access the data owner’s file is very little.

The abscissa in Figure 3 is the number of attributes,
the number is 5, 10, 15, 20; the ordinate is expressed as the
running time of the access control algorithm. The broken
line of the blue diamond shape indicates the change trend
of the execution time of the algorithm in the literature [30]
with the increase of the attribute; and the broken line of the

VOLUME 7, 2019 112723

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

orange square indicates the change rule of the execution time
of the algorithm as the attribute grows. Similarly, the execu-
tion time of the original algorithm increases as the attribute
increases. The running time of the algorithm is almost con-
sistent with the trend of the running time of the original
algorithm. Since the framework of this chapter is based on
blockchain, it is slightly higher in efficiency than the original
scheme. The smart contract detailed code in this paper can be
seen in https://github.com/xwangsharing/Storage.

VII. CONCLUSION
In this paper, a secure cloud storage access control framework
based on blockchain is proposed. The traditional ciphertext-
policy attribute-based encryption algorithm is transformed by
introducing Ethereum’s smart contract technology. In order
to prevent the center authority from being attacked, the dis-
tribution key no longer relies on the center authority. Our
scheme is decentralized. A distributed access control scheme
is implemented through interaction between the data owner
node and the data user node. Experiments show that the cost
of accessing files is very small.

Further research work is still worth doing. This framework
is based on the cloud storage platform, the cloud storage
platform is semi-honest. Therefore, the program also lacks
research data integrity which ensure that data owner to upload
the document has not been tampered with. In the future, cloud
storage platforms may be replaced with decentralized storage
platforms, such as Inter Planetary File System (IPFS) [31],
Storj [32], etc.

REFERENCES
[1] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-policy attribute-

based encryption,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2008,
pp. 321–334.

[2] M. Chase, ‘‘Multi-authority attribute based encryption,’’ in Proc. 4th The-
ory Cryptogr. Conf. (TCC). Amsterdam, TheNetherlands: Springer-Verlag,
Feb. 2007.

[3] H. Lin, Z. Cao, X. Liang, and J. Shao, ‘‘Secure threshold multi authority
attribute based encryption without a central authority,’’ Inf. Sci., vol. 180,
no. 13, pp. 2618–2632, Jul. 2010.

[4] A. Lewko and B. Waters, ‘‘Decentralizing attribute-based encryption,’’
in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer
Science), vol. 6632, K. G. Paterson, Ed. Berlin, Germany: Springer, 2011.

[5] K. Yang and X. Jia, ‘‘ Attributed-based access control for multi-authority
systems in cloud storage,’’ in Proc. IEEE Int. Conf. Distrib. Comput. Syst.,
Jun. 2012, pp. 536–545.

[6] J. Wei, W. Liu, and X. Hu, ‘‘Secure and efficient attribute-based access
control for multiauthority cloud storage,’’ IEEE Syst. J., vol. 12, no. 2,
pp. 1731–1742, Jun. 2018.

[7] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitco.in/pdf/bitcoin.pdf

[8] G. Zyskind, O. Nathan, and A. S. Pentland, ‘‘Decentralizing privacy:
Using blockchain to protect personal data,’’ in Proc. IEEE Secur. Privacy
Workshops, May 2015, pp. 180–184.

[9] M. Jemel and A. Serhrouchni, ‘‘Decentralized access control mechanism
with temporal dimension based on blockchain,’’ in Proc. IEEE 14th Int.
Conf. E-Bus. Eng. (ICEBE), Nov. 2017, pp. 177–182.

[10] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani,
‘‘MeDShare: Trust-less medical data sharing among cloud service
providers via blockchain,’’ IEEE Access, vol. 5, pp. 14757–14767, 2017.

[11] R. Xu, Y. Chen, E. Blasch, and G. Chen, ‘‘BlendCAC: A smart contract
enabled decentralized capability-based access control mechanism for IoT,’’
in Proc. IEEE Int. Conf. Blockchain, Jul./Aug. 2018, pp. 1027–1034.

[12] K. Liu, H. Desai, and L. Kagal, ‘‘Enforceable data sharing agreements
using smart contracts,’’ 2018, arXiv:1804.10645. [Online]. Available:
https://arxiv.org/abs/1804.10645

[13] C. Lin, D. He, X. Huang, K.-K. R. Choo, and A. V. Vasilakos ‘‘BSeIn:
A blockchain-based secure mutual authentication with fine-grained access
control system for industry 4.0,’’ J. Netw. Comput. Appl., vol. 116,
pp. 42–52, Aug. 2018.

[14] Q. Xia, E. Sifah, A. Smahi, S. Amofa, and X. Zhang, ‘‘BBDS: Blockchain-
based data sharing for electronic medical records in cloud environments,’’
Information, vol. 8, no. 2, p. 44, Apr. 2017.

[15] H. G. Do andW. K. Ng, ‘‘Blockchain-based system for secure data storage
with private keyword,’’ search,’’ in Proc. IEEE World Congr. Services,
Jun. 2017, pp. 90–93.

[16] P. J. Lu, L.-Y. Yeh, and J.-L. Huang, ‘‘An privacy-preserving cross-
organizational authentication /authorization/accounting system using
blockchain technology,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1–6.

[17] G. Magyar, ‘‘Blockchain: Solving the privacy and research availability
tradeoff for ehr data: A new disruptive technology in health data man-
agement,’’ in Proc. IEEE 30th Neumann Colloquium (NC), Nov. 2017,
pp. 135–140.

[18] S. Alansari, F. Paci, and V. Sassone ‘‘A distributed access control system
for cloud federations,’’ inProc. IEEE 37th Int. Conf. Distrib. Comput. Syst.,
Jun. 2017, pp. 2131–2136.

[19] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, ‘‘Blockchain distributed
ledger technologies for biomedical and health care applications,’’ J. Amer.
Med. Inform. Assoc., vol. 24, no. 6, pp. 1211–1220, Nov. 2017.

[20] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, ‘‘Smart contract-
based access control for the Internet of Things,’’ IEEE Internet Things
J., vol. 6, no. 2, pp. 1594–1605, Apr. 2019.

[21] Diffie-HellmanKey Exchange. Accessed: Oct. 3, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

[22] W. Gavin, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, 2014. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[23] Litecoin. Accessed:Jul. 20, 2018. [Online]. Available: https://litecoin.org/
[24] Dogecoin. Accessed:Jul. 10, 2018. [Online]. Available: http://dogecoin.

com/
[25] Ethereum Homestead Documentation. Accessed: Dec. 2, 2018. [Online].

Available: https://buildmedia.readthedocs.org/media/pdf/ethereum-home
stead/latest/ethereum-homestead.pdf

[26] Ethereum Blockchain App Platform. Accessed: Feb. 1, 2018. [Online].
Available: https://www.ethereum.org/

[27] M. Ulieru, ‘‘Blockchain 2.0 and beyond: Adhocracies,’’ in Banking Beyond
Banks and Money (New Economic Windows), P. Tasca, T. Aste, L. Peliz-
zon, and N. Perony, Eds. Cham, Switzerland: Springer, 2016.

[28] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryptocur-
rency and Blockchain Programming for Beginners. New York, NY, USA:
Apress, 2017.

[29] J. P. Cruz, Y. Kaji, and N. Yanai, ‘‘RBAC-SC: Role-based access control
using smart contract,’’ IEEE Access, vol. 6, pp. 12240–12251, 2018.

[30] P. Zhang, Z. Chen, K. Liang, S.Wang, and T.Wang, ‘‘A cloud-based access
control scheme with user revocation and attribute update,’’ in Information
Security and Privacy (Lecture Notes in Computer Science), vol. 9722, J.
Liu and R. Steinfeld, Eds. Cham, Switzerland: Springer, 2016.

[31] J. Benet, ‘‘IPFS—content addressed, versioned, P2P file system,’’ 2014,
arXiv:1407.3561. [Online]. Available: https://arxiv.org/abs/1407.3561

[32] C. Gray. (2014). Storj Vs. Dropbox: Why Decentralized Storage is the
Future. [Online]. Available: https://bitcoinmagazine.com/articles/storj-vs-
dropbox-decentralized-storage-future-1408177107

SHANGPING WANG received the B.S. degree in
mathematics from the Xi’an University of Tech-
nology, Xi’an, China, in 1982, the M.S. degree
in applied mathematics from Xi’an Jiaotong Uni-
versity, Xi’an, in 1989, and the Ph.D. degree in
cryptology fromXidianUniversity, Xi’an, in 2003.
He is currently a Professor with the Xi’an Univer-
sity of Technology. His current research interests
include cryptography and information security.

112724 VOLUME 7, 2019

S. Wang et al.: Secure Cloud Storage Framework With Access Control Based on Blockchain

XU WANG received the B.S. degree from
the School of Telecommunication Engineering,
HaoJing College, Shaanxi University of Science
and Technology, Xi’an, China, in 2016. He is cur-
rently pursuing the M.S. degree with the School
of Computer Science and Engineering, Xi’an Uni-
versity of Technology, Xi’an. His research inter-
ests include information security and blockchain
technology.

YALING ZHANG received the B.S. degree in com-
puter science from Northwest University, Xi’an,
China, in 1988, and the B.S. degree in computer
science and the Ph.D. degree in mechanism elec-
tron engineering from the Xi’an University of
Technology, Xi’an, in 2001 and 2008, respectively,
where she is currently a Professor. Her current
research interests include information security and
privacy protection.

VOLUME 7, 2019 112725

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	BILINEAR MAPPING
	ACCESS TREE
	BLOCKCHAIN TECHNOLOGY AND ETHEREUM
	ETHEREUM ACCOUNTS
	SMART CONTRACT
	TRANSACTION INFORMATION

	SYSTEM MODEL
	SCHEME CONSTRUCTION
	CONCRETE CONSTRUCTION
	PHASE 1: SYSTEM INITIALIZATION
	PHASE 2: FILE ENCRYPTION
	PHASE 3: KEY GENERATION
	PHASE 4: FILE DECRYPTION

	SMART CONTRACT DESIGN

	ANALYSIS AND EVALUATION
	CASE EVALUATION
	ACCOUNT PROCESSING
	DATA OWNER COMPLETE CONTROL OVER DATA
	KEY SECURITY
	LOG WITH PRIVACY PROTECTION
	ALGORITHMIC FUNCTION ANALYSIS

	EXPERIMENT ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	SHANGPING WANG
	XU WANG
	YALING ZHANG

