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a b s t r a c t 

In this paper, model predictive control methodologies are developed to address two main 

issues which arise in electric power distribution systems, namely the congestion of the 

distribution lines and the balancing problem. Consumer energy demand is divided into 

an uncontrollable part, a controllable part that can be either stored in energy storage de- 

vices in order to be consumed at later times or shifted in time in the form of hourly 

consumption or a consumption that maintains a pattern. Demand – response strategies in- 

volve consumers actively in the balancing effort and are part of the MPC methodologies, 

which are formulated as Mixed Integer Quadratic Program optimization problems involving 

both continuous and binary variables. Finally, these new developments are tested on the 

IEEE European Low Voltage Test Feeder which highlights the performance of the proposed 

control schemes. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Model predictive control (MPC) is a popular control method that has been used extensively in the energy sector. This

method owes its popularity to its ability to handle multivariate processes and address state and input constraints explicitly

[1] . According to this method, current and future manipulated inputs are optimized based on the current state of the system

and the future predictions provided by a dynamic linear or nonlinear model of the system. The standard MPC problem

formulation minimizes a quadratic cost function, which penalizes both the control energy and the deviations of the process

state from their set-points [2] . 

In classic Automated Generation Control (AGC), units that provide the base load (e.g. fossil fuel-fired power plants) should

be in reserve for a possible shortage of energy to the grid [3] . This balancing problem is traditionally solved by a centrally

located entity, the so called Balance Responsible Entity (BRE), by activating or deactivating controlled reserves. This balanc-

ing problem is traditionally solved by a centrally located entity, the so called Balance Responsible Entity (BRE), by activating

or deactivating controlled reserves. This fully centralized control approach is limited by the large scale power networks that

spread over large geographic areas. On the other hand, the decentralized control philosophy leads into poor performance,

as it neglects interactions among the subsystems. To overcome these barriers, distributed control has been introduced. Ac-

cording to this philosophy, a number of controllers dedicated to different subsystems carry out their calculations locally, yet

they communicate in achieving the closed loop process objectives [4] . 
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Nomenclature 

AGC Automated Generation Control 

BRE Balance Responsible Entity 

BRP Balance Responsible Party 

CMPC Centralized Model Predictive Control 

CPP Critical peak Pricing 

DAM Day Ahead Market 

DMPC Distributed Model Predictive Control 

DR Demand Response 

DSO Distribution System Operator 

ESS Energy Storage Systems 

HP Hourly Pricing 

HVAC Heating Ventilation and Air Conditioning 

μCHP micro Combined Heat and Energy Power 

MPC Model Predictive Control 

PV Photovoltaic energy system 

RES Renewable Energy Sources 

TCL Thermostatically Controlled Loads 

LVTF Low Voltage Test Feeder 

Indexes 

k current time instant 

i specific BRP 

l time instant within the control horizon 

c specific consumer under BRP i 

j specific distribution line 

Parameters 

n L number of distribution lines 

n B number of BRPs 

n D number of nodes 

m i number of consumers under BRP i 

N p prediction horizon 

N c control horizon 

Constraints 

p min 
i 

lower limit of ṕ i 
p max 

i 
upper limit of ṕ i 

p max 
i, | A −B | maximum allowable difference between phases A and B 

p max 
i, | A −C | maximum allowable difference between phases A and C 

p max 
i, | B −C | maximum allowable difference between phases B and C 

f max vector of upper bounds on energy flows 

Variables 

p i total consumption 

p̄ i controllable consumption 

˜ p i uncontrollable consumption 

ṕ i consumption to/from the energy storage device 

e i energy stored in the storage device 

D i diagonal square matrix with the drain losses 

t i partial energy flow caused by BRP i 

R i matrix indicating the interconnections of BRP i 

f vector containing total energy flows through the distribution lines 

q bal,i balancing energy 

q spot,i energy bought at the DAM 

P̄ i matrix of uncontrollable consumptions for the full control horizon 

˜ P i matrix of controllable consumptions for the full control horizon 

ˆ P i matrix of shiftable consumptions of hourly duration for the full control horizon 
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� 

P i matrix of shiftable consumption maintaining a pattern for the full control horizon 

B i,c binary matrix for the hourly shiftable consumptions 

T d,c time duration of shiftable consumption having a particular pattern 

δi,c , 1 binary vector indicating the starting period of shiftable consumption having a particular pattern 

δi,c, j binary vector indicating the time instants the shiftable consumption will be consumed 

λ Lagrange multipliers associated with the coupling constraints 

Given consumptions 

ˆ p i shiftable consumption of hourly duration 

� 

p i shiftable consumption of a particular pattern 

The combination of distributed control philosophy with the advantages of MPC results in the so called distributed MPC

(DMPC), which is able to handle the control problem of large interconnected networks. Such a control approach has been

used in [3] and [5] where the AGC problem was solved by incorporating the iterative exchange of information between

the local subsystems. Also, in [6] distributed MPC is used to solve the balancing problem by actively controlling a portfolio

of fossil fuel fired power plants to cope with the fluctuations from the renewable energy plants, such as wind farms. A

limitation of these control strategies is that they involve only the production side of the distribution system. In a Smart

Grid implementation both producers and consumers are equipped with control capabilities that allow them to participate in

the balancing effort. The interaction between the power grid and consumers under power market regulations is known in

the literature as demand response (DR). A comprehensive survey on demand response and smart grids has been presented

in [7] . 

DR allows consumers to move or shift loads in time in order to meet the production side of the grid. In particular, ther-

mostatically controlled loads (TCLs) in buildings such as air conditioners, refrigerators and water heaters are well-suited to

load shifting in time by exploiting the large time constants of these devices as it is the case in [8] . In [9] the effects of DR on

distribution system under two mechanisms of dynamic pricing, namely Critical Peak Pricing (CPP) tariff and Hourly Pricing

(HP) were examined through numerical examples. In [10] a novel DR estimation framework for residential and commercial

buildings was presented where the shifting loads were the heating ventilation and air conditioning (HVAC) system along-

side additional TCLs. In [11] a predictive method to control power flows of Energy Storage Systems (ESS) and Photovoltaic

(PV) was proposed. In [12] a procedure for optimal battery sizing of smart home using convex programming was presented.

Plug-in electric vehicles may serve as DR consumption also. In [13] the coordinating charging of plug-in electric vehicles

in a distributed control manner was proposed. The decomposition of the original problem was achieved via dual decompo-

sition, where Lagrange multipliers were used in order for the dual function to be derived. Also, in [14] an optimal energy

management strategy was developed for a smart home, where the coupling among plug-in electric vehicle, renewable and

home battery was studied. 

The penetration of renewable energy sources (RES) in smart grids and the general uncertainty of electricity demand as

it is described in [15] and [16] have also led to overloads of the existing distribution network. Network constraints pose

limitations on the amount of power that can be transferred between two nodes of the network, so that in practice it may

not always be possible to fully meet conflicting interests. The consideration of these constraints on distribution grid is

referred to as congestion management [17] . After the deregulation of the energy market [18] , the markets have taken the

responsibility for congestion management of the grid instead of regulations. The above mentioned DR strategies fail to take

into consideration the conflicting interests among different Balance Responsible Parties (BRPs) or aggregators of the network

as they assume that at every time instant the full state of the system is known, but this is very unlikely to happen in real

conditions due to the competitive nature of the energy market. 

An approach on this direction can be found in [19] and [20] . In [20] ,particularly, the existing situation in energy market

is taken into account and is the starting point for the transition from the current situation of distribution grid to that of a

smart grid. The energy market taken into consideration was that of the Day Ahead Market (DAM) [21] , where the energy

demand for the next 24 h is bought by BRPs in advance. However, due to uncertainties in RES generation and consumer

energy demands, there are always differences between predicted energy demands and actual consumption. To deal with this

problem, BRPs can trade the so-called balancing energy with the Distribution System Operator (DSO), who is responsible for

maintaining the balance between production and consumption [22] . In that way, both successful congestion management

and the economic viability of the system are achieved. BRPs can additionally exploit flexible consumption to minimize the

difference between the energy they buy at the DAM and the energy which is actually consumed under their authority. The

work of Biegel et al. [20] considers energy storage as an option for consumers to participate in balancing effort s and present s

both centralized MPC and DMPC strategies for minimizing energy balancing costs of BRPs. 

This paper extends the DAM structure presented in [20] , by considering additional DR options for the consumers. In par-

ticular, we consider that part of the hourly energy load can be shifted in time. We also consider shifting of patterns that

need multiple time periods to be completed. Consideration of these options introduces binary variables to the formulation

of the MPC optimization problem, rendering our system a hybrid one, because of the simultaneously existence of continuous

dynamics and discrete events. While there has been extensive work over the last years on analysis and control of hybrid
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Fig. 1. Distribution of a customer energy consumption into uncontrollable consumption and three categories of controllable consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

systems, distributed MPC of hybrid systems is a research topic that has not received much attention [4] . In [23] and [24] dis-

tributed MPC for controlling micro Combined Heat and Energy Power ( μCHP) in network and household level respectively

were proposed. In [25] a distributed optimal control point of view applicable to a network of households with production

devices, but also demand side control was proposed, however in neither of them the energy market or the congestion prob-

lem of the distribution lines of the grid were taken into account. In this direction, the main contribution of this paper is the

presentation of an agent based DMPC control strategy incorporating binary decision variables to deal with both balancing

and congestion management of distribution grid by taking into consideration the energy market aspect and DR techniques.

The feasibility of the proposed algorithms as well as the its computational efficiency and scaling to real-life scenarios and

the possible substitution of the centralized control scheme by the distributed one are tested on the IEEE European Low

Voltage Test Feeder (IEEE ELVTF) [26] , consisting of fifty five consumers, under three different scenarios. The proposed con-

trol scheme should be considered as an upper or intermediate control layer in a hierarchical control configuration, which

computes the optimal steady state of the system under consideration. 

The structure of the rest of the paper is as follows; In Section 2 a brief description of the model under consideration is

given. Here, the reader is advised to refer to [20] for further information about the structure of the grid, the dynamics and

the constraints which govern the system. In Section 3 , two optimal DR strategies are developed and thoroughly described,

alongside the centralized and distributed MPC algorithms which were used to deal with both congestion management and

balancing problems. In Section 4 , different case studies and scenarios are presented in order to illustrate the performance

of the proposed MPC schemes. Finally, Section 5 contains the conclusions of this work. 

2. Problem formulation 

As mentioned in the introduction, the model described in [20] has been taken and properly adjusted in order to be

used in the IEEE ELVTF. This section presents the notation and a brief description of the basic components of the system

necessary for the rest of the paper and focuses on the model extension that take into account additional DR options. 

We assume a radial topology distribution grid comprising of n L distribution lines, n B BRPs, n D nodes and m i consumers

under the i th BRP. For the rest of the paper we use k to indicate the time instant and a sampling time of one (1) hour has

been considered. 

Consumers belonging to the i th BRP are characterized by hourly energy consumption (in kWh) which formulate a vector

p i = ( p i, 1 , . . . , p i, m i 
) ∈ R 

m i consisting of two parts namely: the controllable part ˜ p i ∈ R 

m i and the uncontrollable part p̄ i ∈ R 

m i .

The former one can be further divided into a consumption corresponding to the energy flow to/from the storage device

p̀ i ∈ R 

m i , a shiftable consumption of hourly duration denoted as ˆ p i ∈ R 

m i and a shiftable consumption which maintains a

particular pattern denoted as 
� 

p i ∈ R 

m i . Fig. 1 presents graphically the distribution of consumers’ consumption which used in

this paper. 

The total energy consumption of consumers under BRP- i at a given time period k is given by the summation of the

uncontrollable consumption and the three categories of controllable consumption: 

p i ( k ) = p̄ i ( k ) + 

˜ p i ( k ) = p̄ i ( k ) + p̀ i ( k ) + 

ˆ p i ( k ) + 

� 

p i ( k ) (1) 

The energy flows to/from the storage devices are subject to hourly energy constraints: 

p min 
i ≤ p̀ i ( k ) ≤ p max 

i (2) 

where, p min 
i 

and p max 
i 

∈ R 

m i are the lower and upper limits respectively on the energy transferred to/from the energy stor-

age devise during an hour. According to this notation, p̀ i (k ) < 0 means that the storage device is releasing energy, while

p̀ i (k ) > 0 means that the storage device is filling up with energy. Also, non-dispatchable producers can be included as

negative consumers. The dynamics of the stored energy vector e i = ( e i, 1 , . . . , e i, m i 
) ∈ R 

m i are described by the following

equation: 

e i ( k + 1 ) = D i e i ( k ) + p̀ i ( k ) (3) 
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where, D i ∈ R 

m i ×m i is diagonal square matrix containing the proportional drain losses of each energy storage. The storage

is subject to the following constraint: 

0 ≤ e i ( k ) ≤ e max 
i (4)

Every BRP contributes to the loading of the distribution lines. The partial flow caused by the i th BRP to the n L distribution

lines is denoted as t i ∈ R 

n L + . Accordingly, the relation that describes the partial flow caused by the BRP i is given by: 

H i ∗ t i ( k ) = R i ∗ p i ( k ) (5)

where, R i ∈ R 

n L ×m i is a matrix whose elements are given by: 

( R i ) mn = 

{
1 , i f consumer m is suplied through link n 

0 , otherwise 

and H i ∈ R 

n D ×n L is a matrix whose elements are given by: 

( H i ) mn = 

{ 

1 , i f f low n enters node m 

−1 , i f f low n lea v es node m 

0 , i f f low n is not connected to nodem 

Finally, the total flows f = ( f 1 , . . . , f n L ) ∈ R 

n L + are given by: 

f ( k ) = 

n B ∑ 

i =1 

t i ( k ) (6)

where, f j is the total energy flow through line j . The distribution line energy flows are subject to constraints: 

f ( k ) ≤ f max (7)

where, f max ∈ R 

n L + is the upper bound, defined by the upper hierarchically control layer in order to protect the distribution

system from excessive energy consumption. 

Each BRP buys energy through the DAM for each hour of the next day. This energy is denoted as q spot . If this energy does

not fit with the actual hourly consumption of the consumers the BRP must settle the difference with the DSO. The balancing

energy of BRP i at each time period k is given by: 

q bal,i ( k ) = 1 

T p i ( k ) − q spot,i ( k ) (8)

where 1 is a column vector of all ones multiplying the column vector of dimension m i containing the total power consump-

tions of all consumers belonging to BRP i . The balancing energy described by Eq. (8) , is usually disadvantageous for the BRP

due to the prices on trading balancing energy. This energy difference is paid by the BRP to the DSO one hour after it is

consumed and needs to be minimized. The standard quadratic form of this energy difference that will be used in the MPC

formulations can be written as follows: 

h i 

(
q bal,i ( k ) 

)
= 

∥∥1 

T p i ( k ) − q spot,i ( k ) 
∥∥2 

2 
(9)

In this paper we present two model predictive control (MPC) approaches, namely centralized MPC (CMPC) and distributed

MPC (DMPC), for optimally controlling the system by incorporating demand respond strategies. The MPC scheme is a widely

used and popular control configuration for industrial and process applications, and owes its popularity to the inherent ability

of the method to handle multivariate processes and to explicitly address state and input constraints [27] . The key concept of

MPC is that at each discrete time instant k, an optimization problem is formulated and solved with respect to current and

future manipulated variables over a control time horizon consisting of N c time periods. The formulation of the optimization

problem is based on the knowledge of the current state of the system and the prediction of its evolution over a finite predic-

tion time horizon consisting of N p time periods ( N c ≤ N p ), through the existence and application of a dynamic discrete-time

model of the system. Limitations on the input, state and/or output variables are added as mathematical constraints in the

formulation of the problem. The MPC methodology follows a receding horizon approach, i.e. only the first element of the

sequence of control actions is actually implemented. In the next time instant, the state of the system is sampled again and

the optimization problem is formulated and solved again, taking into account new available information. In standard MPC

the performance criterion is the deviation of the future controlled process variables from a reference trajectory. In Fig. 2 the

MPC control strategy is depicted. 

3. Demand response strategies and controller synthesis 

Our main concern in this work is to provide more flexibility to the consumers in order for them to participate more

actively in the balancing effort. For this purpose we developed two DR techniques which give the consumers the option to

move or shift energy loads in time. These options can be used either alone or in combination with using storing energy

devices. However, it should be noted that energy storage is not always feasible due to cost and/or space limitations. Addi-

tionally, storage of energy implies energy losses and maintenance cost. Using shiftable loads, consumers actually postpone

an energy demand and consume it at a later time by avoiding extra storage costs. In order to formulate the MPC problem

at each discrete time instant k we need to take a decision, we are introducing the following notation: 
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Fig. 2. The MPC control strategy. 

 

 

 

 

 

 

 

 

3.1. Uncontrollable consumption 

P̄ i ( k ) = m i 

N c +1 ︷ ︸︸ ︷ ⎧ ⎨ 

⎩ 

⎡ 

⎣ 

p̄ i, 1 ( k | k ) · · · p̄ i, 1 ( k + N c | k ) 
. . . 

. . . 
. . . 

p̄ i, m i 
( k | k ) · · · p̄ i, m i 

( k + N c | k ) 

⎤ 

⎦ = 

N c +1 ︷ ︸︸ ︷ [
p̄ i ( k | k ) . . . p̄ i ( k + N c | k ) 

]
, i = 1 , . . . , n B (10) 

The matrix P̄ i (k ) contains the uncontrollable consumptions for each consumer under BPP i for the current and the next

N c time periods which are assumed to be fully and precisely known. We use the notation p̄ i,c ( k + l| k ) , c = 1 , . . . , m i , l =
0 , . . . , N c to represent the uncontrollable consumption of consumer c under BPP i during period l after current time instant

k . p̄ i (k + l| k ) collects in a column vector uncontrollable consumptions of all consumers under BPP i during period l after

current time instant k. 

3.2. Controllable consumption 

P̀ i ( k ) = m i 

N c +1 ︷ ︸︸ ︷ ⎧ ⎨ 

⎩ 

⎡ 

⎣ 

p̀ i, 1 ( k | k ) · · · p̀ i, 1 ( k + N c | k ) 
. . . 

. . . 
. . . 

p̀ i, m i 
( k | k ) · · · p̀ i, m i 

( k + N c | k ) 

⎤ 

⎦ = 

[
p̀ i ( k | k ) . . . p̀ i ( k + N c | k ) 

]
, i = 1 , . . . , n B (11) 

Using analogous notation to the uncontrollable consumption, the matrix p̀ i (k ) contains the controllable consumptions,

which are unknown continuous variables restricted by Eqs. (2) –(4) , i.e.: 

e i ( k + l| k ) = D i e i ( k + l − 1 | k ) + p̀ i ( k + l| k ) , l = 1 , . . . , N c i = 1 , . . . , n B (12)

0 ≤ e i ( k + l| k ) ≤ e max 
i , l = 1 , . . . , N c i = 1 , . . . , n B (13)

p min 
i ≤ p̀ i ( k + l| k ) ≤ p max 

i , l = 1 , . . . , N c i = 1 , . . . , n B (14)

e ( k | k ) is the current vector for stored energy quantities under BRP i which is known. 
i 
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Fig. 3. Schematic representation of Demand response 1. Red line depicts the desired value of the consumption q spot , blue line is the original consumption 

and green line is the consumption after DR- 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Hourly shiftable consumption - Demand response 1 (DR1) 

In this strategy we assume that consumers have the ability to shift in time a certain amount of their hourly energy

needs. In addition, we assume that this load shifting is limited by the control horizon of the MPC controller and can happen

only forward in time. The following matrices are formed for each BRP i at time instant k: 

ˆ P i ( k ) = m i 

N c +1 ︷ ︸︸ ︷ ⎧ ⎨ 

⎩ 

⎡ 

⎣ 

ˆ p i, 1 ( k | k ) . . . ˆ p i, 1 ( k + N c | k ) × B i, 1 

. . . 
ˆ p i,m i 

( k | k ) . . . ˆ p i,m i 
( k + N c | k ) × B i,m i 

⎤ 

⎦ = 

[
ˆ p i ( k | k ) . . . ˆ p i ( k + N c | k ) 

]
, i = 1 , . . . , n B (15)

For every consumer under BRP- i , a square binary upper triangular matrix B i,c ∈ R 

N c +1 ×N c +1 , c = 1 , . . . , m i is introduced.

Therefore all elements of the main diagonal together with the elements above are binary decision variables, while all the

elements below the main diagonal are forced to zero. We further restrict the values of matrices B i, j by the following in-

equality, which requires only one element of each row to take the value of 1, while all other elements are 0: 

N c ∑ 

j=0 

B i,c ( l, j ) = 1 , l = 0 , . . . , N c , c = 1 , . . . , m i (16)

For row l, the column j for which B i,c ( l, j ) is equal to 1, actually means that the shiftable load of consumer c originally

planned for period l will be shifted to period j within the control horizon N c . Obviously if l coincides with j, no load shift

will occur. The fact that all binary matrices are upper diagonal actually means shiftable loads are not allowed to be shifted

backwards in time. 

In Fig. 3 we can see a schematic representation of the proposed DR1 technique. The vertical axis represents the energy

consumption, while the horizontal one represents time instants. The red line refers to q spot , the green line to the actual

consumption and the blue one to the consumption after the implementation of DR1. 

3.4. Shiftable consumption following a pattern - Demand response 2 (DR2) 

This methodology concerns energy consumptions which maintain a specific pattern in time. A typical example is the

washing machine [23] , which follows a specific energy consumption pattern that can be shifted in time, but cannot be

interrupted. In order to capture this kind of energy demands, we made use of logical expressions. More details on how

hybrid optimization problems are designed, formulated and solved can be found in [28, 29] and [30] . To start with, we

assume that consumer c under BRP i has a consumption which maintains a specific pattern and can be shifted in time. This

pattern is denoted as 
� 

p i,c = [ 
� 

p i,c (1) , 
� 

p i,c (2) , . . . , 
� 

p i,c ( T d,c ) ] where T d,c is the duration in time periods of this consumption.
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Let δi,c , 1 = [ δi,c , 1 (0), δi,c , 1 (1), …, δi,c , 1 ( N c )] be a vector of binary variable indicating the starting period of the pattern for

consumer c . Obviously, only one element of this vector must be equal to 1, while all other entries should be zero. It must

be guaranteed that once the pattern begins, it must be consumed within the given time horizon N c . These limitations are

enforced by the following equations: 

δi,c, 1 ( l ) = 0 , l = N c − T d,c + 2 , . . . , N c , i = 1 , . . . , n B , c = 1 , . . . , m i (17)

N c ∑ 

l=0 

δi,c, 1 ( l ) = 1 , i = 1 , . . . , n B , c = 1 , . . . , m i (18)

Now we introduce an additional set of T d − 1 binary vectors δi,c, j = [ δi,c, j (0), δi,c, j (1), …, δi,c, j ( N c )], j = 2, …, T d,c each one

indicating the period in the time horizon where the j’ th component of the pattern will be scheduled. Each one of these

vectors contains only one element equal to 1 and is produced by shifting the values of the previous vector by one position

to the right, while the first element becomes zero: [
δi,c, j ( 0 ) , δi,c, j ( 1 ) , δi,c, j ( 2 ) , . . . , δi,c, j ( N c ) 

]
= 

[
0 , δi,c, j−1 ( 0 ) , δi,c, j−1 ( 1 ) . . . , δi,c, j−1 ( N c − 1 ) 

]
, j = 2 , . . . , T d,c (19) 

The following matrices are then formed for each BRP i at time instant k containing the prediction for the flexible con-

sumption under DR2 strategy: 

� 

P i ( k ) = m i 

N c +1 ︷ ︸︸ ︷ ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

⎡ 

⎢ ⎢ ⎣ 

∑ T d, 1 

j=1 
( δi, 1 , j 

� 

p i, 1 ( j ) ) 

. . . ∑ T d, m i 

j=1 

(
δi, m i , j 

� 

p i, m i 
( j ) 

)
⎤ 

⎥ ⎥ ⎦ 

= 

[
� 

p i ( k | k ) . . . 
� 

p i ( k + N c | k ) 
]
, i = 1 , . . . , n B (20) 

By adding the aforementioned matrices, a new matrix is formulated containing the predictions of the total energy con-

sumption during the prediction horizon for all consumers under BRP i : 

P i ( k ) = 

[
p i ( k | k ) . . . p i ( k + N c | k ) 

]
= 

˜ P i ( k ) + P̄ i ( k ) + 

ˆ P i ( k ) + 

� 

P i ( k ) , i = 1 , . . . , n B (21) 

3.5. Controller synthesis 

Based on the above notation the following centralized MPC (CMPC) optimization problem is formulated at each time

instant k 

3.5.1. Centralized MPC (CMPC) 

1. Observe current state e ( k ) and solve the optimization problem: 

minimize 

N c ∑ 

l=0 

�(k + l| k ) 
s.t. Eqs . ( 12 ) , ( 13 ) , ( 14 ) , ( 16 ) , ( 17 ) , ( 18 ) , ( 20 ) 

And additionally : 

t i ( k + l| k ) = R i p i ( k + l| k ) l = 1 , . . . , N c i = 1 , . . . , n B 

f ( k + l| k ) = 

n B ∑ 

i =1 

t i (k + l| k ) l = 1 , . . . , N c 

f ( k + l| k ) ≤ f max l = 1 , . . . , N c 

(22) 

where: 

�( k + l| k ) = 

n B ∑ 

i =1 

h i 

(
q bal,i ( k + l| k ) ) = 

n B ∑ 

i =1 

∥∥1 

T p i ( k + l| k ) − q spot,i ( k + l ) 
∥∥2 

2 

where, p i ( k + l | k ) is given by Eq. (21) . �( k + l | k ) is used as an intermediate variable and represents the predicted sum of

squared errors between the total consumptions of energy and the amounts of energy bought at the day-ahead-market over

all BRPs at the l th time period in the control horizon. The decision variables involved in the CMPC optimization problem are

the continuous variables e i ( k + 1: k + N c ) and ˜ p i ( k : k + N c ) and the binary variables included in 

ˆ P i (k ) , 
� 

P i (k ) . 

2. From the solution, apply the part referring to current time instant. 
3. Increase k by one and repeat from step 1. 
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CMPC considers the coupled constraint f ( k + l | k ) ≤ f max and solves the problem centrally. It assumes that BRPs share

information such as current state of consumers and consumption prediction profiles, which is quite unrealistic. In this paper,

we decouple the originally centralized problem using dual decomposition [31] . For this purpose we introduced the Lagrange

multipliers λ( k + l | k ) (named shadow prices in [20] ). The partial Lagrangian of the problem is: 

L ( η, λ) = 

n B ∑ 

i =1 

N c ∑ 

l=0 

h i 

(
q bal,i ( k + l| k ) ) + 

N c ∑ 

l=0 

λT ( k + l ) ∗ ( f ( k + l| k ) − f max ) (23)

where η is a vector containing all the decision variables of the problem formulated at time instant k . Now our problem

is separable, so we can minimize over each BRP separately given the dual variable λ in order to find the dual function,

g(λ) = 

∑ n B 
ι=1 

g i (λ) , of our original (master) problem. To find g i ( λ) we solve the following subproblem: 

g i ( λ) = min 

ηi 

N c ∑ 

l=0 

h i 

(
q bal,i ( k + l| k ) ) + λT ( k + l ) ∗ t i ( k + l| k ) (24)

To ensure the convergence of the dual problem we made use of an iterating method, namely the subgradient method

[32] . A subgradient of the negative dual function – g i at λ is given by t̄ i ( k + l ) , where t̄ i ( k + l ) is the solution of subproblem

(24) . 

The summation of all the above g i ( λ) of each BRP gives the total subgradient g ( λ) of Eq. (23) . Then we solve the original

problem (22) separately for each BRP by substituting the originally coupled constraint f ( k + l | k ) ≤ f max by t i (k + l| k ) ≤ t̄ i (k +
l| k ) . This Distributed MPC (DMPC) approach is described next: 

3.5.2. Distributed MPC (DMPC) 

1. DSO initializes the shadow prices ( λ(k) = 0 or λ( k ) = λ( k -1)). 

2. Repeat 

a) DSO gives each BRP the shadow prices 

b) Each BRP i = 1, …, n B solves the problem: 

minimize 

N c ∑ 

l=0 

(
h i 

(
q bal,i ( k + l| k ) ) + λT ( k + l ) ∗ t i ( k + l| k ) )

s.t. Eqs . ( 12 ) , ( 13 ) , ( 14 ) , ( 16 ) , ( 17 ) , ( 18 ) , ( 20 ) applied only for BRP i 

Additionally : 

t i ( k + l| k ) = R i p i ( k + l| k ) l = 1 , . . . , N c 

(25)

c) Each BRP reports partial flows t̄ i (k + l| k ) to the DSO. DSO checks for capacity violations s ( k + l| k ) = 

∑ n B 
i =1 

t i ( k + l| k ) −
f max . 

3. DSO updates shadow prices using projected subgradient method λ( k + l | k ) = max (0, λ( k + l | k ) + a ∗ s ( k + l | k )). 

4. Until max ( s ( k + l | k )) ≤ ε or maximum number of iterations reached. 

5. Maximum partial flows t max 
i 

( k + l| k ) are communicated to the BRPs: 

t max 
i ( k + l| k ) = A i,l ∗ t̄ i ( k + l| k ) (26)

where, A i,l ∈ R n L ×n L is a diagonal matrix and its j th element is f max 
j 

/ ( 
∑ n B 

i =1 
t̄ i (k + l| k ) ) j . This assures feasibility using

backtracking. 

6. Each BRP solves problem (25) adding the constraint t i ( k + l| k ) ≤ t max 
i 

( k + l| k ) . 
7. From the solution, apply the part referring to current time instant. 

8. Increase k by one and repeat from step 1. 

4. Simulation results 

In this section we apply the control schemes described in Section 3 to the IEEE ELVTF, the topology of which is shown

in Fig. 4 . The low voltage test feeder is a radial distribution feeder with a base frequency of 50 Hz. The feeder is connected

to the medium voltage (MV) system through a transformer at substation. In [26] the detailed description of the feeder can

be found, as well as all the necessary data for simulation purposes. 

The grid consists of two BRPs (BRP1 and BRP2), and fifty five consumers. BRP1 is responsible for all the consumers

enclosed by the black polyline, whereas consumers enclosed by the red one are in the responsibility of BRP2. As it can be

seen in Fig. 4 , consumers C8 (under BRP1) and C12 (under BRP2) share the same distribution line. As a result, congestion of

that line might occur due to conflicting interests between the two BRPs. Since consumption data are provided in one-minute

time resolution, we summed up all consumptions during one hour for every consumer and hourly energy consumption data

were derived for the proposed control strategy which uses a time period of one hour. 
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Fig. 4. The IEEE LVTF topology. It consists of two BRPs and 55 consumers. (For interpretation of the references to colour in this figure, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following assumptions have been made: 

• Consumers C1, C2, C5, C8, C13, C17, C20 and C21 under BRP1 and consumers C12, C29, C30, C37, C39, C45, C47, C48,

C50 C52 and C53 under BRP can store energy and move 10% of their total hourly energy needs at each time period to

subsequent periods within the 24-h time framework. 
• The energy storage capacities of flexible consumers is set at 100 kWh with the exception of consumers C8 and C12 for

which a 200 kWh capacity is assumed. 
• Drain loses for energy storage device are 0.8 and 0.99 for flexible BRP1 and BRP2 consumers respectively. 
• Consumers C4, C10 and C24 under BRP1 have the option to move the following load patterns, all taking three consecutive

hour periods to complete: 
� 

p 1 , 4 = [ 60 15 10 ] , 
� 

p 1 , 10 = [ 40 20 80 ] , 
� 

p 1 , 24 = [ 30 10 20 ] . 
• Similarly, consumers C33, C35 and C49 under BRP2 have the option to move the following load patterns over three

consecutive hour periods: 
� 

p 2 , 33 = [ 30 80 100 ] , 
� 

p 2 , 35 = [ 60 50 30 ] , 
� 

p 2 , 49 = [ 70 10 30 ] . 
• The rest of the consumers under BRP1 and BRP2 are non-flexible consumers (they cannot store or move energy loads). 
• Only the active power is considered for control purposes in the form of energy consumed by the consumers in the hour

time scale. 
• Distribution line power loses are neglected. 
• Maximum energy flows f max were set to the maximum amount of energy transferred through them plus a safety factor

of 5%. 

Figs. 5 and 6 show in an hourly basis, the energy purchased at the DAM by BRP1 and BRP2 (denoted by q spot ,1 and q spot ,2 

respectively), as well as the predicted consumptions for the two BRPs for the next 24-h period. 

The energy purchased by BPRs is based on predictions of energy prices in the DAM. Obviously, there are mismatches

between the purchased energy patterns and the predicted hourly energy consumptions. BRPs are buying less energy during

peak energy hours and more energy when the demand is low. This is because BRPs count on consumption flexibility and

DR strategies to shift energy loads and produce an actual consumption profile which matches as much as possible the q spot 

patterns. 

Two different scenarios were examined, assuming that the energy consumptions over the next 24-h period are precisely

known. In the first scenario, energy storage is the only demand response option. In the second scenario, all demand response

strategies are allowed (energy storage, shifting energy demand of hourly duration, shifting movable energy patterns). The

results are compared to the base case shown in Figs. 5 and 6 where no demand response actions are allowed. 

In both scenarios, we applied CMPC and DMPC in order to compare the results between the two control schemes. The

simulations were performed in the programming environment of MATLAB® using a prediction horizon Np = 10 and a control
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Fig. 7. Total consumption distribution for scenario 1: BRP1 (a) and BRP2 (b). (For interpretation of the references to colour in this figure, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

horizon of the same length. The optimization problems were formulated using the YALMIP® ( [33] ) optimization toolbox and

solved using MOSEK® 7.1 ( [34] ). 

Figs. 7 and 8 present graphically the total energy consumptions for the two BRPs after the application of DMPC. CMCP

produces almost identical results as it will be shown briefly later in the paper ( Tables 2 and 4 ). The green bars represent the

hourly energy consumptions after the application of DMPC, whereas blue bars correspond to the base case, which is shown

again in the figures for comparison purposes. As shown in Fig. 9 , in both scenarios, the storage devices are increasing
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Fig. 9. Energy stored in storage devices of flexible consumers under BRP1 and BRP2 over the 24-h period. (For interpretation of the references to colour in 

this figure, the reader is referred to the web version of this article.) 

Table 1 

Consumption of energy patterns. 

Consumer 

Consumption of energy patterns 

Time periods (Base case) Time periods DMPC 

C4 [18 19 20] [2 3 4] 

C10 [9 10 11] [3 4 5] 

C24 [17 18 19] [2 3 4] 

C33 [17 18 19] [3 4 5] 

C35 [8 9 10] [4 5 6] 

C49 [18 19 20] [4 5 6] 

Table 2 

Balancing energy comparison between CMPC and DMPC for the two different scenarios for precisely known energy consumptions. 

Scenario Total balancing energy –

base case (MWh) 

Total balancing energy –

CMPC (MWh) 

Total balancing energy –

DMPC (MWh) 

Difference between 

CMPC and DMPC (%) 

DMPC deviation 

from base case (%) 

1 14.84 9.30 9.30 ≈ 0 −59.57 

2 14.84 8.72 8.74 0.23 −69.79 

 

 

 

 

 

 

 

the stored energy levels in periods when energy prices in the DAM are low and release energy when prices are high and

this reduces the discrepancy between planned and actual energy purchases. In the second scenario the balancing energy

is reduced further, because controllers move energy loads from peak hours to hours of lower traffic of the grid. This is

illustrated clearly in Table 1 , which shows that all energy patterns are transferred to the beginning of the 24-h period,

where energy demands are low. 

The produced optimal values of the balancing energy objective function computed over the 24-h period are summarized

in Table 2 . They are compared with the base case, where neither energy storage nor shifting of consumption is possible.

Reduction of balancing energy is almost 60% in the first scenario and is improved in the second scenario, where we provide
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Table 3 

Partial flow variations during the iterations of the subgradient method for distribution line 14 and k = 7 for scenario 2. 

j 1 2 3 4 5 6 7 8 9 10 

t̄ 1 129.33 129.33 129.39 127.58 126.96 126.85 126.83 126.83 126.83 126.83 

t̄ 2 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42 

0

500

1000

1500

2000

2500

0 5 10 15 20

Co
ns

um
p�

on
 [k

W
h]

Time [h]

P_Predicted
P_Actual

Fig. 11. Predicted and actual consumption profiles, when uncertainty is considered in energy predictions. (For interpretation of the references to colour in 

this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

additional flexibility and demand response options. CMPC and DMPC produce identical results in the first scenario, whereas

in the second scenario the difference is negligible. 

The ability of the proposed control method to avoid congestion is illustrated in Fig. 10 , which shows the total flow

through the distribution line 14 using the DMPC approach in scenario 2. It is clear that the flow meets but does not ex-

ceeds its upper capacity at k = 7. Congestion did not occur, thanks to the introduction of the shadow prices. During the

busy hours, DSO detects violation of this line due to conflicting interests among the BRPs and increases the energy prices

(shadow prices) of this specific distribution line. Accordingly, BRPs respond to this price change by decreasing their demands

transferred through this particular line. Table 3 presents the partial flows calculated iteratively by the subgradient method,

while applying DMPC at time instant k = 7. It can be clearly seen that BRP2 is not reducing its demand in contrast to BRP1.

This is due to better quality of storage facilities of BRP2. We can also observe that even after the eighth iteration of the

subgradient method the summation of total partial flows for line 14 is above the upper limit, which is 140.25 kWh for this

particular line. Backtracking, in step 5 of DMPC, is used to avoid infeasibility of the optimization problem. 

Next, we executed all simulations again, by now considering uncertainties in the predicted consumptions. More specif-

ically, we assumed that the actual consumptions are the ones shown in Figs. 5 and 6 , but the predicted ones which are

presented to the control schemes are different, as shown in Fig. 11 . The differences have been produced by random number

generations from a uniform distribution. 

Table 4 summarizes the results when uncertainty in energy predictions is considered. We observe that the application

of both CMPC and DMPC again reduces considerably the total balancing energy compared to the base case. Compared to

Table 2 , the results for scenario 1 are identical, while for scenario 2 they are slightly deteriorated. This happens because due

to uncertain predictions, the patterns are now always placed in the optimal time slots. 
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Table 4 

Balancing energy comparison between CMPC and DMPC for the two different scenarios when uncertainties are assumed in consumption predictions. 

Scenario Total balancing energy –

base case (MWh) 

Total balancing energy –

CMPC (MWh) 

Total balancing energy –

DMPC (MWh) 

Difference between 

CMPC and DMPC (%) 

DMPC deviation 

from base case (%) 

1 14.84 9.3 9.3 ≈ 0 −59.57 

2 14.84 8.85 9.01 1.75 −64.71 

Table 5 

Computational Times for executing the 24-h simulation. 

Scenario 1 Scenario 2 

DMPC CMPC DMPC CMPC 

Unc. ∗ Perf. ∗∗ Unc. ∗ Perf. ∗∗ Unc ∗ Prec ∗∗ Unc ∗ Prec ∗∗

Time (s) 80.7 287.8 16.8 15.6 816.9 571.9 65.5 66.3 

∗ Uncertain consumption prediction. 
∗∗ Perfect consumption prediction. 
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Fig. 12. Three phases energy consumption profiles in the base case (a) and in scenario 2 (b) for precisely known energy consumptions. (For interpretation 

of the references to colour in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 presents the computational time needed to produce the full 24-h simulation in a Laptop with Intel Core i7-

5500 U at 2.40 GHz and 8 GB RAM. As it was expected, the required computational time is increased with the complexity

of demand response strategies. DMPC clearly need more computational time compared to CMPC, obviously because of its

iterative strategy. However, even in the worst case (DMPC in scenario 2 with uncertainties) the solution time is less than

14 min, which means that only a few seconds are required to calculate the optimal control input at each period. Taking into

account that decisions are made every hour, even this worst case solution time is acceptable in a realistic problem as the

one used in the paper. 

Although consumers are regarded as single-phase in the formulation of the MPC schemes, the IEEE LVTF is a three-phase

system and it gives all the necessary information to evaluate the impact of the proposed control schemes from the three-

phase point of view. According to [26] consumers C 1 , C 3 , C 4 , C 5 , C 9 , C 14 , C 20 , C 21 , C 22 , C 25 , C 29 , C 30 , C 31 , C 34 , C 46 , C 48 , C 49 ,

C 51 , C 52 , C 54 and C 55 are connected to phase A, consumers C 2 , C 6 , C 7 , C 10 , C 11 , C 13 , C 15 , C 23 , C 26 , C 35 , C 36 , C 37 , C 38 , C 40 , C 41 ,

C 44 , C 45 , C 50 , and C 53 are connected to phase B, while consumers C 8 , C 12 , C 16 , C 17 , C 18 , C 19 , C 24 , C 27 , C 28 , C 32 , C 33 , C 39 , C 42 ,

C 43 and C 47 are connected to phase C. In Fig. 12 (a), the total consumption for the three phases of the system is depicted

for the base case, where no demand response is possible. The unbalance in the three phases is obvious, especially in time

interval 9. More specific, the sudden pick of phase B during that time interval may lead to voltage issues of the system.

Fig. 12 (b) depicts the same type of graph when DMPC is used in scenario 2. The energy consumption lines corresponding to

the three phases are now smoother, although this objective has not been taken into consideration during the formulation of

the optimization procedure. Especially for phase B in the time interval 7–10, the pick energy consumption has been reduced

by 12.35% in the case of perfectly known consumption profiles and by 12.76% in the presence of uncertainty. 

As a next step, we examined the option of extending the formulation of the CMPC and DMPC problems, so that energy

differences among the three phases are bounded using hard constraints. In this case, the following constraints are incorpo-

rated into the optimization algorithms, in both the CMPC and the DMPC formulations: (∑ 

A 
p i ( k + l| k ) − ∑ 

B 
p i ( k + l| k ) 

)
≤ p max 

i, | A −B | l = 1 .. N c i = 1 .. n B (27) 
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Table 6 

Maximum allowable differences between the three 

phases for both the BRPs and the scenarios. 

Parameter Value (kWh) 

BRP1 BRP2 

Scenario 1 p max 
i, | A −B | 200 260 

p max 
i, | A −C | 150 200 

p max 
i, | B −C | 180 280 

Scenario 2 p max 
i, | A −B | 180 160 

p max 
i, | A −C | 150 180 

p max 
i, | B −C | 180 250 

0

200

400

600

800

1000

0 5 10 15 20

Co
ns

um
p�

on
 [k

W
h]

Time [h]

PHASE A DMPC_3PHASE

DMPC

0

200

400

600

800

1000

0 5 10 15 20

Co
ns

um
p�

on
 [k

W
h]

Time [h]

PHASE B DMPC_3PHASE

DMPC

0

200

400

600

800

1000

0 5 10 15 20

Co
ns

um
p�

on
 [k

W
h]

Time [h]

PHASE C DMPC_3PHASE

DMPC

0

200

400

600

800

1000

0 5 10 15 20

Co
ns

um
p�

on
 [k

W
h]

Time [h]

Phase_A
Phase_B
Phase_C

a b

c d

Fig. 13. Three phase consumption patterns between DMPC (red line) and DMPC_3PHASE (blue line) (a–c) in scenario 1. Total consumption profile for DMPC 

in scenario 1 (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

(∑ 

A 
p i ( k + l| k ) − ∑ 

C 
p i ( k + l| k ) 

)
≤ p max 

i, | A −C | l = 1 .. N c i = 1 .. n B (28)(∑ 

B 
p i ( k + l| k ) − ∑ 

C 
p i ( k + l| k ) 

)
≤ p max 

i, | B −C | l = 1 .. N c i = 1 .. n B (29)

where 
∑ 

A p i ( k + l| k ) , ∑ 

B p i ( k + l| k ) , ∑ 

C p i ( k + l| k ) are the summations of all consumers of BRP i at time instance k + l

connected to phases A,B,C respectively and p max 
i, | A −B | , p max 

i, | A −C | , p max 
i, | B −C | are the bounds on energy differences. 

We performed all the simulations again for both scenarios and for both CMPC and DMPC when no uncertainties are

considered and by additionally taking into account Eqs. (27) –(29) with the bounds shown in Table 6 . Notice that by further

decreasing the bounds on energy differences among the three phases, the optimization problems are infeasible. For easy

comparison with the previous results, these simulations are named CMPC_3PHASE and DMPC_3PHASE. 

In Fig. 13 (a)–(c) the comparison between the DMPC and DMPC_3PHASE for scenario 1 is shown. No major differences

are observed, but it is clear that during the 9th interval there is an effort to increase consumption in phases A and C and

reduce the difference from consumption in phase B. 

The balancing energy results for CMPC_3PHASE and DMPC_3PHASE are presented in Table 7 . We observe that the in-

corporation of the additional constraints on energy differences among the three phases resulted in slightly worse results

(smaller deviations from base case) compared to the results shown in Table 2 . 
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Table 7 

Balancing energy comparison between CMPC_3PHASE and DMPC_3PHASE for the two different scenarios for precisely known energy consumptions. 

Scenario Total balancing energy –

base case (MWh) 

Total balancing energy –

CMPC_3PHASE (MWh) 

Total balancing energy –

DMPC_3PHASE (MWh) 

Difference between 

CMPC_3PHASE and 

DMPC_3PHASE (%) 

DMPC_3PHASE 

deviation from base 

case (%) 

1 14.84 9.43 9.43 ≈ 0 −57.40 

2 14.84 9.05 8.80 2.89 −68.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion and future work 

In this paper, centralized and distributed MPC methodologies were developed in order to address major issues arising

in the daily operation of the distribution grid, namely congestion of distribution lines and the balancing energy. The pro-

posed control scheme should be considered as an intermediate control layer in a hierarchical control configuration, which

computes the optimal steady state of the system under consideration or sends optimal set points to the subsequent control

layers. 

Demand respond strategies were incorporated into the MPC formulation, by giving the options of shifting parts of the

hourly energy loads or full energy patterns. The proposed control schemes were tested on the IEEE European Low Voltage

Test Feeder, consisting of 73 distribution lines and 55 consumers. Only the active power was considered as a control param-

eter in the form of energy consumed (kWh) in the time scale of one hour. In addition, the inherent uncertainty of future

energy prediction profiles was also taken into consideration in the form of disturbances to the actual consumption data

which are provided by the LVTF. 

The obtained results after the implementation of the proposed control algorithms, illustrated that flexible consumers can

significantly contribute to the balancing effort s and energy consumption profiles are produced which are similar to those

bought by BRPs in the DAM. As a result, the total energy consumption of the system maintains a “flatter” shape improving

this way considerably the performance of the overall system in terms of energy cost and congestion management. Results

for the three-phase system were also produced indicating that demand response strategies in coordination with the use of

storage devices can reduce the large variations of a single phase, and at the same time “brings” closer the consumption

profiles of the three phases of the system. 

The time requirements of the proposed control methods are well within the acceptable ranges. In both scenarios, two

different controllers were developed. On the one hand, the optimization problem was formed and solved centrally, assuming

that a centrally located entity has complete knowledge of the entire system. In this case, the computational time spent by

the controller on the optimization procedure was significantly lower, 16.8 s in scenario 1 and 66.3 s in scenario 2 were the

worst performance for CMPC, compared to those of DMPC. But this centralized control approach has the huge disadvantage

that every BRP should provide all the necessary information concerning its consumers, such as cost functions, states of

flexible consumers, consumption predictions etc. In practice, this is very unlikely to happen due to the competitive nature

of energy market. On the other hand, in a distributed control approach different BRPs do not have to share each other all

the data as far as their consumers is concerned. The only information they have to communicate is their demands on the

distribution lines in order for the DSO to compute the energy prices (shadow prices) in case of congestion due to conflicting

interest among different BRPs sharing the same distribution line. In this case the control algorithm was slower compared to

the centralized one in both the scenarios, but still acceptable. This happens because of the iteration procedure which has

to be followed in order for the consumers to reach a consensus. Finally, we concluded that DMPC produces almost identical

results compared to CMPC as the maximum deviation between the two was 2.89% in the worst case. Therefore, DMPC is the

most suitable approach in the realistic situation, where BRPs do not share information with each other, which is the case in

the energy market. 

A full hierarchical control methodology is planned to be developed next, which will include voltage control and control

of the reactive power of the system, in the time scale of 1 min, including the implementation of the method to the IEEE

ELVTF system. Finally, a techno-economic assessment would be very useful in terms of economic viability of the proposed

control strategy. 
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