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Abstract—The stalling of highly concentrated constant torque
induction motor loads due to system faults may result in fault
induced delayed voltage recovery (FIDVR). This state can cause
significantly depressed local voltage for several seconds after the
fault is cleared, and can also lead to widely cascaded system
failure. Though there is extensive study conducted within the
modeling of motor loads, the dynamic connection between the
aggregated induction motor loads and the grid still needs further
investigation. In this work, a dynamic performance model is
developed for motor stalling and over heat thermal tripping.
Specifically, this dynamic model can be constructed with an
energy-like Lyapunov function, and can be incorporated as
part of power system dynamic cascading model. The simulation
examples are carried out in an enhanced version of the IEEE 57
bus test system, as demonstration for feasibility. This model may
be beneficiary for smart grid monitoring and planning, as well
as energy analysis for power system cascading failure.

Index Terms—Motor Stalling, Fault Induced Delayed Voltage
Recovery, Power System Cascading Failure, Energy-like Lya-
punov Function

I. INTRODUCTION

In a distribution network with a high concentration of
induction motors driving mechanical compressor loads (most
notably, air conditioners), a fault-induced, temporary low
voltage may cause some of these induction motors to stall.
These stalled units draw large amount of reactive power, and
further depress local voltage for several seconds after the
fault is cleared. The local voltage may gradually recover, and
often exceeds its value at the normal operating point, because
many of the stalled units will trip themselves off the grid
by action of thermal protection having an inverse time-over
current characteristic, which can take from 3 to 20 seconds
[1]. This phenomenon is usually referred as fault-induced
delayed voltage recovery (FIDVR). As the description above
suggests, a system experiencing FIDVR is vulnerable to more
widespread cascading failure, depending on the speed with
which thermal relays act. If a system is experiencing depressed
voltage, then any additional fault during the interval may result
in further stalling of motor on other nearby feeders, and may
result in a cascade in which growing numbers of motors stall,
with ultimately collapsing voltage (i.e., no voltage recovery)
[2]. Figure 1 illustrates the phenomenon with a representative
voltage versus time plot.
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Fig. 1. Illustration of a typical FIDVR scenario following a 230kV transmis-
sion line fault in Southern California [1]

Literature studying this class of problems has mainly fo-
cused on two aspects: 1) creation of time domain simulation
models to represent the motor load in a fashion that accurately
replicates field-observed FIDVR phenomenon; 2) how to pre-
vent, and/or mitigate the impact of, induction motor stalling.

Motor models existing in literature can be classified into
dynamic phasor models and static performance models. Ref-
erences [3] and [4] well summarize the early work on motor
load modeling; here we briefly review publications subsequent
to those. Dynamic phasor models are generally proposed based
on a reference frame transformation and detailed flux modeling
[5], [6]. A recent study developed a set of differential equations
to represent single phase induction motor (SPIM) model that
can be used in an electro-magnetic transients, and observed
the detailed relationship between voltage dip and motor stall
[7]. Compared to the dynamic phasor model, the static per-
formance model is constructed from the “grid perspective”.
In other words, the effects of motor loads is represented
in the form of real and reactive power consumption. Static
performance models are usually derived based on experiment
data [6], [8]. Apart from the deterministic performance model,
[9] and [10] modeled the motor stall probabilistically within
the CASCADE model to study FIDVR related events.

To mitigate the impact of FIDVR and prevent cascading
failure, some researchers have sought best strategy for load
shedding [11], while others have designed control schemes
for reactive power compenstaion [12].

Though there is extensive work on modeling to represent
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motor stall phenomena, such work is largely focused on
producing accurate time domain simulations, rather than struc-
tural, analytic insights into the system-wide impact of such
stalling. Understanding of the interplay between the individual
component characteristic (the induction motor stalling) and
system-wide phenomena it can induce (cascading failure and
voltage collapse) remains worthy of further investigation. In
this work, we suggest a new dynamic performance model
for motor stalling and tripping, and the incorporation of the
component models into an overall system model. In particular,
this work will develop an ordinary differential equation model
for the power system along with motor stalling, with relay
action to disconnect the motors represented as a fast-time
scale, but none-the-less smooth phenomena (i.e., the action
of the relay very rapidly drive current flow to zero, but does
so with current being a smooth function of time). Moreover,
this model has a special structure that is closely related to
the gradient of a scalar, energy-like function. We show that
the time derivative of this energy function along solution
trajectories is guaranteed non-positive, and with certain other
conditions shown to be satisfied, this may play the role
of a Lyapunov function for the system dynamic equations.
This specially structured model and its associated Lyapunov
function then provides insights into cascading failure analysis
[13], as well as power grid dynamic control [14].

The paper is structured as follows: Section II briefly reviews
the “system-oriented” classical power system dynamic model
and its well-known energy-like Lyapunov function; then the
Section III presents the “component-oriented” dynamic per-
formance model for motor under three operating conditions:
normal, stall and trip; Section IV then combines these to
an overall model that includes the stalling and tripping phe-
nomena, and explores the characteristics of this model in an
enhanced version of the IEEE 57 bus test system. Section
V demonstrates the application of the energy-like Lyapunov
function in visualizing transitions into motor tripping regions
(and possible cascading failure) through lower dimensional
projections of the energy contours, representing the transition
via a ”potential boundary” that the system state must overcome
to escape from a region of normal operation to a motor-stalled,
and ultimately, motor-tripped region of the state space.

II. POWER SYSTEM DYNAMIC MODEL AND ASSOCIATED
ENERGY FUNCTION

To begin with, let us briefly revisit the classical power
system dynamic model. Consider a power system with N + 1
buses and L branches, with m generator buses, n load buses
(N = m + n), and a single infinite bus/reference bus. The
slack/reference bus is labelled as index 0, followed by indices
1, 2, · · · ,m for generator buses, and m+1,m+2, · · · ,m+n
for load buses. Transmission lines (and possibly transformer
links) are indexed as 1, 2, · · · , L.

Then one may define a vector of angle differences relative
to the reference bus:

α ∈ RN : αi = δi − δ0

for i = 1, 2, · · · , N . It is convenient to define α0 = δ0− δ0 ≡

0, recognizing, however, that the constant α0 does not appear
as part of the state variable vector α.

This base system model presented in (1) ∼ (3) combines
general features of several models in the literature [15], [16],
inheriting the form in [17], [18].

ω̇g = −M−1
g Dgωg −M−1

g ΠT
1 f(α, Vl) (1)

α̇ = Π1ωg − [Π2D−1
l ΠT

2 ]f(α, Vl) (2)

V̇l = −D−1
v g(α, Vl) (3)

where Vl = [Vm+1, Vm+2, · · · , Vm+n]T as load voltage vector.
The magnitude of generator buses V0, V1, · · · , Vm is set to
constant. Besides,

fi(α, Vl) = Vi

N∑
k=0

VkBik sin (αi − αk)− P 0
i (4)

for i = 1, 2, 3, · · · , N , and

gi(α, Vl) = V −1
l,i {−Vl,i

N∑
k=0

VkBik cos (αi − αk)−QD,i} (5)

with i = m+ 1,m+ 2,m+ 3, · · · , N . In addition

f : RN × Rn → RN , g : RN × Rn → Rn

Π = [−e|I] = [Π1|Π2],Π1 ∈ RN×(m+1),Π2 ∈ RN×n

e = [−1,−1, · · · ,−1]T , e ∈ RN

Dv ∈ Rn×n, P 0 = [P 0
1 , P

0
2 , · · · , P 0

N ]T ∈ RN , QD ∈ Rn

Mg , Dg , Dl, Dv are constant diagonal matrices describing sys-
tem parameters. B is the system’s admittance matrix. Unlike
reduced network models, this model does not decrease the
dimension of the state space.

Implicit assumption lying in (4) and (5) is
∑
Pi = 0, i.e.

Gij = 0. However, we do not intend to assume the system
as lossless. Instead, this system is assumed to have constant
transmission loss during a short duration of time of interest.
For each transmission line, the loss is calculated at steady
state and then distributed evenly to the two connected bus
nodes. This may result in 1% ∼ 5% increase at load buses in
a transmission system.

If we integrate the composite vector function
[(Mgωg)

T , fT (α, Vl), g
T (α, Vl)] along a path from

x0 = (0, α0, V 0
l ) to x = (ω, α, Vl), we may have

Φ(x, x0) =∫ ωg,α,Vl

0,α0,V 0
l

[(Mgλ)T , fT (ξ, µ), gT (ξ, µ)] · [dλT , dξT , dµT ]T

(6)

Here Φ represents the power system energy function. If we
neglect the constant offset induced by x0 from integration, we
may simplify the form of Φ in general as

Φ(x) =
1

2
ωTg Mgωg −

1

2

N∑
i=0

N∑
k=0

BikViVk cos(αi − αk)

+

N∑
k=m+1

QD,kln(Vk) + αTP 0 (7)
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Define matrix A that

A =

−M−1
g DgM−1

g −M−1
g ΠT

1 0
Π1M−1

g −Π2D−1
l ΠT

2 0
0 0 −D−1

v

 (8)

Note that A is the sum of a diagonal matrix of non-positive
entries and a skew symmetric matrix. With these definitions
the model in (1),(2) and (3) may be rewritten as

ẋ = A∇Φ(x) (9)

with matrix A non-singular and negative semi-definite, i.e. the
equilibria of (9) occurs only at those points where ∇Φ(x) = 0,
and

Φ̇ =
∂Φ

∂x

∂x

∂t
= [∇xΦ(x)]TA∇xΦ(x) ≤ 0 (10)

Moreover, by LaSalle’s theorem with Φ as a candidate energy-
like Lyapunov function, it may be proved in our model that
the equilibrium is asymptotically stable with no trajectories
having dΦ

dt = 0, if the Hessian about such equilibrium is
positive definite [19]. This model and its extension has been
widely applied in power system cascading failure analysis
[13], [20], voltage stability measuring [17] and power grid
dynamic control [14]. In the next section, we will introduce
a new dynamic performance model of motor stalling/tripping,
based on the similar structure as illustrated in (9) and (10).

III. A NEW DYNAMIC PERFORMANCE MODEL OF MOTOR
STALLING AND THERMAL TRIPPING

A. Approximating Current Interrupting Relays via Smooth
State Transitions

As concluded in [7], “the performance model represents the
effects of motor loads in the form of real and reactive power
consumption at three different states: running, stalled, and trip-
off”. In other words, a reasonable dynamic performance model
should be able to reflect the sequential transition of the three
states.

Let us introduce λ and µ as the two binary variables,
which have three combinations corresponding to the three
states: running, stalled and trip-off. In specific, when motor
is operating at normal condition, λ = 0 and µ = 1; when a
fault occurs in the power system and leads to motor stalling,
λ = 1, µ = 1 and motor draws considerable reactive power
from the grid; when motor is tripped off by thermal protection,
λ stays at 1 and µ changes from 1 to 0.

The goal here is to allow the power system dynamic model
to be constructed from a gradient of a smooth function,
yielding a set of continuous ordinary differential equations.
Therefore, two switching functions are introduced to smooth
the transition between 1 and 0 of variable λ and µ. One may
find similar functions in [13], [20]. Let us define the switching
function vector θ̂(λ) as:

θ̂(λ) = [θ̂1(λ), θ̂2(λ), · · · , θ̂p(λ)]T (11)

with λ ∈ Rp, λ = [λ1, λ2, · · · , λp]T , and in specific

θ̂r(λ) ≡ 2[−e−20λr + e−200λr + e20(λr−1)− e200(λr−1) + 0.2]
(12)

with r = 1, 2, · · · , p, p ≤ n, while p is the number of load
buses with air conditioner motors installed, and n represents
the number of load buses in the power system. Similarly,
another switching function for µ is defined as:

θr(µ) ≡ 2[−e−20µr + e−200µr + e20(µr−1)− e200(µr−1)−0.2]
(13)

with µ ∈ Rp, µ = [µ1, µ2, · · · , µp]T . Readers may notice that
both θ̂(λ) and θ(µ) are written as a vector-valued function of
a vector argument — in other words, the Jacobian of θ̂(λ) and
θ(µ) are purely diagonal. Figure 2 illustrates the general idea
of the two switching functions.
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Fig. 2. Illustrative Plot of θ̂r(λ) (red dashed) and θr(µ) (blue solid)

It should be pointed out that both λ and µ possess “one
way” property — which means, once λ changes from 0 to
1, it will never change back. For µ, once it changes from
1 to 0, it will stay around 0 thereafter. Since λ and µ
both fit into continuous expression, we will then rephrase
them from “binary variables” to “bi-stable variables”. Now
we briefly illustrate the “switching mechanism” and the “bi-
stable” property via the ordinary differential equation (14),
with W (η) > 0 and Rµ,r > 0:

µ̇r = −D−1
µ,r(W (η)−Rµ,rθr(µ)) (14)

In this equation Rµ,r represents a pre-set threshold for W (η).
Dµ,r is a small positive time constant. Here η can be any
state variable, e.g. load bus voltage, line current or frequency
deviation, etc.. At normal operating point µr ≈ 1 and
Rµ,rθr(µ) ≈ Rµ,r > W (η). Then suppose a fault occurs
in the system and drives W (η) > R(µ, r). From (14), such
fault may activate the switching of variable µr by turning
−D−1

µ,r(W (η)−Rµ,rθr(µ)) negative, and push µr decreasing
quickly from 1. Figure 2 indicates that θr(µ) rises exponen-
tially when µr drops below 0. Once θr(µ) becomes large
enough, W (η) − Rµ,rθr(µ) < 0, then the right hand side of
the equation (14) will become positive and µr will increase.
However, in this example W (η) will never become negative,
therefore µr will stay a little below 0 thereafter, and µr ≈ 0.
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Similar to (6) and (7), the integral of this function proves
important in our model development. The integral of a com-
ponent θr(λ) with respect to λ is denoted as Θr(λ), as defined
in (15). Similarly we have definition for Θ̂r(µ) in (16). Both
of the functions construct part of the energy-like Lyapunov
function of the system, as shown in (30).

Θ̂r(λr) ≡
∫ λr

1

−θ̂r(η)dηr (15)

Θr(µr) ≡
∫ µr

1

−θr(η)dηr (16)

The following subsection will introduce how the two bi-
stable variables λ and µ are incorporated into the dynamic
performance model of motor loads.

B. Dynamic Performance Model for Motor Loads

Lawrence Berkeley National Lab published a detailed report
regarding load and transmission modeling study in 2010 [6]. In
this report, researchers investigated both the static performance
model and the dynamic phasor model of air conditioner motor
loads. For the static performance model, the experimentally
observed motor P−V/Q−V curve was fitted by the following
representation for a single machine:{

Prun = a1 + a2
V−a0 + a3(V − a0) + a4(V − a0)4

Pstall = KP1
V 3 +KP2

V 2 (17)

{
Qrun = b1 + b2

V−b0 + b3(V − b0) + b4(V − b0)4

Qstall = KQ1
V 3 +KQ2

V 2 (18)

with a, b,K all real constants. Prun/Qrun stands for motor
in operation, and Pstall/Qstall stands for motor stalled.

As part of the project conducted in [6], researchers from
Pacific Northwest National Lab also observed that the P −
V/Q−V trajectory of motor stall could be simplified as (19)
in the aggregated model [21]:

P = KPV
2, Q = KQV

2 (19)

with KP , KQ real constants.
The P-V and Q-V relationship in (19) inspires us to develop

an interesting model for motor stalling and tripping, from the
following observations:

• Local low voltage may result in motor stalling
• The fitted curve reveals that the excessive drawing of

reactive power on the load bus can be treated as the
increment of shunt-inductor

• Most motors will be tripped due to the thermal protection
after certain amount of time (3 ∼ 20s)

• λ and µ can be incorporated into the dynamic perfor-
mance model as indicator variables of state transition

Let us renumber the index for load buses: suppose buses
numbered m + 1,m + 2, · · · ,m + p have the aggre-
gated model installed, p ≤ n. Define vector Vlp =
[Vm+1, Vm+2, · · · , Vm+p]

T as a subset of Vl. Based on those

observations, the model can be constructed as

λ̇ =− D−1
λ ((

1

2
K1 ◦ µ) ◦ (Vlp ◦ Vlp) +K2 ◦ T

−Kλ −Rλ ◦ θ̂(λ)) (20)

µ̇ =− D−1
µ (

1

2
(K1 ◦ λ) ◦ (Vlp ◦ Vlp)

+K3 ◦ T −Rµ ◦ θ(µ)) (21)

Ṫ =− D−1
T (K2 ◦ λ+K3 ◦ µ

−KT ◦ (T − Tc)) (22)

while λ, µ, T, Tc,K1,K2,K3,Kλ,KT , Rµ, Rλ ∈ Rp, except
for Dλ,µ,T ∈ Rp×p. All Ks and all Rs are constants and Tc
is a constant related to the armature ambient temperature:

Tamb =
K3

KT
+ Tc (23)

Here symbol ◦ represents the Hadamard Product: for vectors
α and β have same length p,

γ = α ◦ β = [α1β1, α2β2, · · · , αpβp]T (24)

With (20), (21) and (22), the equation (3) is modified to yield:

V̇r = −D−1
r ĝr(α, Vl) (25)

where

ĝr(α, Vl) =gr(α, Vl) + (K1,r ◦ λr) ◦ (µr ◦ Vl,r)

=V −1
l,r {−Vl,r

N∑
k=0

VkBrk cos (αr − αk)−QD,r

+ (K1,r ◦ λr ◦ µr) ◦ (Vl,r ◦ Vl,r)} (26)

with r = m+ 1,m+ 2, · · · ,m+ p.
To better understand how this model works, one may

consider λ as “motor stalling indicator”, µ as “motor operating
indicator” and T as motor’s armature temperature. It should be
pointed out that the variable T is not designed to have a pure
physical meaning. Instead, the variable T is implemented with
motor operating indicator µ to mimic the inverse time-over
current characteristic, as part of the motor’s thermal protection.

When motor is operating normally, λ = 0, µ = 1 and T ≈
Tamb. Thus (K1 ◦ λ) ◦ (µ ◦ Vlp) = 0 and (25) reduces to (3).
If a to-ground fault swiftly pulls down the local voltage under
a certain threshold, λ increases from 0 to 1, while µ remains
unchanged. Then the motor stalls (refer to Table I) and draws
a large amount of reactive power from the grid, i.e. (25) acts.
During the motor stalling, the armature temperature T starts
to increase and so does K3 ◦ T , the term that dominates the
behaviour of motor operating indicator µ. After some time (21)
is triggered, which drives µ falling from 1 to 0, i.e. motor trips.
Readers may refer to Table I for more information regarding
the roles of the different status of indicator variables.

In Table I, the motor tripping temperature Ttrip is not
explicitly shown in (22). Its value lies in the region

K3

KT
+ Tc < Ttrip <

K3

KT
+ Tc +

K2

KT
(27)

since Ttrip is reached when motor is stalling, i.e. λ = 1 and
µ = 1. If the motor stalls forever, then Tfinal = K3

KT
+Tc+

K2

KT
.

Therefore Ttrip < K3

KT
+ Tc + K2

KT
.



1949-3053 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2548082, IEEE
Transactions on Smart Grid

5

TABLE I
VALUE OF PARAMETERS DURING DIFFERENT STAGES

λ µ T
Operating Mode 0 1 Tamb
Transition Mode 0 → 1 1 T ↑
Stalling Mode 1 1 T → Ttrip

Transition Mode 1 1 → 0 T ↑
Tripping Mode 1 0 N/A

As part of a Lyapunov-based approach to power system
cascading failure, the model presented in (20)∼ (22) maintains
a structure that allows it to be written in the form of

ẋ = Aind∇xΦind(x) (28)

Here the state vector x = [ω, α, Vl, λ, µ, T ]T , and a negative
semi-definite constant matrix Aind is constructed as:

Aind =


A 0 0 0
0 −D−1

λ 0 0
0 0 −D−1

µ 0
0 0 0 −D−1

T

 (29)

In particular, the energy-like Lyapunov function of motor
stalling/thermal tripping model is constructed as

Φind(x) =
1

2
ωTg Mgωg −

1

2

N∑
i=0

N∑
k=0

BikViVk cos(αi − αk)

+
N∑

k=m+1

QD,kln(Vk) + αTP 0 +KT
2 (T ◦ λ)

+
1

2
(K1 ◦ λ ◦ µ)T (Vl ◦ Vl) +KT

3 (T ◦ µ)−KT
λ λ

+RTλ Θ̂ (λ) + RTµΘ (µ)− 1

2
KT
T (T ◦ T ) +KT

T (Tc ◦ T )

(30)

Note that (30) satisfies (28), and one may determine
∇xΦind(x) with (1), (2), (25) and (20) ∼ (22).

IV. CASE STUDY

In this section, IEEE 57 bus system is used to validate the
feasibility of our model. The test case represents a simple
approximation of the American Electric Power system in the
Midwest. As shown in Figure 3, the system has 7 generators
located outbound and 42 loads inbound. In particular, each
load bus can be considered as an aggregation of a distribution
network. For this study case, the aggregated dynamic perfor-
mance motor models are installed on bus 38, 47, 50 and 53
respectively. As mentioned in the beginning of this paper, this
model is developed to study the impact of FIDVR cascading
from the distribution system through the transmission system.
The simulation is carried out in MATLAB 2014b, and the full
parameters for this simulation is provided in Table II.

If we illustrate the test set according to the three states of
motor load:

1) Motor Operates Normally: When t = 0, the system was
operating at steady state with all motor loads connected.

2) Motor Stall: Then at t = 1.1s, a resistor shunt fault
Rfault ≈ 0.08p.u. to ground was applied at bus 37 for

Fig. 3. Test Case on IEEE 57 Bus System: red triangle represents bus 37 has
to-ground fault, yellow circles represent bus 38, 47 and 50 have motor stalled
and tripped; green star represents bus 53 with motor not stalled
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Fig. 4. Motor stalled consecutively when fault happens at t = 1.1s

6 cycles (around 0.1 seconds) and then cleared. From
Figure 4, one may see the motor loads at bus 38, 47 and
50 stalled sequentially soon after the fault occurred (i.e.
λ changed from 0 to 1, as displayed in Table I). The
stalled motor loads then induced large current, which
led motor armature temperature T go up, as shown
in Figure 5c. On the other hand, because of the long
electric distance, the voltage of bus 53 changed little.
The installed motor load still operates as usual (refer to
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(a) Selected Voltage Plot (Bus 38, 47, 50, 53)
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(b) Selected Indicator Plot (µ38, µ47,µ50)
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Fig. 5. Tested Model on IEEE 57 Bus System

Figure 5a) .
3) Motor Trip: After 3∼7 seconds, thermal protection acted

( (22) and (21) together) to trip motor loads. µ, treated
as “motor operating indicator”, fell from 1 to 0 when
temperature T reached a pre-set threshold. Since each
motor load has a different pre-set Ttrip, they were
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Fig. 6. Φind(x) versus time t: energy goes down sharply at t=5.4s, 5.9s,
8.5s, from 8.9, 8.2 and 7.5, which corresponds to the tripping of motor loads
on Bus 38, 47, 50.

tripped at different time, as shown in Figure 5b.
As discussed previously, the variable T is not designed to

possess a pure physical meaning. In this simulation, the motor
armature temperature T still increases after disconnection of
motor loads, as shown in Figure 5c. Therefore in Table I the
“N/A” is used for T when motor trips from the grid. One may
neglect the T trace after the motor is tripped off from the grid,
since it will finally converge to a value.

Figure 5b shows the time for three motor loads on different
bus to disconnect: 5.4s, 5.9s and 8.5s. If one plot the model
associated energy-like Lyapunov function versus time, then the
exact swift transition of the energy curve can be observed at
the same time stamps. After these stepping-down changes, the
energy value gradually converged and no more failure should
be expected.

The plot in Figure 6 shows that the energy value is around
12 p.u. immediately after the fault, then quickly decreases. It
stepped down at 5.4s, 5.9s and 8.5s with the energy 8.9, 8.2
and 7.5 p.u. respectively.

V. THE ROLE OF RELAY ACTION IN SETTING ENERGY
THRESHOLDS

One of the key features associated with our smoothed model
of motor stalling and relay actions is the fact that the dynamics
associated with indicator variable transition inherently intro-
duce a new class of unstable equilibrium points. In particular,
consider the behaviour displayed in Figure 2. In the vicinity
unity, as the value of operational value begins to move towards
zero (the “failed” state), the energy term associated with the
indicator variable encounters a sharp local maximum. While
such a one-dimensional picture oversimplifies the true high-
dimensional behavior, we claim that these dynamics typically
create a type-1 unstable equilibrium point (u.e.p.), at which the
Hessian of the energy function (i.e. ∇2Φ(x)) has one negative
eigenvalue, and all other eigenvalues positive. Intuitively, the
one-dimensional plot of Figure 2 illustrates the behavior of the
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Fig. 7. 3D Plot of Φind(x) with λ50 and µ50 two planar coordinate cut (λ50 ≈ −0.02 ∼ 0.10 and µ50 ≈ 0.90 ∼ 1.02 ).

energy along the direction of the eigenvector associated with
the one negative eigenvalue of the Hessian, which displays
a sharp local maximum. Along all other eigen-directions, the
energy is at a local minimum, consistent with the type-one
u.e.p. It is the energy threshold at this ”failure threshold”
u.e.p. that must be overcome for this system to transition from
normal operation, to the locally stable equilibrium of a stalled
state; then another energy threshold at another u.e.p. must be
overcome to further transition from the stalled state to the
disconnect state. A cascading failure then represents a chain
of such transitions.

The behavior of the energy function, which is projected onto
the two coordinates λ50 and µ50, is presented in Figure 7. A
comparatively small measure for λ50 (-0.02 ∼ 0.10) and µ50

(0.90 ∼ 1.02) is selected to better capture system’s behavior. In
this plot, at (λ50 ≈ 0, µ50 ≈ 1) exists a local stable equilibrium
point with energy 8.576, representing the motor operating
normally. There are type-1 u.e.p.s located at (0, 0.95) and
(0.03, 0.99) respectively. In addition we have another type-2
u.e.p. with the highest energy value at (0.02, 0.96). The energy
value of u.e.p. (0, 0.95) is lower than the u.e.p. (0.03, 0.99),
which means when a system is disturbed, it may likely flow
a trajectory that will drive λ = 0 to λ = 1.

Note that λ50 ≈ 1, µ50 ≈ 1 may be or not be a stable
equilibrium, because of tripping temperature T50,trip’s impact.
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Fig. 8. 2D Plot for Φind(x) with λ50 ≈ 0.88 ∼ 1.02 and µ50 ≈ −0.02 ∼
1.02

Here we select a case that λ50 = 1, µ50 = 1 not representing a
stable equilibrium state, as illustrated in Figure 8. As depicted
in the plot, the system state at λ50 ≈ 1, µ50 ≈ 1 is no longer
a s.e.p., and the system state will finally converge to λ50 ≈ 1,
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µ50 ≈ 0, i.e. motor trip.

VI. CONCLUSION AND FUTURE WORK

Understanding of the interplay between the individual com-
ponent characteristic and system-wide phenomena it can in-
duce is essential for smart grid monitoring and planning.
In this work, we developed a new dynamic performance
model of motor stalling and FIDVR phenomenon, aimed for
potential applications within smart grid cascading analysis.
Moreover, this model has a special structure that is closely
related to the gradient of a scalar, energy-like function. With
the incorporation of switching functions to mimic thermal
relay action, it is easy to find the energy threshold type-1
u.e.p.s. We performed a testing case on IEEE 57 bus system
to demonstrate the model’s feasibility, and briefly illustrated
the characteristics of the associated energy function.

For future work, this model can be further developed to
incorporate power system dynamic control, to measure and
mitigate the possibility of power system cascading failure.
Moreover, it could be further tested with the commercial
software to demonstrate its potential for practical application
with smart control technology.

APPENDIX
PARAMETERS USED IN SECTION IV

The data of IEEE 57 standard system may be obtained from
many sources. This work uses the case data from MATPower,
an open-source software designed for research in transmission
network analysis. For other important parameters please refer
to Table II below:

TABLE II
VALUE OF PARAMETERS USED IN SECTION IV

2nd Order Generator Model
Mg 0.0531 Dg 0.05

Time Constants
Dl 0.005 Dv 0.4

Dλ, Dµ 0.01 DT 0.001
Other Constants

K1 0.4 K2 -0.001
K3 0.005 Tc -55
KT 5 ×10−5 Kλ 0.22
Rµ 0.4 ∼ 0.43 Rλ 0.1
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