
Improving TCP Performance in Multi-Hop coded Wireless Networks

Khaled Alferaidi1 , Robert Piechocki 2 and F. Alfordy 3

Abstract— Wireless Multi-Hop networks often rely on the use
of the Transport Control Protocol (TCP) which provides high
reliability and throughput performance at Transport Layer. Xor
network coding does not benefit greatly from TCP’s attributes.
TCP takes into consideration the nature of networks; however,
TCP does not acknowledge the network coding which can ease
congestion by performing coding at intermediates nodes as in
COPE. Meanwhile, the perspective of network coding has a
more rigid approach that depends on relay nodes to perform
coding rather than depending on the sender and the receiver
exchange messages. In this paper, we investigate the different
perspective to bridge the gap, as our understating is moved from
throughput to Ratio of Loss Packet (RLP), delay and jitters.
So we propose WeNC-TCP to appreciate the network coding
nature functionality and incorporate better interaction between
TCP at Transport layer, and network coding functionality which
relies on between network and Data link layer, as a result, the
average ratio of loss packets has improved up to 72%, and
end-to-end Delays have reduced to up to 48%.

I. INTRODUCTION

Network coding is a new transmission paradigm, that was
introduced by Ahlswede et al. [1]. The beauty of Ahlswede
novel concept is bandwidth efficient, and it achieves higher
throughput than traditional transmission theorem [2][5]. The
basic idea about network coding is that packets are intelli-
gently mixed (coded) together at an intermediate node into
one coded packet. Consequently, it is broadcasted to the
network. This process opens the door to reducing the number
of transmissions, also gives the flow of rich information per
transmission. As a result, bandwidth becomes available for
new data to be transmitted [7]. Many researchers have been
attracted to wireless networks as the fact that, the nature
of wireless is a broadcast environment, and network coding
benefits from such feature.

Network coding divides into three different categories:
random network coding [3],[6],[7], physical layer network
coding [8],[9], and Xor network coding [7],[10],[11]. In the
first case, encoding coefficients are randomly chosen from a
set of coefficients of a finite field. A linear combination of
packets data is processed to generate a coded packet. At
the receiver, the decoding process is done if and only if
the receiver can construct a full rank transfer matrix made
of coefficients extracted from received coded packets [6].
It means that if there are K encoding coefficients in a
coded packet, the receiver will be able to decode all encoded
packets. On the other hand, Physical layer network coding

1 K. Alferaidi is with Faculty of Engineering, University of Bristol &
Yanbu University College Khalidmalaya at gmail

2 R.Piechocki is s with Faculty of Engineering, University of Bristol,
Woodland Road,BS8 1BU, UK R.J.Piechocki at Bristol

3 F. Alfordy University of Hail, K.S.A. F.Alfordy at hail

allows for simultaneous reception of packets at the nodes
air interface [8] which are aggregated. Before broadcasting
frames, a node encoded frames from a different source using
Xor operation. Lastly, Xor network coding, a native packet
in the node’s queue is encoded from different sources using
Xor operation. After encoding, the packet is transmitted to
destination nodes. At the receiver, it decodes encoded packets
with its own sent packets in the queue to retrieve native
packets using the same Xor operation [4]. A reception report
is used by all nodes to coordinate the process of ”who
has what packets”. Reception reports help nodes to decode
packets and track the native and encoded packets on medium
[4]. Xor network coding is regarded as a special case of
random network coding where the Galois field is of size 2
[8].

This paper has been inspired by the work of Katti et al.
[4]. COPE was the first attempt to test the practicality of
network coding. However, TCP protocol is not as expected to
enjoy the benefit of Xor network coding. Even though TCP
is a resilient and network friendly protocol that eases the
congestion and guarantee smooth delivery of data packets,
it does not guarantee to give the same expectations when
network coding is being used in the wireless networks.
The rest of this paper is organised as follows. Section II
describes state of the art, section III problem statement.
The proposed scheme is presented in section IV. Simulation
results and discussion are presented in Section IV, and finally,
we conclude our work in Section VII.

II. RELATED WORK

Katti et al. [4] proposed a new architecture in wireless
mesh networks that put the concept of network coding at
the test. The work in [4] succeeded to present COPE. They
considered unicast traffic, dynamic and potentially bursty
flows in which COPE demonstrated significant performance
improvement. However, COPE showed little or no signifi-
cant improvement in TCP, unlike UDP improvements using
COPE. Authors in [4] claimed that TCP did not show any
significant throughput improvement (the average gain was 2-
3%), their explanation formed based on reaction to collision-
related losses. Katti argued that many nodes were sending
packets to the bottleneck nodes, but they were not within
carrier sense range of each other. This was due to the classic
hidden terminals problem. Therefore, many collision-related
losses cannot be mended with the maximum number of
MAC retries. This causes TCP flows experience 14% loss.
As a result, the TCP flows suffered timeouts and excessive
increase in back-off values, and could not utilise the medium
efficiently.

978-1-7281-0108-8/19/$31.00 ©2019 IEEE

Authors in [5], proposed TCP/NC and argued that current
approaches such as rateless codes and batch-based coding
are not compatible with TCPs retransmission and sliding-
window mechanisms. TCP/NC incorporated network coding
into TCP with only minor changes. The main aim of [5]
is to mask losses from TCP using random linear coding.
The sender adapts TCP source and buffers packet into an
encoding buffer which represents and used as the coding
window. The receiver must acknowledge them. The sender
generates and sends random linear combinations of the
packets in the coding window. The coefficients used in the
linear combination are also included in the header. The
decoder acknowledges the last seen packet by requesting the
byte sequence number of the first byte of the first unseen
packet, by using a regular TCP ACK. Moreover, the port
and IP address information for sending ACK to the sender,
they could be obtained from the SYN packet at the beginning
of the connection. Any ACKs generated by the receiver TCP
are not sent to the sender. They are instead used to update the
receive window field that is used in the TCP ACKs generated
by the decoder [5].

Authors in [8] introduced a robust and resilient TCP aware
network coding with opportunistic scheduling in wireless
mobile Adhoc networks. More specifically, they considered
a TCP parameter, congestion window size, and wireless
channel conditions to improve TCP throughput performance.
Their Simulation results showed that using traditional net-
work coding and combined with opportunistic scheduling
could improve the performance of TCP up to 35% in wireless
mobile Adhoc networks[8].

Meanwhile, Authors in [12] investigated the benefit of
network coding for TCP traffic in a wireless mesh network.
They implemented their network coding in 802.11a wire-
less mesh network and measured TCP throughput. Unlike
previous implementations of network coding, they used off-
the-shelf hardware and software and did not modify TCP or
the underlying MAC protocol. They showed that network
coding not only reduces the number of transmissions by
sending multiple packets via a single transmission but also
results in a smaller loss probability due to reduced contention
on the wireless medium. Moreover, due to asynchronous
packet transmissions, there was often little opportunity for
code resulting in small throughput gains. Coding opportunity
could be increased by inducing small delays at intermediate
nodes. However, this extra delay at intermediate nodes re-
sulted in longer round-trip-times that adversely affect TCP
throughput. They argued that a delay in the range of 1 ms
to 2 ms could help to maximise TCP throughput. For the
topologies considered in this paper, network coding improves
TCP throughput by 10% to 85%.

III. PROBLEM STATEMENT

Impact of network coding on TCP was studied by [12],
authors in [12] argued that TCP function of the AIMD
(Additive Increase/Multiplicative Decrease), had a significant
impact on the benefits of network coding. TCP’s congestion
control mechanism continuously adapts TCP sending rate to

network conditions and the current available capacity of the
network. Specifically, the AIMD mechanism is incredibly
sensitive to packet losses and translates them as signs of
congestion. Furthermore, upon detecting a loss, TCP halves
its sending rate by reducing its congestion window size to
half. In the early simulation test, it was clear. There was
AIMD impact on Xor coding network as COPE [4], the
TCP’s AIMD has not been designed to accept interaction of
intermediate nodes role in coded networks, TCP is suitable
for classical transmission paradigm. Furthermore, slashing
TCP upon detection of congestion or lost packet can restrict
the utilisation of medium and holding back any attempts
to make use of unused resources, for example COPE can
reduce traffic congestion on intermediate nodes by finding
the right packet to encode and broadcast, and as a result
bandwidth and network resources could be utilised for an-
other transmission opportunity. That is not all; Wireless is
situated on the principal of contention on the MAC layer as
in IEEE 802.11, there are many packet losses due to wireless
channel errors and contention on the medium. Again TCP
reacts to all such packet losses by reducing its transmission
rate to half, and that results in low throughput and less
medium utilisation. Therefore, TCP throughput is funda-
mentally limited by the end-to-end loss probability rather
than the available end-to-end capacity [12]. Hence, TCP
mighty does not gain significant benefit from the increased
capacity due to network coding process of encoding when
it compares to UDP packets. TCP is not enjoying directly
from network coding, it is rather seen as a packet damage
factor, or it incurs delays in network overall end-to-end delay.
Work in [15] used test topology considered the proximity of
wireless nodes. Therefore contention on the wireless medium
was likely high. High contention leads to high end-to-end
packet loss probability which denies TCP from fully utilising
the medium. TCP is not even able to utilise the channel
capacity available to it without coding, and hence increasing
channel capacity with coding does not significantly benefit
TCP. Instead, TCP benefits from coding indirectly. It can
be interpreted as following: coding reduces the number
of transmissions which results in lower contention on the
wireless medium than non-coding approach. The need to
revisit the TCP design functionality could befit current TCP
to enjoy the network coding ability to reduce contention and
number of needed transmissions.

IV. SYSTEM MODEL

A. TCP Tahoe

First simple TCP implementation was Tahoe, and it was
based on the go-back-n model with cumulative positive
acknowledgements and the expiration of the retransmission
timer (RTO), that was required before the flow could be
able to transmit any lost packets. TCP Tahoe facilitated with
the slow-start, congestion avoidance, and fast recovery algo-
rithms [8]. When a packet is lost, fast transmit is triggered to
reduce waiting time of transmission instead of waiting for the
retransmission timer to expire, if TCP rexmtthresh (usually
three) duplicate ACKs are received, the sender infers a packet

loss and retransmits the lost packet. The sender now sets
its ssthresh to half the current value of cwnd (maintained
in bytes) and begins again in the slow-start mode with an
initial window of 1. The slow start phase lasts till the cwnd
reaches ssthresh and then congestion avoidance takes over.
In this phase, the sender increases its cwnd linearly for every
new ACK it receives by cwnd = MSS×MSS

cwnd (2).
Note that with TCP Tahoe the sender might retransmit
packets which have been received correctly. Timeouts are
used as the means of last resort to recover lost packets [6].
Mostly, the incident of three DupAcks considers the main
reason behind low throughput, in our simulation, we came
across, continues DupAcks incident which causes consider-
able delays, and slows the process of smooth transmission of
TCP flows. Slow start and congestion avoidance mechanism
restrain the overall throughput. The slow start carve plunges
sharply to the congestion avoidance algorithm which incre-
ments one 1 MSS per Round Trip Time (RTT). As a result
it causes more delays and degradation in throughput.

B. TCP New Reno

TCP New Reno improvements considered both the fast
retransmit and fast recovery algorithms. The TCP sender
can conjure from the arrival of duplicate acknowledgements,
whether multiple losses in the same window of data would
occur, and it can avoid taking a retransmit timeout or
making multiple congestion window reductions due to such
an event. The New Reno improvements apply to the fast
recovery procedure that begins when three duplicate ACKs
are received, and it ends when either a retransmission timeout
occurs, or an ACK arrives, which that acknowledges all of
the data that previously sent, besides it includes the data
that was outstanding when the fast recovery procedure began
[13].

Surprisingly in New Reno, neither full Ack nor Partial Ack
affects the overall throughput, besides they did not incur any
delays in packets or affect the slow start. The slow start
could be increased to lift the restrains of permitted data
on the medium. However, it can result in duplicate ACKs.
Only congestion avoidance and DupAck are evidenced to
cause a disturbance within New Reno, and they decrease total
throughput in two or more hops. Congestion avoidance was
counted to be the first calibre of 77% New Reno components.
It was the most called function of the simulation time. The
second called function was Duplicated Ack in fast recovery
mode, it is unlike Tahoe where Duplicated Ack itself was the
least called function, it is only counted for 2% of the whole
simulation. In New Reno, Duplicated Ack goes to a quick
remedy of fast retransmission to save time for waiting for
the retransmission timer to expire. Duplicated Ack in new
Reno was accounted to be 16% of simulation time.

C. TCP Westwood and TCP Westwood+

TCP Westwood [14] is considered a sender side modifi-
cation based on TCP Reno protocol stack, which improved
the performance congestion control (CWND) of TCP in both
wired and wireless networks. Furthermore, TCP Westwood

is designated on end-to-end bandwidth estimation to set con-
gestion window and slow start threshold after a congestion
occurrence, or after three duplicate acknowledgements or a
timeout. The author in [18] noticed that low-pass filtering
estimated the bandwidth for the rate of returning acknowl-
edgement packets. Unlike TCP Reno, which hastily halves
the congestion window after three duplicate ACKs, TCP
Westwood strategically configures a slow start threshold and
a congestion window by taking into account the bandwidth
used at the time of previous congestion experience. The
author in [14] claimed that TCP Westwood significantly
increased throughput over wireless links and fairness com-
pared to TCP Reno, and New Reno in wired networks
[14]. TCP Westwood+ is the upgraded version of TCP
Westwood, which is an end-to-end bandwidth estimation
for setting control windows after congestion. The novelty
of Westwood+ is its sole propriety of the available end-to-
end bandwidth estimation algorithm. While TCP Westwood
bandwidth estimation algorithm does not work well in the
presence of reverse traffic due to ACK compression [14]. In
our work, we do not use any ACK compression for reverse
traffic; therefore, we use Westwood solely.

D. WeNC-TCP

Our proposed WeNC-TCP (Westwood based COPE Net-
work Coding- TCP) is depicted in Fig.1. It has the framework
of TCP Westwood. However, it is designated to accommo-
dated Xor network coding such as COPE [4]. WeNC-TCP
starts when sender begins sending its data packets to potential
recipients, and receiving correspondent acknowledges data
packets. One and halftime increase the congestion window
(cwnd), and it is based on theoretical throughput gain of
network coding in the classical two-hop network. If threshold
exceeds the current cwnd (Slow Start), it enters congestion
avoidance mode. As a result, cwnd assigns one segment size.
It helps to rectify any congestion and reduce the injection of
a new segment into the network. As in original Westwood
implementation, the case of fast recovery mode of received
new Ack, it sets cwnd equal to ssThresh. In our simulation,
it is increased by ssThresh × 1+

√
5

2 . It assists TCP sender
to recover from three duplicated acknowledgement incident.
As a result, it allows better utilisation of available resources.
It breaks the rigid design of original Westwood that sets the
cwnd to current bandwidth estimation, as in case of one or
two delayed Ack, in our simulation, the case two delayed
Ack is more likely to happen in different TCP variants.
Therefore, it is increased by ssThresh× 1+

√
5

2 .
On another hand, threshold is set by bandwidth estimation

when duplicate Acked is detected and not in fast recovery
mode, it is calculated based on Westwood estimation function
that extracts information from recently received ACK [14],
the following equation shows estimated bandwidth is mul-
tiplied by minimum Round Trip Time (RTT) ssThresh =
BW ×minRTT (3).

In case of three duplicated acknowledgement (DupAck) is
received at sender side and DupAck is not in fast recovery
mode, cwnd is calculated differently by taking estimated

threshold and multiple by 1+
√
5

2 as follow : cwnd =

ssThresh × 1+
√
5

2 (4). However, in the case of three du-
plicated acknowledgement and it is in fast recovery mode,
the cwnd is multiplied by two segment size as follow:
cwnd = SegmentSize× 2 (5). At retransmission stage, the
sender cwnd is set by one segment size for every successful
transmitted of the lost packet, while multiplier function
increases round Trip Time (RTT). The multiplier doubles
estimated RTT for the next Transmission Time-Out Timer
(RTO).

In our simulation we noticed that DupAck is more likely
to have happened when Xor network coding is being used,
it frequently happens in Tahoe, New Reno and Westwood.
It results in degrading of throughput and causing RTO
(Retransmissions Time Out) timer to expire. It causes TCP to
inter re-transmission mode. As a result, RLP ratio is higher
in Tahoe, New Reno and Westwood. What makes it difficult
to tackle is the concept of interaction of intermediate nodes
and intersession network coding. It is the inefficiency of both
congestion avoidance and DupAck.

Congestion Window
WeNC-TCP

cWnd = ssThresh * 1.618;

inFastRec

Yes

No

DupAck

Retransmit
 ssThresh =max (2 * segmentSize) , currentBW() * minRtt());

m_cWnd = m_segmentSize;
RTT->Increase-Multiplier ();

; Do Retransmit ();

 cWnd += segmentSize * 1.618;

 cWnd = segmentSize ;

 Yes

 No

 CWnd = ssThresh * 1.618;

Cwnd < ssThresh

Estimate BW

ReceivedAck(acked = CountAck (tcpHeader));
 EstimateBW (acked, tcpHeader);

 No Yes

 Yes

Exit
 CWnd = 2 * segmentSize;

No

No

 Yes

Fig. 1. Proposed WeCN-TCP Model.

V. PERFORMANCE METRIC AND SIMULATION

In order to evaluate our algorithm either positive or
negative impact on TCP performance, the following metrics
must be considered:

1. Ratio of lost Packet: It is the ratio of the number of
packets lost and the total number of packets sent on the
medium.

RLP =
The number of packets lost

The total number of packets sent

2. Throughput: It is the number of packets successfully
received by destination with respect to time (bits/s)

T =
Number ofReceived packets× PacketSize× 8

Simulation time (Seconds)

3. Delay: refers to the amount of time it takes a packet to
be transmitted from source to destination.

4. Jitters: is defined to be a variation in the delay of
received packets.

The Simulation is based on NS3 and chain topology is
used. We test our algorithm against the increased number
of hops. The size of TCP’s queue at receiver and sender is

limited to be 3276800 bytes. Furthermore, TCP layer queue
does not have a maximum delay limit, and it follows the
queue discipline of FIFO. The MAC layer sets to the default
setting, for example, the maximum queue capacity is 10
packet with the maximum delay of 0.5 seconds. TCP Tahoe,
New Reno and Westwood are set to original settings with no
modification or alteration.

VI. RESULTS AND DISCUSSION

In a Multi-hop scenario, all three TCP implementations
were tested on a different number of hops. We noticed that
all TCPs behaved similarly, Fig.3 depicted all tree TCP
throughput. The only exception is TCP Westwood in the
red line. It has the slightly less throughput. Moreover, the
average throughput for all 13 hops was around 1.57 Mbps.
Also, the maximum throughput for all hops was seen in TCP
Tahoe with 1.64 Mbps. Whereas, TCP New Reno was the
second highest with a throughput of 1.62 Mbps. Despite
the mild differences in throughput, All TCP variants are
identical to a degree with a smooth decline over the increased
number of hops. However, the RLP for TCP Westwood over
the increased number of hops was the highest, and it was
around 17%. Westwood was not as the author in [14] claimed
to be better than Reno in term of throughput and fairness
over wireless links compared to TCP Reno. Moreover, the
author claimed that TCP Westwood would choose better
congestion window value based on bandwidth estimation
after congestion occurred. It is clear it does not fit well when
Xor network coding is applied.

However, Tahoe and new Reno are having at least 10
to 11 % loss packet ratio. Tahoe is considered premature
less complicated for lacking the mechanism of fast recovery.
Although, it has similar results as well as New Reno in term
of throughput and RLP as in Fig.3 and Fig.4. Average delays
of New Reno is seen as second highest after Westwood. It
was around 0.73 second. While Westwood in red line was
0.74 second. Westwood’s delay line has fluctuated rigidly
at 8 and 11 hops as shown in Fig.5. Unlike jitters in
Fig.6 Westwood is much smoother and it as same as other
TCP variants. Moreover, jitters of TCP Tahoe, New Reno
and Westwood are rising gradually as the number of hops
increases, both Tahoe and new Reno recorded longest jitters
when hop increases, The difference between Tahoe and New
Reno is small in term of variance number of hops increase
Fig.6 depicts. The smallest variance of jitters was recorded
for Westwood with 0.133 scored for bidirectional flows.
However, the maximum average jitters in our simulation were
proved to for New Reno, and it was around 0.136 second.
TCP Tahoe was second highest at 0.135 seconds.

Our solution WeNC-TCP has overtaken both Tahoe, and
New Reno Fig.3 depicts, what makes WeNC-TCP superior
is the ability to achieve better throughput when packet size
is less than 500 bytes. In Fig.2, it is clear the throughput is
slightly improved up to 15% in two hop network. However,
WeNC-TCP can manage smaller packets as well as bigger
packets size. WeNC-TCP can improve throughput up to 8%
when packet size reaches 1500 bytes. In Multi-hop case,

WeNC-TCP has slightly better throughput over the increased
number of hops as in Fig.3. Throughput can get up to 14%
improvement of throughput. The line in black represents
the throughput performance of WeNC-TCP among other
tested TCP variants Fig.3 shown. Although throughput is
not significantly enhanced, RLP has enhanced considerably.
WeNC-TCP has the lowest RLP, which is much reliable than
other TCPs shown in Fig.4. Again, in term of PLR, WeNC-
TCP minimises the ratio of packet loss down to 95% when it
compares to Tahoe, New Reno and Westwood. For instance,
89% RLP improvements are achieved against New Reno at
the same time 87% achieved when compared to TCP Tahoe
in two hops. Moreover, Fig.4 illustrates RLP vs increased
number of hops for WeNC-TCP against Tahoe, New Reno
and Westwood. The average RLP of WeNC-TCP reaches
2.0% loss ratio in two hops with increased packets size. In
Multi-hop, the average improvement of WeNC-TCP’s RLP
was 72% overall hops, and the maximum RLP was less than
10%. Whereas RLP for Tahoe, New Reno and were a bit
around 10 % or above, Westwood showed a much higher
ratio of RLP in 8th and 11th hops, and such incident is
depicted in Fig.4.

Delay of WeNC-TCP in black is the lowest among other
TCPs as Fig.5 illustrates. WeNC-TCP has up to 70% im-
provement concerns delay, with average delay improvement
of 38% when it compares against New Reno’s delay over
the increased number of hops. If WeNC-TCP puts against
Tahoe and Westwood, WeNC-TCP can improve delay up
to 72% with average delay improvement of 38%. Jitters of
WeNC-TCP has matching behaviour as other TCP variants.
It fluctuates (in Blackline) at 6th hop to 14 hops. WeNC-
TCP has relatively average jitters of 0.127 second which
it is similar to Westwood (0.133 seconds). However, both
Tahoe and New Reno were recording the highest average
jitters which was around 0.136 seconds. Fig.6 shows jitters
of Tahoe, New Reno, Westwood and WeNC-TCP, jitters
for all TCP variants have levelled up after 9th hop as
well as WeNC-TCP. To summarise all WeNC-TCP attained
improvements, the table I represents the number of hops and
achieved improvements (%) in terms of RLP, delay, jitters
and throughput. WeNC-TCP addressed the issue of DupAck,
and reduced its impact on TCP flows, and Fig.8 shows the
total of DupAck incident over time, it is clear it is a short
period of fewer than 50 indents of whole simulation time
in less than 3.1 to 3.35 a second of whole 80 seconds. In
Fig.7 shows the WeNC-TCP congestion window, the cwnd
has much smoother and regulated behaviour, it can reach
65000 (Maximum), and later it got to the range of 10000
and stayed around it with our rigid fluctuations.

VII. CONCLUSION

The current TCP functionality causes drain in the network
throughput when network coding is being applied. The
congestion avoidance algorithm affects the throughput badly.
It cripples the ability of the sender to injects packets based
on its mechanism of preventing congestion, wherein wireless
could be misinterpreted due to link quality. However, the

Fig. 2. Throughput of WeNC-TCP in Two hops.

Fig. 3. Number Hops Vs WeNC-TCP Throughput.

Fig. 4. Number Hops Vs WeNC-TCP RLP.

Fig. 5. Delays of WeNC-TCP Vs Number of Hops.

network Xor coding process is crippled by restricting the
number of available native packets for finding the matching
pair. In our work, we try to gap the difference between

Fig. 6. jitters of WeNC-TCP Vs Number of Hops.

two different aspects TCP reliability and Network coding
process. Principality’s of current TCP cannot accept the role
of intermediate node which it finds the best match of packet
pair. Our WeNC-TCP achieves slightly better throughput than
other TCP variants, although, the best of WeNC-TCP can be
seen in RLP and delay in two or more hops. Table I has
a summary of all achieved improvements over the increased
number of hops. The need for better interaction between two
layers such Transport and MAC layer becomes a necessity
when network coding is applied in the wireless networks.
WeNC-TCP is still the first version to accommodate the
need for network coding at the transport layer. It is far
from perfection. We could anticipate that the MAC layer
could add a significant contribution to TCP flows when the
network experience different circumstances of such packet
losses, limited bandwidth or limited access to the medium in
high contention scenario. Our future work will focus on the
interaction between TCP and MAC layer using Xor network
coding such as COPE[4].

Improvement in
Number of Hops RLP % Delay Jitters Throughput %

2 95 37 -24 5
3 93 29 -9. 2
4 89 45 0.41 4
5 91 39 3 4
6 46 73 40 7
7 61 37 11 6
8 82 53 7 5
9 86 49 2 6
10 83 55 1 5
11 53 50 9 4
12 63 59 3 6
13 19 48 3 7

TABLE I
IMPROVEMENT FOR INCREASED HOPS.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, Network Information
Flow , IEEE Trans. Inform. Theory, vol. 46, pp. 12041216, Jul. 2000.

[2] D. Katabi, S. Katti, W. Hu, H. Rahul, and M. Medard, On Practical
Network Coding for Wireless Environments,, in Proc. Intl Zurich
Seminar on Communications, pp. 8485, 2006.

[3] J. Jin and B. Li, Adaptive Random Network Coding in WiMAX,, in
Proc. IEEE ICC08, pp. 25762580, May 2008.

Fig. 7. Congestion Window in TCP WeNC-TC.

Fig. 8. DupAck in WeNC-TCP.

[4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
XORs in the Air: Practical Wireless Network Coding, , IEEE/ACM
Trans. Netw., vol. 16, pp. 497510, June 2008.

[5] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzen-
macher and J. Barros, ”Network Coding Meets TCP: Theory and
Implementation,”, in Proceedings of the IEEE, vol. 99, no. 3, pp. 490-
512, March 2011.

[6] B. Sikdar, S. Kalyanaraman and K. S. Vastola, ”Analytic models for
the latency and steady-state throughput of TCP Tahoe, Reno, and
SACK,”, in IEEE/ACM Transactions on Networking, vol. 11, no. 6,
pp. 959-971, Dec. 2003.

[7] A. Campo and A. Grant, Robustness of Random Network Coding to
Interfering Sources,, in Proc. 7th Australian Communications Theory
Workshop, pp. 120124, Feb. 2006.

[8] T. Nage, F. R. Yu and M. St-Hilaire, ”TCP-Aware Network Coding
with Opportunistic Scheduling in Wireless Mobile Ad Hoc Networks,”
, 2010 7th IEEE Consumer Communications and Networking Confer-
ence, Las Vegas, NV, 2010, pp. 1-5.

[9] Swastik Brahma and Mainak Chatterjee, Congestion control and
fairness in wireless sensor networks, Pervasive Computing and Com-
munications Workshops (PERCOM), 2010 8th IEEE International
Conference, March 29 2010-April 2 2010, Pp. 413-418.

[10] Puneet Mehra, Avideh Zakhor, Christophe De Vleeschouwer,
Receiver-Driven Bandwidth Sharing for TCP , INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications., San Francisco, CA, March 30 2003-April 3 2003.

[11] Hamamreh, Rushdi A., and Mohammed J. Bawatna. ”Protocol for
Dynamic Avoiding End-to-End Congestion in MANETs.”, Journal of
Wireless Networking and Communications 4.3 (2014): 67-75.

[12] Y. Huang, M. Ghaderi, D. Towsley and W. Gong, ”TCP Perfor-
mance in Coded Wireless Mesh Networks,”, 2008 5th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, San Francisco, CA, 2008, pp. 179-
187.

[13] T. Henderson, A. Gurtov, and Y. Nishida , The NewReno Modification
to TCP’s Fast Recovery Algorithm, , IETF, RFC 6582, April 2012.
[Online]. Available: http://https://tools.ietf.org/html/rfc6582.

[14] M. Gerla, M. Y. Sanadidi, Ren Wang, A. Zanella, C. Casetti and S.
Mascolo, ”TCP Westwood: congestion window control using band-
width estimation,”, Global Telecommunications Conference, 2001.
GLOBECOM ’01. IEEE, San Antonio, TX, 2001, pp. 1698-1702 vol.3.

