Journal of Network and Computer Applications 140 (2019) 1-22

Contents lists available at ScienceDirect .
NETWORK &

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

AN

journal homepage: www.elsevier.com/locate/jnca

ELSEVIER

Edge computing for Internet of Things: A survey, e-healthcare case study R)

Check for

and future direction

Partha Pratim Ray®’, Dinesh Dash °, Debashis De ©

@ Department of Computer Applications, Sikkim University, Gangtok, India
Y Department of Computer Science and Engineering, National Institute of Technology Patna, India
¢ Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, India

ARTICLE INFO ABSTRACT

Keywords:

Edge computing
Internet of Things
e-healthcare
Industrial protocol

The world has recently witnessed the emergence of huge technological growth in the field of data transmission
and smart living through various modes of information and communication technology. For example, edge
computing has taken a leading role to embark upon the problems related to the internetwork bandwidth mini-
mization and service latency reduction. Inclusion of small microcontroller chips, smart sensors and actuators in
the existing socio-economic sectors have paved the Internet of Things (IoT) to act upon the dissemination of smart
services to the end users. Thus, a strong need of understating of the industrial elements of edge computing has
become necessary that can share the mutual goal while assimilating with the IoT. This paper advocates the crucial
role of industrial standards and elements of the edge computing for the dissemination of overwhelming
augmented user experience with conjunction with the IoT. First, we present the taxonomical classification and
review the industrial aspects that can benefit from both of the IoT and edge computing scenario, then discuss
about each of the taxonomical components in detail. Second, we present two practically implemented use cases
that have recently employed the edge-IoT paradigm together to solve urban smart living problems. Third, we
propose a novel edge-IoT based architecture for e-healthcare i.e. EH-IoT and developed a demo test-bed. The test
results showed promising results towards minimizing dependency over IoT cloud analytics or storage facility. We
conclude with discussion on the various parameters such as, architecture, requirement capability, functional is-
sues, and selection criteria, related to the survival of edge-IoT ecosystem incorporation.

1. Introduction these social requests, they lack mainly in two areas e.g. (i) latency to

serve users' request and (ii) heavy load on internetwork backbone.

Last decade has seen the overwhelming growth of the smart sensors,
smart actuators, networking technology, and low-power consuming
chips (Ray, 2016a, 2016b). Thus, leading to immense increase of data
transmission over the internetwork backhaul. This has certainly put an
over burden on the existing cloud infrastructure to efficiently handle all
such requests in timely fashion (Dinh et al., 2013; Satyanarayanan et al.,
2009; Bonomi et al., 2014). Edge along with Internet of Things (IoT) have
emerged as a novel ecosystem i.e. edge-IoT ecosystem that has inherently
held the demising power and capabilities to other computing paradigms
such as, grid computing, cloud computing and fog computing (Atat et al.,
2017; Wang et al., 2016; Ray, 2016¢). Obviously, current socio-economic
scenario has led to foresee such a novel venture that could be able to
exaggerate the speed of social-development upon a surprising ceiling.
Indeed, other existing computing solutions are good enough to cater all

* Corresponding author.
E-mail address: parthapratimray@hotmail.com (P.P. Ray).

https://doi.org/10.1016/j.jnca.2019.05.005

Resulting an ineffective closure-start for the futuristic smart socialization
(Ray, 2016d). This problem becomes more when the industrial involve-
ment come into the scene (Ray, 2015a, 2015b).

To solve this problem, edge computing has been proposed in recent
past. It observed that the capability of the edge computing and IoT could
be merged to create a new genre of ecosystem which would benefit the
overall growth of the information and communication technology-based
development (Ray, 2014a, 2015¢). It is already validated that positioning
of network end-devices to near proximity of user/application enhances
the speed of response i.e. the network latency is minimized (Ray, 2014b;
Wu et al.,, 2016). Further, the data-intensive applications are readily
become efficient when such interventions are deployed in practice. Such
capabilities could lead the edge-IoT ecosystem to outperform other
existing computing paradigms. Moreover, placing the IoT solutions along

Received 4 December 2018; Received in revised form 18 March 2019; Accepted 7 May 2019

Available online 12 May 2019
1084-8045/© 2019 Elsevier Ltd. All rights reserved.

mailto:parthapratimray@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.05.005&domain=pdf
www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2019.05.005
https://doi.org/10.1016/j.jnca.2019.05.005
https://doi.org/10.1016/j.jnca.2019.05.005

P.P. Ray et al.

with the edge computing provides an excellent opportunity to serve
localized smart applications. Doing so in turn reduces the burden of data
propagation through the network backhaul (Satyanarayanan et al., 2015;
Premsankar et al., 2018; Mao et al., 2017; Ray, 2016e). This may dras-
tically lower down the cost of network processing and maintenance while
supporting for green computing revolution (Ray, 2016f, 2016g, 2017a).
Because, lower load on the active network would passive the effect of
running the Hugh power hungry cloud data centers and network base
stations in background (Chiang and Zhang, 2016; Canzian and Van Der
Schaar, 2015; Ray and Agarwal, 2016; Ray, 2016h). The edge-IoT
ecosystem can also pursue the geographically distributed aspects while
allowing the mobility of end user. Surely, these two virtues give more
expansion to its technological wings. It is also known that Content De-
livery or Distribution Networks (CDNs) and Information-Centric
Networking (ICN) work in similar fashion (Ray, 2015d; Elkhatib et al.,
2017). But, they lack in interaction-free delivery services which has been
given utmost importance in the edge-IoT ecosystem.

To this end, it is worth to mention that industrial standards and ele-
ments could also play a significant role when the edge-IoT ecosystem
would be deployed in the reality (Farris et al., 2015; Elias et al., 2017).
The reason is simple i.e. the use of popular and contemporary facilities
which are currently accommodated with other computing services (Taleb
et al.,, 2016; Kumar et al., 2013; Lin et al., 2015). For example, edge
analytics server, NoSQL database engines, communication protocols, and
data segments etc. Such industry elements have the power to fill the gap
of the edge-IoT ecosystem to make it sharper and technologically visible
(Xia et al., 2017; Dutta et al., 2016; Ray, 2017b). Till date, no such
literature or document is available that has enlightened the fact of
canvassing the industrial elements into the edge-IoT ecosystems. It is
believed that upon such integration would provide immense power to the
edge-IoT solutions to act efficiently on the undisclosed aspects. This
survey presents an in-depth study and analysis of edge computing for IoT
based scenario whereby implying the industry-protocols, standards,
vendors, communication, data type, ecosystem and usage policies.
Further, the presented survey is associated with a novel case study which
makes this article unique in flavor and quality than the existing review or
survey articles (Ray, 2016i; Hong et al., 2015; Jarschel et al., 2011;
Kamarainen et al., 2014; Fitzgerald et al., 2008).

The major contributions of this article are twofold. First, we present
and discuss the taxonomical classification of the industrial edge-IoT
computing. We review different factors of the taxonomy behind the
edge-IoT. Second, we propose and evaluate a novel e-healthcare archi-
tecture that relies upon industrial elements of the edge-IoT ecosystem i.e.
EH-IoT. Third, we discuss about the various pillars of the key re-
quirements, functional capabilities, operational issues and architectural
structure of the edge-IoT ecosystem to make it more strengthen in near
future. The case study was specially demonstrated as a proof-of-concept
to confirm that e-healthcare services can be harnessed from the EH-IoT.
This indirectly advocates the efficiency of the industrial edge-IoT
ecosystem. Many authors and researchers have effectively used and
successfully incorporated edge computing paradigm to enhance robust-
ness of their system. A quick search on the IEEE Xplore digital library
with the keyword “edge computing”, “edge computing + e-health”,
“edge computing + Edgent”, “edge computing + Apache Edgent”, “edge
computing + Edgent + healthcare” gave a search result of 390 results out
of which a handful of papers were found useful in context of applicability,
parallelism and appropriateness. Some of these are discussed as follows:
(Huang et al., 2014) validates the efficiency and resourcefulness of edge
computing by providing extensive survey on edge systems and the also
presents comparative study of cloud computing system. Their results
show the edge system performs better than the cloud system. Ahlgren
et al. (2012) developed a system which continuously monitors patient's
heartrate with the help of heartrate sensor, this data is continuously
analyzed by the KAA edge computing server, the analyzed data is sent to
the user's smartphone. A design by Vallati et al. (Griffin et al., 2014)
achieves a histrionic decrease in service latency and ensures the security

Journal of Network and Computer Applications 140 (2019) 1-22

of locality information. Sapienza et al. designed an edge
computing-based smart urban-citizen application that can successfully
perceive certain critical events e.g., man-made disasters (Ren et al.,
2018). In Pan and McElhannon (2018) and Peterson et al. (2016), the
researchers selected an edge computing-based architecture to address
various network-related issues in vehicular technology. An efficient
scheduling and adaptive offloading scheme is proposed that minimizes
the computation complexities in the prescribed vehicular network. It is
also known that the edge architectures might play a vital role in e-health
applications which could save the lives of many patients. As edge
computing guarantees a faster response and higher throughput, the
decision-making process becomes faster and easier in the e-health ap-
plications. For instance, Ali and Ghazal (Ryden et al., 2014) proposed a
real-time mobile detection service for heart attack by using the edge
computing. The scheme showed lower service latency when it was
combined with the geographical awareness that can rightly detect the
patient's location. Lastly, Fl'avia Pisani et al. proposed their framework
that is capable to execute cross platform code in the NodeMCU 1.0
(Habak et al., 2015).

The rest of this article is organized as follows: Section 2 discusses on
the classifications of the edge-IoT taxonomy. Section 3 presents a novel
EH-IoT architecture and test-bed is evaluated. Section 4 shows various
parametric considerations required for sustainability for the edge-IoT
ecosystems in terms of discussions. Lastly, Section 5 concludes the article.

2. State-of-the-art on the Edge-IoT taxonomy

This section presents an in-depth orientation on the state-of-the-art
edge-IoT taxonomy. It covers eight classes of industrial components
such as, (A) edge software and analytics, (B) edge-IoT ecosystem, (C)
edge-IoT cloud platform, (D) edge-IoT key vendor, (E) edge-IoT data
types, (F) edge-IoT open database systems, (G) Edge-IoT SoC platform
and (H) Edge-IoT communication. More details on each of these com-
ponents are prescribed later. Fig. 1 presents the taxonomy of industrial
component of edge-IoT computing.

2.1. Edge software & analytics

1. AWS Greengrass: Amazon AWS Greengrass works in and around three
key specifics such as (1) AWS Lambda functions: helps to respond
local IoT edge devices as early as possible upon triggering of localized
events by using lambda functions (2) machine learning inference:
makes Greengrass easier to perform learning inferences which are
ordinarily trained in Amazon cloud sites, and (3) AWS IoT core: it
utilizes the core authentication engine to restrict IoT devices from
exchanging data between such devices which are authentic in the
same network. Moreover, data synchronization helps to orient the
change in local-database with the remote cloud ones. As lambda
function minimizes response time by implying local computational
power, offline services are also possible. A set of simplified pro-
gramming models help developers to code own device per AWS
lambda specifics, thus overall cost reduction is achieved for IoT
related applications development.

2. Cisco Fog Director: Cisco Fog Director leverages in-built capability to
manage large-scale IoT-based fog applications. It is assisted with
visual-web programming environment that helps to integrate APIs
with currently used managerial options. Four key parameters are
involved in this model that includes (1) seamless and rapid adopt-
ability: (2) continuous IoT-fog application monitoring, (3) Consistent
management services and (4) on-demand remote assistance and
debugging support. Thus, it extends solutions to the existing benefits
such as, improvement over operational effectiveness over the single-
point production associativity, business agility and scalability over
the application life-cycle quality enhancement.

3. Cisco IOx: Cisco I0x edge development environment relies upon Cisco
I0x Application Framework (CAF) and Fog Director application

P.P. Ray et al.

Journal of Network and Computer Applications 140 (2019) 1-22

‘ Taxonomy of Industrial Edge-loT Computing ‘

N i Edge-loT Open ‘ Edge-loT SoC
‘Edge loT Data ‘{ Database Platform

[Edge-loT
Communication

Edge Software‘ Edge-loT ‘ 7‘ Edge-loT- 7‘ Edge-loT Key
& Analytics Ecosystem Cloud Platform Vendors

I AWS 3 i Open Fog | | Google | | ! |) 3 | 3 1 Sensor/Actuator | | g ;
*i Greengrass | y‘ Consortium | ._Cloud IoT | i Dell i J‘ Radio Data P HarperDB | ! Interface | * OPC-UA i
| Ciscofog || jLivingEdge | j MSAzure | | g otecn | s AddESS LS oyiemeDB! | CustomIP | |» BACNET |
. Director ! ! Lab ' | loT : 1 ! ! Data] | : ! ' ! !
. 3 | 3 | 3 i . | : Descriptive | i 3 i Wireless | | ;
> Cisco 10x 3 *iETSI MECi > AWS loT | > ADLink | ~ Data | * InfluxDB | ™ Communications | a MODBUS !
> FogHom | [cloud i BMWatson i o Pervasive L iateDB | CPUDSP | b zeroMQ |
! | . _Foundry | | loT | | ! ! Data | ! | | | ! |
3 3 i EnOcean | i Bosch loT | : 3 i Historical | : 3 ; N) ;
+ Crosser | v Alliance | U suite | ™ Kneron | v Data Lo MongoDB | i oS | + Zigbee !
> Swim | > LinaroLITE | |», >°MeNS & L5 origm | Psiel L petinkdB | It Protocol | P BLE |
| | ! ! | Mindsphere | ! | ! Data | | | ! | | |
|) i | 3 i ClearBadge | U | : Command | | . 3
> Macchina 1> OMG {1 iorEgge | [7 WiIePas | > " pag | |7 SQite | P Thread |
i EdgeX ; | | i . 3 | Apache |
> Foundry | . YE | > LoopEdge | Rigado | | Cassandra | >} WirelessHART |
J"’Kﬁé{éh’é’"}

|___Edgent |

Fig. 1. Taxonomy of industrial edge-IoT computing scenario.

management modules. It is meant to be connected with Cisco I0S®
software platform. It features following capabilities such as (1) IoT
application life cycle management, (2) Platform-as-a-Service (PaaS),
(3) Docker-container deployment, (4) VPN as well as [PSec based
tunneling for enhanced security, (5) orientation with the IOx client
tool for choice-based product maximization and (6) DevNet-based
trial runs. It has supports for Cisco 800, 4000, 1000 and IR510 se-
ries network infrastructures. Similarly, IOx core options are leveraged
by the following means such as, I0X/809-Core/829-Core/IE4K-
CORE/CGMSRV-CORE/TBD). Among others, help in rapid IoT
growth, flexible application deployment and closed-loop data service
are the most important benefits of the Cisco IOx.

. Foghorn: Foghorn is one of the emerging vendors in the area of
intelligent edge service domain. The aim of the FogHorn is to bring
the power of big data and near real-time stream processing at the local
user end. Its high performance and heterogeneous applications are
best suitable for the closed-loop edge environment. Due to very small
footprint, it can be embedded into wide range of gateways, industrial
digital systems and PLCs. It has supports for (1) data ingestion from
local sensors, (2) operational technology differentiator, (3) machine
learning from local historian-based services, (4) complex event pro-
cessing engine for the domain specific language, (5) cloud agnostic
monitoring and (5) management of deployed instance. Further four
key benefits are achieved from this platform that includes, predictive
use case normalization, lowering bandwidth and real-time security
maximization of the implied system.

. Crosser: Crosser is an excellent inclusion in the enterprise level edge
analytics solution providers list. It provides seamless integration to
any type of enterprise application scenario. In-built orchestration
capability gives it space for high end facility to leverage lightweight
IoT-edge solution. It can collect data from any local sensor and con-
nect IoT-based communication and messaging protocols to on-
premise, off-premise or mobile assets. Metadata generation, clean-
ing and preparation are specialization of this solution. Anomaly and
outlier detection in real-time aspect gives it power to customize edge-

cloud managing algorithms to effectively deal with. Besides, multi-
hierarchy-based action, alter and notification services are produced
on various severity levels of work in low-latency time period. Event
driven enterprise data flow is easily acted by the Crosser application
life cycle management unit. It is good at benefitting low cost Machine-
to-Machine communication, minimized network cost, lowering
bandwidth and the cloud-independence.

. Swim.ai: Swim.ai is a machine learning-based edge analytic solution

that processes real-time distributed IoT applications. It is specially
built to tackle the convolutional neural networks (CNN) for the IoT-
based time series data stream. Its EDX module help in-built artifi-
cial intelligence models to self-train from the sensed edge data. Thus,
event prediction, system maintenance, failure assumption and activ-
ity patterning are done in seamless manner. The “digital twin” model
is incorporated to find the critical information of the present system
and detect the futuristic behavior. The EDX made sensor-data fabric
efficiently reduces, learns and analyzes big edge data in low-cost
network design model.

. Macchina.io: Macchina.io is newly introduced IoT-edge platform that

integrates IoT-edge device software development kit and the remote
manager kit to efficiently manage the resources deployed in the on-
premises as well as cloud infrastructure. It hosts the device applica-
tion server that is run by java script-based engine that facilitates IoT-
based communication protocols. Several key benefits involving the
hardware lock-in avoidance protocol, industry-proven software plat-
form and reduced time-to-implement cost are achieved from the
Macchina platform. Further, remote IoT-edge devices can be securely
accessed and managed via web browser, mobile APPs, VNC and SSH.

. EdgeX Foundry™ EdgeX Foundry™ is a Linux-based open source

framework developed for IoT-edge computing service orchestration.
It has interoperable, collaborative and operating system-agnostic
plug-and-play-based software reference platform. Several open
source and industry standard groups and protocols are merged at one
point of Foundry setup. Both of the IP and non-IP specific loosely-
coupled microservices are hereby included to facilitate cloud-

P.P. Ray et al.

independent orientation. The foundry is deployed for following key
values such as, data orchestration, edge database, edge system man-
agement and edge analytic services. Several north-bound infrastruc-
ture and applications are leveraged with microservices
intercommunicate via core APIs and services.

9. Edgent: Edgent is an Apache open source incubation application
platform. Various range of edge devices including Java 8/7, Rasp-
berry Pi B and Android are applicable for Edgent implementation. It
acts as back-end system for edge-device application. Four types of
back-end message buses including MQTT, IBM Watson IoT Platform,
HTTP, JDBC, Apache Kafka, customized message bus, communicate
with the Edgent. Several centralized streaming analytics (Apache
Storm, Flink, Samza and IBM Streams) could be harnessed for Edgent
linkage. It uses Java8 Lambda expressions to package and export edge
applications. It is based on the TStream.map() function for string
handling purposes. Edgent connectors are used as interfacing media
with similar or other entities. A comparison among edge software and
analytics is shown in Table 1.

A generic architecture for edge-IoT ecosystem is hereby proposed in
Fig. 2. The overall ecosystem is restricted between “NORTHBOUND” and
“SOUTHBOUND” infrastructure, applications and “things” respectively.
It is a three-core layered architecture that consists of (i) edge-IoT plat-
form, (ii) IoT platform and (iii) cloud services. The architecture is framed
such way that the edge-IoT platform is capable to handle device, system
and metadata management. This low-level is supported with several
other effective components that includes Software Development Kit
(SDK), local management console and command pool manager. The
manager is responsible for serving aggregation, filtering, data collection
and anomaly detection in the edge-IoT layer. A built-in connector pro-
tocol connects this layer with the IoT platform i.e. core component of the
architecture. As expected, it accommodates a few of selective access,
orchestration and controlling mechanisms. System integration services
serve the monitoring, data ingestion, alerting and triggering activities
with help of the context aware services. A number of heterogenous IoT
platforms can work together to assist the edge-IoT platform i.e. lowest
layer of architecture. The loosely-coupled micro-service component be-
longs to the cloud layer i.e. highest level of architecture. Container
deployment and data flow controlling is done by this layer. Further, rule
engine optimization, scheduling, real-time analytics and device config-
uration are served by the cloud services. A bunch of industrial cloud
services can work seamlessly integrated fashion within this architecture.

2.2. IoT edge ecosystem

1. Open Fog Consortium: The mission of this consortium is to cultivate
and align standard development tasks related to fog and related
computing paradigms. The goal is to develop an open reference fog
computing architecture for building operational technology models
and deployable test beds. Several working groups (WG) are involved
in these tasks that includes architecture WG, communications WG,
manageability WG, security WG, software infrastructure WG and

Table 1
Comparison among edge software.

Journal of Network and Computer Applications 140 (2019) 1-22

testbed WG. Cisco, Intel, Microsoft, Dell and ARM holdings are the
key members of this initiative.

. Living Edge Lab: The goal of this lab initiative is to implement a large,

open and flexible test-bed for edge computing application and
research in public domain. The key benefits that it aims at are (1)
disruptive enhancement of client's experience and (2) providing
reduced data-trafficking by bringing cloud service at the edge. Several
edge services including cloud to edge migration, device to device
migration, end to end parametric testing and end user trails are
available through the implied test beds.

. ETSI Multi-access Edge Computing (MEC): This initiative is running

under the roof of the Industry Specification Group (ISG) of the Eu-
ropean Telecommunications Standards Institute (ETSI). The purpose
of this MEC is to leverage seamless and open framework for inte-
grating various edge computing-based applications originating from
the vendors, developers and third-party service providers. All
authentic operators can run their specific Radio Access Network
(RAN) at the edge of the deployed MEC. Services like video analytics,
augmented reality, data caching, local content delivery and IoT are
expected to be harnessed from it.

. Cloud Foundry Foundation: It is a collaborative outcome from the or-

ganizations such as, Cisco, Google, IBM, Microsoft, Pivotal, SAP and
SUSE to make faster and ease of access deployable cloud-based ap-
plications. The aim is to facilitate the end users and developers to
focus on application development rather than platform related over-
head. This framework helps to connect any cloud by any applications
to access the services and interoperable integration. Further,
container specific service and multi-cloud based multi services are
handled by this framework. Edge related services are thus automati-
cally harnessed.

. EnOcean Alliance: It provides a flexible, cost efficient and energy

efficient ecosystem for closed periphery activities, especially for
smart building automation. It maintains a standardized wireless
(868 MHz, 902 MHz and 928 MHz) application protocol stack that
runs upon IoT-based systems. It implies the self-powered wireless IoT-
based sensor to be controlled at the edge of the networks. It also
performs following tasks such as, remote management and commis-
sioning, product labelling, energy harvesting, over IP security and
smart acknowledge.

. Linaro IoT and Embedded (LITE) Group: It facilitates various open

source as well as proprietary software integration services for the IoT
and edge-computing scenario. Applications on top of FreeRTOS,
ThreadX, Zephyr, mbed etc., could be easily developed within this
software framework. Several industry standard projects based on Arm
v8, LAVA, Kernel CI, and LSK are under process. Advanced boot
loaders and TrustZone services could be formulated by using LITE
implementation. LinaroEdge is a special solution that is developed to
support for Time Sensitive Networking (TSN) mostly applicable in the
edge era.

. Object Management Group: This group focuses on developing the

industrial-IoT (IIoT) based standards and protocols. It also specializes
in leveraging interoperable

Edge Software Real-time response Machine learning IoT Core Support In-built SDK Open Source Cloud Agnostic Enterprise Solution
AWS Greengrass Yes Yes Yes No No No Yes
Cisco Fog Director Yes No Yes No No No Yes
Cisco I0x Yes No Yes Yes No Yes No
Foghorn.io Yes Yes Yes Yes No Yes No
Crosser.io Yes Yes No No No No Yes
Swim.ai Yes Yes No No No No No
Macchina.io Yes No Yes Yes No No Yes
EdgeX Foundry™ Yes No Yes No Yes Yes Yes
Apache Edgent Yes No Yes Yes Yes Yes No

P.P. Ray et al. Journal of Network and Computer Applications 140 (2019) 1-22

(“NORTHBOUND” Infrastructure and Applications)

Cloud 8
< Cloud lo > < Cloud) (Device D s
2 Core (Cloud ML) Dataflow Configuratio g
L Service) < Real-time) < . > o
% Models) (Schedullng) Analvtics Rule Engine 5
@ =
2 (Container Deployment) B
£ <
2 - 2
3 (Enterprise Connector) 5]
>
< Cloud-Edge-loT Orchestration) §
|
Operator
loT Platform
€ E (System Integration Services) 2 o
2 k)
£ 5] -) > £
S cg Data Messaging Code Trigger Portals 3 S
kS e © K
e 2 (Access Control Scheme) S o
= < H =
's pe k5 ©°
2 (Edge-loT Orchestration D 3
I} =
(&) . Data Alert &
(Monitor) Ingestion) (Notification) Q\/IanagemenD
g Edge-loT Platform
€ Anomaly ><) > < o) < Data) £
% <Detection Aggregation Filtering Collection 'g ‘ar:‘J
@
(E% < Command Pool Manager) g é
T © 3
© (Local Management Console > _8 (o}
B 3=
2 < SDK) e
< “SOUTHBOUND” Devices, Sensors and Actuators)
Fig. 2. Proposed generalized architecture of the edge-IoT ecosystems.
IIoT test-beds, especially for healthcare, retail and modular open Table 2.
systems. Many distributed as well as edge IoT solutions are under process .
X . A . Comparison among edge-IoT ecosystems.
that caters the in-built Business Process Modelling (BPM).
Edge Ecosystem Computing Key factor Access Type
. . Paradigm
8. ULE Alliance: It focuses on development and processing of ultra-low g
energy and low latency networking with optimized communication Olzen Fog Fog, Edge-loT OP;‘} reference fog Open Source
. . . . onsortium architecture
.strategles. Such w1rele.:ss' solutions have moderate data rate. spe.3c1f- Living Edge Lab Edge, ToT Flexible test-bed Open Source
ically meant for the Digital Enhanced Cordless Telecommunications ETSI MEC MEG, ToT Radio access network Closed/
(DECT). It runs on top of the Home Area Network Functional protocol Proprietary
(HAN FUN) complying several interoperability test events. Table 2 Cloud Foundry Cloud, Fog, Multi-cloud framework ~ Open Source
shows the comparison among these ecosystems. Foundatw',' Edge, IoT .
EnOcean Alliance IoT, Edge Energy efficient smart Closed/
building automation Proprietary
2.3. IoT edge-cloud platforms LITE IoT, Edge Time sensitive Open Source
networking
1. Google Cloud IoT: Google provides an intelligent cloud service plat- oMG foT Industrial business Closed/
K ; process modelling Proprietary
form for IoT and edge enabled scenarios. The framework is segregated ULE Edge Ultra-low energy Closed/
into three layers such as, (1) edge device, (2) cloud data analytics and networking Proprietary

(3) data usage. A real-time machine learning facility is incorporated
into the edge device layer that facilitates services for the edge IoT core
and Linux-based android-things. Four key functionalities are har-
nessed at the cloud data analytics component where Cloud Bigtable,
BigQuery, Cloud Dataflow and Cloud Machine Learning particulars
take part in data analysis. Cloud Datalab and Cloud Studio-based
solutions cater the data usage and storage policy.

2. MS Azure IoT: Microsoft provides IoT application development facil-
ities at the edge of the network with help of its Azure IoT platform. It
relies on the cost per usage policy with not termination time period. It
depends on the powerful integration of Azure IoT Edge that leverages
near real-time response, clod agnostic and reduced solution cost. Its

P.P. Ray et al.

secure and intelligent edge helps to deploy Al and analytics services at
the edge.

3. AWS IoT: Amazon's AWS IoT is a cloud served IoT on the edge service

that comprises of Amazon FreeRTOS, AWS Greengrass, IoT Core, IoT
Device Management, IoT Device Defender, AWS IoT Analytics, IoT 1-
Click and IoT Button-based components. It serves all types of inte-
grated micro-services at the edge by incorporating low-footprint OS,
centralized device behavior monitoring system, localized data cach-
ing, and on-board point of contact application deployment
opportunities.

. IBM Watson IoT: It is a cloud hosted intelligent IoT service which
could be run at the edge devices of any network. Watson API is key of
this framework that provides real-time as well as social-sentiment
analysis on the device generated data. Anomany detection and per-
formance validation are also doe by the risk manager component.
Seamless IoT device connection and management are formulated by
the Watson's intelligent engine at the backend.

. Bosch IoT Suite: Bosch has incorporated a software service for IoT-
edge integration that relies on top of a compact module of open,
flexible and intelligent suite. Machine-to-machine communication is
paved through this suite framework. A remote manager solution is
integrated with the underlying edge-IoT analytics software. The price
of usage is served as trial basis.

. Siemens Mindsphere: Siemens provides MindConnect solution to the
edge-IoT application developer. The MindConnect platforms is
correlated with the hardware and software stack of Siemens. It can be
hosted on the MindSphere cloud be it provide or public infrastructure.
It also comes with an open IoT OS to facilitate millions of distributed
devices around various application domain.

. ClearBlade IoT Edge Platform: It provides an enterprise level cloud-
assisted edge service platform to connect IoT devices deployed in
the industrial sectors. It is a small as well as scalable edge platform
that enables organizations to configure, deploy, filter, stream, syn-
chronize and manage state-of-the-art IoT devices with help of a
ClearBlade software stack. No SDK, nor local software module is
paved to do such tasks. All the programs, data, messaging service and
triggering mechanism are pooled on the edge site.

. LoopEdge: It provides an industrial IoT support through a complete
package of edge platform that runs on backend cloud or on-demand
on-premise. It supports two types of hardware for deployment that
includes (1) IoT device and (2) gateways. Arduino, Mbed, Spark
MSP430, Chipkit Max32, TI Stellaris are examples of IoT devices that
connect sensor and actuators for sensing and out delivery purpose.
Gateways perform message format translation task at the edge. Dell,
Nexcom, HPE, HMS, Intel x86, Kontron IPC are examples of such
gateways. Another special feature called connector is used within its

Journal of Network and Computer Applications 140 (2019) 1-22

platform such as, MongoDB, Cassandra, MySQL, Hbase, Redis,
MariaDB, Informix, IBM DB2, LoopDB, Bigtable, SAP Sybase etc.
These are various type of DBMS that store data and message streams
for possible analysis and extraction purpose. Table 3 presents the
comparison among the edge-IoT platforms,

2.4. IoT edge hardware vendors

1. Dell: Dell is engaged at development of cutting edge IoT solutions in
terms of edge-gateway, edge controller and edge-cloud platform. It is
presently seeking involvement into the EdgeX Foundry for possible
collaboration and cooperation to build a unified edge-IoT platform.

2. Eurotech: It is specialized into the development of smart IoT gateways
which are currently assembled with the open source Eclipse Kura
platform. The aim of Eurotech is to manage edge-IoT aspects with
help of an open source cloud platform to disseminate the specialized
services to its clients via AWS IoT and MS Azure.

3. ADLink: Currently, ADLink is busy with manufacturing of the IoT
gateways to be installed at the edge of the networks. It seems to have
two strategies to counter the IoT marketplace such as, (1) collabora-
tion with Wind River software solution, and (2) deploy the Vortex
Edge software to get operated from various embedded device lists.
Interestingly, it is also keen to pursue a strong bonding with the open
source initiatives like Eclipse Cyclone and Fog05 etc.

4. HPE: It manufactures smart IoT gateway device called Edgeline. It is a
series of gateways with variety of modular design and specifications
for different set of applications. However, they rely on the third-
parties for development of the software packages to run the Edge-
line series gateways.

5. Kneron: Kneron is an edge Intellectual Property (IP) developer com-
pany. It specializes in cultivation of the Kneron NPU IP and visual
recognizing software for edge-based solution. Recently, it has started
the production of the dedicated Al-based low power deep learning
processor production which runs on CNN mechanism.

6. IoTium: Distributed edge provisioning for the IIoT is the only goal of
the IoTium. The edge software is capable to run on top of Intel x86
machines as well as certified Dell, Advantech, Cisco and Lanner
gateways. All types of wireless and cellular communication facilities
are in-built into the IoTium software supported nodes.

7. Wirepas: It provides a mesh topology-based distributed and scalable
IoT infrastructure. It runs with help of Wirepas Mesh software that
can accommodate with any type of radio communication on any
embedded IoT device at massive scale. Currently, it has been suc-
cessfully tested on the smart buildings, smart city, smart logistics and
smart energy monitoring and management.

Table 3

Comparison among edge-IoT platforms.

Target Hardware

Platform Access

Edge-Cloud Type of Key incorporations

Platforms Ownership

Google Cloud IoT Proprietary Cloud Bigtable, BigQuery, Cloud Dataflow, Cloud Machine
Learning

MS Azure IoT Proprietary Azure IoT Edge, IoT Central

AWS IoT Proprietary Amazon FreeRTOS, AWS Greengrass, IoT Core, IoT Device
Management, IoT Device Defender, AWS IoT Analytics, IoT 1-
Click, IoT Button

IBM Watson IoT Proprietary Watson API, Watson IoT Cloud

Bosch IoT Suite Proprietary, Software as a Service, Bosch IoT Remote Manager

Flexible Open

Siemens Proprietary, Open ~ MindConnect, Open IoT OS
Mindsphere

ClearBlade IoT Proprietary Edgelite, IoT Portal, IoT Packet Manager
Edge Platform

LoopEdge Proprietary Connector, IoT Device Driver and Gateways

AndroidThings/Linux kernel

Linux/Windows

AWS Partner Network (APN) supported device
Linux, Windows

Bosch IoT Gateway

Siemens hardware

NXP, Dell, HPE, Phoenix Contact, Owasys, AMD,
Mica, Arms, Lanner, Moxa, Sercom, Raspberry Pi,

Toshiba
Arduino, Mbed, MSP430, TI Stellaris etc.

Restricted (Trial)

Pay per Usage
Pay per Usage

Pay as you Go,
LITE

Pay per usages,
Subscription

Pay per usage,
Subscription
Restricted (Trial)

Pay as you go

P.P. Ray et al.

8. Rigado: Rigado facilitates IoT Edge-as-a-Service evaluation kit for
seamless connectivity between edge and IoT-cloud infrastructure.
Most of these wireless modules come under monthly subscription
basis to provide cost-effective and on-demand edge computing facil-
ities. It is capable to go with ubuntu core, java, python and node-red
to minimize the time-to-market with ease of application develop-
ment. Three key components are currently in market place that in-
cludes (1) Cascade-500 IoT gateway with BLE, Zigbee, Thread,
Wirepas Mesh, ethernet, 2G, 3G and Wifi connectivity, (2) Edge-as-a-
Service; Edge Connect, Edge Direct and Edge Protect and (3) Wireless
modules: Nordic and NXP enabled BLE 4.2, 5.0 and Thread
connectivity.

2.5. Edge IoT data type

1. Radio Data: Such type of data is generated from radio frequency
generating communication module. In major cases, data originated
from the Radio Frequency Identification Module (RFID), Bluetooth,
ZigBee, LoRA etc., include different packet structure. Thus, hetero-
geneous radio packet data-structure is of utmost importance to get
catered with.

2. Address Data: Multiple number of devices under the same edge-IoT
scenario require unique addressing schemes, hence the need of
hosting similar data structures. These data types can vary from one
device to another and from one genre of communicating protocol to a
unique type of device.

3. Descriptive Data: Every edge-IoT-based process, system and object
should be framed and formulated in such way so that it could be
described effectively. Thus, descriptive data structure must be hold
for any relevant edge-IoT sub systems.

4. Pervasive Data: IoT frameworks are frequently used to deal with the
environment and positional applications. Pervasiveness thus becomes
very important in this regard. Current edge-IoT frameworks must
facilitate similar data structure.

5. Historical Data: Every node and controller of the edge-IoT network
processes long chain of data streams at different time stamps of
operation. Earlier originated data may be preserved for some future
analytical or debugging situations. So, there should be some pro-
visions to restore the historical data in suitable format.

6. Physical Data: Mathematical modelling is a very interesting and
important aspect for the edge-IoT design verification and validation.
As and when these procedures are over, it may be prescribed for
comprehension of similar objectives in the near-future. Such reality
emulating data may be harnessed for processing.

7. Command Data: Edge-IoT networks are filled with actuators, for
example, alarm, auto sprinkler, robotic motorized hand etc. These
actuators work upon receiving of appropriate commanding signal
from the master. These types of data should be assimilated to dig in-
depth for more detailed apprehension of actuator behavior.

2.6. Edge IoT open database systems

1. InfluxDB: This is an example of combination of the key-value and
Time Series DBMS models. It is specialized in leveraging NoSQL type
query processing in IoT environment. Moreover, it can handle the
NewSQL and increasing data model query structures. It can interpo-
late some of the missing data from the in-built database.

2. CrateDB: It is one of the most innovative DBMSs in current IoT market
that handles SQL structures. It is capable to scale linear data ingestion
into the growing IoT data samples, cluster data-balancing and in-
memory data replication. It can work in conjunction with the
Kafka, NodeRED, Grafana, Apache Lucene, Netty, and Presto in no
lock-in manner. It can be run in both of the edge and or cloud.

3. MongoDB: It is used as a general-purpose document-oriented database
for IoT-based applications. It uses JSON-like formats for processing
the data. Recently it has started to support BSON formatting. Master

Journal of Network and Computer Applications 140 (2019) 1-22

sharding and MapReduce techniques are used as the query processing
methods.

4. RethinkDB: 1t is an open source, document store class database API. It
implements Unified Chainable Query Language (UCQL) to access to
JSON data store. Real-time commands are herein used as a plug-and-
play function for WWW interaction. It utilizes real-time push archi-
tecture for instantaneous data rehabilitation. It also offers asynchro-
nous query processing while implementing the Eventmachine. SSL
connectivity is also paved by the underlying architecture.

5. SQLite: It comes with a very small footprint for implementation in the
end application, especially for embedded devices. It is a self-
contained as well as highly reliable open source RDBMS. It does not
depend on the client-server architecture, instead processes SQL while
getting inside the embedded systems.

6. Apache Cassandra: 1t is one of the most popular wide column store
class NoSQL query processing engines. Innovative query processing
techniques such as CQL and Thrift are utilized in this system. It comes
with “no single point of failure” capability for utilizing real-time se-
ries data. Decentralized, scalable and elastic characteristics are core
part of this database solution.

However, two database systems are getting equal popularity though
they belong to proprietary class as described later (Cuervo et al., 2010;
Ray et al., 2017; Ray, 2017c). Table 4 presents the comparison among
these database systems.

HarperDB: It comes as a web based graphical user interface (GUI) that
can be run on edge-device without intervention from the cloud. The web
interface is capable to perform management of data for users, customized
schema and modify roles within it. Both of SQL and NoSQL queries can be
responded by the HarperDB engine. Moreover, real-time chart prepara-
tion, graphical visualization and query processing are easily made
possible. All configurations are handled by JSON. Its small footprint is
capable to handle multiple workloads with a single modelled dynamic
schema by using REST APL

eXtremeDB: It features the in-memory and persistent DBMS facilities.
Primarily it comes under the RDBMS and Time Series DBMS models. It
also caters as the Key-value store model as its secondary model. It has the
capability to provide clustering and sharding mechanisms in its forefront.
Its footprint is extremely small in size, thus appropriate for the embedded
IoT device implementation. SQL queries in accordance to another NoSQL
is facilitated.

2.7. Edge-IoT SoC specifications

1. Sensor/Actuator Interface: Edge-1oT devices are enabled with different
types of SoC as well as ASIC architectures. These SOC/ASIC modules
are complied with the multiple sensor/actuators. Thus, the SOCs
should be capable of handling various interfacing genres for efficient
communication with sensor or actuator data. Some of the most
important interfaces are Analog-Digital convertor (ADC), Digital-
Analog Convertor (DAC), General Purpose Input Output (GPIO), Se-
rial Peripheral interface (SPI), Intern IC Bus (I2C) and MIPI-based
Inter IC Sensorwire Bus (I3C).

2. Custom IP: SoCs are responsible for hosting several edge-IoT-based
computationally intensive workload handling. Customized IP core
are thus needed to cater such operations. Out of many, following are
the most important cores that includes edge analytics processing,
enhanced processor security, intelligent control logic functions and
heterogenous sensor/actuator fusion.

3. Wireless Communications: Each of the edge-enabled SoCs are inte-
grated with a variety of popular and mostly used wireless commu-
nication standards such as ZigBee, LoRA, Bluetooth, WiFi,
WirelessHart. Recently, visible light communication modems are also
getting popular with the other well-known solutions.

4. CPU/DSP: All the deployed SoCs are run by either specialized CPU or
DSP processing units. A long-list of such processor core developing

P.P. Ray et al.

Table 4
Comparison among edge-IoT database systems.

Journal of Network and Computer Applications 140 (2019) 1-22

DBMS Access Type Class Query Language Latency Compressed Foot print JSON Object
InfluxDB Open Source Time Series, Key-Value NewSQL Low 23.7 MB Yes
CrateDB Open Source RDBMS SQL Real-Time 5.5MB No
MongoDB Open Source Document Store DOBL Low Cluster Based Yes
RethinkDB Open Source Document Store UCQL Real-Time 10.9 MB Yes
SQLite Open Source RDBMS SQL Low 2.17 MB Yes
Apache Casandra Open Source Wide Column Store CQL, Thrift Low 35.6 MB No

DOBL: Dynamic Object-Based Language.

companies are currently upholding the IoT market share. Following
are some of the crucial market players in this regard, such as, MIPS,
CEVA, Texas Instruments, ATMEL, ARM, Cadence, ARC Synopsis and
ANDES.

5. OS: Several low footprint operating systems are being deployed into
the vast range of SoCs for effective system interfacing purposes. Most
of those support many of the RISC/CISC cores to get implied with. A
handful of them are included in this study due to their popularity and
usefulness that includes Free RTOS, RIoT, Tiny OS, Contiki, Generic
Linux for embedded applications and ARM Mbed OS. Table 5 presents
the comparison among the edge-IoT OS.

6. IoT Protocols: Different types of data management and messaging
protocols are used in edge-IoT ecosystem. Employed SoCs are hence
made capable to pursue some of the very important and reliable IoT
protocols. Some examples of these protocols are as follows, Message
Queuing Telemetry Transport (MQTT), Data Distribution Service
(DDS), Light Weight Machine to Machine (LWM2M), Constrained
Application Protocol (CoAP), and IPv6 Low Power Personal Area
Network (6LoWPAN).

A novel industrial edge-IoT protocol stack is proposed in this regard
as shown in Fig. 3 (Ray, 2017d, 2017e, 2017f). As seen, it is a 4-layered
protocol stack which is better suited for SoC implementation. It is well
understood that any edge-IoT protocol should be placed over one of the
wide-range of SoCs available in market. The ARM, ANDES, Cadence,
MIPS, ARC and CEVA are the most popular as well as leading market
players who develop SoC cores for CPU and DSP. All such CPU and DSP
cores are readily deployable in several bunches of embedded sectors in
the edge-IoT application. The next higher layer of the stack comprises of
customized intellectual property (IP) that deals with edge analytics, se-
curity, sensor fusion and control logic related deployments. Now-a-days,
a long list of OS variants is existing in public domain. But, a handful of
those are open-source as well as easily burn-able namely, TinyOS, Free-
RTOS, RIoT OS, Mbed OS, and Contiki OS. The next higher level of
protocol stack leverages communication and sensor/actuator interfacing
protocols. Bluetooth, LoRa, WirelessHART, ZigBee, WiFi are mostly used
protocols in SoC stacks. Similarly, I2C, SPI, ADC, DAC, I3C are the mostly
promising interfacing protocols that come in the list of choice of the
developers. The top most layer of the protocol stack deals with the IoT
protocols that covers a long list of efficient and light-weight means such
as, DDS, MQTT, LoWPAN, CoAP, XMPP, WebSocket etc (Chun et al.,
2011; Ra et al., 2011).

2.8. Edge-IoT communication protocols

1. OPC-UA: Tt the most prevalent edge-IoT communication protocol for
the IIoT scenario. This Open Platform Communication standard for is
designed to cater the platform independent Unified Architecture for
the industrial edge-IoT services. It is capable to handle AES 128-256
encryption in each session of communication while leveraging sup-
port for HTTPS and SOAP for various applications. Apart from these,
it can accommodate message signing, user authentication and
firewall-friendly user control activities. It is one of the mostly used
extensible and information modelling framework for rigorous in-
dustrial use (Gordon et al., 2012; McKeown et al., 2008).

2. BACnet: Smart city and smart home automation revolution are at the
verge of the current technological scenario. Thus, an efficient Build-
ing Automation and Control Networks are of the utmost requirement.
BACNET is such kind of data communication protocol that leverages
supports for multiple industry standards, for example, American Na-
tional Standard Institute (ANSI), International Organization for
Standardization (ISO) 16484-5 and American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) etc. It de-
fines a wide number of physical/data link layer protocols that in-
cludes the RS-22, RS-485, Ethernet, ZigBee and LonTalk (Pan et al.,
2016; Ranjan et al., 2015).

3. MODBUS: 1t is the de facto communication standard for connecting
industrial electronic equipment. MODBUS comes with a variety of
protocols such as remote terminal unit (RTU), TCP/IP, UDP, Plus,
Pemex and Enron. It relies on mesh networking architecture and able
to communicate with the supervisory control and data acquisition
(SCADA) systems over the industrial, scientific and medical (ISM)
radio bands and General Packer Radio Service (GPRS). Despite of
such facts, it lacks in high speed and accurate timing issues.

4. ZeroMQ: 1t a newly released distributed message queuing protocol
that runs without incorporation of a centralized message broker. It
works with helps of four in-built pattern technologies such as,
request-reply, publish-subscribe, push-pull (pipeline) and exclusive
pair. The underlying library is developed in C++ and licensed over
LGPL. The socketing technology is very similar to the Berkley sockets.

5. ZigBee: It is developed over the IEEE 802.15.4 specifications for
catering the Personal Area Network (PAN) while complying with the
low-power, small-bandwidth requirement and low-data rate appli-
cations. Generally, its range is within 10-100m in line of sight.
However, recently the range has been tested successfully up to 40 KM.

Table 5

Comparison among edge-IoT OS.
(e} Min. RAM Min. ROM C Support C++ Support Multi-Threading MCU w/0 MMU Modularity Real-Time
RIOT ~1.5kB ~5kB Yes Yes Yes Yes Yes Yes
Linux ~1MB ~1MB Yes Yes Yes No Partial Partial
Tiny OS <1kB <4kB No No Partial Yes No No
Contiki <2kB <30kB Partial No Partial Yes Partial Partial
Mbed OS >4kB >32kB Yes Yes Yes Yes Yes Yes

https://www.riot-os.org/.

https://www.riot-os.org/

P.P. Ray et al. Journal of Network and Computer Applications 140 (2019) 1-22

loT Protocols
1
DDS |, SIMOTE ‘Gowa COAP ¥ WebSocket

Communication @ Sensor/Actuator Interface

et LORa WirelessHART ¥ tissee @ @
o ~ o0s
TnyOS #&ios) Lo Contiki

Custom IP

(dge Analytlcs Control Log|c>

CPU/DSP

Q\RM ngggg cadence NA1| pSeﬁECEVAQ

Fig. 3. Edge-IoT SoC protocol stack.

On average the data rate is around 250kbps (Wang et al.,
El-Sayed et al., 2018).

. Bluetooth: It is based on the IEEE 802.15.1 standard specifications that
is used to exchange data in close proximity, average 10 m distance. A
spectrum band of 2.4-2.845GHz Ultra High Frequency (UHF) is
allotted for peer-to-peer communication. Recently released Bluetooth
5 has proven to have 2 Mbps physical layer transmission rate. The
range has been increased to 50-100 m in line of sight with minimized
power consumption (Madukwe et al., 2017).

. Thread: It is made to deliver communication services for the building
automation related tasks in the edge-IoT ecosystem. It is developed on
top of 6LoWPAN that indirectly relies on the IEEE 802.1.5.4 protocol.
It implements a very low-power mesh networking topology for future-
proof, reliable and secure IoT applications (Vallati et al., 2016;
Sapienza et al., 2016).

. WirelessHART: It is another IEEE 802.15.4 compliant popular wireless
sensor networking (WSN) leveraging solution that is developed on the
Highway Addressable Remote Transducer Protocol (HART). The WSN
works on the basisof the Time Synchronized Mesh Protocol (TSMP).
Several communication protocols can be interoperable with the
WirelessHART (Ray et al., 2018a; Feng et al., 2017).

. LonWorks: It is a standard developed by the Echelon Corporation for
establishment of communications among edge-IoT devices through
the fiber optic and any other wired channel. It follows the ANSI/EIA

2017;

709.1, ISO/IEC 14908-1, 14908-2, 14908-3, and 14908-4 Standards.
It is licensed under the proprietary cost-benefit model. Normally its
usage cost is very high due to its licensing policy. Practically, it is used
for control, home automation, and transportation fields. Table 6
provides the comparison among these communication protocols
(Zhang et al., 2017; Ali and Ghazal, 2017; Edge IoT protocol stack,
2018).

2.9. Use cases

1. Waggle: It is an ongoing scientific project hosted by the Argonne

National Laboratory. The main aim of this research project is to
leverage edge-IoT supported hardware-software platforms for con-
ducting smart city research. It comes with a set of hardware modules
specially designed for scientific experiments in the fields of edge and
IoT specific areas for example bee hive monitoring, environmental
monitoring, e-healthcare, city pollution monitoring and smart trans-
portation. It consists of three components namely, (i) Waggle sensor
node, (ii) Waggle edge-IoT framework and (iii) Waggle cloud infra-
structure. The sensor module consists of temperature, humidity,
infrared hyperspectral imager camera, sound detector, CO, CO2,
NO2, and particulate sensors. It also consists of the motor control, air
pump, robotic sampler and LED status-based actuators. It can also
monitor e-health vitals. Such sensed data are temporarily stored at the

Table 6
Comparison among popular edge-IoT communication standards.
Protocols Monitoring Organization Specifications Access Cost Use
OPC-UA OPC Foundation C, C++, Java, .NET, Python, SOA architecture Free/Open Low Not Given
BACnet ASHRAE ANSI/ASHRAE Standard 185; ISO-16484-5; I1SO- Free/Open Low Industrial, Building automation,
16484-6 Transportation
MODBUS Modicon Inc. IEC 61158 Standard, ASCII, RTU, TCP/IP Free/Open Low HVAC, Building automation, Access
control
ZeroMQ iMatix Inter Process TCP, IPC, TPIC, C++, JNI Free/Open Low Asynchronous, distributed/concurrent
implementation Industrial automation
ZigBee ZigBee Alliance IEEE 802.15.4 Standard, Low power, 100-500 kB/ Restricted/ Moderate Industrial automation, WSN
s data rate Proprietary
Bluetooth Bluetooth SIG IEEE 802.15.1, 2.4 GHz, ISM band, 10-100 m, Restricted/ Low Home automation, Industrial, Personal
100-1 MB/s data rate Proprietary Networking
Thread Thread Group IEEE 802.15.4 standar, 6LowPAN Free/Open Low Industrial automation, Control
WirelessHART HART Communication IEC 62591, IEEE 802.15.4 standard, ISM band, Royalty Free, Low Industrial WSN
Foundation TSMP technology, HART protocol Copyright License
LonWorks Echelon Corporation/ ANSI/EIA 709.1; ISO/IEC 14908-1, 14908-2, Proprietary Very Control, Home automation,
Motorola 14908-3, 14908-4 Standard High Transportation

P.P. Ray et al.

local edge-node which is made from low power-core computer-based
system. Highly secured uplink manager assists the edge to commu-
nicate with the Waggle cloud repository to store and analyze the data.
An on-demand cloud scaling mechanism is incorporated with the
deployed Waggle cloud. Overall system is thus intelligent and sup-
ports the attentive sensing and actuating events efficiently. Fig. 4
presents the underlying brief architecture.

2. Array of Things: Array of Things (AoT) is an initiative by the Argonne
National Laboratory that aims at solving problems related to the
urban environment and infrastructure monitoring by using the
sensed-data from its modular and programmable sensor nodes
deployed at various locations in any city. The analyzed data are often
open-sourced to the public use-purposes and advanced analytical
researches. Mainly, the pollution and environment related sensor data
are processed by the AoT framework. The inferred information is later
sent to the needy, for example real-time pollution level is informed to
the subscribed even/morning walker of the city and the chronic
asthma patients. It also suggests the pedestrians about the safest
timing for move around the city during day or night. Moreover, traffic
lights are also used to inform the citizens about the current status of
traffic congestion and other related information. Currently, AoT
nodes are being experimentally installed in the sea shore of Chicago
city for which the real-time graphical visualizations are handled by
the Plenario services (Plenar.io). The hardware designs and software
codes are readily available at https://arrayofthings.github.io. Fig. 5
represents the architectural framework for the AoT implementation.

3. EH-IoT: a case study on Edge-IoT for e-healthcare
3.1. Problem definition

Since Edge computing paradigm is a new concept, there is lack of
availability of lightweight solution. Though many researches tend to
implement this concept mostly by creating their own edge application
which is specifically dependent to a particular hardware, they lack in
open source aspect, ease of customization and applicability. Developers

i
Q On-Demand Cloud Scaling | sl
—

Journal of Network and Computer Applications 140 (2019) 1-22

around the world is contributing for the development of open source
software called Apache Edgent. Though, Edgent is still in its infancy
stage, not much research articles have been published and very few
detailed documentations are available as open research platforms.
Moreover, e-healthcare related applications have not been much tested
and validated against the Edgent periphery.

3.2. Objectives

This case study proposed and developed the novel Edgent enabled
edge-IoT computing system for e-healthcare i.e. EH-IoT that primarily
focuses the below:

Deployment and configuration of the Edgent on the Raspberry Pi 3 as
the edge-IoT system;

Exploring the connector classes of Apache Edgent to communicate
with the external entities back end systems;

Setup the proof-of-concept test-bed for provisioning of edge services
on the IoT-based scenario; and

Minimization of the amount of data transmission to analytics IoT
cloud server.

3.3. Materials used

This study uses several hardware and software modules as described
below: (The MachNation IoT Architecture; Functional architecture of
edge-IoT system; Selection of best IoT platform; Requirements of
edge-IoT paltforms)

Temperature Sensor: LM35 is an industry standard temperature
measuring chip, used for measuring body temperature for proof-of-
concept.

Raspberry Pi 3: It supports for developing Edgent-based edge-loT
system. In this experiment it is used to deploy the local edge computing
serving device i.e. EH-IoT.

Arduino Uno: Itis an open-source microcontroller board based on the
ATmega328P microcontroller. It is hereby used to host the

Pu bi Data

|

HPC
Simulation

N

J

Cloud Infrastructure

Sensor Node

Intelligent

Attentive Sensing

2 Portal
Data Data Cleaning
Analysis (QA/QQ)
o
Sensor
Data
Commands
> ()
- (/
| (/
RN
Management

Wireless Sensor Deployment

Console

Fig. 4. Waggle-based sensor to cloud information exchange architecture (Waggle-based sensor to cloud information exchange architecture).

10

https://arrayofthings.github.io

P.P. Ray et al.

Reliability Management

Weather and Air Quality
Sensors

Air Quality uv Light Humidity Temp

Journal of Network and Computer Applications 140 (2019) 1-22

~ OEE

Cloud Infrastructure Citizens

Fig. 5. Citizen-based cloud information exchange architecture.

communication and data flow from LM35 to the EH-IoT system.

Raspbian OS: Raspbian is used to host the Edgent on top of Raspberry
Pi 3. In this study it is used for leveraging seamless edge analytics services
through the EH-IoT.

Apache Edgent 1.2.0: It is an open source development tool to analyze
real-time data on the edge of IoT scenario. Its main purposes in this study
are as follows: (i) reduction of the amount of data transfer to centralized
remote IoT cloud analytics server and (ii) minimization of the amount of
data transfer that gets stored in the IoT cloud repository.

ThingSpeak: In order to analyze, view and store the sensed data, the
ThingSpeak provides an efficient and easy IoT cloud analytics platform to
cater the required needs.

3.4. Methodology

The proposed EH-IoT deployment comprises of three key modules
such as, (i) Apache Edgent engine, (ii) embedded hardware-based
sensing unit and (iii) IoT-based cloud repository.

(i) Apache Edgent Engine: Apache Edgent is an open source program-
ming model designed basically for edge devices with low
computation power. It provides necessary APIs and classes for the
development of Edgent application. The Edgent engine is
responsible for handling all the necessary tasks such as receiving
streams of incoming data from the data source, process and filter
those data to determine critical readings and send it to the cloud
for further analysis. The main features of the Edgent are as fol-
lows: (i) Functional flow API for streaming analytics (Map, Flat
map, Filter, Aggregate, Split, Union, Join, Dead band filter), (ii)
Connectors (MQTT, HTTP, WebSocket, JDBC, File, Kafka), (iii)
Java API allows you to send JSON to an MQTT device, (iv) bi-
directional communications with the backend, (v) web-based

11

interface to view application graph and metrics, (vi) availability
of Junit, and (vii) usefulness of the Java-based Lambda
expressions.

(ii) Embedded hardware-based sensing unit: This module comprises of
the basic hardware components which is responsible for gener-
ating raw data (unprocessed data), which is sent to the edge de-
vice for processing and analysis. The hardware included in this
module comprise of I[oT devices which generates frequent
(continuous) streams of data such as temperature sensor for
healthcare applications. Sensing unit acts as data source to the
edge device. Here the data source is LM35 temperature sensor
(used as a proof of concept) which reads human body
temperature.

(iii) IoT based cloud repository: Data can be sent from the EH-IoT
framework to the IoT-based cloud analytics unit i.e. back-end
system, if needed to accomplish analysis that cannot be per-
formed on the EH-I0oT, such as: (i) running complex analytic al-
gorithm that necessitates huge resources (CPU or memory), (ii)
maintaining large amount of state information about the system,
and (iii) correlating data from the device with data from other
sources. The EH-IoT communicates with back-end system through
the following message hubs (i) MQTT, (ii) IBM Watson IoT plat-
form, (iii) Apache Kafka - an enterprise message bus service, (iv)
custom message hubs, and (v) ThingSpeak — open IoT platform
with in-built Matlab analytics.

Fig. 6 presents the proposed architecture behind the EH-IoT. As
mentioned earlier, the architecture is segregated into four parts such as,
(i) hardware: it contains Raspberry.

Pi 3, Raspbian OS, Java 1.8.0 and Apache JVM, (ii) Edgent engine: it
comprises of publish/subscribe connector tool that communicates with
other Edgenet-based application programming interfaces; further

P.P. Ray et al.

Journal of Network and Computer Applications 140 (2019) 1-22

[72)

%{ E-Health Monitoring

: o

: (el @ (rare) @
8{

0

o Windowing || Filter H Ingestion Union | Filter ‘
c

> \ Split || Transform H Aggregation H Batch H Transform \
L

d E }'é';i;;;T () iNcGaaTor

B\ || Publish/

2| || Subscribe | Provider | Topology | | Python |

§ Connector | Execution | | Processing Graph | | Android |

< | | Apache Common Math ‘] Elastic Search API | | Java ‘
= Java JRE 1.8.0 I Apache JVM \
-5{ Raspbian Operating System |
£ Raspberry Pi 3 \

Fig. 6. Proposed architecture of the EH-IoT edge-IoT system.

ingestion, filtering, transformation, windowing and aggregation etc., are
executed, (iii) backend: the backend is a collection of a list of supports
such as MQTT, serial connector, console, IoT cloud connector, JDBC,
Apache Kafka and HTTP, and (iv) applications: in this study e-health
monitoring is given the most important priority, however other appli-
cations including industry 4.0, smart automation and smart agriculture
could also be involved.

The proposed EH-IoT system model is presented in the Fig. 7. The
system model shows the demo body-temperature being sensed from the
user's body and transmitted to the Arduino Uno as a source of data. The
raw data is then transferred to the Edgent-based Raspberry Pi 3 edge-IoT
device which performs all types of filtering, aggregation and

Pseudocode 1
EH-IoT Body Temperature Measurement.

dissemination of temperature data either to IoT cloud via the [oT gateway
or for local processing. In this study, critical or filtered data is only
transferred to the IoT cloud analytics server. If the data is within the
specified range then it is locally processed, thus reducing the computa-
tion time and overhead on the internet backhaul. Pseudocode 1, 2, and 3
are prescribed for efficient activity of the EH-IoT system model that
measure body temperature, data filtering cum cloud integration and Eh-
IoT to cloud communication. Fig. 8 (a) and (b) present the EH-IoT test-
bed implementation and physical attachment with a user, respectively.
Flow chart of three components are illustrated in Fig. 9. (a), (b) and (c)
that depict following, data source, data sink and filtering mechanism,
respectively.

Public Class TempSensor Implements Supplier<Double>
{Static Final Long SerialVersionUID = 1L, raw_data, str;
@Override Public Double Get()
{ SerialPort[] ports = SerialPort.getCommPorts();
SerialPort serialPort = ports[chosenPort - 1];
try { SerialPort.setComPortParameters(9600, 5,
SerialPort. NO_PARITY);
@SuppressWarnings("resource")
Scanner data = new Scanner(serialPort.getInputStream());
if(data.hasNextLine())
{ str=datanextLine();
raw_data = Double.parseDouble(str);
}

jcatch (Exception e) {} serialPort.closePort(); return (raw_data);

3

12

P.P. Ray et al. Journal of Network and Computer Applications 140 (2019) 1-22

Pseudocode 2
EH-IoT Data Filter and Cloud Integration.

Public Class TempSensorApplication
{Initialize Static OPTIMAL_TEMP_LOW = 96.0
Initialize Static OPTIMAL_TEMP_HIGH = 99.5
Initialize Static Range<Double> optimalTempRange
optimalTempRange = Ranges.closed(OPTIMAL_TEMP_LOW,
OPTIMAL_TEMP_HIGH)
Public Static Void Main (String[] args) throws Exception
{ TempSensor sensor = new TempSensor()
DirectProvider dp = new DirectProvider()
Topology topology = dp.newTopology/()
SendToThinkSpeak thinkspeak = new SendToThinkSpeak()
TStream<Double> tempReadings = topology.poll(sensor, 500,
TimeUnit. MILLISECONDS)
TStream<Double> filteredReadings = tempReadings.filter(tuple ->
loptimalTempRange.contains(tuple))
filteredReadings.sink(tuple -> System.out.println("abnormal
temperature detected! "
+"Itis " + tuple + "\ uOObOF!"))
long time = System.nanoTime() - start
filteredReadings.sink(tuple -> thinkspeak.sendDataOverRest(tuple))
tempReadings.print()
dp.submit(topology)

Pseudocode 3
EH-IoT to IoT Cloud.

Public Class SendToThinkSpeak Implements Callback<JsonNode>
{ Public Void SendDataOverRest(double temp)
{ Unirest.post("https://api.thingspeak.com/update.json")

.header("accept", "application/json")
field("api_key", "BJH2BQDISA2P4UT8")
ield("tield1",temp)
.asJsonAsync(this);
}
@QOverride Public Void Completed(HttpResponse<JsonNode> response)
{
int code = response.getStatus()
JsonNode body =response.getBody/()
InputStream rawBody = response.getRawBody/()

13

P.P. Ray et al.

Measured
Body
Temperature

Sensor

Arduino

D ——
Embedded Hardware
Sensing Unit

Human Body

Raspberry Pi 3

Journal of Network and Computer Applications 140 (2019) 1-22

loT Cloud

Analytics
Service
Critical/Filtered
Data ./ Internet
/ Backhaul

loT Gateway

———r

Apache Edgent Engine
(Edge Device)

Fig. 7. Proposed system model of the EH-IoT system for e-healthcare demo.

3.5. Study design

®

(ii)

(iii)

Real-time Data Transmission: Data sensed by the sensing unit of the
EH-IoT is continuous so in order to handle those data an efficient
technique is required. Since the Arduino is connected via serial
port to the Raspberry Pi 3. Data transmission and Serial Port se-
lection is handled by the JSerialComm. JSerialComm is a java li-
brary designed to provide platform-independent way to access
standard serial ports without requiring external

libraries, native code, or any other tools. It is meant as an alter-
native to RxTx and the (deprecated) Java Communications API,
with increased ease-of-use, an enhanced support for timeouts, and
the ability to open multiple ports simultaneously. Fig. 10 presents
the data flow transition in the EH-IoT.

Transition of data from Arduino to Edgent Enabled Device: Arduino
Uno is connected via USB to the Raspberry Pi3. Temperature
sensor LM35 is connected to the Arduino Uno with its data pin
connected to the analog pin A0 and a program containing the
control to access the sensor is burned to the Arduino Uno. On the
other hand, a Java program containing the main method is
executed in Eclipse IDE on the Raspberry Pi3. The serial
communication between the Arduino and the Java program is
handled by jSerialComm library. On executing the main Java
program, it creates an instance of the DataSource program which
is responsible for getting data from the Arduino and feeding it to
the main Java program. A flowchart depicting the flow of program
is given below.

(iv) Filtering Tuples: If we are interested in determining when the

temperature is strictly out of the optimal range suppose say 96 °F
and 99.5°F (which is the normal temperature range of human
body), a simple filter can be used. The filter method can be applied
to TStream objects, where a filter predicate determines which
tuples to keep for further processing. In this case, we want to keep
temperatures below the lower range value or above the upper
range value. This is expressed in the filter predicate, which follows
Java's syntax for the Lambda expressions. Then, we terminate the
stream (using sink) by printing out the warning to standard out.

3.6. Results and discussions

(i) General Analysis: The application runs on any device which sup-

ports Java version 8. Some promising results was obtained based
on number of test case scenarios which is described in the
following sections. Tests was performed on two scenarios: (i) user
without fever and (ii) user with fever. The temperature sensor is
placed on armpit of the patient. Normal temperature readings
range from 96 °F to 99.5°F on healthy human body. Whereas
temperature exceeding the range is considered as abnormal or the
body is in fever state. When the body temperature of the patient is
normal, the sensor readings is processed by the edge device itself
i.e., the data is not uploaded to the cloud. The temperature is only
uploaded when the readings goes beyond the range. Readings
taken from the experiment is shown in the Fig. 11. The green line
in the above indicates that the body temperature of the patient is

—— Patient

Temperature sensing unit

Fig. 8. (a) Prototype of EH-IoT system. (b) Reading temperature from the user with support from EH-IoT.

14

P.P. Ray et al. Journal of Network and Computer Applications 140 (2019) 1-22

Connect Arduino to
Raspberry Pi3

A Start

Print temperature data
on serial monitor

4

Create instance of
DataSource

Not found .
Terminate program

Get() data from
Y DataSource
Stop

Print on console (Sink)

Get() data from
SerialPort

4

Return data
(a) (b)
Start

4
Set the boundary range
(optimal low
temperature and optimal
high temperature)

-t

A
Poll each incoming
streams of data

True

Is data stream
within boundary
range?

Return temperature
out of range

Display the filtered
data

No

Is time out/battery
down ?

(©)

Fig. 9. EH-IoT flowchart depicting (a). Data Source (producer). (b). Data Sink (consumer). (c) Filtering mechanism.

15

P.P. Ray et al. Journal of Network and Computer Applications 140 (2019) 1-22
Raw Sensor Raw Sensor Fil<t<;red Dita External
. Data Serial Data Filtering ange Entities and
. Communication Double() Analytics Backend
String() Systems
Apache Edgent Edge
Fig. 10. Data flow transition within EH-IoT system.
T 103 /
e Data sent to cloud
5102 Data not sent to cloud (edge decision making)
© ST P
g 101 Data not sent to cloud (filtering out)
S
£ 100 —
> /
-8 //
S 99 - P
‘c e
o 98 | e - ____ -
D
c
S 97
o
O 96 |
]
©
ad [L e O O R R R N
t1t3 t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55 t60
Simulated time series (Sec)
Fig. 11. The graph depicting rate of change in data values of EH-IoT temperature readings.
1380 —
- e Data sample .
£ 1370 4 |- — Average
[0 L]
o
S 1360 — . .
E L]
2 1350 —
B .) . *
" 1340 L T,
e — e —_ = - — O e — .
£ 1330 | . . ; . : . -
=1 ° . . . o
S 1320 - R .
3
@ 1310 —| . .
i
1300 I I I I I I I I I I I I I I I I
0 2 4 6 8 10 20 30 40 50

Number of data samples

Fig. 12. Computation time samples in EH-IoT.

normal. When the temperature rises steadily and crosses the upper
optimal range i.e. 99.5 °F the readings are forwarded to the cloud
which is depicted by the red line. Further analysis can be done on
these data on the cloud. The main motive of the EH-IoT is to
reduce the workload on the cloud and also reduce the bandwidth.
Sending only selected data values to the cloud reduces the band-
width significantly. Our comparison of data processing done by
edge to the cloud gave us promising results which has been
depicted below. From our analysis on healthy human body, the
temperature tends to remain in the normal range for longer
duration. So as long as the temperature is normal there is no need
to send it to the cloud which only increases bandwidth. Out of 13
readings taken, 9 readings were found to be in the range of
optimal temperature (normal healthy human body). However, 4

16

(i)

readings were found to be out of range when the temperature
began to rise (when the body is in fever). Calculation of result gave
us the significant difference in percentage which was 73% data
handled by the edge device and only 27% was forwarded to the
remote IoT cloud. Fig. 11 shows the data transition from edge to
IoT cloud.

Computation Time: Calculation of computation time is done using
the System.nanoTime() method. The time is initialized to a variable
at the beginning of the program. Another variable is assigned for
the end time at the end of the program. Now the difference in start
time and end time gives the total time required to execute the
program. The time required to run EH-IoT application is measured
in nanoseconds which has been depicted in the chart below. Ten
computation time samples have been taken from the program

P.P. Ray et al. Journal of Network and Computer Applications 140 (2019) 1-22
< 3% 7 [~ CPU utilization ~— Memory utilization
Z 30 4 L~ Avg. CPU utilization| |---—---- Avg. Memory utilization
S5 4 -
§ //" \\
g, 20 _— N ~
€ 15 4 - Y A
= d N
T 1.0
©
7 05 —
© 0
0 5 10 15 20 25 30 35 40

Number of instances in 5 seconds interval

Fig. 13. CPU and memory utilized by the EH-IoT.

execution ranging from minimum of 1300 ns to maximum of
1380ns. The average computation time was 1332ns. Fig. 12
presents the computation time samples.

(iii) Resource Utilization: Raspberry Pi 3 is equipped with a quad-core
64-bit ARM (Advanced RISC Machines) Cortex A53 running at
1.2 GHz processor and 1 GB of RAM. The resource utilization has
been monitored using Linux top command on a specific process id:
top —p 971. Memory and CPU were monitored with the interval of
5s also the readings were taken accordingly. Fig. 13 depicts the
usage of CPU and memory utilized in terms of percentage. From
the readings taken from the resource utilization it was seen that
minimum CPU utilized was 1.3% and the maximum was up to
2.7%. However, memory utilization was not more than 2.9%
(27.2 Mb) out of the available 1 GB of RAM.

(iv) Latency comparison: For the calculation of latency while upload-
ing data to the ThingSpeak IoT cloud a mgqtt class called
TimerPingSender from the interface MgqttPingSender was used.
Which considers the time (in ms) required for a packet to complete
one round trip time (RTT). It shows the trip time required for a
packet to complete one round trip from the edge device to the
ThingSpeak IoT cloud. The latency calculation for the data sent by
the Arduino Uno was done with the help of the timer function
called Timer() in Java. A timer function called millis() is started in
Arduino Uno as soon as the data is printed on the Serial monitor.
The timer method also runs in ET-IoT system in parallel. The
difference in time delay required by the ET-IoT system to capture
the packet is calculated. The delay in receiving packet data from
the Arduino Uno to ET-IoT is also achieved from the ET-IoT sys-
tem. It is clear that the latency of the IoT cloud is far more than

that of the ET-IoT system. The Figs. 14 and 15 illustrate the latency
of data transmission to IoT cloud and local processing,
respectively.

4. Discussions and issues

This section enlightens edge-IoT architecture, functionality, opera-
tional issues, requirement, capability and selection criteria that are the
most crucial factors for sustainability for the edge-IoT ecosystem in
technological struggle.

4.1. Edge-IoT architecture, functionality and operational issues

1. Protocol-wise Architecture: Fig. 16. Presents the protocol-wise generic
edge-IoT architecture for the existing ecosystem. The architecture is
categorized into three levels (i) embedded devices (ii) edge-IoT and
(iii) cloud. Th embedded device category comprises of two compo-
nents such as, hardware device and device-to-edge communication
protocols. The hardware devices list embedded systems, embedded
cores and popular device specific architectures (ARM, DSP core etc.).
On the other hand, BLE, WiFi, Visible Light Communication (VLC),
12C, Serial communication, ZigBee, Thread etc., are the mostly used
and selective popular protocols that edge-IoT ecosystems heavily
reply upon for communication purposes. The next higher layer
comprises of four segments such as, edge-IoT solutions, edge-IoT
protocol adapter, edge-IoT applications and edge-IoT-cloud connec-
tivity protocols. The edge-IoT layer could be assumed as the core
engine of the presented architecture. Several edge-IoT rules engines,
data storage facilities, analytics and data normalization techniques

250 —

— Cloud transmission latency
***** Avg. cloud latency

200 —

150 |

Time (ms)

100 —

50 —

3 4 5

Data packet upload sequnce

Fig. 14. ET-IoT latency while uploading data to the IoT cloud.

17

P.P. Ray et al.

Journal of Network and Computer Applications 140 (2019) 1-22

40 - [—— Edge transmission latency

****** Avg. edge latency

Time (ms)

3.6 —

3.5

3 4 5

Data packet upload sequnce

Fig. 15. Localized processing latency within ET-IoT.

are involved into this layer. Among the cloud connectivity protocols,
MQTT, CoAP, AMQP, WebSocket, DNS-SD etc., are to name a few
most viable opportunities. In the top-most layer, the cloud services
orchestrate several different facilities for the underlying layers.
Mainly, the device metadata management, data ingestion, access
control and on-platform analytics are the commendable inclusions of
the existing cloud services. Moreover, its enterprise application-
perspectives can be associated with the device management core.
As a whole, the layered components play very crucial role to infer
meaningful and significant edge-IoT-based services to the
stakeholders.

. Functionalities: There exist 6 key functionalities that are inferred from
the edge-IoT architectures such as, (i) edge-IoT application: IoT
application deployed to the end executed from the edge, (ii) edge rule
engine: ability to execute several actions that includes notifications
and callouts executed at the edge, (iii) edge-cloud connectivity: serves
operations such as, device data transfer, data aggregation points and
edge-IoT gateway provisioning (iv) edge analytics: quantitative
exploration of actual data and meta data at the edge, (v) edge data
normalization: conversion of machine and unstructured data into
compressed and structured digital data, and (vi) edge data storage:
storage and assessment of long-term and transient machine data at the
cloud repository. Fig. 17 presents the key functionalities in brief.

3. Operational issues: The edge-IoT covers many operational issues that

originate during real-life and industrial applications scenarios. The
main tasks of the operational issue handling involve the following
such as, (i) improving processing speed, (ii) reducing data security
issues, (iii) improving asset performance, (iv) reducing latency issues,
(v) analyzing and controlling of device, (vi) enhancement to reduce
downtime and (vii) improvement and optimization of production.
Herein presented issue solvers are in-deed important to get resolved
in presented scenario of edge-IoT ecosystem and architecture. Fig. 18
elaborates the key issues with respect to the functionality of the edge-
IoT platforms.

4.2. Edge-IoT requirement, capability and selection criteria

1. Requirement category: In deed an edge-IoT ecosystem has some re-

quirements to successfully act on the related tasks. Four are of utmost
importance such as, (i) edge data processing, (ii) edge system man-
agement, (iii) architecture and integration and, (iv) business strategy
and business association. Efficient edge data collection, orchestration,
filtering and aggregation are key, without which expected results may
not arise. Similarly, stack-based architecture with full-fledged stan-
dardized protocol support is a must for an excellent quality edge-IoT
ecosystem. Overall management is obviously a very important factor

(L i L Access Control
Edge-loT Applications | | Enterprise Applications Stakeholder Ul Applications
© " .
5 4 Device Management External Integration On-Platform Analytics Software anq Firmware
O Core Repository
Device Matadata Connectivity Data Ingestion and Rules-Engine
L Storage Management Routing 9
(Edge-loT-to-Cloud Connectivity Protocols (MQTT, CoAP, AMQP, Websocket, DNS-SD, etc.)
'_6 Edge-loT Applications
S 4
i Edge-loT Protocol Adapter
. . Edge-loT Data
\ Edge-loT Rules Engine| |Edge-loT Data Storage Edge-loT Analytics Normalization
.
g ® Device-to-Edge Communication Protocols (BLE, WiFi, VLC, I2C, Serial, ZigBee, Thread etc.)
S
et g Hardware Device (Embedded Systems, Embedded Core, ARM, DSP Core etc.)
IS
wi
\

Fig. 16. Protocol-wise Edge-IoT ecosystem architecture (The MachNation IoT Architecture).

18

P.P. Ray et al.

Journal of Network and Computer Applications 140 (2019) 1-22

loT application deployed
to the end executed from
the edge

Either transient or long-
term amassment of
machine data at the loT
edge

Edge Data
Storage

Edge conversion and
standardization machine
data from unstructured
and streaming to
compressed and strctured

Edge Data
Normalization

Edge loT
Application

loT Platform
Functionality at
the Edge

Edge Analytics

Ability to execute actions
such as external callouts
and notifications executed
on the edge

Edge Rules
Engine

Communication services
for data transfer: devices,
aggregation points and
gateways to cloud

(loT platform + other
service)

Edge to Cloud
Connectivity

Data- and metadata-
related quantitative
exploration executed
locally at the edge

Fig. 17. IoT platform functionalities at the edge (Functional architecture of edge-IoT system).

that needs to be accurately handled. As edge-IoT ecosystem can
leverage industrial-specific orientation, thus a state-of-the-art strat-
egy and business management is required. Fig. 19 present the key
requirements for related scenario (Selection of best IoT platform;
Requirements of edge-IoT paltforms).

. Capability category: As mentioned earlier, edge-IoT platform needs to
have five key capabilities without which it may not succeed in solving
the expected problems. Some of the extraordinary capabilities are as
follows, (i) use of the comprehensive analytics and visualization tools,
(ii) hardware agnostic scalable service, (iii) cloud-based orchestration
capabilities to support device life cycle management, (iv) robust
capability for offline functionality and (v) extensive protocol support
for edge-IoT data ingestion. A, edge-IoT platform should follow the
prescribed capability criteria to host and facilitate seamless support to
underlying applications (IIoT in living industrial environments).

. Selection criteria: At this end, it becomes very important to discuss
about the important selection criteria of selecting any edge-IoT
ecosystem for deployment into a real-life situation. Followings are
inferred from specialized sources to get selectively attached with the
edge-IoT ecosystem that includes: (i) hybrid deployment, (ii) device
lifecycle management, (iii) connectivity networks, (iv) interopera-
bility functions, (v) cloud platforms and strategy, (vi) application
enablement, (vii) support for ecosystem alliances, (viii) rules engine
and event processing, (ix) data normalization facility, (x) end-to-end

19

security, (xi) user friendliness and efficiency, (xii) hardware assets,
(xiii) scalability, flexibility and modularity, and (xiv) integration with
business systems etc. It is understood that many other aspects could
also be taken into consideration for selecting an edge-IoT ecosystem
for any intensive work environment. However, it is advised to follow
the prescribed criteria to initially screen the ecosystems before going
into detailed analysis for a specific usage (Edge IoT specifications;
Edge-IoT requirements and capability).

4.3. Future research directions

1. Edge Gateway: It is obvious that edge-IoT ecosystem relies on the
end-network device i.e. gateway. Special attention shall be given
toward development and integration of edge gateway to leverage
such provisions. The edge gateway must be capable of catering
near-by as well as long range network connectivity protocols. A
nexus among edge gateways could be developed to create ad-hoc
network persuasion.

2. Edge Analytics: Advanced, though light weight java script enabled
frameworks and platforms may be used together to provide edge
analytics service to the end-user. For instance, a patient may be
facilitated with real-time prescription or diagnosis by the e-health
based edge analytics service.

P.P. Ray et al.

Improving
Processing
Speed

Improvement

and Reducing Data
Optimization of Security Issues
Production

Operational
Issues Driving
Edge in
Industrial loT

Enhancement
to Reduce
Downtime

Improving
Asset
Performance

Analysing and
Controlling of
Device

Reducing
Latency Issues

Fig. 18. Key factors driving the edge-IoT operational issues.

Edge Data
proceesing

Edge
Management

Requirement
Category

Architecture and
Integration

Strategy and
Business

Fig. 19. Requirement category for edge-IoT ecosystem.

3. Edge Architecture: Novel edge-architecture should be prescribed to
necessitate the obligations related to the edge-IoT ecosystem in
future. While designing such architecture, following key point
must be taken care of i.e. module-based interactions among the
various system-components inside the edge platform. Layered
architecture comprising different levels may play promising role
in this regard.

4. Sensor-Actuator Integration: It is envisaged that the future edge-IoT
ecosystem shall carry a number of smart sensor and actuators for
particular application. Thus, a need of 12C and SPI centric com-
mon approach could be leveraged for the benefit of the better edge

20

Journal of Network and Computer Applications 140 (2019) 1-22

service. For example, sensors needing I12C could be assimilated
with the actuators that require SPI interfacing with the system.

5. Context-Awareness: As the edge computing is inferred to cater the
near real-time services to the end-users, it becomes an obligation
for the edge service to incorporate context-awareness regarding the
scenario. For instance, an e-health based edge service should be
aware of the patient's disease pattern based on the seasonal change.

6. Dew Computing: Dew computing is a recent inclusion into the
existing computing paradigm that solves the super-user experi-
ence and interwork agnostic approach to facilitate real-time ser-
vice to the user at the extreme edge of any network. The main
focus of dew computing is to articulate the natural phenomenon of
actual the cloud-dew drop relationship into the digital domain
(Wang, 2015; Hu et al., 2018; Wang, 2016; Doing More with the
Dew). Dew computing utilizes the concept of the dew-cloud ar-
chitecture, dew computer, dew DNS and related technologies to
make the system more transparent and delay-sensitive (Cloud--
dew architecture; Yingwei, 2015; Ray).

7. Blockchain: Blockchain is another option that could be associated
with the future edge-IoT ecosystem. It is a continuously growing
ledger that is immutable, permanent and open consensus protocol-
based approach to leverage distributed and peer-to-peer commu-
nication without the need of centralized authority (Ray, 2019;
Zheng et al., 2017). Thus, “Internet of Edge- Block”™ may be
envisaged to assist the existing edge-IoT ecosystem to act auton-
omously and transparently while processing the decentralized
end-users’ requests.

8. Digital Twin: Albeit another form of novel technology called the
Digital Twin is current getting popular that minimizes the process
of data distribution between the local and remote cloud by
creating a localized as well as a virtual copy to be stored at the
remote site. Future edge-IoT service may be equipped with the
digital twin capabilities to offer efficient data distribution,
resulting minimal dependency over the network backhaul (Chen
and Guan, 2018).

9. Auto Machine Learning: Data security is a key area where rigorous
investigation should be performed, especially in security. Edge-
IoT ecosystem being heterogeneous, autonomous and super flex-
ible, there will be high chance of attacks into the system. Auto-
nomic machine learning algorithms could be sought to fill this gap
to assure the integrity of the end-user database.
Unified framework of Integration: As technology advances, various
branches of platforms development approaches also grow. This
generates a passive situation where a node belonging to a specific
edge system may be technologically un-interoperable to the other
category. Here, a unified framework of integrating all such notions
should be merged to pacify the issues related to the interopera-
bility (Ray et al., 2018b).

10.

5. Conclusion

Edge computing plays significant role in IoT applications where
instant processing of data is required. This paper first reviews the existing
industrial standards and solutions available for the edge-IoT. A novel
edge-IoT architecture is prosed and discussed. Further, discussions are
made to identify the requirement, capability and selection criteria of the
edge-IoT ecosystem. Moreover, its architecture, functionality and oper-
ational issues are discussed. A novel case study while utilizing the Edgent
platform is proposed and developed. A physical demonstration against
the e-healthcare application was deployed. The results and analysis
section make it clear that the deployment of the EH-IoT system the
bandwidth between the IoT cloud and local edge device can be increased
and processing latency can be decreased significantly. If number of such
devices are installed on every IoT applications one could imagine how
much bandwidth could be saved and latency could be reduced providing
quality of service.

P.P. Ray et al.
Acknowledgement

We are thankful to Mr. Arun Subba and Mr. Kiran Regmi for their
support to conduct this research.

References

Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B., 2012. A survey of
information-centric networking. IEEE Commun. Mag. 50 (7), 26-36.

Ali, S., Ghazal, M., Apr. 2017. Real-time heart attack mobile detection service (RHAMDS):
an IoT use case for software dependent networks. In: Proc IEEE 30th Can. Conf. Elect.
Comput. Eng. (CCECE), pp. 1-6.

Atat, R., Liu, L., Chen, H., Wu, J., Li, H., Yi, Y., 2017. Enabling cyber-physical
communication in 5g cellular networks: challenges, spatial spectrum sensing, and
cyber-security. IET Cyber-Phys. Syst.: Theor. Appl. 2 (1), 49-54.

Bonomi, F., Milito, R., Natarajan, P., Zhu, J., Mar 2014. Fog computing: a platform for
Internet of Things and analytics. In: Big Data and Internet of Things: A Roadmap for
Smart Environments. Springer, pp. 169-186.

Canzian, L., Van Der Schaar, M., 2015. Real-time stream mining: online knowledge
extraction using classifier networks. IEEE Netw. 29 (5), 10-16.

Chen, Xiuyu, Guan, Tianyi, 2018. Research on the predicting model of convenience store
model based on digital twins. In: IEEE International Conference on Smart Grid and
Electrical Automation (ICSGEA), pp. 224-226.

Chiang, Zhang, T., 2016. Fog and IoT: an overview of research opportunities. IEEE
Internet Things J. PP (99), 1.

Chun, B.-G., Thm, S., Maniatis, P., Naik, M., Patti, A., 2011. Clonecloud: elastic execution
between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems. ACM, pp. 301-314.

Cloud-dew architecture: realizing the potential of distributed database systems in
unreliable networks - Semantic Scholar. Retrieved 2018-06-30.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.,
2010. MAUIL: making smartphones last longer with code offload. In: Proceedings of
the 8th International Conference on Mobile Systems, Applications, and Services.
ACM, pp. 49-62.

Dinh, T., Lee, C., Niyato, D., Wang, P., Dec 2013. A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Commun. Mobile Comput. 13
(18), 1587-1611.

Doing More with the Dew: A New Approach to Cloud-Dew Architecture - Semantic
Scholar. Retrieved 2018-06-30.

Dutta, S., Taleb, T., Ksentini, A., 2016. QoE-aware elasticity support in cloud-native 5G
systems. In: IEEE Int'l. Conf. On Comm. (ICC 2016). IEEE, pp. 1-6.

Edge IoT protocol stack. https://www.open-silicon.com/iot-edge-soc-platform/.
(Accessed June 2018).

Edge IoT specifications. twitter.com/CraigDResnick/status/986604163067867141.
(Accessed October 2018).

Edge-IoT requirements and capability. www.idc.com/getdoc.jsp?containerID=EME
A43589818. (Accessed October 2018).

El-Sayed, Hesham, Sankar, Sharmi, Prasad, Mukesh, Puthal, Deepak, Gupta, Akshansh,
Mohanty, Manoranjan, Lin, Chin-Teng, Fellow, IEEE, 2018. Edge of things: the big
picture on the integration of edge, IoT and the Cloud in a Distributed Computing
Environment, vol. 6.

Elias, R., Golubovic, N., Krintz, C., Wolski, R., 2017. Where's the bear?-automating
wildlife image processing using iot and edge cloud systems. In: Internet-of-Things
Design and Implementation (IoTDI), 2017 IEEE/ACM Second International
Conference on. IEEE, pp. 247-258.

Elkhatib, Y., Porter, B., Ribeiro, H.B., Zhani, M.F., Qadir, J., Rivi'ere, E., 2017. On using
micro-clouds to deliver the fog. IEEE Internet Comput. 21 (2), 8-15.

Farris, L. Militano, Nitti, M., Atzori, L., lera, A., 2015. Federated edge-assisted mobile
clouds for service provisioning in heterogeneous iot environments. In: Internet of
Things (WF-IoT), 2015 IEEE 2nd World Forum on. IEEE, pp. 591-596.

Feng, J., Liu, Z., Wy, C., Ji, Y., Dec. 2017. AVE: autonomous vehicular edge computing
framework with ACO-based scheduling. IEEE Trans. Veh. Technol. 66 (12),
10660-10675. https://doi.org/10.1109/TVT.2017.2714704.

Fitzgerald, D., Trakarnratanakul, N., Dunne, L., Smyth, B., Caulfield, B., 2008.
Development and user evaluation of a virtual rehabilitation system for wobble board
balance training. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008.
30th Annual International Conference of the IEEE. IEEE, pp. 4194-4198.

Functional architecture of edge-IoT system. Dima Tokar-Machnation@machnationiot. htt
ps://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?ut
m_source=iscoop. (Accessed August 2018).

Gordon, M.S., Jamshidi, D.A., Mahlke, S., Mao, Z.M., Chen, X., 2012. COMET: code
offload by migrating execution transparently. In: Pre- Sented as Part of the 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pp. 93-106.

Griffin, D., Rio, M., Simoens, P., Smet, P., Vandeputte, F., Vermoesen, L.,
Bursztynowski, D., Schamel, F., June 2014. Service oriented networking. In: EuCNC
2014.

Habak, K., Ammar, M., Harras, K.A., Zegura, E., 2015. Femto clouds: leveraging mobile
devices to provide cloud service at the edge. In: 2015 IEEE 8th International
Conference on Cloud Computing. IEEE, pp. 9-16.

Hong, H.-J., Chen, D.-Y., Huang, C.-Y., Chen, K.-T., Hsu, C.-H., 2015. Placing virtual
machines to optimize cloud gaming experience. IEEE Trans. Cloud Comput. 3 (1),
42-53.

21

Journal of Network and Computer Applications 140 (2019) 1-22

Hu, Yu-Chen, Tiwari, Shailesh, Mishra, Krishn K., Trivedi, Munesh C. (Eds.), 2018.
Intelligent Communication and Computational Technologies. Lecture Notes in
Networks and Systems. ISSN: 2367-3370, vol. 19, ISBN 978-981-10-5522-5. https://
doi.org/10.1007/978-981-10-5523-2.

Huang, C.-Y., Chen, K.-T., Chen, D.-Y., Hsu, H.-J., Hsu, C.-H., Feb.-March 2014.
GamingAnywhere: the first open source cloud gaming system. In: Proc. 4th ACM
Multimedia Systems Conf. (MMSys ’13), Oslo, Norway.

IIoT in living industrial environments. www.arcweb.com/blog/iiot-living-edge-industri
al-environments. (Accessed October 2018).

Jarschel, D. Schlosser, Scheuring, S., HoBfeld, T., 2011. An evaluation of QoE in cloud
gaming based on subjective tests. In: Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2011 Fifth International Conference on. IEEE,
pp. 330-335.

Kamaréinen, T., Siekkinen, M., Xiao, Y., Yla-Jaaski, A., 2014. Towards pervasive and
mobile gaming with distributed cloud infrastructure. In: 2014 13th Annual Workshop
on Network and Systems Support for Games. IEEE, pp. 1-6.

Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B., 2013. A survey of computation offloading for
mobile systems. Mob. Netw. Appl. 18 (1), 129-140.

Lin, Y., Kimaérainen, T., Di Francesco, M., Yla-Jaaski, A., December 2015. Performance
evaluation of remote display access for mobile cloud computing. Comput. Commun.
72, 17-25.

Madukwe, Kosisochukwu J., Ezika, Iljeoma J.F., Iloanusi, Ogechukwu N., 2017.
Leveraging edge analysis for internet of things based healthcare solutions. In: 2017
IEEE 3rd International Conference on Electro-Technology for National Development
(NIGERCON).

Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B., 2017. A survey on mobile edge
computing: the communication perspective. IEEE Commun. Surv. Tutor.

McKeown, T. Anderson, Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. Openflow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38 (2), 69-74.

Pan, Jianli, McElhannon, James, Feb. 2018. Future edge cloud and edge computing for
internet of things applications. IEEE Internet Things J. 5 (1), 439-449.

Pan, J., Ma, L., Ravindran, R., TalebiFard, P., 2016. Homecloud: an edge cloud framework
and testbed for new application delivery. In: Telecommunications (ICT), 2016 23rd
International Conference on. IEEE, pp. 1-6.

Peterson, L., Al-Shabibi, A., Anshutz, T., Baker, S., Bavier, A., Das, S., Hart, J., Palukar, G.,
Snow, W., 2016. Central office re-architected as a data center (cord). IEEE Commun.
Mag. 54 (10), 96-101.

Plenar.io. http://plenar.io. (Accessed June 2018).

Premsankar, Gopika, Di Francesco, Mario, Taleb, Tarik, 2018. Edge computing for the
internet of things: a case study. IEEE Internet Things J. 5 (2), 1275-1284.

Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govin- dan, R., 2011. Odessa:
enabling interactive perception applications on mobile devices. In: Proceedings of the
9th International Conference on Mobile Systems, Applications, and Services. ACM,
pp. 43-56.

Ranjan, R., Benatallah, B., Dustdar, S., Papazoglou, M.P., 2015. Cloud resource
orchestration programming: overview, issues, and directions. IEEE Internet Comput.
19 (5), 46-56.

Ray, P.P., An Introduction to Dew Computing: Definition, Concept and Implications IEEE
Journals & Magazine. ieeexplore.ieee.org. Retrieved 2018-06-30.

Ray, P.P., 2014a. Home health hub internet of things (H3IoT): an architectural framework
for monitoring health of elderly people. In: Proceeding of IEEE ICSEMR, ISBN
9789380222745, pp. 1-4. https://doi.org/10.1109/ICSEMR.2014.7043542.
Chennai.

Ray, P.P., 2014b. Internet of things based physical activity monitoring (PAMIoT): an
architectural framework to monitor human physical activity. In: Proceeding of IEEE
CALCON, Kolkata, pp. 32-34.

Ray, P.,P., 2015a. A generic internet of things architecture for smart sports. In: IEEE
International Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), Kumaracoil, pp. 405-410. https://doi.org/
10.1109/ICCICCT.2015.7475313.

Ray, P.,P., 2015b. Internet of things based smart measurement and monitoring of wood
equilibrium moisture content. In: IEEE IEEE International Conference on Smart
Structures and Systems (ICSSS). https://doi.org/10.1109/
SMARTSENS.2015.7873612.

Ray, P.P., 2015c. Internet of Things for Sports (IoTSport): an architectural framework for
sports and recreational activity. In: Proceeding of IEEE International Conference on
Electrical, Electronics, Signals, Communication and Optimization (EESCO), Vizag,
pp. 79-83. https://doi.org/10.1109/EESC0O.2015.7253963.

Ray, P.,P., 2015d. Towards an internet of things based architectural framework for
defence. In: IEEE International Conference on Control, Instrumentation,
Communication and Computational Technologies (ICCICCT), Kumaracoil,
pp. 411-416. https://doi.org/10.1109/ICCICCT.2015.7475314.

Ray, P.P., 2016a. A survey on internet of things architectures. J. King Saud Univ. -
Comput. Inf. Sci. https://doi.org/10.1016/j.jksuci.2016.10.003. Elsevier.

Ray, P.,P., 2016b. A survey of IoT cloud platforms. Future Comput. Inf. J. 1 (1-2), 35-46.
https://doi.org/10.1016/j.fcij.2017.02.001. Elsevier.

Ray, P.,P., 2016c. Towards internet of things based society. In: IEEE International
Conference on Signal Processing, Communication & Embedded Systems (SCOPES),
Paralakhemundi, Odisa, India, pp. 345-352. https://doi.org/10.1109/
SCOPES.2016.7955849.

Ray, P.,P., 2016d. Internet of things cloud based smart monitoring of air borne PM2.5
density level. In: IEEE International Conference on Signal Processing, Communication
& Embedded Systems (SCOPES), Paralakhemundi, Odisa, India, pp. 995-999.
https://doi.org/10.1109/SCOPES.2016.7955590.

http://refhub.elsevier.com/S1084-8045(19)30165-1/sref1
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref1
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref1
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref2
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref2
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref2
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref2
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref3
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref3
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref3
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref3
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref4
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref4
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref4
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref4
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref5
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref5
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref5
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref6
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref6
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref6
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref6
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref7
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref7
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref8
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref8
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref8
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref8
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref10
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref10
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref10
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref10
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref10
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref11
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref11
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref11
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref11
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref13
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref13
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref13
https://www.open-silicon.com/iot-edge-soc-platform/
http://twitter.com/CraigDResnick/status/986604163067867141
http://www.idc.com/getdoc.jsp?containerID=EMEA43589818
http://www.idc.com/getdoc.jsp?containerID=EMEA43589818
http://www.idc.com/getdoc.jsp?containerID=EMEA43589818
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref18
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref18
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref18
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref18
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref19
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref19
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref19
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref19
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref19
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref20
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref20
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref20
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref21
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref21
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref21
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref21
https://doi.org/10.1109/TVT.2017.2714704
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref23
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref23
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref23
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref23
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref23
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref25
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref25
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref25
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref25
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref25
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref26
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref26
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref26
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref27
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref27
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref27
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref27
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref28
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref28
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref28
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref28
https://doi.org/10.1007/978-981-10-5523-2
https://doi.org/10.1007/978-981-10-5523-2
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref30
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref30
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref30
http://www.arcweb.com/blog/iiot-living-edge-industrial-environments
http://www.arcweb.com/blog/iiot-living-edge-industrial-environments
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref32
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref32
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref32
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref32
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref32
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref33
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref34
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref34
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref34
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref35
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref36
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref36
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref36
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref36
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref37
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref37
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref38
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref38
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref38
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref38
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref39
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref39
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref39
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref40
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref40
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref40
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref40
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref41
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref41
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref41
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref41
http://plenar.io
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref44
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref44
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref44
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref45
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref45
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref45
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref45
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref45
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref46
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref46
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref46
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref46
https://doi.org/10.1109/ICSEMR.2014.7043542
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref49
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref49
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref49
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref49
https://doi.org/10.1109/ICCICCT.2015.7475313
https://doi.org/10.1109/ICCICCT.2015.7475313
https://doi.org/10.1109/SMARTSENS.2015.7873612
https://doi.org/10.1109/SMARTSENS.2015.7873612
https://doi.org/10.1109/EESCO.2015.7253963
https://doi.org/10.1109/ICCICCT.2015.7475314
https://doi.org/10.1016/j.jksuci.2016.10.003
https://doi.org/10.1016/j.fcij.2017.02.001
https://doi.org/10.1109/SCOPES.2016.7955849
https://doi.org/10.1109/SCOPES.2016.7955849
https://doi.org/10.1109/SCOPES.2016.7955590

P.P. Ray et al.

Ray, P.,P., 2016e. Communicating through visible light: internet of things perspective.
Current Sc. 111 (12), 1903-1905. Indian Academy of Sciences.

Ray, P.P., 2016f. Internet of robotic things: concept, technologies and challenges. IEEE
Access 99. https://doi.org/10.1109/ACCESS.2017.2647747.

Ray, P.,P., 2016g. Creating values out of internet of things: an industrial perspective.

J. Comput. Netw. Commun. https://doi.org/10.1155/2016/1579460. Hindawi.

Ray, P.,P., 2016h. An internet of things based approach to thermal comfort measurement
and monitoring”. In: IEEE International Conference on Advances in Computing and
Communications (ICACCS), pp. 1-7. https://doi.org/10.1109/
ICACCS.2016.7586398, 2015.

Ray, P.P., 2016i. Internet of things cloud enabled MISSENARD index measurement for
indoor occupants. Measurement 92, 157-165. https://doi.org/10.1016/
j.measurement.2016.06.014. Elsevier.

Ray, P.P., 2017a. Obligations behind quantum internet dream. Curr. Sci. 112 (11),
2175-2176.

Ray, P.P., 2017b. Data analytics: India needs agency for health data. Curr. Sci. 112 (6),
1082.

Ray, P.,P., 2017c. Internet of things for smart agriculture: technologies, practices and
future road map. J. Ambient Intell. Smart Environ. 9, 395-420. https://doi.org/
10.3233/AIS-170440. IOS Press.

Ray, P.,P., 2017d. Understanding the Role of Internet of Things Towards Providing Smart
e-Healthcare Services. Bio Med. Res. 28 (4), 1604-1609. Allied Academics.

Ray, P.P., 2017e. An IR sensor based smart system to approximate body core temperature.
J. Med. Syst. 41, 123. https://doi.org/10.1007/s10916-017-0770-z. Springer.

Ray, P.P., 2017f. A survey on visual programming languages in internet of things. Sci.
Program. https://doi.org/10.1155/2017/1231430. Hindawi.

Ray, P.P., 2019. Minimizing dependency on internetwork: is dew computing a solution?
Trans. Emerg. Telecommun. https://doi.org/10.1002/ett.3496. Wiley.

Ray, P.,P., Agarwal, S., 2016. Bluetooth 5 and internet of things: potential and
architecture. In: IEEE International Conference on Signal Processing, Communication
& Embedded Systems (SCOPES), Paralakhemundi, Odisa, India, pp. 1461-1465.
https://doi.org/10.1109/SCOPES.2016.7955682.

Ray, P.P., Mukherjee, M., Shu, L., 2017. Internet of things for disaster management: state-
of-the-art, challenges, and future road map. IEEE Access 5 (1), 18818-18835. https://
doi.org/10.1109/ACCESS.2017.2752174.

Ray, P.P., Dash, D., De, D., 2018a. Approximation of Fruit Ripening Quality Index for IoT
based Assistive e-Healthcare. Microsyst. Technol. Springer.

Ray, P.P., Dash, D., De, D., 2018b. Internet of Things-based Real-Time Model Study on e-
Healthcare: device, Message Service and Dew Computing. Comput. Network.
Elsevier.

Ren, Ju, Pan, Yi, Goscinski, Andrzej, Beyah, Raheem A., Jan.-Feb. 2018. Edge computing
for the internet of things. IEEE Netw. 32 (1), 6-7.

Requirements of edge-IoT paltforms. https://www.networkworld.com/article/3247801/
internet-of-things/the-top-5-user-requirements-of-iot-edge-platforms.html. (Accessed
September 2018).

Ryden, M., Oh, K., Chandra, A., Weissman, J., 2014. Nebula: distributed edge cloud for
data intensive computing. In: Cloud Engineering (IC2E),s 2014 IEEE International
Conference on. IEEE, pp. 57-66.

Sapienza, M., Guardo, E., Cavallo, M., La Torre, G., Leombruno, G., Tomarchio, O., May
2016. Solving critical events through mobile edge computing: an approach for smart
cities. In: Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), pp. 1-5.

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., Oct.-Dec. 2009. The case for VM-
based cloudlets in mobile computing. IEEE Pervasive Comput. 8 (4), 14-23.

Satyanarayanan, P. Simoens, Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W., Amos, B., Apr.-
June 2015. Edge analytics in the internet of things. IEEE Pervasive Comput. 14 (2),
24-31.

Selection of best IoT platform. https://www.i-scoop.eu/best-iot-platform-selection-crite
ria/. (Accessed September 2018).

Taleb, T., Ksentini, A., Jantti, R., Nov 2016. Anything as a Service for 5G mobile systems.
IEEE Netw. PP (99), 12-19.

The MachNation IoT Architecture with IoT platform functions divided into 8 categories
(the colors) on the levels of device, edge and cloud. https://www.machnation.com/
2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop. (Accessed
July 2018).

22

Journal of Network and Computer Applications 140 (2019) 1-22

Vallati, C., Virdis, A., Mingozzi, E., Stea, G., Oct. 2016. Mobile-edge computing come
home connecting things in future smart homes using LTE device-to-device
communications. IEEE Consum. Electron. Mag. 5 (4), 77-83.

Waggle-based sensor to cloud information exchange architecture. https://wa8.gl/architec
ture/software/. (Accessed July 2018).

Wang, Yingwei, 2015-09-16. Cloud-dew architecture. Int. J. Cloud Comput. (IJCC) 4 (3),
199-210.

Wang, Yingwei, 2016. Definition and categorization of dew computing. Open J. Cloud
Comput. ISSN: 2199-1987 3 (1).

Wang, Y. Wang, Sun, Y., Guo, S., Wu, J., 2016. Green industrial internet of things
architecture: an energy efficient perspective. IEEE Commun. Mag. 54 (12), 48-54.

Wang, J., Pan, J., Esposito, F., October 14, 2017. Elastic urban video surveillance system
using edge computing. In: ACM Workshop on Smart Internet of Things 2017
(SmartIoT 2017), San Jose, CA.

Wu, S. Guo, Li, J., Zeng, D., 2016. Big data meet green challenges: big data toward green
applications. IEEE Syst. J. 10 (3), 888-900.

Xia, W., Zhao, P., Wen, Y., Xie, H., 2017. A survey on data center networking (dcn):
infrastructure and operations. EEE Commun. Surv. Tutor. 19 (1), 640-656.

Yingwei, Wang, 2015. The Initial Definition of Dew Computing. Dew Computing
Research.

Zhang, K., Mao, Y., Leng, S., He, Y., Zhang, Y., Jun. 2017. Mobile-edge computing for
vehicular networks: a promising network paradigm with predictive offloading. IEEE
Veh. Technol. Mag. 12 (2), 36-44. https://doi.org/10.1109/MVT.2017.2668838.

Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H., 2017. An overview of Blockchain
technology: architecture, consensus, and future trends. In: 2017 IEEE International
Congress on Big Data (BigData Congress), Honolulu, HI, pp. 557-564.

Partha Pratim Ray received the B.Tech. degree in computer science and engineering and
the M.Tech. degree in electronics and communication engineering, with specialization in
embedded systems, from the West Bengal University of Technology, Kolkata, India, in 2008
and 2011, respectively. He is currently a full-time Assistant Professor with the Department
of Computer Applications, Sikkim University, Gangtok, India. His research interests include
Internet of Things, Dew computing, and Pervasive bio-medical informatics. He received the
VIRA Young Scientist Award and Bharat Vikas Award in 2017, for outstanding contribution
in his field.

Dr. Dinesh Dash has received PhD from IIT Kharagpur, M.Tech from the University of
Calcutta in 2013, 2004, respectively. Currently he is Assistant Professor in Computer Sci-
ence and Engineering, National Institute of Technology, Patna, India. His area of interest
includes Sensor Network, Mobile AdHoc Network, Algorithm, and Computational Geom-
etry. He has served as the reviewer of IEEE Transaction on Mobile Computing and IEEE
Access. He has received research grants from the Science & Engineering Research Board,
DST Govt. of India.

Prof. Debashis De earned his M.Tech from the University of Calcutta in 2002 and his Ph.D
(Engineering) from Jadavpur University in 2005. He is the Professor in the Department of
Computer Science and Engineering of the West Bengal University of Technology, India, and
Adjunct research fellow at the University of Western Australia, Australia.He is a senior
member of the IEEE. Life Member of CSI and member of the International Union of Radio
science. He worked as R&D engineer for Telektronics and programmer at Cognizant
Technology Solutions. He was awarded the prestigious Boyscast Fellowship by the
Department of Science and Technology, Government of India, to work at the Herriot-Watt
University, Scotland, UK. He received the Endeavour Fellowship Award during 2008-2009
by DEST Australia to work at the University of Western Australia. He received the Young
Scientist award both in 2005 at New Delhi and in 2011 at Istanbul, Turkey, from the In-
ternational Union of Radio Science, Head Quarter, Belgium. His research interests include
mobile cloud computing, Green mobile networks, and nanodevice designing for mobile
applications. He has published in more than 200 peer-reviewed international journals in
IEEE, IET, Elsevier, Springer, World Scientific, Wiley, IETE, Taylor Francis and ASP, seventy
International conference papers, four researches monographs in springer, CRC, NOVA and
ten text books published by Person education.

http://refhub.elsevier.com/S1084-8045(19)30165-1/sref58
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref58
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref58
https://doi.org/10.1109/ACCESS.2017.2647747
https://doi.org/10.1155/2016/1579460
https://doi.org/10.1109/ICACCS.2016.7586398
https://doi.org/10.1109/ICACCS.2016.7586398
https://doi.org/10.1016/j.measurement.2016.06.014
https://doi.org/10.1016/j.measurement.2016.06.014
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref63
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref63
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref63
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref64
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref64
https://doi.org/10.3233/AIS-170440
https://doi.org/10.3233/AIS-170440
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref66
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref66
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref66
https://doi.org/10.1007/s10916-017-0770-z
https://doi.org/10.1155/2017/1231430
https://doi.org/10.1002/ett.3496
https://doi.org/10.1109/SCOPES.2016.7955682
https://doi.org/10.1109/ACCESS.2017.2752174
https://doi.org/10.1109/ACCESS.2017.2752174
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref72
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref72
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref73
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref73
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref73
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref74
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref74
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref74
https://www.networkworld.com/article/3247801/internet-of-things/the-top-5-user-requirements-of-iot-edge-platforms.html
https://www.networkworld.com/article/3247801/internet-of-things/the-top-5-user-requirements-of-iot-edge-platforms.html
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref76
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref76
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref76
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref76
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref77
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref77
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref77
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref77
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref78
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref78
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref78
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref79
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref79
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref79
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref79
https://www.i-scoop.eu/best-iot-platform-selection-criteria/
https://www.i-scoop.eu/best-iot-platform-selection-criteria/
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref81
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref81
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref81
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
https://www.machnation.com/2017/09/18/functional-architecture-iot-platforms/?utm_source=iscoop
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref83
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref83
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref83
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref83
https://wa8.gl/architecture/software/
https://wa8.gl/architecture/software/
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref85
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref85
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref85
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref86
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref86
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref87
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref87
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref87
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref88
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref88
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref88
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref89
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref89
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref89
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref90
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref90
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref90
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref91
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref91
https://doi.org/10.1109/MVT.2017.2668838
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref93
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref93
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref93
http://refhub.elsevier.com/S1084-8045(19)30165-1/sref93

	Edge computing for Internet of Things: A survey, e-healthcare case study and future direction
	1. Introduction
	2. State-of-the-art on the Edge-IoT taxonomy
	2.1. Edge software & analytics
	2.2. IoT edge ecosystem
	2.3. IoT edge-cloud platforms
	2.4. IoT edge hardware vendors
	2.5. Edge IoT data type
	2.6. Edge IoT open database systems
	2.7. Edge-IoT SoC specifications
	2.8. Edge-IoT communication protocols
	2.9. Use cases

	3. EH-IoT: a case study on Edge-IoT for e-healthcare
	3.1. Problem definition
	3.2. Objectives
	3.3. Materials used
	3.4. Methodology
	3.5. Study design
	3.6. Results and discussions

	4. Discussions and issues
	4.1. Edge-IoT architecture, functionality and operational issues
	4.2. Edge-IoT requirement, capability and selection criteria
	4.3. Future research directions

	5. Conclusion
	Acknowledgement
	References

