Three-valued digital systems

D. I. Porat, M.Sc., Ph.D.

Abstract

A survey is presented of the developments in algebras and techniques for the realisation of 3-valued switching
functions. Digital arithmetic, ternary codes, composition algebras, minimisation, circuits and sequential
circuit design are discussed. The feasibility of 3-valued digital systems is demonstrated.

1 Introduction

Digital equipment design is based on the binary-
number system because of the availability, low cost and
reliability of binary switching and storage elements. Higher
radix systems are implemented by use of binary coding; how-
ever, at least one ternary computer! has been in operation
which incorporates 3-valued elements.

A system which is based on a radix higher than 2 and built
from multivalued elements offers the advantages of: (a) higher
speed of serial and some serial-parallel arithmetical operations
because of the smaller number of digits required for a given
accuracy (it is assumed that ternary-logic elements can operate
at a speed approaching that of the corresponding binary-logic

. elements) (b) better utilisation of transmission channels -be-
cause of the higher information content carried by each line?
(¢) more efficient error detection and correction codes® (d)
potentially higher density of information storage.

A set of n nodes of a kvalued gate network can assume k"
states. Fewer terminals are thus required in a multivalued
system to represent a given number of states, as compared
with binary systems. Circuits for operators and compositions
of k-valued algebras are more complex than those required to
realise 2-valued switching functions. Integrated circuits are
capable of performing complex functions economically, while
the number of their terminals is rather limited. It appears
reasonable to investigate properties of 3-valued systems as a
first step towards exploration. of problems involved in the
design of multivalued systems.

This paper surveys developments in the ternary field and
also includes material not published elsewhere before.4

2 Ternary digital arithmetic

Algorithms were established* for arithmetic operations
in three representations:
(a) In signed magnitude

n—1

N=3y,+ 33 . . . ... . . .M

I1=-—m

where y, = 0 for positive, and 2 for negative numbers.
The ternary number N has (m + n) digits, since i ranges
from —mto —1,and fromOto(n — 1). Also 0 < 3, < 2.

(b) In signed complement of —3

N =3"0 + 33, N positive . . (2a)
i=—m
n—1

N =732+ Y 3(y;), +37™ Nnegative. . (2b)
i=—m

where (¥;), symbolises the 2’s complement of the ternary
(¢) In signed complement —2
n—|
N =30+ 3 3,

=-—m

N positive . . (3a)
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a—l ___
N =372+ X 3(y;),

i=—m

N negative . . (3b)

The complement of 2 of a ternary number,

Ny=3—-N-3"m™ _ _ . . . . . . @
Similarly, the complement of 2,
Ny=3—-N=N,+3" . . . . . . (5

complementation of 2 is easily implemented through ternary

inversion: 0<>2, 1«1, while complementation of 3 is

derived from the interrelation of N; and N,, eqn. 5.

The rules for shifting (on multiplication or division) are
analogous to the corresponding rules for binary or b.c.d.
arithmetic.

The above conventions facilitated developing algorithms
for arithmetic operations. Rules were established governing
addition, subtraction, multiplication and division in the three
representations of ternary numbers.* The availability of three
choices at each step in the algorithm was sometimes found to
simplify such algorithms.

3 Ternary codes

31 Ternary-coded decimal t.c.d.

A minimum of three ternary digits is required to code
ten decimal digits. The 33 possible states of three variables in
a 3-valued system result in 27!/(27 — 10)! ~ 3-1 x10!2
t.c.d. codes. Not all of these codes are fundamentally different.
Some exhibit useful properties for coded arithmetic, encoding
techniques, error detection, minimum power consumption,
etc.

The consistently weighted 9-3-1 code is shown in Table 1.
A decimal digit X is given by the sum of the weights, each
multiplied by its corresponding ternary coefficient X

X = 3ZX3 + 3le + 30Xl

The additive property of this code is useful for t.c.d. arith-
metic, since the sum of the representation of two digits equals
the representation of their sum, except when ‘carries’ are
present.

Table 1
9-3~1-CODE
9 3 1

X3 X2 Xy
0 0 0 0
1 0 0 1
2 0 0 2
3 0 | 0
4 0 1 1
5 0 1 2
6 0 2 0
7 0 2 1
8 0 2 2
9 I 0 0

A number of conditions have to be fulfilled for constructing
t.c.d. codes, and designating the least-significant weight by
w;, the next w,, and the most significant wj:

(@ Z w;> 92
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(b) one weight must be 1, irrespective whether the weights
are all positive or whether negative weights are included

(©) (wy + wy)2> (w3 — 1), to ensure that all successive
numbers can be represented by the code

(d) to enable 10’s complementation, Xw; = 10/2

(e) for 9 complementation, the sum must equal 9/2.

Table 2 shows all the possible positive integral weights for
the ternary coding of decimal digits.

Table 2

T.C.D. CODES WITH POSITIVE INTEGRAL WEIGHTS
wy | wy | wy . wy | w2 | w,
3 |11 10s complementing 71211
4 (1|1 3131
S|{1]1 41311
2 | 2| 1 10s complementing 513(1
31271 61311
4 121 71311
512|1 81311
6121 ‘natural’ 9 | 3 | 1

To obtain codes which are capable of complementation in
the diminished-radix representation, one has to introduce half-
integer weights [see condition (e), above]. Codes with weights
2-2—4 and 24-1-1 are 9 complementing.

Another way of looking at such codes is to consider the
weight as being integral, but for a binary, rather than a
ternary variable. For example, the weight of the l.s.d. in the
2-2-4 code is made ‘1°, and the truth values in the respective
column are thus 0 or 1. A coded decimal realisation employ-
ing mixed elements (binary and ternary) could be more
economical than either b.c.d. or t.c.d. Consider the weights
3,-2,-1,, where the subscripts indicate the radix used; 7 for
ternary and b for binary. This and the 9,-3,-1, code offer the
advantage of decimal coding with three digits only and in-
formation storing, by use of ternary with the less expensive
binary-memory elements.

Asinall b.c.d. or t.c.d. codes, corrections have to be applied
in arithmetic operations whenever a ‘carry’ or a ‘borrow’
occurs, or when the weights do not represent a geometric
progression. When the digits representing the sum (difference)
of a 9-3-1 coded t.c.d. are in the same decade as the digits
of the augend and addend (minuend and subtrahend), no
correction is required, since a ‘carry’ (‘borrow’) from one
ternary digit to the next finds the conditions 3//3~! = 3. For
X4+ Y =2Z2> 104, (122); = (17),4 has to be added to the
uncorrected sum in order to obtain the correct Z.

The sum of two ternary-coded decimals in the 9-3-1 code
does not generate a ‘carry’, showing an advantage over all
BCDcodes.

The mixed radix 4,~2,~1, code of Table 3 requires a simple
correction algorithm. For Z < (201);, no correction is
required. When Z > (201); = 9o, add 002 to the inter-
mediate sum to obtain the correct result. This rule is simpler
than many corresponding rules for b.c.d. codes.

Table 3
4,-2,-1, CODED DECIMAL
L
X3 X2 X1
0 0 0 0
1 0 0 1
2 0 1 0
3 0 | l
4 | 0 0
5 1 0 |
6 | | 0
7 1 | |
8 2 0 0
9 2 0 |

A weighted 9-3-1 code® with positve and negative levels, as
in Table 4, exhibits several advantages in that: (a) negative
numbers have the same code as their positive counterparts,
with signs reversed. Thus the usual operation of complementa-
tion is replaced by the simpler operation of sign change.
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Subtraction involves a ternary inversion of all digits followed
by addition (b) results from arithmetic operations are obtained
with proper sign and magnitude (c) the sign of a number is
casily determined by sensing the sign of each digit, starting

Lozl
with the most significant, since 3/ > 3] 3¢ (d) the ternary-
0

coded decimal includes numbers —9-+9, utilising 19 out of
27 (709;) possible states. The corresponding percentage
utilisations for the ternary 9-3-1 code employing positive
coefficients only and the binary 8-4-2-1 code are 37 and
62-59%, respectively (e) the correction algorithm for decimal
addition and subtraction is simple.

Truth tables for sum, carry and product modulo3 are
shown in Table 5.

Table 5
TRUTH TABLES

Table 4

9-3-1 CODE WITH POSITIVE
AND NEGATIVE LEVELS

5 3 1 Summod3 | =1 0 +1

=1 | +1 -1 0
X2 0| -1 041
+1 0 +1

Carrymod3 | —1 0 +1

—_,—,—_ O OO — . OO

OO~~~ O~ — O~ — O —=—O

-1
+1

Product mod3 | —1 0 +1

~—1 ] +1
0
+1 | =1

+
—_——,, e — OO0 OO0 OO0O0O

I
CO—-——
|
coco
=3

3.2 Mixed-radix ‘excess’ codes
Codes analogous to the b.c.d. excess-3 code can be

generated by use of mixed radixes. They exhibit some desirable
properties, such as simple correction algorithms for arith-
metic, inexpensive hardware realisation, and 9 complementa-
tion (ternary elements undergo 2 complementation and
binary elements 1 complementation). One example is the
excess-4 code derived from the 9,-3,~1, t.c.d. code.

For § < 10,y (no overflow) subtract (011);; for S> 10,
(overflow) add (011);.

The excess-1 code is derived from the 4,-2,~1, t.c.d. code
and the correction requires subtraction or addition of 001.

3.3 Error checking

Parity checking by means of linear congruences®
applies to the ternary case. For an ‘even’-digit-parity check of
a ternary number having » digits,

p=(x+x +...x,_;)mod3
The ‘odd’-digit-parity check can be defined as
“p=(x+x +...x,_;.+2) mod3
The number-parity check is defined as
N=pmodb b#3

Parity checks for arithmetic operations are based on the
arithmetical invariance of these checks. In the ‘diminished-

‘base’ numerical check of ternary numbers, b = (r — 1) = 2,

where r is the radix employed in the arithmetic. Conventional
binary circuits can thus be used for their implementation. The
‘augmented-base’ check b = (r + 1) offers no advantages
over the diminished-base check for ternary systems. However,
it provides an easy check for arithmetic operations in binary
representation, the diminished-base check being meaningless
for binary systems since N mod1 = 0. Ternary circuits are
thus required to implement the augmented-base number check
of binary systems.
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Considering forbidden combination checks, it has been
shown? that t.c.d. codes can be constructed having higher
probabilities of single-error detection than the best b.c.d.
codes available. '

Variable-weight codes, unit-distance codes, ternary coding
and decoding techniques are treated in Reference 4.

4 Algebras
41 Introduction

A logic system admitting k (> 2) truth values will be
called a k-valued system. A function of m variables will be
referred to as an m-place function or m-place composition.
1-place functions will also be referred to as unary operators
or unary functions. ‘Functional completeness’ is the property
of a set of compositions which enables one to synthetise any
arbitrary switching function within a particular class. Berlin®
has shown that if a set of compositions realises all 2-place,
k-valued functions, then it also realises all m-place, k-valued
functions. The criteria for the functional completeness of
2-place functions can be found in References 7 and 8.

The ‘closure’ property allows interconnection of operators
which realise the operations of a particular algebra. That is,
under closure, every output level can be used as a valid input
level to another operator.

The great number of ternary compositions does not lead to
an easy choice of a basic set for synthesis. Criteria can be
established leading to a relatively efficient selection. The
physical realisation of the composition should be simple and
inexpensive, and the algebraic expressions should be amenable
to minimisation. Since there are 332 =19683 2-place ternary
compositions, it is useful to employ isomorphism for their
classification.” The importance of isomorphism is in the
preservation of the algebraic properties within an isomorphic
class. A composition which is isomorphic to another is also
isomorphic to all compositions within the class.

4.2 Composition algebras

Any set of functionally complete compositions can
serve as a basis for a composition algebra. An expansion
theorem is required, based on such a set, which relates a
function of (n + 1) variables to a function of n variables. This
makes possible the synthesis of any arbitrary switching
function in the particular class, using the available composi-
tions.

There are several algebras available for the design of ternary
switching functions. Two of: these, the Post!® and the ‘mod-
ular’'!:12 algebra have the advantages of similarity with
ordinary algebra. One algebra!? is based on a single composi-
tion; the ternary analogue of the Sheffer stroke function. There
exist 3744 3-valued Sheffer functions, each functionally com-
plete. The use of a single function for synthesis of networks
appears attractive at first sight. However, the corresponding
canonical forms are complex, and the expressions are difficult
to manipulate. Nor does there exist a simple circuit realising
any of these functions.

The 3-valued disjunction V, given by

S(xp,x0) = max (x(,x3) = x,Vx,,
and the cycling operator x’, given by

S(x) = x" =(x + 1) mod3
form a functionally complete set in the Post algebra. V is
easily realised with diode circuits. A 3-transistor circuit4
implements the operation x’.

A modular algebra has been shown to be functionally com-
plete if the modulus is a prime number.! Its operators are

(a) sum modulo 3:

S(x1,x3) = (x| + x5) mod3
and (b) product modulo3:

f(xy,x3) = (x1x3) mod3
EP; expansion theorem, using sum and product modulo3,
Sxpxa. oo x)=x,0[x OQ{2f0,x3...x,) D 2f1,x,...x,)
DU2x,. .. x D2 U, xy. . x)D (2, %5 ... x )}
@f(O0,x5...x,)
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Modular algebra should be efficient for digital arithmetic,
provided that an inexpensive realisation of the necessary
functions is found.

Lee and Chen!’ utilise the cycling operator, together with a
Tgate, for the synthesis of 3-valued networks. A T gate, per-
forming the function of the ‘conditioned disjunction’, is a
function of four variables in a 3-valued system:

' pifx=2
T(p,q,r;x) =4 q x=1
r x=0

Their expansion theorem is

f(p,q...5) =T{f(2,q9...9. f(l,q...5),f/0,q...9); p}

A 3-input ternary adder!® requires ten T gates, together with
five cycling operators.

The Tgate and the set of sum and product modulo3 are
functionally complete only if ternary constants are assumed
to be available. This poses no limitation in a practical circuit.

Shannon’s theory of symmetric binary switching functions
has been extended to ternary functions.!” The detection of
symmetric, ternary switching functions and their realisation
with threshold logic is discussed by Merrill.!8

Ternary threshold switching functions have been defined
and studied by Hanson!? and Merrill.2® Hanson’s synthesis
procedure uses two basic ternary operations: (a) the n-variable
threshold-like operation

F1OWEY x>t

i=1

xtxt ... x, = >
172 " —1 lle < —t
i=

0 otherwise

and (b) the ternary inversion 1 <— —1 and 0 <> 0. He proves
that these two operations constitute a functionally complete
set. For more efficient synthesis, he introduces a set of build-
ing-block operations, constructed from the two basic opera-
tions and ternary constants.

A design for a signed ternary adder based on his method
requires two ternary parametrons, while a ternary comparator
is realised with one parametron. The author does not show
how to select building blocks which would yield minimum
expressions or would simplify the synthesis procedure.

Merrill2® defines ternary, threshold Sheffer functions,
establishes a minimal decomposition theorem and presents
synthesis procedures which yield efficient threshold-network
realisations for modulo3 addition of 3-valued variables,
parallel addition and subtraction in the weighted ternary code,
and modulo m addition in the weighted ternary code. A general
solution is presentea with a tight upper bound on the number
of ternary threshold devices which is required for functions
of each class.

4.3 Device-oriented algebras

The discussion has so far assumed the formulation of
an algebra as a first step, followed next by its hardware imple-
mentation. The large number of ternary compositions
suggests that these steps could be reversed. First, one could
look for physical devices which realise 3-valued compositions,
and a set of such compositions could then be tested for
‘functional completeness’. Finally, an algebra could be
developed around the available devices. Several such attempts
are found in the literature.

Kooi and Weaver?! describe a ternary-logic device based on
the nonlinear magneto-conductivity effect in bismuth. A
suitable expansion theorem is found in Reference 16.

Lowenschuss!2 shows how a pair of 2-collector transistors
can be connected to yield a functionally complete set. Fre-
quency-memory devices?? and parametrons?*2¢ are also
shown to implement multivalued logic. These and other
devices listed in the literature'é do not offer as many advan-
tages as conventional semiconductor switching circuits.

A different approach is taken by Pugh,2’ who decomposes
3-valued functions into two Boolean functions. He then uses
Boolean algebra, modified by necessary constraints, to
synthetise 3-valued switching functions from two 2-valued
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functions; one utilising positive and the other negative levels
to represent the binary ‘true’.

4.4 Synthesis with operations & V, j, and hy

The 2-place compositions which are easiest to imple-
ment are the 3-valued conjunction &:

f(xl’ X,) = min (xl’x2) = X &x,
and the 3-valued disjunction V:
S(x15 x2) = max (x, X)) = x, Vx,

For k = 2, these reduce to the Boolean AND and oOR functions,
respectively. The 3-valued composition & is commutative,
associative, idempotent and has a ‘zero’ at truth value 0 and a
‘unit’ at truth value 2. Similar properties are exhibited by V,
except for reversal of the location of ‘zero’ and ‘unit’. Their
properties make them amenable to manipulation and mini-
misation, and both are easily realised with simple semi-
conductor switching circuits.

It is not surprising, therefore, that most progress in physical
realisation of 3-valued functions was achieved by use of these
compositions.* & and ¥ above are not functionally complete.
Adding the set of ji, or #,, operators'# ensures completeness.
On the assumption that monotonic functions are easier to
implement than nonmonotonic, one may select a set of unary
operators containing some j, and some h;, operators.26

Overall efficiency can' be improved by use of redundant
operators.* Nonminimal sets are, of course, used liberally in
the design of Boolean functions.

The unary operators are defined!? by

=0,x%k
jk(x){

=2, x=k
=2, x%k
hk(X){ —0x=k
For brevity we shall use the notation
Jox) =x%  jix) =x',  jylx) = x?
ho(x) = x'2, h(x) = x02, hy(x) = xO!

Because of their practical importance, we shall devote more
attention to synthesis procedures using operations &, V, j,
and A;. The rules given below result from the definitions of
the operators and can best be proved by truth tables.

Conjunctions and disjunctions of variables with constants:

x&0=0 xV0=x

x&1=x12&1 xV1 = x12p]

x & 2 = x (‘unit’ at truth  x V.2 = 2 (‘zero’ at truth value 2)
value 2)

Variable x:

x & x = x (idempotent) xVx = x (idempotent)

x&x0=0 xVx0 = x02p|

x&x' =x! &1 xVx! = x2

x & xt=x? xVx?=x

x=x2&2Vx' & IVx* &0 = x2Vx! & |
Relations between h;, and j, operators:

Jx) = x" h(x)=jx) =% = x

where r # s # 1, o< rs, 12
=x" r=s
x' & x5 = x’S
=0 r#s
v =x" r=gs
XVxs = xVs
=x" rzs

Unary operation on operators:
Jox® = j1(X)Vjp(x) = ho(x) = x'?
Jo(xY) = jo(XIWVjp(x) = hy(x) = x02
Jo(X®) = jo(X)Vj (%) = hy(x) = x0!
Jix) =00 i 2
SH(x) =x,0< i< 2
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A ‘minterm’ is a conjunction involving all the.variables of a
ternary switching function (t.s.f.). Similarly, a ‘maxterm’ is a
disjunction involving all the variables of a t.s.f. Any term of
an nvariable function, expressed by (» — 1i) variables,
represents 3’ minterms or maxterms, where 0 < i << (n — 1).

A lower case m will be used to identify a minterm, and a
capital M to indicate maxterm. A subscript is attached to each
m as follows: write down each term in the same order of
variables. The superscripts, read from left to right, form a
ternary number. Use the decimal equivalent of the ternary
number thus obtained as the identifying subscript of m.
Subscripts ' for maxterms are obtained from the decimal
equivalent of the ternary number, formed by the subscripts of
the A, operators used in experessing the relevant terms. This
convention facilitates the inversion of functions, the change
of canonical forms and other operations. Table 6 shows m;,
and M;, the: minterms and maxterms of a ternary function of
two variables.

Note that subscripts for m; and M, are identical in every
row. Thus, for inversion, one has the useful relation m; = M,.
Expansions in the disjunctive- and conjunctive-normal forms
are

f(x,...x,,)=[2m,-] V[E(l&mj)] A ()
fl@) =2 f@)=1
f(x,.x,,)=[HM,]&[H(1VMJ)] . . . (7)
fla) =0 f(g;) =1
Table 6

MINTERMS /m; AND MAXTERMS M; OF A 2-PLACE FUNCTION

x y Minterms iof m; Maxterms iof M;
00 x0y0 0 x12Vy12 = ho(x)Vho(y) 0
01 x0y1 | x12Vy02 = ho(x) Vhi(y) 1
02 x0y2 2 x12V)0t = ho(x) Vha(y) 2
10 x1y0 3 x02Vy12 = hy(x)Vho(y) 3
11 x1yl 4 x02py02 = hy(x)Vhi(y) 4
2 x1y2 S x02Vy01 = hy(x)Vha(y) S
20 x2y0 6 X0 VY12 = hy(x) Vho(y) 6
21 x2yl 7 x01VhO2 = hy(x)Vhi(y) 7
22 x2y2 '8 x01Vy01 = hy(x) Vha(y) 8

De Morgan’s theorem can be easily extended to 3-valued
functions. Thus the inverse of a function (as in eqn. 6) is
obtained by changing all Z to Il and all m; to M,. Alter-
natively, eqn. 6 can be written as a disjunction of terms for
which the function is equal to 0 or 1. Corresponding rules
apply for the inversion of an expression given in the other
canonical form. Changing from one canonical form to the
other is simple, recognising that eqns. 6 and 7 represent
identical functions.

Design examples are found in Reference 4 for (a) a serial
full adder using half adder and carry circuits () a 3-input

- serial adder (c) a ternary comparator, and a number of other

circuits including code translation and mixed radixes (binary
with ternary). These circuits are comparable in cost with
binary circuits which perform similar functions.

5 Minimisation
The minimisation of a ternary switching function can
be effected in three ways.

(a) the manipulation of algebraic expressions; as in:Boolean
algebra, simplification by this method requires experience

(b) the tabular method

(¢) the map method.

5.1 ‘“Tabular method26: 27
“The function ‘is-expressed as a disjunction of. g.and
|.& hterms,

Sxp Xy, x,) =g x . x)V E&h(x ;XL x;)

where.the giterms include minterms only for which f(x,, . . .
x,) =2, while the A terms include '‘minterms for which the
function has the value 1. A systematic search-is then conducted
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to find ‘essential’ and other ‘prime implicants’ yielding the
most economical configuration. In the binary method, one
organises the systematic search for prime implicants by
repeated use of a relation of the form

x&(yVy) =x

The ternary equivalent to this is
X&) =x0<Li<2

Also, the expression 2 & x2V'1 & x'V0 & x0) is identically
equal to x.

All Atype implicants can be considered ‘don’t care’ condi-
tions for gtype implicants, since x'V'1 & x! = xi.

The method is suitable for computer implementation. The
set of unary operators chosen for functional completeness
determines details of the procedure. Use of redundant
compositions can result in considerable economies;* for
example,

032 xLx0x2 VxOxlo2 Mkl 2 — 01,012
x9x9x2V x4 xQx2 VaQuedx2 Vichxlx? = xQ1x9!x3

A tabular minimisation procedure for ternary switching
functions, including threshold gating functions, is due to
Merrill.28

5.2 Ternary maps4: 26

The map method is quick and easy but, unlike. the.

exhaustive tabular method, it does not indicate a definite
point of termination of the procedure. As a consequence, a
map may not ensure that a minimum expression has been
extracted. With a little practice, however, no difficulty should
be experienced in obtaining minimised expressions for 4-
variable functions. Simplified functions can be obtained by
the map method in both canonical forms.

Table 7 shows ternary maps for two and three variables. In
each square is entered the number of the minterm which
represents it.

Table 7

TERNARY MAPS

y z z z
—N— ——— ——
S Y1210 feopz) 2 1 0721 01210
2 |G® 262524 | 171615876 |2
x{ 1] s)af3 2322@\ 1413125431y
ol 2lt)o 2019@111092100
— N
x=2 x =1 x=0
a b

A function, not given in minterms, does not have to- be
expanded before plotting it on the map. The ‘missing’ variable
or variables are entered under all three superscripts. The pro-
cedure of obtaining prime implicants from the map is based

on ready recognition of-adjacencies. Each set of operators-

used in the description of ternary switching functions has its
own criteria for adjacencies. The outline below relates to a
system using the five unary operators* jy, ji, j,, h; and h,. A
minimum adjacency involves two minterms and occurs when
two terms differ in one variable only. The superscripts of the
latter must be 0 in one term and 1 or 2 in the other. This
situation allows the use of°an 4, or h,operator, e.g.

x2p120x2)020 = x2,01,0

a saving of one minterm (see Table 74). Adjacencies of three
terms make the corresponding literal vanish. A 3-term adja-
cency in a 3 X 3 map involves the three squares in a column
orinarow,e.g. X,(1,4,7) or £,,(6,7,8). Ina3 x 9 map, the
adjacencies are in rows, columns, or in squares occupying the
same relative positionasina 3 x 3submap,e.g. 2,,(3,12,21).
To extend the argument to a 4-variable (9 X 9) map, the map
is divided into three submaps, e.g. f(2, x, y, 2), (1, x, , z) and
f(0, x, y, z). Adjacencies are then recognised in the same way
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asina 3 x 9 map. In addition to that, each set of three squares
occupying the same relative positions in the submaps forms a
valid adjacency. For example, 13, 40 and 67 in a 4-variable
map is a 3-term adjacency. 4-, 6-, 9- etc. adjacencies of gtype

‘terms can be defined in a similar manner.

All 2 in the map can be considered ‘partial don’t care’
conditions for the purpose of mapping Atype adjacencies.
Thus, minterms %, 13, 14, 16, 17 in Table 8 comprise an
adjacency. We distinguish between a ‘partial’ and a ‘total
don’t care’ condition. The former occurs when a ‘2’ is utilised
as a ‘don’t care’ condition for mapping Atype adjacencies.
The ‘total don’t care’ condition, denoted by ‘—’, can be
utilised for the mapping of both types of adjacencies.

A special type of adjacency occurs when a row or a column
has an entry 210, as shown in Table 8. An adjacency of this
type makes the superscript- of the variable vanish, i.e. the
variable is used directly in the algebraic expression rather
than using the result of a unary function operating on the
variable. Three such terms in Table 8 are x%)0zVx%y20Vxy!22,
where the first term represents (m,, 1 & m,), the second
(mg, 1 & my) and the last (m,;, 1 & myy).

Table 8
ADJACENCIES
z z z
2 1 o2 1 o2 1 o
1 2 2 |2
2 1 | 0 11y
2 1 0 (0
e cand x=0 ~
6 .Devices and circuits
6.1 Combinational logic

A survey of physical (and chemical) phenomena which
are potentially useful for ternary-logic design is given in
Volume 1 of Reference 16, together with research results on
selected physical phenomena. These include the nonlinear
Hall effect,2! and a threshold switching device utilising the
saturable Hall effect and the constant-fluxoid principle.

A 2-aperture square-loop ferrite device is, according to the
authors of Reference 29, capable of generating more than
100 ternary 2-place functions. A pair of 2-collector transistors
can generate a set of functionally complete compositions'2 or
can be utilised in the realisation of all three j, operators.?

A critical evaluation of the devices mentioned above shows
that they cannot compete with transistor switches in speed,
simplicity, low power consumption, reliability or ease of
operation. Semiconductors were used by Hallworth and
Heath?® in the design of the cycling operator, ternary in-
vertor, j,operators and a modulo3 half-sum circuit. Porat*
showed the design of all the 27 unary operators of a 3-valued
function using transistors in their switching mode only. His
design showed - high tolerance to component and supply-

- voltage variations. A simple four-transistor circuit realising

five unary operators is shown in Fig. 1. [A single i.c. chip could
easily contain six unary operators (o, /|, /2, fig, #, and ;) and
could serve as a basic building block for the efficient realisation
of 3-valued combinational networks.] The transfer function of
the A, operator is shown in Fig. 2. Circuits which implement
other unary operators show similar sharp transfer character-

- istics. A ternary invertor and the cycling operator are shown

in Figs. 3 and 4, respectively. The importance of these
operators lies in the fact that they often serve as operations in
the expansion of functions.!%-1%:19 In addition, the ternary
invertor is indispensable in forming 3 and 2 complements,
which are necessary for the representation of negative ternary
numbers. Ternary invertors have been realised by use of non-
linear loads.* 3!
Circuits which implement the Tgate!S have also been
demonstrated.* 32
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6.2 Memory elements

The development of reliable 3-state memory elements
could considerably enhance storage density. Morris and
Alexander3? show a ternary-core switch which uses coincident
currents, and a ternary-core store. A superconductive ternary

+8V +?’V
P4 }
26804 $6800
+4Vo—e— +4Vo——1 >0, (X)
3:3kQ ] 33k 2
eakas | i
% ho (X)
-8v i
ol +8V +§]31v Ig X)
6800 26800
p—+4Vo——}
+4V hy (X)
3.3k0 ” 3-3kQ - Iy (X)
= 22k0$ =
-8V
Fig. 1

Realisation of five unary operators

Fig. 2

hyoperator

Horizontal scale: e, | major division = |V
Vertical scale: egy, 1 major division'= 1V

information-storage device and random-access cryogenic-
memory systems are discussed in Reference 16. Magnetic thin
films have been proposed as ternary-memory cells:4 16 three
stable states could be obtained by the superposition of two
thin films differing in their coercive force.

A ternary computer built at Moscow State University uses
two ferrites to achieve three stable states.! A ferrite core with
a winding of the ‘Fluxlok’ type requires large currents in the
orthogonal coil 3¢

The properties sought in active memory elements (tristable
flip—flops) merit a brief discussion, since they constitute the
basic building blocks for sequential-network design. The
availability of several algebras points to a greater variety of
tristable than binary flip—flops. For greater efficiency, more
than one algebra may be employed in the realisation of a
ternary system,3°

The input circuits to tristable flip-flops should exhibit
economical gating requirements in any arbitrary sequential
network application. Since the applications are not specified,
it appears reasonable to incorporate as many ‘don’t care’
conditions as possible in the truth table of the tristable. In
other words, if the level to one input is specified, the other
input(s) should preferably accept any of the three levels with-
out causing malfunction of the flip—flop. Such ‘don’t care’
conditions, when mapped in a ternary map, offer opportunities
for gate simplification through the availability of adjacencies.
The ‘don’t care’ condition discussed above will be denoted by
a dash ‘—’ in the map, signifying that any of the three levels
can be applied to the particular input. In addition to these
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3-state ‘don’t care’ conditions, there exist 2-state ‘don’t care’
conditions which are entered in a map or a table as (0, 1) or
(1, 2). These may also contribute to gate simplification, be-
cause of a greater flexibility in forming adjacencies in the

+8V

+4v

3-3kQd

Fig. 3
Ternary invertor
a Circuit
b Transfer function
Horizontal scale: ejn, | major division = 1V
Vertical scale: egy, 1 major division = 1V
+8Vv +8V
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a
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4
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Fig. 4
Cycling operator

a Circuit

b Transfer function .
Horizontal scale: ejn, | major division = |V
Vertical scale: eou, | major division = 1V
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presence of such terms. One thus strives to design tristables
exhibiting as many ‘—’, (0, 1) and (1, 2) terms as possible.

Porat* shows several tristable flip-flops which he utilises in
the design of ternary counters.

A tristable flip—flop can be obtained by cross-coupling two
ternary invertors. The addition of a delay results in a D tri-
stable, see Table 9. Q" is the state of the D tristable at ¢”, and
Qn+1 s its state at 1"+ as a result of the input d at ¢”.

Table 9

TRUTH TABLE OF THE 3-STATE D-TYPE FLIP-FLOP
on 0 1 2

Qn +1 01 2 01 2 01 2

d o1 2 01 2 01 2

Fig. 5 shows a 3-transistor tristable flip-flop.# Its three
inputs are (arbitrarily) denoted M-N-P, while the three out-
puts are Y, Y!, Y2, analogous to the binary Y and Y. In any

+6V +6V +6V
3300 3300 3309%
T 15k v2 15k v! -5k Y0
I00pF s | 1000F 100pF $ 10kQ
L o1 4 Sk T 2
4.7k0$ { 47k 47k0$
l = 500 pF i 500 pF (L 500pF
-6V I -6V I -6V I
M N P

Fig. 5
M-N-P 3-state flip-flop

a Circuit diagram
b Waveforms for Fig. Sa connected as a mod 3 counter

(i) Input

(ii) Output at Y2
(iii) Output at Y!
(iv) Output at YO0

state of the flip-flop, one transistor is n saturation while two
transistors are in cut off. Assume that the collector at the Y?
terminal is saturated (‘0’ sta ¢); then, Y° will be at a potential
corresponding to logic ‘2°, while Y! will be at logic ‘1°, due to
the potential drop across the diode string between Y° and Y2
(Zener diodes could serve this function equally well). A pulse
of an amplitude equivalent to logic ‘2’, applied to terminal N
will initiate regenerative action which will result in a new state,
with T, in conduction and the collectors of T,, and T,q at
logic ‘2’ and ‘I’, respectively. The tristable is now in state ‘2’.
All the possible state transitions as a result of the inputs are
shown in Table 10, where Q" and Q"*! refer to terminal Y2,
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Connecting the three input terminals together produces a
modulo 3 counter which is analogous to the binary T flip-flop.
Fig. 5b shows that, in any one state of the tristable, the outputs
are 120° apart.

Table 10

TRUTH TABLE OF THE 3-STATE FLIP-FLOP OF FIG. Sa
0n (at Y2) 0 1 2
Qn+l -0 1 2]0 1 2 0 1 2
M - 0 0|2@0,1)@OD|((M2 0 O
N ©,1)©1n 2(0 0 (1,2 0 0 -
P 0 (,2) 0|0 - o | @O 2O

Fig. 6 shows the circuit of the J-K-L 3-state flip-flop. The
similarity of its truth table (Table 11), with that of a binary
J-K flip-flop should be noted. It differs from the D and the

Table 11

TRUTH TABLE OF THE 3-STATE FLIP-FLOP OF FIG. 6
on 0 1 2
ort11 o 1 2 0o 1 2 0 1 2
M o o uuLy$yfo oLy - - -
N 0(,2 o0 - - - 0 (L2 0
P - - - |20 0 |(2) 0 O

M-N-P ‘types in that every output line can assume either
logic ‘0’ or logic ‘2’ but not logic ‘1°. The three states of the
flip-flop are defined according to which of the transistors is

- in the conducting state. Tn a sense, this flip-flop represents the

@
3
3
J 2
]
y2 v
o
y! { | :] <K 2.
j S
Y0 &
‘ 3
—Cj__l—{:)—“ 2
a
+6V
6808
3-3kQ
33kQ

y
500pF | 2.2k
L >

3 500pF
Hreset inhibit K

inhibit L g 2-2kQ
= b

inhibit J

Fig. 6
J-K-L 3-state flip—flop

a Logic diagram
Circuit diagram
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functions of a 3-state active memory cell in which each output
is followed by a different j, operator. The ‘inhibit’ terminals
require a positive input to inhibit a change of state of the
corresponding transistor. Modulo3 counters are thus easily

inhibit J
—y2 J y2
inhibit K
—v P Y! in
inhibit L
—vo Y0
a b
—y2 Cﬁ( J —y2 5_( .
«— Y Qi( K «— Y
Q—OV :(——OV
— Yo L cc — YO cc
c d
Fig.7

J-K-L 3-state flip—flop

a Logic symbol including ‘inhibit’

b Modulo3 counter in ascending sequence (0-1-2)
¢ Connected as J-K (binary) flip-flop

d Connected as T (binary) flip-flop

realised, as shown in Fig. 7b. The J-K-L flip-flop transforms
readily into a binary J-K or T flip-flop, Figs. 7¢ and 74,
respectively. A duodecimal counter was constructed,*
utilising three J-K-L flip-flops without feedback connections
or gates.

7 Sequential networks

Porat* constructed a variety of ternary counting
circuits using the 3-state flip-flops of Section 6.2. Ternary-
coded decimal ‘up-down’ counters were designed, and
comparisons were drawn between the gating efficiencies of
various ternary flip-flops. No difficulties were experienced in
mixing ternary and binary flip—flops. The latter combination
proved more efficient in realising coded-decimal counters than
the corresponding networks built from elements of one radix
only. In each case, one requires three ternary flip-flops, or a
combination of binary with ternary flip-flops, to code one
decade: Diode decoding of t.c.d.s requires fewer components
than that decoding of b.c.d.s; forbidden combinations are
efficiently represented, especially in mixed-radix counters
which have fewer redundant states.

Design procedures are closely analogous to the well known
binary techniques: (a) A table is drawn showing the states of
the memory elements at times ¢” and at ¢"*!, following the
application of a clock pulse. (b) The information contained in
the tables is transferred to maps. (¢) Excitation maps are
drawn with help of the truth tables of the memory elements
in use (see Section 6.2), to ensure that the desired states of
(Y;)**! are uniquely achieved as a result of the inputs derived
from the maps. (d) Gating expressions are obtained, after
simplification of the maps obtained in step (c).

The design of a ternary-error check-digit generator?
showed that state diagrams, equivalences and reduction of
state tables can be handled in the same manner as the binary
case.

8 Conclusions

The feasibility of 3-valued digital systems has been
demonstrated. More theoretical work in multivalued logic,
oriented towards synthesis of switching functions, is required.

Practical results have been obtained based on an algebra
using operations &, V, j, and A, utilising semiconductors in
their switching mode, and retaining the reliability and safety
margins typical of binary circuits. Efficiencies of combina-
tional and sequential networks (in terms of number of active
components) approach those of binary networks.

It appears that the problem of the most efficient algebra (in
terms of gating requirements) should be solved first. Any
composition(s) which are required for the implementation of
such an algebra could then be obtained in integratsd circuit
form, by the iteration of operations that may be more amen-
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able to semiconductor realisation than the original composi-
tion(s).

A multivalued gate can realise more complicated logic
functions than a 2-valued gate with the same number of in-
puts. It also requires fewer output lines because of the higher
information content available at each gate output. Thus, the
properties of integrated circuits and multivalued gates seem
well matched. A better understanding of multivalued algebras,
together with the potentialities of integrated circuits, in
implementing complex functions at low cost should stimulate
more work in multivalued logic.
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