
Received May 8, 2019, accepted May 24, 2019, date of publication May 30, 2019, date of current version June 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920010

Intra-Balance Virtual Machine Placement for
Effective Reduction in Energy Consumption
and SLA Violation
AL-MOALMI AMMAR 1, JUAN LUO 1, ZHUO TANG1, (Member, IEEE), AND OTHMAN WAJDY2
1School of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2School of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei 230026, China

Corresponding author: Juan Luo (juanluo@hnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672220, in part by the Key Scientific
and Technological Research and Development Plan of Hunan Province under Grant 2017GK2030, and in part by the National Defense
Basic Research Plan under Grant JCKY2018110C145.

ABSTRACT Cloud computing has emerged as one of the most important technological revolutions globally.
However, the rapid growth of cloud computing has imposed a massive financial burden and resulted in
environmental side effects due to excessive energy consumption. The high power consumption is not only
attributed to the size of data centers but also to the ineptitude of resource usage. Most of the extant
research has focused on reducing power consumption by an aggressive VM consolidation, which leads
to the violation of the service level agreement (SLA). Furthermore, the unbalanced resource consumption
exacerbates the unavailable wasted resources that are referred to as unavailable resource fragmentation.
In this paper, we propose the use of a balanced resources consumption algorithm called BRC-IBMMT in
order to enhance the efficiency of resource consumption while achieving an acceptable balance between
conflicting correlation objectives of power consumption as well as SLA violation. The extensive simulation
results of different types of workload validate and lend credence to the significance of the proposed method
in reducing power consumption and SLA violation of the cloud data center.

INDEX TERMS Balanced resource placement, VM consolidation, energy consumption, cloud computing.

I. INTRODUCTION
Cloud computing is a practical way of using the network
to access powerful servers on cloud data centers to process,
store, or manage data, as well as using applications online.
This technology has revolutionized the world of information
technology and streamlines the means of providing network
services. Cloud providers offer different models of cloud
service such as Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) [1]. There
are different objectives for both providers and consumers
regarding these services.

IaaS model, which is the focus of this study, is a tech-
nique of providing physical resources such as compute
resource, storage, and network components to the cus-
tomers. By adopting the mechanism of pay-as-you-use in
IaaS model, it enables convenient on-demand provisioning of
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cloud resources as the customers typically pay on a per-use
basis [2]. Service providers and customers have conflicting
objectives in cloud computing.While service provider invests
in cloud computing to increase the profitability, which faces
the huge budget of operational costs and negative environ-
mental side effects, customers are looking forward to using
cloud computing for excellent service at a lower price.

Power consumption has a large contribution to the operat-
ing cost of cloud centers by the cooling system and physical
equipment. As reported fromMicrosoft [3], the power cost of
the physical resources ( e.g., CPU, memory, network, etc.) is
nearly 15% of the total cost, which indicates the importance
of reducing the power consumption of the cloud data center.
Besides, most of the data centers use only less than 50% of
its resource [4] which results in a massive amount of resource
wastage and power consumption [5]. Therefore, consolidat-
ing VMs by virtualization technology on a low number of
PhysicalMachines (PM) helps service providers to reduce the
operating cost.
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VM consolidation increases the physical resource utiliza-
tion in order to minimize the number of active hosts, which
significantly reduce the power consumption. At the same
time, cloud service providers should ensure QoS, which is
represented in service level agreement (SLA). As a result of
consolidating multiple VMs on the same PM, power con-
sumption is effectively reduced, but aggressive consolidation
has negative effects on other metrics. Depending on resources
consumption, VMs have different behavior in resource con-
sumption, whereas the diversity of applications running on
VMs result in resources competition. Hosting the same
type of resource consumption of VMs (e.g., intense CPU,
intense memory, intense I/O, or intense network) increases
the resource contention and result in unbalanced resource
consumption [6]. As an instance, because of scarcity of CPU,
which is produced by consolidating multiple VMs of intense
CPU on the same PM, the VM placement may be blocked of
hosting a new VM resulting in resource wastage [7], [8].

Based on the aforementioned observation, contradictive
objectives make the purpose of minimizing power consump-
tion and ensuring SLA an open issue with a lot of room
for improvement [9], which remains a challenge in previous
works. Such conflicting objectives hard to efficiently satisfied
as high resources utilization leads to low QoS. Therefore,
Cloud providers need efficient placement strategy, which can
make a balanced trade-off between low power consumption
and highQoS.Most of the research solve server consolidation
by classic bin-packing algorithms. However, because of the
continuous and dynamic change of workload in the cloud;
which cause VM migrations, classic bin-packing algorithms
are not particularly applicable to server consolidation.

The assumption of that bins are empty is contrary to
server consolidation where the servers have running VMs.
While the capacity of bins continues constant, the resource
demands from VMs dynamically change; which increase the
VM migrations and resource fragments. Moreover, unbal-
anced resource consumption has a negative effect on power
consumption and resource utilization; where the unbalanced
PMs are more sensitive for workload change, which increases
the live migration, resource wastage, performance degrada-
tion, and power consumption. Consequently, it is necessary,
when designing server consolidation and VM selection algo-
rithms, to consolidate VMs in a minimum number of active
PMs which satisfy the VMs’ requirements and minimize the
resource fragmentation.

In this paper, we propose a balanced resource consump-
tion algorithm called (BRC-IBMMT). The algorithm effec-
tively balances the consumption of the resource and finds an
acceptable balance between contrary correlation objectives
of power consumption and SLA violation. Two algorithms
for VM deployment and selection called Balanced Resource
Consumption (BRC) and Imbalance VM with Minimum
Migration Time (IBMMT), are proposed. Both algorithms
consider CPU, RAM, bandwidth (BW). VM deployment
algorithm (BRC) leverages the efficiency of resource
utilization and minimize resource fragmentation while

VM selection policy (IBMMT) enhances the balance of
resource consumption and reduces the migration cost. The
main contribution of this paper can be summarized as follows.

1) Balanced resource consumption algorithm called
(BRC-IBMMT) is proposed

2) An effective algorithm called (BRC) is proposed to bal-
ance resource consumption and minimize the resource
wastage.

3) A new VM selection policy (IBMMT) that leverages
the balance of the resource consumption andminimizes
the migration time is presented.

4) Intensive experiment of different types of workload
with different settings is conducted to test the efficiency
of proposed algorithms.

The following sections of this paper are organized as fol-
lows. Section 2 outlines related works, while section 3 illus-
trates system model and metrics definitions. The distributed
model and its proposed algorithms are presented in section 4.
Experiment setup and simulation results are revealed in
section 5. Finally, the conclusion is addressed in section 6.

II. RELATED WORKS
Most of the related studies considered the VM alloca-
tion as Bin packing problem and applied greedy heuris-
tic models. Well-known research used simple greedy
heuristics, while others used the optimization of greedy
heuristics [6], [10]–[13]. However, most of these approaches
have depended on one-dimensional resource and did not
consider multi-objective goals as maximization of resource
utilization, minimization of live migration cost and energy
consumption.

In [14], VMs were initially submitted according to the
least power consumption placement algorithm, and then four
algorithms for overload detection with three algorithms for
selecting VMmigration were proposed. The combinations of
these algorithms produced good results for desired objectives
in cloud computing. However, these algorithms depended on
one-dimensional resource and often overused or wasted other
resources. Moreover, these algorithms focused on power con-
sumption and SLA, but failed to consider intra-balance of
the resource utilization to decrease the resource wastage.
A recent study was compiled by Song et al. [15] who mod-
eled resource allocation as an online bin packing problem.
The study devised an algorithm called Various Size of Bin
Packing Algorithm (VISBP) which is capable of dealing
with the change in VM size during the runtime. The results
showed that VISBP, among other algorithmsmentioned in the
paper, has a good balance and detection technique. However,
SLA or impact of migration cost had not been discussed.

Ammar et al. [16] proposed an anti-overload model by
using a preemptive detection of overload and then migrat-
ing depending on Single Exponential Smooth (SES) pre-
diction technique. The work made a significant reduction
in SLA violation and number of VM migration. How-
ever, algorithms considered the only CPU and caused
wastage of other resources. Besides, this work did not
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improve the VM placement to minimize power con-
sumption. Han et al. [17] proposed an algorithm for
VM placement called Remaining Utilization-Aware (RUA).
The algorithm conducted live migration in case of overload
situation and replaced the VM depending on the remaining
capacity of PM. However, the authors only consider the CPU
as the main resource type to place the VM. At the same time,
the algorithm left significant capacity on every PMs.

Zhao et al. [18] proposed two algorithms of VMplacement,
Least-Reliable-First (LRF) and Decreased-Density-Greedy
(DDG) to increase cloud provider’s revenue by reducing the
cost of SLA violation. Algorithms have produced results on
the revenue of cloud providers under different conditions.
However, the ideal conditions are by no means guaranteed
in reality. Moreover, the study considered the VM instances
in the form of one dimension which produces the resource
wastage. Hao et al. [19] proposed a generalized resource
placement methodology to allocate the VM demands with
additional constraints on data center location, service delay
guarantee. This study focusing on how to choose the
VM allocation with minimum delay and data traffic among
the cooperative VMs. However, the proposed research does
not consider the efficient use of resource utilization or power
consumption.

In [20] the authors adopt grey wolf optimizer to solve
VM optimization into an optimum number of active hosts.
As a result of submitting the VMs to the minimum number
of PMs, the power consumption had been reduced to the
minimum. However, they only studied initial VM placement,
in which the SLA violation was not taken into the considera-
tion of VM placement.

Zhao et al. [21] proposed power-aware and performance-
guaranteed (PPVMP) method. In this methodology, the
authors uses a non-linear energy model in VM placement as a
bi-objective problem and solved by the ant colony optimiza-
tion. The results have shown a reasonable reduction in the
power consumption of the data center. However, they only
studied the static VM placement at the homogeneous PMs
data center. Moreover, they did not discuss the VMmigration,
different workload, resource utilization or SLA violation.

Placement methods are still facing some challenges in
term of power consumption and SLA violation. In this paper,
we attempt to enhance the efficiency of resource utilization
to reduce power consumption and present good QoS.

III. SYSTEM MODEL
A. VIRTUAL MACHINE PLACEMENT (VMP)
VM placement is the process of choosing the most suit-
able host to accommodate the VM according to resource
requirements. VMP tackles the persistent requests of host-
ing VMs, and extra user demands such as cancellation and
resizing the VM at runtime. VM requests include a diversity
of multiple resource requirements such as CPU, memory
(RAM), and network bandwidth (BW). Similarly, the physi-
cal machine has a variety of multiple resource capacities. The
concern for the placement process is how to accommodate the

arrival VMs on sufficient PMs depending on the considera-
tion of multiple resources.

VMP from the perspective of the provider should place
as much VMs requests as possible on the same PM. As a
consequence, the number of operating PMs is minimized, and
power consumption is decreased. These subsequent results
would lead to increased profitability and decreased power
consumption. In contrast, saturated PMs drove the system to
SLA violations and performance degradation that influences
QoS. Consequently, in this paper, the VMP aims to conduct
compound goals to satisfy both cloud provider and customer
by balancing between the conflicting objectives. Most of
the researchers tackle VMP as bin packing problem. In the
following, we illustrate the description of the bin packing
problem for VMP.

B. MODELING VM PLACEMENT OF MULTI-DIMENSIONAL
RESOURCE TYPES
The problem of allocating some requests of VMs to the
least number of sufficient PMs in a balanced manner can be
formed as a multi-dimensional bin packing problem which
is NP-hard complete problem [22]. Meanwhile, the pre-
set threshold must not be violated to ensure the QoS.
In this paper, we described the capacity of Pj ∈

{P1,P2, ...,Pm} as a cube where CPU, RAM, and BW
form the cube’s sides. In the same way, the VM Vi ∈
{V1,V2, . . . .,Vn} requirement was described as a small cube
where CPU, RAM, and BW form the cube’s sides. The
resource types are represented as RT. The PM Resource
Capacity (RC) denotes the total capacity of PMwhere RCk

j =

{RCcpu
j ,RCRAM

j ,RCBW
j }, and the Utilized Capacity (UC) of

PM denotes the occupied capacity of PM Pj where UCk
j =

{UCcpu
j ,UCRAM

j ,UCBW
j }. Likewise, each VM Vi Resource

Requirement (RR) denotes the demanded resources where
RRki = {RR

cpu
i ,RRRAMi ,RRBWi }, and Resource Utilized (RU)

of VM RU k
i = {RU

cpu
i ,RURAM

i ,RUBW
i }. The ratio of the

utilized capacity of Pj for each type is calculated as the
summation of RUs for VM Vi. Symbols used in this paper
are defined in Table 1.

UCk
j = Vij × Pj ×

∑n
i=1 RU

k
i

RCk
j

, ∀ k ∈ RT , Vij = 1 (1)

where Vi,j is submitted to one and only one PM Vij =1 if Vi is submitted to Pj0 Otherwise


C. LIVE MIGRATION COST
Live migration is an essential technique for placement opti-
mization. Live migration enables transfer of VMs among
hypervisors on PMs without suspension or prolonged down-
time. Live migration is used to resize VM, avoid over-
load, QoS requirement, or maintenance at the run time.
Although this technique enhances resource management to
scale up or down depending on the demand, VM migration
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TABLE 1. Description of symbols used in paper.

takes time, creates additional overhead on the involved PMs,
and produces an adverse impact on QoS and SLA.

There are two primary performancemetrics to describe and
measure the performance of live migration. The first metric
is migration time which refers to the time of transferring
all pages of VM memory (the original memory and the
dirty/modified memory), and the CPU status. Due to the large
size of VM memory which is usually much larger than the
status of CPU, the migration time of CPU status is trivial.

The second metric is performance degradation during the
migration process. Therefore, it is essential to keep the num-
ber of VM live migration minimized.

The popular way of live migration is known as pre-copy,
Voorsluys et al. [23] explored the impact of livemigration and
formulated a way to model it. Consequently, we calculated
the migration time and the performance degradation during
the migration operation for VM as shown in this equation:

MT vi =
RURAM

i

BW spMigration
, (2)

PDvi = 0.1 ×
∫ t0+MT vi

t0
RU cpu

i (t) dt, (3)

D. SERVICE LEVEL AGREEMENT (SLA)
SLA is the quality of expected service defined in the con-
tract between the cloud provider and its customers. This
contract may contain the performance indicators, availabil-
ity, response time, financial penalties, or target values [24].
SLA violation occurs when one or more of service level
objectives (SLOs) are dissatisfied. There are many reasons

for SLA violation, such as aggressive consolidation, improper
sizing of VMs or poor elasticity solutions [25]. Consequently,
the public, private, and hybrid cloud providers should supply
VMs with modern elasticity. Beloglazov and Buyya [14]
formulated two metrics to measure the SLA violations in
an IaaS environment. The first measurement is the average
of violation time during the active PM time (SLAVTAH).
The second metric is the performance degradation migration
due to VM’s migration (VMPD):

SLAVTAH =
1
m

m∑
j=1

VT j
activeT j

(4)

VMPD =
1
n

n∑
i=1

EPDi
RU cpu

i
(5)

Both AVT and PDM metrics are independent. Consequently,
SLA violation is a multiplying of AVT and PDM.

SLAV = SLAVTAH × VMPD. (6)

E. RESOURCE WASTAGE MODEL
Data centers’ servers are rarely fully utilized, which increases
the number of active PMs. VM placement concerning only
one resource type leaves various amounts of residual capac-
ity on other resources. This remaining resource knows as
resource fragmentation in which unutilized resource wasted
in the unavailable PMs. Consequently, the placement strat-
egy should utilize the available resource efficiently for all
resource types. The high resource wastage indicates the inef-
ficiency of resource utilization which restricts the ability
to exploit residual capacities for coming requests. There-
fore, the efficient allocation should optimize resource uti-
lization or leave the residual resources balanced for more
opportunities for hosting newVMs on the same PM. Depend-
ing on the description mentioned above, we formulated a
mathematical formula to quantify the resource wastage of
PM which is the extent of the model of a multi-dimensional
resource [26], [27]. The total amount of resource usage by PM
Pj is estimated as the total resource used by all VMs running
on it. We calculated the resource wastage as a percentage
value. The high percentage of Resource Wastage (RW) indi-
cates inefficient use of the resource or imbalance placement
which saturates one resource dimension and prevents from
placing more VMs on PM. The average resource wastage of
major resource is calculated as described in equation (7).

RW j =
1

NRT
×

∑
k ∈RT

RemCk
j ,

where

RemCk
j = (1− UCk

j ) (7)

Theminimum percentage value of resource wastage indicates
the efficiency of resource utilization.
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FIGURE 1. Distributed system model.

IV. THE PROPOSED DISTRIBUTED MODEL
In this section, we give the details of our model that aims
to maximize resource utilization and balanced resource con-
sumption. The model not only involved placing the VMs on
sufficient PMs but also set them in a balanced way. We have
employed the distributed model for an elastic and extensive
framework which fits the cloud computing paradigm. The
three main components of the model are:

1) System controller which is responsible for making
global management decision such as VM placement.
It is worth mentioning that the system controller is
installed on PM which does not host any VM. The sys-
tem controller receives requests of customer allocation
demands and then places them efficiently on sufficient
PM in a balanced way for multiple resources. Further-
more, the controller is also responsible for remapping
VMs to other PMs during the migration while retaining
the system in a balanced manner.

2) System compute is installed on all PMs which are
responsible for hosting VMs. The system compute
is deployed as a part of VMM to detects the over-
load or the under load utilization. Besides, the sys-
tem compute selects the VMs for migration in case of
PM overload.

3) System monitor is distributed on all PMs, which col-
lects the resource utilization data, then stores it locally
to be used by algorithms. Figure 1 depicts the dis-
tributed model for the cloud data center.

A. PROPOSED STRUCTURE AND ALGORITHMS
We concentrate on IaaS consisting of a large amount of PMs.
These PMs have different capacities of CPU, RAM, and BW.
Besides, the storage of VMs and its data is within shared
storage as Network Attached Storage (NAS) to enable live
migration. These VMs should be distributed by the efficient
method to satisfy both the cloud provider and customers.
VM placement and consolidation are two steps to place

FIGURE 2. Distributed interaction components.

VMs in the right place that satisfy the management policies
and to provide a better service at a lower cost. We try to settle
VM in the right place to keep the system stable and minimize
the VM migration. The method of hosting VM in a suitable
place can be divided into five substeps:

1) Placing VM in an appropriate place according to
requirements.

2) Consolidating VMs on a minimum number of PMs
depending on the current VMs utilization.

3) Detecting the overload situation so that some VMs are
migrated to mitigate the overload under the threshold.

4) Detecting the underload situation, so all VMs are
moved to other active PMs and shut down these PMs.

5) Relocating the migratory VMs from the overload and
underload PMs into the right place.

In this section, we introduce two algorithms to address
VM deployment and selection. The placement algorithm
has to place the arrival VM requests in a balanced way
depending on multi-dimensional resource types, rather than
depending on one resource dimension. Furthermore, another
algorithm is invoked to mitigate PM load in the case of
threshold violation resource. Thresholds policy is vital to
restrain the violation of SLA and guarantee a good QoS to
customers. Eventually, when an overload has been detected,
it is eschewed by migrating VMs to calm the load under the
violated threshold. Figure 2 illustrates the interaction com-
ponents of distributed algorithms to achieve intra-balance
placement and VMs selection.
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B. HOST OVERLOAD DETECTION
The power consumption can be reduced efficiently through
consolidation of VMs on a minimum number of active PMs
and shutting down other PMs. However, aggressive consol-
idation or placement leads to an increase of SLA violations
resulting in poor service [28]. The flexibility of the virtual-
ization technique which allowed performing a live migration
of VMs between the supervisors solved the problem of the
overloaded host. The host overload detection should be accu-
rate enough to minimize the number of live migration and
estimate the overload before it occurs.

In this paper, the overload has been detected depending on
the adaptive threshold policy. The host is considered as an
overloaded PM if the estimated resource utilization exceeds
the adaptive threshold. In the following, we explained the
method of calculating the resource utilization of multi-
dimensional resources, and the predicted approach which
uses the forecast technique called single exponential smooth
(SES) [29]. Besides, we explained the method of calculating
the adaptive threshold.

1) RESOURCE UTILIZATION PREDICTION
We employed a time series data model called SES to make
a prediction. This technique has been applied in our previous
work which gave good results [16]. SES is a kind of weighted
moving average sequence data that we used to forecast the
resource utilization. The time sequence of the observation
started from zero and ended at time t, where t is the time
for the final observation value. The resource utilization data
collected into the two-dimensional array. The X rows present
the length of data collected in t time, and Y column presents
the CPU utilization. SES prediction technique used the list
of observed resource utilization of CPU to calculate the
predictive value. The expression for SES is given by the
formula 8.

PUCcpu
t+1 = PUCcpu

t + α(UC
cpu
t − PUC

cpu
t ) (8)

The formula can be expressed as in formula below:

PUCcpu
t+1 = α × UC

cpu
t + (1− α)× PUCcpu

t (9)

SES uses all the previous historical data which makes it
more stable and uniform. The smooth value α presents the
sensitivity of the model to the frequent data changes over
the observed time. If the collected data of resource utilization
has a unified response rate, the smooth value α is a constant
value close to zero, but if observation values have fluctuated
rates, the smooth value α is close to one. In our experiment,
we set the α to 0.7 because of great fluctuating of workload
data.

The initial of predictive value defined as PUCcpu
1 which

initialized into real resource utilization value if the length
of the collected data series is more than 15, which is the
experimental value. If the length of the collected data series
is less than 15, the PUCcpu

1 is calculated as the average value

of the previous observations.

PUCcpu
1 =


∑l

i=0
UCcpu

i

l
, l < 15

UCcpu
1 , l ≥ 15

 (10)

2) AN ADAPTIVE UTILIZATION THRESHOLD
The static threshold is unsuitable for a dynamic workload
environment such as cloud computing. The cloud system
threshold should be an auto-adjusted value capable of auto-
matically changing its value depending on the hosted appli-
cation’s workload. We can auto-adjust the upper utilization
threshold Tj for each PM j by preserving the amount of spare
capacity between lower and upper limits (LL and UL) as
shown in the equation 11.

Tj = 1− | (UL − LL)× UCcpu
j | (11)

where UL and LL are the upper probability limit and
low probability limit respectively. The PM is considered
as an overloaded PM if the predictive value is more
than the upper threshold. Therefore, some VMs would
be preemptively migrated to avoid the overload situation.
In our experiment, we set the UL and LL to 85 and 90,
respectively.

C. BALANCE FACTOR FOR VM PLACEMENT
The cloud providers’ goal is to maximize resource utilization
which reduces the total energy consumption of the cloud
center. Consequently, the better way to maximize resource
utilization is to submit the VMs to the PMs in a balanced way
depending on multi-dimensional resources. Figure 3 clarifies
two examples of assigning the different size of VMs to the
same PM. Figure 3a illustrates imbalanced allocation, and
Figure 3b shows the balanced allocation. The capacity of PM
for CPU, RAM, and BW represented as a cube. The required
resources of CPU, RAM, and BW of three VMs are shown as
small cubes. The residual capacity on PM represents the big
cube that refers to the remaining capacity after accommodat-
ing three VMs.

Obviously in Figure 3a, the VMs hosted on this PM are
incompatible, so it leaves the PM with an unuseful remaining
capacity due to the saturation of CPU. The deficiency of
CPU capacity restrains the opportunity of placing a new VM.
In contrast, the residual capacity in the figure 3b is bal-
anced due to the good strategy of choosing the compatible
VMs which give a good opportunity to host new VMs. The
algorithm estimated resource utilization of adding VM to
PM before hosting depending on available information for
PMs capacities and requirement of VMs.

The Balance Factor (BF) and the estimated resources uti-
lization are calculated as equation 12:

BF j =

√ ∑
k∈RT (ERU k

j − max(U ))
2

NRT
,
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FIGURE 3. Balance and Imbalance resource allocation of three VMs into a
single PM. (a) Imbalance allocation. (b) Balance allocation.

where

ERU k
j =

(
RU k

j + RRki
)
, ∀ k ∈ RT

max (U) = Max(ERU k
j ) (12)

BF j is a percentage value between [0,1], where value close
to zero indicates efficient balance, and value close to one
indicates that one or two types of resource might be saturated.
Consequently, we used the Balance Factor (BF) in our place-
ment algorithm to submit the VM to PM, where the minimal
BF ensures that the residual capacity is balanced for a better
chance of placing new VMs on the same PM.

D. IMBALANCE FACTOR FOR VM SELECTION (IBF)
The imbalance factor of VM selection is the method of choos-
ing VM to be migrated in the case of threshold violation.
The imbalance factor is a percentage value between [0, 1]
which determines the VM for migration, equation 13. The
best choice to select VM for migration among the list of VMs
is the lower value of IBF in which the PM machine would be
more balanced after the VMmigration. Applying this method
leads the whole system to be balanced shortly and maintains
a balanced residual capacity to accommodate more VMs.

IBF j =

√ ∑
k∈RT (UCk

j − IBmax (U))
2

NRT
where

UCk
j =

(
UCk

j − RU k
i

)
, ∀ k ∈ RT

IBmax (U) = Max(UCk
j ) (13)

E. BALANCED RESOURCE CONSUMPTION (BRC)
The algorithm is deployed on a system controller which is
accountable for accommodating the arrival of VM’s requests
in a tidy balanced way to balance the resource consumption.
Due to the different instances of which include an intensive
CPU and intensive RAM, accommodation of one type of
instance on the same PM would waste the capacity of other
resources, increase the contention of resource usage, and
augment the operating expenses. However, BRC is an accu-
rate method of accommodating the VMs on PMs to balance
resource consumption.

A multi-dimensional vector introduces the capacity of PM
resources and requirement of VMs; those dimensions present

the amount of resource for the major types of resources
such as CPU, RAM, and BW. The system controller receives
the hosting requests with the resource requirements, and
the requests are sorted by their intra-balance of resource
requirements, then the scheduler starts to scan the available
resources on all operating servers of the cloud data center to
find the sufficient PM to host the customer’s VMs. Among
the sufficient PMs, the algorithm starts to estimate the load of
transferring VM to PM and verifies if the PM would become
overloaded. If so, the algorithm excludes the PM from the
potential hosting list.

Furthermore, the algorithm starts to classify the optimal
choice among the active hosts by the BF and resource con-
sumption, which introduces the best balance of the mini-
mum residual capacity. Resource consumption is the average
resource utilization for all types of resource. The algorithm
looks for the minimum ratio between BF and resource con-
sumption. The minimum ratio of BF and resource utilization
indicates that the allocation policy chooses the maximum
balanced resource consumption. This method increases the
opportunity of hosting more VMs into the same PM and
exploits the resources to their maximum potential. If there is
no active host under these conditions, the algorithm submits
the VM into a new PM. In that case, the number of active
hosts and power consumption would be decreased. More-
over, the balanced resource consumption will decrease the
resource fragmentation andminimize the need for VMmigra-
tion. The pseudo-code of the algorithm is exhibited in the
algorithm (1). The complexity of the algorithm is n×m, where
n is the number of VMs and m is the number of PMs in the
data center.

F. IMBALANCE VM WITH MINIMUM MIGRATION TIME
SELECTION ALGORITHM (IBMMT)
The consolidation process optimizes resource utilization and
enhances the power consumption depending on the current
use of VMs. However, the aggressive consolidation increases
the SLA violations which cause a poor QoS. Consequently,
the consolidation process should be allowed to the determined
limit to keep spare space which can be used in the case of
VMs extension or unreasonable load change. As a result,
the overload situation is expected, and some VMs should be
migrated to reduce SLA violation. The overload detection
is defined depending on the preset threshold, the predicted
value of the overloaded PM is compared with the threshold
to discover the overload before its occurrence. The prediction
technique minimizes the time of SLA violation in which the
migration starts before the actual overload occurs. Moreover,
using a dynamic threshold is suitable for such an environment
as a cloud data center to avoid unnecessary VM migrations.
Strictly, the system starts to observe resources to restrain
the threshold violation. If PM faces the overload situation,
the VM selection is an urgent procedure to select VM for
migration. The selection of VMmigration has a direct impact
on the state of the source and destination. Where the size
and number of VM migrations affect the performance of
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Algorithm 1 BRC
input : VMList , PMList
output : allocated_PM

1 VMList.SortDescendingIntra-balance( );
2 for each VM in VMList do
3 minRBC ← MAX ;
4 allocatedPM ← ∅;
5 for each PM in PMList do
6 if host suitable for VM then
7 if !isHostOverUtilizedERU k

j (PM ,VM ) then
8 if RU cpu

j > 0 then
9 BF ← BF j/∗eq(12);
10 RW ← ∗eq(13);
11 RatioBFRC ← BF/(1− RWj);
12 if RatioBFRC < minRBC then
13 minRBC ← RatioBFRC ;
14 allocated_PM ← PM ;
15 end
16 end
17 end
18 end
19 end
20 if allocated_PM = ∅ then
21 allocated_PM ← newPM ;
22 end
23 if allocated_PM 6= ∅ then
24 PlaceVM toallocated_PM ;
25 end
26 end

Return: allocated_PM

the cloud system. The VM selection can be conducted for
multiple objectives, but the main objective is to relieve the
overload and minimize the migration time. However, the
VM selection can also target additional objectives such as
balancing resource consumption. IBMMT algorithm aims to
remain the resource consumption balanced, and minimizes
the migration cost. The negative impact of the live migration
cost on cloud system imposes some rules on selecting migra-
tory VMs. Therefore, choosing the most suitable VM is the
critical process for the model to handle before conducting
the migration to mitigate SLA violation and performance
degradation. In our algorithm, VM selection is achieved for
multiple goals such as balancing resource consumption and
minimizing the downtime. Therefore, the migration must be
done fast to avoid performance degradation and maintain the
balance of resource consumption. In the case of threshold
violation, the algorithm looks for all VMs which comply
with the condition of reducing the load under the threshold
policy (if the difference of current PM utilization and the vio-
lated threshold value is less than the VM utilization). Then,
the algorithm starts to classify them depending on IBF and
the proportion of memory and CPU consumption of VM. The
algorithm strives to find the VM which leaves the resource

consumption balanced and has the least proportion of mem-
ory and CPU consumption at the same time. Migrating the
proper VM reinforces the balance of resource consumption
and minimizes the migration time; which improves the QoS.
In our algorithm, both factors have the same importance.
Therefore, we have used a weighted sum of the two objectives
and give them the same weight according to equation (15):

MMTmu =
RURAM

i

RUCPU
i

(14)

muIBF =
IBFi − IBFmax(

IBFmax − IBFmin
)
× 2

u
MMTmuRAMi −MMTmumax(

MMTmumax −MMTmumin
)
× 2

(15)

The pseudo-code for the algorithm is exhibited in
algorithm (2). The complexity of the algorithm is n× l ×m,
where n is the number of VMs and l is the number of accepted
VMs that can take the load under the threshold, and m is the
number of the overloaded PMs in the data center.

V. EVALUATION METHODOLOGY
A. EXPERIMENT SETUP
In this section, we evaluate the impact of the intra-balance of
resource consumption on power consumption and SLA vio-
lations. Due to the difficulty of reproducing results within the
real infrastructure, we have used a simulatedmethod to assess
the proposed solution in comparison to other algorithms.
One of the best simulation platforms to simulate IaaS is
cloudsim [30]. Cloudsim supports many features of cloud
management options such as provisioning on-demand
resources, power awareness solutions, and dynamic work-
loads. We used the 3.1 version toolkit of the cloudsim.
We compared our algorithm with the same version of
VM placement problem algorithms. The beloglazov [14]
algorithm is the default placement algorithm in Cloudsim
which has conducted with a different policy of VM selection
and overload detection. The placement algorithm chooses
the least power consumption to host the VM. Moreover,
the authors find the best performance come with local regres-
sion for overload detection which was adapted for all follow-
ing comparative algorithms. Guazzone et al. [11] algorithm
is a type of nonlinear programming algorithm which sorted
PMs to the best-fit -decreasing heuristic depending on mul-
tiple factors. Active PMs are sorted decreasingly according
to the free CPU capacity. If it is a tie, the minimum power
consumption is chosen. Chowdhury et al. [12] algorithm has
the opposite behavior of Beloglazov algorithm where the
highest difference of power consumption after hosting VM is
preferred. Shi et al. [13] proposed two algorithms (SHI-PU,
SHI-AC). SHI-PU algorithm sorted the PMs decreasingly
according to the CPU utilization and choose the highest
utilized PM. SHI-AC algorithm sorted the PMs decreasingly
according to absolute capacity and choose the biggest PMs.
RUA [17] submits the VMs tomaximumCPUutilizationwith
keeping spare space to guarantee the SLA. For the sake of
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Algorithm 2 IBMMT
input : PMlist, VMList, Tj
output : VMmigratedList

1 for each PM in PMList do
2 Best_muIBF ← max;
3 bestchoiceVM ← ∅;
4 while UCcpu

j > Tj or PUC
cpu
t+1 > Tj do

5 VMList.SortDescendingutilization( );
6 for each VM in VMList do
7 if UCcpu

j − Tj < RU cpu
i then

8 IBF i← IBF j/∗eq(13);
9 MMTmui← eq(14);
10 AcceptedvmList.add(VM )
11 end
12 else
13 bestchoiceVM ← VM i;
14 Break;
15 end
16 end
17 if bestchoiceVM = ∅ then
18 for each VM in AcceptedvmList do
19 IBFmax ← Max(IBF i);
20 IBFmin← Min(IBF i);
21 MMTmumax ← Max(MMTmui);
22 MMTmumin← Min(MMTmui);
23 muIBF ← muIBF∗eq(13);
24 if muIBF i < Best_muIBF then
25 Best_muIBF ← muIBF i;
26 bestchoiceVM ← VM i ;
27 end
28 end
29 end
30 UCcpu

j = UCcpu
j − RU cpu

i ;
31 VMmigratedList←bestchoiceVM ;
32 VMList.remove(bestchoiceVM )};
33 end
34 if RU cpu

j < LT cpuj then
35 VMmigratedList ← PM .vmList;
36 TurnoffPM ;
37 end
38 end

Return: VMmigratedList

simplicity, all these algorithms are experimented in a single
data center considering two types of resource, CPU, and
RAM. However, our model can easily be extended to multiple
resource types.

1) WORKLOAD
To evaluate algorithms, we have used a real system work-
load trace. The workload trace helps to reproduce realis-
tic data rather than synthetically-generated data. Two types
of real workload were used. The first type of workload is

TABLE 2. Power consumption at different utilization.

Google Cluster data which contains the resource and work-
load data [31]. The data of 1200 PMs have been collected
in 29 days and publicly published. For each PM, the work-
load of VMs is included of jobs which contain multiple
tasks. Also, PM data is included in these data. The second
type of workload is Bitbrains which contains the workload
of 1750 VMs taken every five minutes [32]. These data of
workload includes the resource consumption of CPU and
RAM, as well as network and disk.

2) ENERGY CONSUMPTION MODEL
We adopt the power model proposed in [33]. The power
consumption is calculated as a summation of the energy
consumption of both CPU and RAM. The different behavior
of power consumption results in a different proportion of
power consumption. Two types of servers have been used
to accurately describe the power model which drive from
SPECpower benchmark (http://www.spec.org/powerssj2008/
- Table (3)). The power consumption of RAM is calculated
as a summation of background power and operational power.
Background power of RAM is measured as a function of the
CPU utilization. Operation power of RAM is determined as
a product of RAM bandwidth and the energy consuming for
operating read/write on RAM.

E = ECPU + ERAM (16)

ERAM = ERW + EBack (17)

3) EVALUATION METRICS
Several metrics are used to compare the efficiency of the
algorithms. These metrics should evaluate the objectives of
the proposed methodology accurately. Consequently, the fol-
lowing metrics are appropriate to assess the efficiency of the
algorithms compared to other related works:

1) Power consumption measures the effect of the pro-
posed model to the reduction of energy consumption in
the cloud system, which calculated as shown in section.

2) SLAVTAH (SLA violation time per active PM)
shows the effect of the overload in the availability of
service. It specifies the proportion of unavailability
service time to the total time of service.
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FIGURE 4. Power consumption of homogeneous environment. (a) Google. (b) Bitbrains.

TABLE 3. Homogeneous configuration of PMs.

3) VMPD (VM Migration Performance Degradation)
presents the result of VM migrations in the perfor-
mance of running VMs.

4) ESV(Energy SLA Violation according to the negative
correlation between power consumption and SLA vio-
lation, this metric reflects the trade-off between power
saving and SLA violation, while the low value indicates
the satisfying reduction of both factors.

5) Number of VM migration shows the number of
VMmigrations, as the small number of VMmigrations
reflects good stability and availability of the cloud
system. However, not only the number of VM migra-
tions contribute to SLA violation, but also the size and
re-allocating time of migrated VMs.

B. SIMULATION RESULTS AND ANALYSIS
In the following, we give the results of all experiments which
conduct to ensure the performance of the proposed algo-
rithm compared to others. The algorithms have been tested

TABLE 4. Four types of VM.

in different environmental settings of the cloud data center
(homogeneous, heterogeneous, and different size of VMs).

1) HOMOGENEOUS EVALUATION
In this section, we assess the efficiency of our algorithms
comparing with different algorithms. The compared algo-
rithms are named according to the name of the first author.
Table (3) shows the homogeneous specification of PMs.
Table (4) shows the VMs types according to Amazon EC2.
In this experiment, we have used the same type of PMs and
different type of VMs.

Fig (4) shows the performance of all algorithms concern-
ing power consumption for Google Cluster and Bitbrains
workload respectively. Considering both cases of power con-
sumption, our algorithm has achieved a remarkable reduc-
tion in power consumption. In contrast to other algorithms,
our algorithm takes into the consideration of VM placement
the balanced consumption of resources, which improves the
resource utilization and contributes significantly to power
reduction, where the same number of the VM has been
placed into less number of active hosts. In the case of
google cluster workload, as shown in Fig (4a), the power
consumption is reduced from 121.09 KWh in Beloglazov’s
algorithm to 119.25 KWh in BRC-IBMMT algorithm, and
from 120.12 KWh in Beloglazov’s algorithm to 119 KWh
in BRC-IBMMT algorithm, in case of BitBrain workload,
as shown in Fig (4b).

According to Fig (5), which shows the performance of
all algorithms in term of SLAVTAH for Google Cluster
and Bitbrains workload. BRC-IBMMT succeeded to reduce
the power consumption, which was expected to produce
an increase in SLA. Even though the negative correlation
between the reduction of power consumption and SLA,
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TABLE 5. Simulation result of homogeneous data center.

FIGURE 5. SLAVTAH of homogeneous environment. (a) Google. (b) Bitbrains.

FIGURE 6. ESV of homogeneous environment. (a) Google. (b) Bitbrains.

BRC-IBMMT algorithm reduces the SLA during the total
time of service compared to other algorithms. As a result,
balanced resource consumption in BRC-IBMMT causes a
steady reduction in both power consumption and SLA time
in active hosts. Moreover, BRC-IBMMT reduces the com-
petition for resources, which achieves a significant reduction
in performance degradation as shown in the table(5). As can
be seen from the results, BRC-IBMMT registered the lowest
value in both cases. In BitBrain as an instance, BRC-IBMMT
lessens the SLATAH38%compared to Beloglazov algorithm.

Although aggressive consolidation reduces power con-
sumption, it increases SLA violations due to the negative
correlation between them. However, the balanced consump-
tion of resources contributes to a balanced reduction of both
objectives. To prove the stability of algorithms in this con-
text, ESV measured the system performance of all algo-
rithms to show the trade-off between power consumption and

SLA violation. Fig (6) shows the performance of all algo-
rithms with respect to ESV for Google Cluster and Bitbrains
workload respectively. Our algorithm gains the lowest value
of ESV compared with other algorithms which reflect the
efficiency of our algorithms when it targets both objectives.
As an instance, BRC-IBMMT decreases the ESV 4 % com-
pared to Beloglazov algorithm, as shown in Fig (6a) in case
of Google Cluster workload, and 40 % compared to Bel-
oglazov algorithm, as shown in (6b), in the case of BitBrain
workload.

The number of VM migrations influences the availability
of service for the customers, as a high number of VM migra-
tions leads to a high downtime of service. However, not
only the number of VM migrations is the cornerstone in the
availability of service, but also the size of migratory VMs.
Consequently, live migration should be considered according
to the migration time and performance degradation.
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FIGURE 7. Number of VM migrations of homogeneous environment. (a) Google. (b) Bitbrains.

FIGURE 8. Power consumption of heterogeneous environment. (a) Google. (b) Bitbrains.

Fig (7) shows the number of VM migrations for Google
Cluster and Bitbrains workload, respectively. In contrast to
other algorithms, which depend on one type of resource
during the placement, it is clear from the figure that, balanced
placement of BRC-IBMMT algorithm has contributed to the
stability of the system and reduced the need to migrate VMs
in case of overload PMs. In addition, the VM selection policy,
which enriches balanced placement and takes into account
the size and impact of migration in performance degra-
dation, contributes to reducing the number of migrations.
As shown in Fig (7a), BRC-IBMMT decreases the number
of VMmigrations 33% compared to Beloglazov algorithm in
case of Google workload, and 25 % in the case of BitBrain
workload, as shown in Fig (7b).

In summary, It is clear that our algorithm effectively
reduces the value of all evaluation metrics in both cases.
However, it was more noticeable in the case of BitBrain
workload due to the diversity of loads in this case, which
clarifies the effect of balanced resource consumption of
BRC-IBMMT algorithm in all evaluation metrics.

2) HETEROGENEOUS EVALUATION
Most of the real data centers are a heterogeneous environ-
ment. Data centers contain a hundred thousands of different
types of PM. Therefore, to evaluate the performance of the
algorithm in the real simulated data center, we have to evalu-
ate them in such an environment. In this section, we assess the

TABLE 6. Heterogeneous configuration of PMs.

efficiency of all algorithm in a heterogeneous environment.
Table (6) shows the heterogeneous specification of PMs.
In this experiment, we have used the heterogeneous types of
PMs and VMs.

It can be seen from Fig (8) that BRC-IBMMT shows
an efficient reduction in power consumption for both types
of workload. However, it is more noticeable for Bit-
Brain workload case. A heterogeneous environment with
a diversity of workload makes the case of placement more
complicated, although, BRC-IBMMT shows an effective
reduction in power consumption compared to other algo-
rithms, which do not consider the balanced consumption
of resource. Therefore, placing VM depending on a sin-
gle resource type increases the fragmentation of residual
resources. In this case, most of the residual resource are not
useful to allocate new demands. As an instance, in the case of
Google Cluster workload, BRC-IBMMT gets the best result,
which is followed by the algorithm of Guazzone and Shi-AC.
In the case of BitBrain, BRC-IBMMT reduces the power
consumption 13 % compared to Beloglazov algorithm.

Fig (9) shows the performance of all algorithms with
respect to SLAVTAH for Google Cluster and Bitbrains
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TABLE 7. Simulation result of heterogeneous data center.

FIGURE 9. SLAVTAH of heterogeneous environment. (a) Google. (b) Bitbrains.

workload, respectively. As shown in Fig (9), our algorithm
achieves a good reduction in SLAVTAH besides the power
consumption although the negative correlation between them.
BRC-IBMMT places the VMs in a tidy balanced way, which
increases the resource utilization and prevents the saturation
on a single type of resource. Fig(9a) and Fig (9b) shows
the reduction for both types of workload. As an instance,
in the case of Bitbrain workload, BRC-IBMMT drops the
value of SLATAH from 4.65% in Beloglazov algorithm to
1.88%. Fig (10) emphasizes the efficiency of our algorithm,
where BRC-IBMMT gets the best result for both types of
workload as shown in Fig(10a), and Fig (10b). This result
is expected because of the good reduction in both metrics of
power consumption and SLA.

As can be seen from Fig (11) that BRC-IBMMT signifi-
cantly reduces the number of VM migrations. For Bitbrains
workload, as an instance, BRC-IBMMT decreases the num-
ber of VM migrations from 7391 in Beloglazov algorithm to
1921 in case of Google Cluster, and from 13317 to 4446 in
case of BitBrain. Table (7) shows a summary of the result of
the heterogeneous environment.

In conclusion, BRC-IBMMT achieves a good balance
between the contradictory objectives. In the case of a het-
erogeneous environment, it was obviously the effect of
BRC-IBMMT’s balanced placement strategy and selection
policy in maximizing the resource utilization and decrease
the SLA violation at the same time.

3) DIFFERENT SIZE OF VM EVALUATION
Since our algorithm considers the intra-balance of resource
utilization during the placement and selection of VM, it was

TABLE 8. Different size of VM configuration.

necessary to evaluate the performance of algorithms for dif-
ferent sizes of VM. In this test, we have changed the size of
the VM into three sizes (Small, Normal, and Big). Table (8)
shows the specification of the different sizes of VM.

In general, the power consumption is increased gradu-
ally with the increasing size of VMs for all algorithms.
However, the lowest power consumption level is registered
with the algorithm of BRC-IBMMT, as shown in Fig (15).
In addition, it was observed that the BRC-IBMMT algorithm
performance was better with a smaller size of VMs. The rea-
son for this is that BRC-IBBMT considers the intra-balance
of resource utilization during the placement and selection
of VM. Therefore, the small size of the VMs leads to low frag-
mentation of resource. As an instance, BRC-IBMMT reduces
the power consumption by 10% compared to Beloglazov
algorithm in case of small size VMs, and 8% in case of the
big size of VMs.

Fig (13) shows the performance of all algorithms in term
of SLAVTAH with respect to the size of VMs. By the
same manner, the value of SLATAH is increased with
the increase of VM sizes for all algorithms. However,
BRC-IBMMT achieves a significant reduction in SLATAH
specifically with the small size of VMs. It can be seen also
from Fig (13) that BRC-IBMMT decreases the value of
SLAVTAH about 22%, 11%, and 10% compared to the best
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FIGURE 10. ESV of heterogeneous environment. (a) Google. (b) Bitbrains.

FIGURE 11. Number of VM migrations of heterogeneous environment. (a) Google. (b) Bitbrains.

FIGURE 12. Power consumption of different size of VM.

algorithm of Shi-AC for three groups of VM size, respec-
tively. For the VM performance degradation, BRC-IBMMT
algorithm shows a significant reduction. We can see from
the Fig(14) that BRC-IBBMT decreases the VMPD about
50% compared with other algorithms in case of small size
VM, and about 33% in case of both sizes of normal and big
VMs. The rational reason for that is BRC-IBMMT decreases
the number of VM migration and minimizes the migration
time efficiently. The superiority of BRC-IBMMT algorithm
is clearly presented in Fig (15), which shows the result of

FIGURE 13. SLAVTAH of different size of VM.

ESV metric for all VM sizes. BRC-IBMMT gets the best
result for all VM sizes especially with the small size of VM.

Fig (16) shows the number of VM migrations for dif-
ferent sizes of VM. The number of VM migrations is
decreased with the increase in the size of VM. For all cases,
BRC-IBMMT decreases the number of VM migration effi-
ciently for all groups. According to the results of Fig (16),
the best reduction in the number of VM migrations comes
with the big size of VM, where BRC-IBMMT decreases the
number of VM migration about 13% compared with the best
result of Guazzone algorithm.
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FIGURE 14. SLAVTAH of different size of VM.

FIGURE 15. ESV of different size of VM.

FIGURE 16. Power consumption of different size of VM.

At the end of our evaluation, we can draw the following
conclusion: 1) Our algorithm has succeeded to minimize
the fragmentation of residual capacity. 2) Our algorithm has
succeeded to produce a well-balanced reduction between the
negative correlation metrics (power consumption, SLA viola-
tion). 3) The size of VM plays the main role in our algorithm,

as the best result has appeared clearly by the small size
of VM. 4) Our algorithm is more effective in the heteroge-
neous environment compared with other algorithms which do
not consider the intra-balance of resource utilization.

VI. CONCLUSION
Power consumption in the cloud data center has a negative
correlation with the SLA violation. While VMs are con-
solidated in the minimum number of active PMs to effi-
ciently exploit the available resource, resource fragmenta-
tion is one of the reasons for resource wastage because of
the saturation on single resource restrains the consolidation
process. Therefore, we proposed (BRC-IBMMT) algorithm
which considers the balance of resource consumption dur-
ing the VM placement. Because of the balanced resource
consumption which leads to efficient resource utilization,
BRC-IBMMT succeeded to minimize the waste of the
resource on the unavailable PMs. Moreover, the VM selec-
tion policy enriches the balance of resource consumption
and minimizes the migration cost. The proposed algorithm
produced an acceptable balance between the contradictive
objectives of minimizing power consumption and SLA vio-
lation. The experimental results of different types of work-
load show that (BRC-IBMMT) algorithm outperform other
algorithms in terms of reducing power consumption and SLA
violation. Besides the reduction in power consumption and
SLA violation, our work is expected to contribute to the
sustainable environment by reducing the excessive emission
of carbon dioxide. Even though, BRC-IBMMT has provided
a practical solution to make an acceptable balance between
the objectives of investment in the cloud data center for both
providers and customers. But still, the algorithm needs to be
tested in a real cloud infrastructure with the inclusion of more
resource types. Consequently, future work is intended for
the algorithms to be implemented in the most famous cloud
computing platform, known as OpenStack.
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