
Error-Correcting Decision Diagrams for
Multiple-Valued Functions

Helena Astola, Stanislav Stanković, Jaakko T. Astola
Dept. of Signal Processing, Tampere University of Technology,

FI-33101 Tampere, Finland

Abstract—Decision diagrams are an efficient way of represent-
ing switching functions and they are easily mapped to technology.
The layout of a circuit is directly determined by the shape
of the decision diagram. By combining the theory of error-
correcting codes with decision diagrams, it is possible to form
robust circuit layouts, which can detect and correct errors. The
method of constructing robust decision diagrams is analogous
to the decoding process of linear codes, and can be based on
simple matrix and look-up operations. In this paper, we focus on
error-correcting decision diagrams for multiple-valued functions,
considering them for both the Hamming metric and the Lee
metric. The performance of robust decision diagrams is analyzed
by determining the error probabilities for such constructions.
Depending on the error-correcting properties of the code used
in the construction, the error probability of a circuit can be
significantly decreased by a robust decision diagram.

I. INTRODUCTION

Binary decision diagrams are an efficient way to represent
discrete functions and they have many applications in logic
design, e.g. in logic circuit minimization [1] and probabilis-
tic analysis of digital circuits [2]. The idea of representing
switching circuits using reduced binary decision diagrams was
formalized by Bryant in [3], and the topic has been further
explored by numerous authors. Binary decision diagrams are
easily mapped to technology, since the layout of a circuit
is directly determined by the shape of the decision diagram
and the complexity of the decision diagram determines the
complexity of the final design. Decision diagrams are used
for representing both binary and multiple-valued functions [4],
[5].

There are several techniques for providing tolerance against
hardware component failures, the most well-known being
triple modular redundancy (TMR), for which the groundwork
was laid in [6]. In the TMR technique, each module of a
non-redundant circuit is simply triplicated, and the output is
then determined by majority vote. The TMR technique has
been studied and improvements have been discussed in several
papers, e.g. in [7], [8]. Techniques of increasing fault-tolerance
based on error-correcting codes have also been proposed in a
number of papers, e.g. the (N,K) concept in [9].

In modern logic circuits, the transistors are shrinking so
much that even atomic-scale imperfections and variations
within each transistor become a problem. This means that
in addition to testing and fault detection procedures it is
important to have systematic ways to increase fault tolerance
already in the representations of switching functions. In [10],

an approach for generating robust circuits using decision
diagrams and codes was introduced. When combining decision
diagrams with the theory of error-correcting codes, it is
possible to form robust decision diagrams that are able to
correct decision errors and which can directly be mapped to
circuits. This idea gives a basis for error-correcting circuits
designed based on decision diagrams.

Linear codes have many useful properties and they are
most typically used in data transmission to detect and correct
errors on noisy communication channels [11]. The encoding
and decoding processes for linear codes are in general a
deep topic and many algorithms have been developed for
particular code classes. However, in principle and for short
codelengths, coding and decoding can be done using simple
matrix and lookup operations, so their implementation is
easy. The application of linear codes in decision diagrams
is basically another way of representing a code, which gives
robust diagrams, capable of correcting decision errors.

In sections II and III we recall the basic definitions for
decision diagrams and error correcting codes. In section IV we
explain the application for error correcting codes and decision
diagrams for generating robust decision diagrams for multiple-
valued functions. In section V, we analyze the performance
of robust decision diagrams by determining the probabilities
of correct outputs and comparing them to corresponding
traditional diagrams.

II. DECISION DIAGRAMS

In this section, we recall the definition of a binary decision
diagram (BDD), a multiple-valued decision diagram, i.e. q-
ary decision diagram and a multi-terminal decision diagram
(MTDD), which are used later in this paper. For basic concepts
and properties related to decision diagrams, we refer to [4],
[5].

Binary decision diagrams are used to represent switching
functions, i.e. functions of the form {0, 1}n → {0, 1}. We
define binary decision diagrams using binary decision trees,
which are graphic representations of functions in the complete
disjunctive normal form.

Definition 1: A binary decision tree (BDT) is a rooted
directed graph having n + 1 levels with two different types
of vertices. On levels 1 to n are the non-terminal nodes, each
having two outgoing edges labeled by 0 or 1. On level n+ 1
are the terminal nodes having the label 0 or 1 and no outgoing
edges.

2011 41st IEEE International Symposium on Multiple-Valued Logic

0195-623X/11 $26.00 © 2011 IEEE

DOI 10.1109/ISMVL.2011.33

38

A binary decision tree has a direct correspondence to the
truth-table of a function. Let f(x1, x2, . . . , xn) be a switching
function. In the binary decision tree of f , each node on level
i corresponds to a specific variable xi, and by following the
edges the value of the function at (x1, x2, . . . , xn) is found in
the terminal node.

Definition 2: A binary decision diagram is a rooted directed
graph obtained from a binary decision tree by the following
reduction rules:

1) If two sub-graphs represent the same function, delete
one, and connect the edge pointing to its root to the
remaining subgraph.

2) If both edges of a node point to the same sub-graph,
delete that node, and directly connect its edge to the
sub-graph.

The definition of a binary decision diagram is easily ex-
tended to the q-ary case. Again, we define the decision diagram
using the definition of a decision tree.

Definition 3: A q-ary decision tree is a rooted directed
graph having n+1 levels with two different types of vertices.
On levels 1 to n are the non-terminal nodes, each having q
outgoing edges with a label from the set {0, 1, . . . , q−1}. On
level n + 1 are the terminal nodes, which have a label from
the set {0, 1, . . . , q − 1} and no outgoing edges.

Definition 4: A q-ary decision diagram is a rooted directed
graph obtained from a q-ary decision diagram by the reduction
rules in Definition 2.

The number of terminal nodes in decision diagrams is
not limited to q nodes. Such decision diagrams are called
multiterminal decision diagrams and are to represent functions
with an image set having more than q elements. The only
difference between a DD and an MTDD is the number of
terminal nodes. When dealing with multi-output functions or
systems of functions, we use multiterminal decision diagrams
where terminal nodes are labelled by the values that the system
can get.

III. ERROR-CORRECTING CODES

In this section we recall basic definitions and properties
of error-correcting codes that will be used later. We focus on
linear codes, i.e. subspaces of Fn

q , and, in particular, Hamming
codes, which have good properties suitable for the application
to binary decision diagrams introduced in this paper. Recall
that Fn

q is a linear (vector) space over the field Fq, i.e. the set
{(x1, x2, . . . , xn) | xi ∈ Fq} with vector addition and scalar
multiplication satisfying the vector space axioms.

Definition 5: A code C is a subset of Fn
q . C is called a

linear code if C is a linear subspace of Fn
q .

The elements of C are called codewords. A linear code C
of dimension k ≤ n is spanned by k linearly independent
vectors of C. A matrix G having as rows any such k linearly
independent vectors is called a generator matrix of the code
C. If the code has length n and dimension k it is called an
(n, k) code.

The code C of dimension k can equivalently be specified by
listing n − k linearly independent vectors of C⊥, where C⊥

is the subset of Fn
q consisting of all vectors orthogonal to C.

Any matrix H having as rows such n−k linearly independent
vectors is called a parity check matrix of C.

A generator matrix G of the code C is in systematic form
if

G = [Ik|P]

=

1 0 0 · · · 0 p1,1 p1,2 · · · p1,n−k

0 1 0 · · · 0 p2,1 p2,2 · · · p2,n
...

...
...

. . .
...

0 0 0 · · · 1 pk,1 pk,2 · · · pk,n−k

 ,

where P is called the parity part of the generator matrix. It
is clear that any generator matrix of C can be put into this
form by column permutations and elementary row operations,
since the rows are linearly independent. Also, if the generator
matrix of C is G = [Ik|P], it is clear that the parity check
matrix H is of the form

[
−PT |In−k

]
.

The code C codes an information word i = [i1, i2, . . . , ik]
to a length n codeword c = [c1, c2, . . . , cn] by matrix
multiplication c = i · G. Thus, the code C can be defined
as C = {iG | i ∈ Fk

q} and equivalently with the parity check
matrix H as C = {c ∈ Fn

q | cHT = 0}.
Definition 6: The Hamming distance dH(x,y) of vectors x

and y of length n is the number of coordinates where x and
y differ, i.e. dH(x,y) = |{i | xi ̸= yi}|.

Definition 7: A code C is e-error correcting if the minimum
Hamming distance between two codewords is 2e+ 1.

Definition 8: A code C ∈ Fn
q is called a q-ary r-covering

code of length n if for every word y ∈ Fn
q there is a codeword

x such that the Hamming distance dH(x,y) ≤ r. The smallest
such r is called the covering radius of the code.

In other words, the covering radius of the code is the
smallest r such that the finite metric space Fn

q is exhausted
by spheres of radius r around the codewords.

Definition 9: A code is called perfect if it is e-error cor-
recting and its covering radius is e.

The simplest linear code is the repetition code. In an (r, 1)
binary repetition code a digit is encoded as a sequence of
r repetitions of the digit itself, and the decoding is done
by majority-vote decoding. For example, in the binary (3, 1)
repetition code, a 0 is encoded as the sequence 000, and if
the decoder receives either 000, 001, 010 or 100, it decodes
the sequence as a 0 by majority-vote decoding. Therefore, the
(3, 1) repetition code is one error correcting.

Binary Hamming codes are a family of (2m−1, 2m−m−1)
codes with parity check matrices consisting of all 2m − 1
distinct non-zero m-tuples. Since all of the columns are
distinct, no sum of two columns can be the zero vector, and
hence the code has minimum distance of ≥ 3. Therefore,
Hamming codes are one error correcting. Hamming codes have
the covering radius of one, hence they are perfect codes. This
means that for each binary vector v of length 2m − 1 there is
a unique codeword within distance 1 from v.

Hamming codes are easily defined for vector spaces Fn
q

having parameters (q
m−1
q−1 , qm−1

q−1 −m). For each m, there are

39

(qm − 1) different nonzero vectors, but since the minimum
distance of the code is ≥ 3, the columns of the parity check
matrix have to be pairwise linearly independent. Therefore,
there are qm−1

q−1 distinct q-ary vectors that we can list as
columns of the parity check matrix H.

The above codes are for the Hamming metric, but we
may consider error-correcting codes in other metrics also. Let
us call a Lee-error-correcting code any error-correcting code
defined for the Lee metric.

Definition 10: The Lee distance dL(x,y) of q-ary vectors x
and y of length n is the sum

∑n
i=1 min(|xi−yi|, q−|xi−yi|).

For example, for q = 5, dL(0, 1) = 1, dL(0, 2) = 2,
dL(0, 3) = 2 and dL(0, 4) = 1. Also, dL(a + k,b + k) =
dL(a,b), i.e., like the Hamming metric, the Lee metric is
translation invariant. Notice, that for q = 2 and q = 3, the
Hamming and the Lee metric coincide.

Perfect codes exist for the Lee metrics also. For example,
for any given e, there exists a perfect e-Lee-error-correcting
code with n = 2 over Fq such that q = 2e2 + 2e+ 1.

For general properties of error-correcting codes we refer to
[11], [12], [13].

IV. ERROR-CORRECTING DECISION DIAGRAMS

In [10], two methods of constructing robust decision dia-
grams, i.e. decision diagrams, which are able to correct deci-
sion errors were introduced. The methods are based on repre-
senting functions using error-correcting codes and constructing
decision diagrams for these representations. This way, it is
possible to generate a decision diagram, which can detect
and correct decision errors. This construction can directly be
mapped to technology, which gives a robust circuit realizing
the original function. We explain the general construction of
robust q-ary decision diagrams and derive the construction of
a robust decision diagram for a specific function using this
general construction.

We want to generate a robust DD for q-ary functions with
k variables without specifying a certain function. To do this,
we need an error-correcting code with parameters (n, k). The
basic idea is to map an arbitrary function f(x1, x2, . . . , xk)
to a function g(y1, y2, . . . , yn) of a larger domain using
error-correcting codes with parameters (n, k) and having the
minimum distance 2e+1. This way we obtain a redundant rep-
resentation for all q-ary functions of k variables, from which
we construct a reduced decision diagram. This construction
will be the robust decision diagram of the k-variable q-ary
functions.

The procedure begins by determining an (n, k)-code with
minimum distance 2e + 1 and its generator matrix G. Then,
the function g(y) is defined as

g(y) =

{
f(x) if dH = (y,xG) ≤ e

∗ otherwise.
(1)

In other words, each xG and the vectors y ∈ Fn
q within

distance e from xG are assigned to the symbolic value f(x).
The vectors y ∈ Fn

q at distance > e from all the codewords are
assigned to the label ∗. The symbol ∗ can be some arbitrary

value, which can be defined in some suitable way. The function
now behaves as the decoding algorithm of the code C, i.e.
the vectors of Fn

q within distance e from a codeword xG
are interpreted as the codeword itself when determining the
function value. This is just the decoding process, where each
received n-ary sequence is interpreted as the codeword within
distance e from the received sequence. If the label ∗ is
obtained, then more than e decision errors have been made
indicating at least e+ 1 faults in the corresponding circuit.

The next step is to construct the multiterminal decision tree
for the function g, which will have in total qn terminal nodes,
and reduce the obtained diagram. After reducing, we have a
diagram with qk + 1 terminal nodes labelled by f(x), x ∈
Fk
q and ∗. This construction can correct e-digit errors, since

the correct function value is obtained even if a decision error
occurs in at most e nodes of the diagram.

From the obtained reduced decision diagram we get a robust
decision diagram of a specific function f by replacing the
labels f(x) by the actual values of the function f and reducing
the diagram with respect to that function. This diagram will
then give a robust layout for a circuit realizing the desired
function of k variables.

Example 1: We want to construct a robust decision diagram
for all ternary functions of 2 variables. For this purpose, we
may use the (4, 2) ternary Hamming code, which corrects one
error. The generator matrix G for this code is

G =

[
1 0 1 2
0 1 2 2

]
.

The function g is obtained by multiplying G by the ternary
vectors of length 2 and then mapping the obtained codewords
and the length 4 vectors within distance 1 from the codewords
to the corresponding function values. The obtained ternary
decision diagram will have 9 terminal nodes corresponding
to f(0, 0), f(0, 1), f(0, 2), . . . , f(2, 2) (Figure 1). The code is
perfect, hence there are no ∗-valued outputs in the obtained
decision diagram.

A robust decision diagram for a specific ternary function of
2 variables is obtained by assigning the function values to the
terminal nodes and reducing the obtained diagram.

Example 2: Consider the (3, 1) repetition code for Fq. This
code is perfect in F2, but will result in ∗-valued outputs
for Fq, where q > 2. However, we may use this code for
generating a robust decision diagram for quaternary logic.
The resulting decision diagram is a robust construction for
a single quaternary node, which corrects one error (Figure 2).
Obtaining the output ∗ indicates at least two decision errors.

We may extend the concept of error-correcting decision
diagrams for other metrics than the Hamming metric, e.g.,
the Lee metric. Using the Lee metric, we define the error-
correcting decision diagrams as follows. Determine an (n, k)
Lee-error-correcting code with minimum distance 2e+ 1 and
its generator matrix G. Then, the function g(y) is defined as

g(y) =

{
f(x) if dL = (y,xG) ≤ e

∗ otherwise.
(2)

40

0

1

2

3

4

0 1 2

S

0 1 2

S

01 2

S

0
1

2

S

0
1

2

S

0 1

2

S

0

1

2

S
0

1 2

S

0

1

2

S

0
1

2

S
0

1
2

S

0 1 2

S

01 2

S

0 1
2

S
0

1
2

S

01 2

S

0

1
2

S
0

12

S

0 1

2

S

0

1 2

S
01

2

S

0 1 2

S

0 1

2

S

0

1

2

S

01

2

S

0

1

2

S

0

1 2

S

0

1

2

S

0

1 2

S

0

1

2

S

0

1

2

S

f(0,0) f(0,2) f(1,0) f(2,0) f(0,1) f(1,1) f(2,1) f(2,2) f(1,2)

Fig. 1: A robust diagram for ternary functions of 2 variables using (4,2) Hamming code.

0

1

2

3

0
1 2

3

S

01 2

3

S

0

0 1
2

3

S

1 *

0

1

2

3

S

2

0

12

3
S

3

0

1 2

3

S

0

1 2

3

S

0

1

2

3

S

0

1 2

3

S

0

1

2

3

S

0

1
2

3

S

Fig. 2: A robust construction for a single quaternary node
using the (3,1) repetition code.

Example 3: We wish to have a robust representation for a
5-ary decision node. We may construct such a representation
using a perfect one-error-correcting code in the Lee metric,
having the generator matrix

G =
[
3 1

]
.

The construction is done similarly as in Examples 1-2, but
the mapping of length 2 vectors to corresponding values in
F5 is done with respect to the Lee metric. Table I shows the

radius one spheres around the codewords in the vector space
F2
5, illustrating how the vectors y of length 2 satisfying dL =

(y,xG) ≤ 1, where x ∈ F5, are found.

TABLE I: The radius one spheres around codewords (in
boldface) labeled by the corresponding x ∈ F5.

4 0 4 4 4 3
3 3 2 4 3 3
2 2 2 2 1 3
1 0 2 1 1 1
0 0 0 4 1 0

0 1 2 3 4

The obtained robust representation for a single 5-ary deci-
sion node is in Figure 3.

V. FAULT-TOLERANCE ANALYSIS

In this section, the performance of robust decision diagrams
is analyzed by determining the probability of correct outputs
for these constructions. For traditional decision diagrams, an
incorrect output is obtained whenever at least one incorrect
decision is made on a path. For robust decision diagrams,
up to e incorrect decisions can be made on a path, and the
construction still gives the correct output. For determining the
probability of a correct output, we need to list all the possible
combinations of incorrect decisions, for which at most e are
made on each path.

41

0

1

2

0 1 2 3 4

S

0

1

2

3

4

S

0 4 1

0

1

23

4

S

2

01

23
4

S

3

0

1

2

3
4

S
0

12
3

4

S

Fig. 3: A robust construction for a single 5-ary decision node
using a perfect Lee-error-correcting code.

We start by analyzing the error probabilities for the decision
diagrams constructed using the Hamming metric. Let us denote
by p the probability of an incorrect decision in a decision
node. We assume that the probability of an incorrect decision
in a node is independent from the decisions made in other
nodes. It could be so, that the correct output is obtained even if
incorrect decisions are made in more than e nodes, but we are
not interested in these outputs. We call decision nodes, which
make an incorrect decision, as faulty nodes. This does not
correspond to the actual circuit design and we are only looking
at incorrect decisions, which may be caused by any possible
reason, e.g. a broken gate or just a temporary malfunction.
Notice, that in the Hamming metric, it is irrelevant to the
error-correcting properties, which incorrect decision is made
in the faulty node, whereas in the case of the Lee metric, only
some incorrect decisions are allowed.

For computing the probability of a correct output, we use
a brute force method to list all the combinations of nodes,
for which there are up to e faulty nodes on each path. It is
clear that if there are no faulty nodes in the whole diagram,
we may write the output probability as (1 − p)n, where n is
the total number of nodes in the diagram. This gives the first
term of the probability function for a correct output. Also, the
following e−1 terms of the function are given by the binomial
expansion, i.e., np(1− p)n−1, . . . ,

(
n
e

)
pe(1− p)n−e. The rest

of the terms depend on e and the structure of the diagram. It
follows, that the error probability of a robust construction is
1− (

∑e
k=0

(
n
k

)
pk(1−p)n−k+ · · ·), which gives an expansion

having a lowest degree term A · pe+1, where A is some
constant. For a traditional diagram, since a single incorrect
decision causes an incorrect output, the lowest degree term of
the error probability function is always B ·p, where B is some
constant.

For example, take the diagram in Figure 1, for this diagram
e = 1 and there are in total 31 nodes in the diagram. We need
to list all the combinations of nodes for which there are either
zero or one faulty nodes on each path. The first terms of the
probability function for a correct output are therefore (1−p)31

and 31p(1− p)30. The following terms can be determined by
first considering all cases with exactly two faulty nodes in the
diagram. It is clear that these faulty nodes can be situated on

any single level of the diagram, since each node on a specific
level never belongs to the same path as the other nodes on
that level. It is possible for the faulty nodes to be on two
different levels, but in this case we need to make sure that these
faulty nodes are never on the same path. We may continue to
list all possible cases when there are exactly 3 faulty nodes,
4 faulty nodes, etc. The last case is when all the 18 nodes
on level 3 are faulty. Adding up all these situations gives us
the probability of a correct output. We may now compare the
probability of a correct output in the robust construction to
(1 − p)4, which would be the probability of a correct output
in the corresponding traditional diagram (Figure 4).

Fig. 4: The probability of a correct output in the traditional
diagram (red) and in the robust diagram (green) for ternary
2-variable functions.

We may do this similar analysis for the diagram in Figure 2,
which is a robust construction corresponding to a single qua-
ternary decision node. By our assumptions, a single quaternary
node gives the correct output with probability (1 − p), since
the probability of a faulty node is p. For the diagram in 2, we
have e = 1 and in total 11 decision nodes, therefore the first
terms of the probability function are given by (1 − p)11 and
11p(1−p)10. The rest of terms are determined similarly above
for the ternary diagram. The obtained probability is compared
to (1− p) in Figure 5.

Fig. 5: The probability of a correct output in the traditional di-
agram (red) and in the robust diagram (green) for a quaternary
decision node.

In analyzing the fault-tolerance of robust decision diagrams

42

constructed in the Lee metric, we have to take into account that
in a decision node, we can make either the correct decision,
an incorrect decision which is at Lee distance ≤ e from the
correct value, or an incorrect decision which is at distance
> e from the correct value. Therefore, we must change our
analysis slightly to make sense for the Lee-error-correcting
decision diagrams.

Let us denote by pk the probability of an incorrect decision
within distance k from the correct value. This assumption is
made, since values within smaller distance from each other
are obtained with smaller difference in voltage in the circuit
level, and it is therefore more probable that an incorrect value
at a smaller distance is obtained. Again we assume that a
decision in one node does not depend on decisions made in
other nodes. The probability of a correct decision is now 1−∑m

k=1 p
k, where m is the maximum distance of an incorrect

decision from the correct value. To get a correct output, no
incorrect decision at distance > e can be made on a path, but
incorrect decisions, which added together are at distance ≤ e
from the correct value, are allowed. For example, if e = 3, it
is possible to make 3 incorrect decision at distance 1, or an
incorrect decision at distance 2 and an incorrect decision at
distance 1, or one incorrect decision at distance 3, and still
obtain the correct output. We may formulate the probability
of a correct output starting with the term (1 −

∑m
k=1 p

k)n,
where n is the total number of nodes. In the following terms,
all combinations of incorrect situations at distance ≤ e must
be taken into account. As for the Hamming metric, it can be
shown that in the Lee metric the probability of an incorrect
output in a robust diagram will have the lowest degree term
A · pe+1, where A is some constant.

For example, take the diagram in Figure 3, which has in total
6 nodes and e = 1. Since q = 5, an incorrect value can be at
most at distance 2 from the correct value. We may compute
the probability for a correct output, starting with terms (1 −
(p + p2))6 and 6p(1 − (p + p2))5. It is clear that the correct
output is obtained even if all the nodes on level 1 give incorrect
values within distance 1 from the correct value, if the top level
node is correct. Therefore, the rest of the terms are given by∑5

k=2

(
5
k

)
pk(1 − (p + p2))6−k. The probability of a correct

output in the robust construction is compared to the probability
of a correct output in a single 5-ary node in Figure 6.

VI. CONCLUSIONS

In this paper we discussed error-correcting decision dia-
grams for multiple-valued logic and analyzed their perfor-
mance. Decision diagrams are useful in logic design, since
the layout of the diagram determines the layout of the circuit.
Combining the theory of error-correcting codes with decision
diagrams it is possible to create diagrams, which are capable
of detecting and correcting decision errors.

The fault-tolerance analysis of robust decision diagrams
shows, that the probability of incorrect outputs can be signifi-
cantly decreased depending on the error-correcting properties
of the code. With traditional diagrams, a single incorrect
decision causes the output to be incorrect, and the lowest

Fig. 6: The probability of a correct output in the traditional
diagram (red) and in the robust diagram (green) for a 5-ary
decision node.

degree term of the error probability function is always a
multiple of p, where p is the error probability of a single
node in the diagram. For robust diagrams, the lowest degree
term is always A · pe+1, where A is some constant. This
means, that even with moderately high gate error probabilities,
e.g, 10−3, a robust construction will have a significantly
decreased probability for an incorrect output. For the example
diagrams given in this paper, the probability of a correct output
with reasonable gate error probabilities is ≈ 1, which means
that the constructions are extremely fault-tolerant. However,
better error-correcting properties increase the complexity of
the design.

REFERENCES

[1] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Computers, vol.
C-27, No. 6, pp. 509–516, 1978.

[2] M. A. Thornton and V. S. S. Nair, “Efficient calculation of spectral
coefficients and their applications,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. CAD-14, No. 11, pp. 1328–
1341, 1995.

[3] R. E. Bryant, “Graph-based algorithms for Boolean functions manipu-
lation,” IEEE Trans. Computers, vol. C-35, No. 8, pp. 667–691, 1986.

[4] J. T. Astola and R. S. Stanković, Fundamentals of Switching Theory and
Logic Design. Springer, 2006.

[5] D. M. Miller and M. A. Thornton, Multiple Valued Logic: Concepts and
Representations. Morgan & Claypool, 2008.

[6] J. von Neumann, “Probabilistic logics and synthesis of reliable organ-
isms from unreliable components,” in Automata Studies, C. Shannon and
J. McCarthy, Eds. Princeton University Press, 1956, pp. 43–98.

[7] J. Abraham and D. Siewiorek, “An algorithm for the accurate reliability
evaluation of triple modular redundancy networks,” IEEE Transactions
on Computers, vol. 23, pp. 682–692, 1974.

[8] W. van Gils, “A triple modular redundancy technique providing multiple-
bit error protection without using extra redundancy,” IEEE Transactions
on Computers, vol. 35, pp. 623–631, 1986.

[9] T. Krol, “(n, k) concept fault tolerance,” IEEE Trans. Comput., vol. 35,
pp. 339–349, April 1986.

[10] H. Astola, S. Stanković, and J. T. Astola, “Error correcting decision
diagrams,” in Proceedings of The Third Workshop on Information
Theoretic Methods in Science and Engineering, Tampere, Finland, Aug
16-18 2010.

[11] J. H. van Lint, Introduction to Coding Theory. New York: Springer
Verlag, 1982.

[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1997.

[13] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill,
1968.

43

