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b Department of Electrical Engineering, National Formosa University, 64, Wen-Hua Road, Huwei, Yunlin 632, Taiwan

Received 25 September 2006; received in revised form 6 August 2007; accepted 10 August 2007
Abstract

The objective of the Economic Dispatch Problems (EDPs) of electric power generation is to schedule the committed generating units
outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality
constraints. Recently, global optimization approaches inspired by swarm intelligence and evolutionary computation approaches have pro-
ven to be a potential alternative for the optimization of difficult EDPs. Particle swarm optimization (PSO) is a population-based stochastic
algorithm driven by the simulation of a social psychological metaphor instead of the survival of the fittest individual. Inspired by the
swarm intelligence and probabilities theories, this work presents the use of combining of PSO, Gaussian probability distribution functions
and/or chaotic sequences. In this context, this paper proposes improved PSO approaches for solving EDPs that takes into account non-
linear generator features such as ramp-rate limits and prohibited operating zones in the power system operation. The PSO and its variants
are validated for two test systems consisting of 15 and 20 thermal generation units. The proposed combined method outperforms other
modern metaheuristic optimization techniques reported in the recent literature in solving for the two constrained EDPs case studies.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Economic Dispatch Problems (EDPs) is to deter-
mine the optimal combination of power outputs of all gen-
erating units to minimize the total fuel cost while satisfying
the load demand and operational constraints [1].

In a liberalized electricity market, the optimization of
economic dispatch is of economic value to the network
operator. The economic dispatch is a relevant procedure
in the operation of a power system. Over the past years,
many optimization methods have been proposed in the lit-
erature. A spectrum of the advances in economic dispatch
is well discussed in [2–28]. When compared with the con-
ventional (classical) techniques [4–13], modern heuristic
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optimization techniques based on operational research
and artificial intelligence concepts, such as evolutionary
algorithms [14–19], simulated annealing [20,21], artificial
neural networks [22–24], and taboo search [26,27] have
been given attention by many researchers due to their abil-
ity to find an almost global optimal solution for EDPs with
operating constraints.

EDPs have recently been solved by Particle Swarm Opti-
mization (PSO) approaches [28–32]. The PSO originally
developed by Eberhart and Kennedy in 1995 [33,34] is a
population-based stochastic algorithm. Similarly to genetic
algorithms [35], an evolutionary algorithm approach, the
PSO is an evolutionary optimization tool of swarm intelli-
gence field based on a swarm (population), where each
member is seen as a particle, and each particle is a potential
solution to the problem under analysis. Each particle in
PSO has a randomized velocity associated to it, which
moves through the space of the problem. However, unlike
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genetic algorithms, PSO does not have operators, such as
crossover and mutation. PSO does not implement the sur-
vival of the fittest individuals; rather, it implements the
simulation of social behavior [36]. PSO, however, allows
each particle to maintain a memory of the best solution
that it has found and the best solution found in the parti-
cle’s neighborhood is swarm.

In PSO, a uniform probability distribution to generate
random numbers into the velocity update equation is used.
The use of other probability distributions may improve the
ability to fine-tuning or even to escape from local optima.
In the meantime, it has been proposed the use of the Gauss-
ian [37–39], Cauchy [40], and exponential [41] probability
distribution functions, and chaotic sequences [42] to gener-
ate random numbers to updating the velocity equation. All
these approaches attempted to improve the performance of
the standard PSO, but the amount of parameters of the
algorithm to tune remained the same.

This paper proposes the Gaussian probability distribu-
tion and also chaotic sequences in PSO approaches to solve
EDPs with 15 and 20 thermal units with generator con-
straints. Simulation results obtained through the PSO
approaches are analyzed and compared with those reported
in recent literature. The proposed PSO approaches of
improvements in the setup of classical PSO algorithm using
Gaussian and chaotic signals are powerful strategies to
diversify the particle’s swarm in PSO and improve the PSO’s
performance in preventing premature convergence to local
minima.

The remaining sections of this paper are organized as fol-
lows: Section 2 describes the formulation of an EDP. Sec-
tion 3 then describes the Gaussian and chaotic sequences
for PSO approaches adopted here, while Section 4 details
the procedure of constraint handling in PSO. Section 5 dis-
cusses the computational procedure and analyzes the PSO
results when applied to case studies of EDPs with 15 and
20 thermal units. Lastly, Section 6 outlines our conclusions.

2. Formulation of an EDP with generator constraints

The EDP is to find the optimal combination of power
generation that minimizes the total fuel cost while at ther-
mal power units satisfying the total demand subjected to
the operating constraints of a power system with a defined
interval (typically 1 h). The essential operation constraints
are the power balance constraint, where the total generated
power must be equals to the load demands plus the trans-
mission losses on the electrical network, and the power
limit constraints, where individual generator units must
be operated within their specified range.

In this context, for power balance, an equality con-
straint should be attempted. The generated power should
be the same as the total load demand plus the total line
losses. In this case, the active power balance is given by

Xn

i¼1

P i � P L � P D ¼ 0 ð1Þ
where Pi is the power of generator i (in MW); n is the num-
ber of generators in the system; PD is the system’s total de-
mand (in MW); PL represents the total line losses (in MW).

Inequality constraints for each generator must be also
satisfied. Generation power of each generator should be
laid between maximum and minimum limits. The inequal-
ity constraint for each generator is represented by Eq. (2)
given by

P min
i 6 P i 6 P max

i ð2Þ

where P min
i and P max

i are the output of the minimum and
maximum operation of the generating unit i (in MW),
respectively. The mathematical formulation of the total
fuel cost function is formulated as follows:

min f ¼
Xn

i¼1

F iðP iÞ ð3Þ

where Fi is the total fuel cost for the ith generator (in $/h).
Generally, the fuel cost of thermal generating unit is repre-
sented in polynomial function,

F iðP iÞ ¼ aiP 2
i þ biP i þ ci ð4Þ

where ai, bi and ci are cost coefficients of generator i. How-
ever, the Eq. (4) can be modified using a sine function to
model the ripples due to valve point effect of generator. De-
tails about the valve point effect in generators can be found
in [4,5,18,28].

In this study, the ramp-rate limits, prohibited operating
zone-constraints, and transmission losses are considered
[14,19,30,31,43]. The constraints of EDP at specific operat-
ing interval can be represented by Eqs. (5)–(8) given by

(i) Ramp-rate limit constraints:

maxðP min
i ; P 0

i �DRiÞ 6 P i 6 minðP max
i ; P 0

i þURiÞ
ð5Þ

where Pi(t) is the present output power, P 0
i is the pre-

vious output power, URi is the up-ramp limit of the
ith generator (in units of MW/time-period), and
DRi is the down-ramp limit of the ith generator (in
units of MW/time-period).

(ii) Prohibited operating zones constraints:

P i 2
P min

i 6 P i 6 P l
i;1

P u
i;k�1 6 P i 6 P l

i;k;

P u
i;zi
6 P i 6 P max

i

8><
>: k ¼ 1; . . . ; zoi ð6Þ

where P l
i;k and P u

i;k are the lower and upper bounds of
the kth prohibited zone of unit i, respectively; k is the
index of prohibited zones (zoi).

(iii) Line flow constraint:

jP f ;jj 6 P max
f ;j ; j ¼ 1; . . . ; L ð7Þ

where Pf,j is real power flow of line j and L is the
number of transmission lines; and the transmission
network losses, PL, must be into account to achieve
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true economic load dispatch. Network loss is a func-
tion of generation unit. Clearly, calculation of trans-
mission losses on the electrical network requires
detailed network information, which adds complexity
to EDPs [4,44,32]. In the methodology of constant
loss formula coefficients (loss coefficient method) or
B-coefficients, the network losses are expressed as a
quadratic function of the generators power outputs
that can be approximated in the form

P L ¼
Xn

i¼1

Xn

j¼1

P iBijP j þ
Xn

i¼1

Bi0P i þ B00 ð8Þ

where Bij is the ijth element of the loss coefficient
square matrix, Bi0 is the ith element of the loss coef-
ficient vector, and B00 is the loss coefficient constant.
3. Optimization methodology based on PSO for the EDP

Social insect societies are distributed systems, which
despite the simplicity of their individuals, present a highly
structured social organization. As a result of this organiza-
tion, insect societies can accomplish complex tasks that, in
some cases, far exceed the individual capabilities of a single
insect, as ants for example. The field of swarm intelligence
is an emerging research area that presents features of self-
organization and cooperation principles among group
members bio-inspired on social insect societies. Swarm
intelligence is inspired by nature, based on the fact that
the live animals of a group contribute with their individual
experiences to the group, rendering it stronger to face other
groups. The most familiar representatives of swarm intelli-
gence in optimization problems are the food-searching
behavior of ant colonies [45], particle swarm optimization
[46], artificial immune systems [47], and bacterial foraging
[48].

The proposal of PSO algorithm was put forward by sev-
eral scientists who developed bio-inspired computational
simulations of the movement of organisms such as flocks
of birds and schools of fish. Such simulations were heavily
based on manipulating the distances between particles, i.e.,
the synchrony of the behavior of the swarm was seen as an
effort to keep an optimal distance between them. In the
next subsection, the fundamentals and implementation
details about the PSO are described.
3.1. Fundamentals of PSO

In theory, at least, particles of a swarm may benefit from
the prior discoveries and experiences of all the members of
a swarm when foraging [49]. The fundamental point of
developing PSO is a hypothesis in which the exchange of
information among creatures of the same species offers
some sort of evolutionary advantage [50]. Generally, the
PSO is characterized as a simple heuristic of well-balanced
mechanism with flexibility to enhance and adapt to both
global and local exploration abilities. It is a stochastic
search technique with reduced memory requirement, com-
putationally effective and easier to implement compared to
other metaheuristics of evolutionary computation and
swarm intelligence fields.

Similarly to other population-based algorithms, PSO
exploits a population of search points to probe the search
space. Each individual in swarm, referred to as a ‘parti-
cle’, represents a potential solution. Each particle utilizes
two important kinds of information in decision process.
The first one is their own experience; that is, they have
tried the choices and know which state has been better
so far, and they know how good it was. The second
one is other particle’s experiences; that is, they have
knowledge of how the other agents around them have
performed.

Each particle in PSO keeps track of its coordinates in
the problem space, which are associated with the best solu-
tion (best fitness) it has achieved so far. This value is called
pbest. Another ‘‘best’’ value that is tracked by the global
version of the particle swarm optimizer is the overall best
value and its location obtained so far by any particle in
the population. This location is called gbest.

Each particle moves its position in search domain and
updates its velocity according to its own flying experience
and neighbor’s flying experience toward its pbest and gbest

locations (global version of PSO). Acceleration is weighted
by random terms, with separate random numbers being
generated for acceleration toward pbest and gbest loca-
tions, respectively.

The basic elements of standard PSO are briefly stated
and defined as follows:

• Particle xi(t), i = 1, . . . ,n: It is a potential solution rep-
resented by an n-dimensional vector, where n is the num-
ber of decision variables.

• Swarm: It is an apparently disorganized population of
moving particles that tend to cluster together while each
particle seems to be moving in a random direction.

• Individual best position pi(t), i = 1, . . . ,n: As a particle
moves through the search space, it compares the fit-
ness value at the current position to the best fitness
value it has ever attained at any time up to the current
time.

• Global best position, pg(t): It is the best position among
all individual best positions achieved so far.

• Particle velocity vi(t), i = 1, . . . ,n: It is the velocity of the
moving particles, which is represented by an n-dimen-
sional vector. According to the individual best and glo-
bal best positions, the particles velocity is updated. After
obtaining the velocity updating, each particle position is
changed to the next generation.

The procedure for implementing the global version (or
star neighborhood topology) of PSO can be summarized
by the following steps (see also the PSO flow chart in
Fig. 1):
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Step 1. Initialization: Initialize a swarm (population) of
particles with random positions and velocities in
the n dimensional problem space using a uniform
probability distribution function.

Step 2. Evaluation: Evaluate the fitness value of each par-
ticle in swarm (population).

Step 3. First comparison: Compare each particle’s fitness
with the particle’s pbest. If the current value is
better than pbest, then set the pbest value equal
to the current value and the pbest location
equal to the current location in n-dimensional
space.

Step 4. Second comparison: Compare the fitness with
the population’s overall previous best. If the
current value is better than gbest, then reset
gbest to the current particle’s array index and
value.

Step 5. Updating: Change the velocity and position of the
particle according to Eqs. (9) and (10), respectively
[33,34,40,41]:
Fig. 1. Flow chart in a basic PSO approach.
viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � ud � ½piðtÞ � xiðtÞ�
þ c2 � Ud � ½pgðtÞ � xiðtÞ� ð9Þ

xiðt þ 1Þ ¼ xiðtÞ þ Dt � viðt þ 1Þ ð10Þ
where t = 1, 2, . . . , tmax indicates the iterations, w(t) is the
inertia weight; vi ¼ ½vi1; vi2; . . . ; vin�T stands for the velocity
of the ith particle, xi ¼ ½xi1; xi2; . . . ; xin�T stands for the posi-
tion of the ith particle, and pi ¼ ½pi1; pi2; . . . ; pin�

T represents
the best previous position of the ith particle; positive con-
stants c1 and c2 are the cognitive and social components
that are the acceleration constants responsible for varying
the particle velocity towards pbest and gbest, respectively.
Index g represents the index of the best particle among
all the particles in the swarm. Variables ud and Ud are
two random functions based on uniform probability distri-
bution functions in the range [0,1]. Eq. (10) represents the
update of particles positions, according to its previous po-
sition and its velocity, considering Dt = 1.
Step 6. Stopping criterion: Loop to step 2 until a stopping

criterion is met, usually a sufficiently good fitness
or a maximum number of iterations.

The use of variable w is responsible for dynamically
adjusting the velocity of the particles, so it is responsible
for balancing between local and global searches, hence
requiring fewer iterations for the algorithm to converge.
A low value of inertia weight implies a local search, while
a high value leads to a global search.

Applying a large inertia weight at the start off the algo-
rithm and making it decay to a small value through the
PSO execution makes the algorithm search globally at the
beginning of the search, and search locally at the end of
the execution. The following weighting function w(t) is
used in (9):

wðtÞ ¼ wmax �
wmax � wmin

tmax

t ð11Þ

Eq. (11) shows how the inertia weight is updated, consider-
ing wmax and wmin are the initial and final weights,
respectively.

Particle velocity in each dimension are clamped to a
maximum velocity Vmax. If the sum of accelerations causes
the velocity in that dimension to exceed Vmax, which is a
parameter specified by the user, then the velocity in that
dimension is limited to Vmax. Vmax is a parameter serving
to determine the resolution with which the regions around
the current solutions are searched. If Vmax is too high, the
PSO facilitates a global search, and particles might fly past
good solutions. Conversely, if Vmax is too small, the PSO
facilitates a local search and particles may not explore suf-
ficiently beyond locally good regions. Previous experience
with PSO (trial and error, mostly) led us to set the Vmax

to 20% of the dynamic range of the variable in each
dimension.

The first part in Eq. (9) is the momentum part of the
particle. The inertia weight w represents the degree of the
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momentum of the particles. The second part is the ‘cogni-
tion’ part, which represents the independent thinking of the
particle itself. The third part is the ‘social’ part, which rep-
resents the society behavior of the population.

In this work, new approaches to PSO are proposed in
the next subsection. The aim is to modify the Eq. (9) of
the conventional PSO (case 1) with ud and Ud based on
uniform distribution to use it with Gaussian distribution
and/or chaotic sequences in the range [0, 1].
3.2. New PSO approaches based on Gaussian distribution

and/or chaotic sequences

Coelho and Krohling [40] proposed the use of a trun-
cated Gaussian and Cauchy probability distribution to gen-
erate random numbers for the velocity updating equation of
PSO. In this paper, new approaches to PSO are proposed
which are based on Gaussian probability distribution linked
with chaotic sequences. Firstly, random numbers are gener-
ated using the Gaussian probability distribution and/or
chaotic sequences in the interval [�1,1], and then mapped
to the interval [0, 1]. The use of chaotic sequences in PSO
could be useful to escape from local optima, while the
Gaussian distribution could provide a faster convergence
in local search.

An essential feature of chaotic systems is that small
changes in the parameters or the starting values for the
data lead to vastly different future behaviors, such as stable
fixed points, periodic oscillations, bifurcations, and ergo-
dicity. These behaviors can be analyzed based on the mean-
ing of Lyapunov exponents and the attractor theory
[51,52].

Recently, the optimization techniques using chaotic
sequences have received a great deal of attention in literature
[53–59]. Chaotic optimization approaches are generally
based on ergodicity, stochastic properties and irregularity
of chaotic signals. This paper provides any approaches
introducing chaotic mapping in PSO to improve the global
convergence. The use of chaotic sequences in PSO can be
helpful to escape more easily from local minima than can
be done through the traditional PSO. In this work, the logis-
tic map [51,52,60] for chaotic PSO approach was adopted.
Thee logistic map is given by

yðkÞ ¼ l � yðk � 1Þ � ½1� yðk � 1Þ� ð12Þ

where k is the sample, and l is a control parameter,
0 6 l 6 4. The behavior of the system of Eq. (14) is greatly
changed with the variation of l. The value of l determines
whether y stabilizes at a constant size, oscillates with lim-
ited bound, or behaves chaotically in an unpredictable pat-
tern. Eq. (14) is deterministic, displaying chaotic dynamics
when l = 4 and y(1) 62 {0,0.25,0.50,0.75,1}. In this case,
y(t) is distributed in the range [0, 1] provided the initial
y(1) 2 [0,1] and y(1) = 0.48, as was adopted here. This
work proposes new PSO approaches which combination
with chaotic sequences based on logistic map, and Gauss-
ian distribution. In this work, Sd and sd sequences using
logistic map employed in PSO are equal for the results of
Eq. (14) for y(k) mapped to the interval [0,1]. The modifi-
cation of the Eq. (9) (conventional PSO as Type 1) pro-
ceeds as following:

Type 2: It is used a function with Gaussian distribution,
gd, to generate random numbers in the interval
[0,1] for the ‘‘cognitive part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � gd � ½piðtÞ � xiðtÞ�
þ c2 � Ud � ½pgðtÞ � xiðtÞ� ð13Þ

Type 3: It is used a function with Gaussian distribution
Gd, to generate random numbers in the interval
[0,1] for the ‘‘social part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � ud � ½piðtÞ � xiðtÞ�
þ c2 � Gd � ½pgðtÞ � xiðtÞ� ð14Þ

Type 4: It is used a function with Gaussian distribution,
gd and Gd, to generate random numbers in the
interval [0, 1] for the ‘‘cognitive part’’ and ‘‘social
part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � gd � ½piðtÞ � xiðtÞ�
þ c2 � Gd � ½pgðtÞ � xiðtÞ� ð15Þ

Type 5: It is used a function to generate chaotic
sequences, Sd, in the interval [0, 1] for the ‘‘social
part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � ud � ½piðtÞ � xiðtÞ�
þ c2 � Sd � ½pgðtÞ � xiðtÞ� ð16Þ

Type 6: It is used a function to generate chaotic
sequences, sd, in the interval [0, 1] for the ‘‘cogni-
tive part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � sd � ½piðtÞ � xiðtÞ�
þ c2 � Ud � ½pgðtÞ � xiðtÞ� ð17Þ

Type 7: It is used a function to generate random numbers
in the interval [0, 1] with Gaussian distribution,
gd, for the ‘‘cognitive part’’ and the chaotic
sequences, Sd, in the interval [0, 1] for the ‘‘social
part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � gd � ½piðtÞ � xiðtÞ�
þ c2 � Sd � ½pgðtÞ � xiðtÞ� ð18Þ

Type 8: It is used a function to generate random numbers
in the interval [0, 1] with Gaussian distribution,
Gd, for the ‘‘social part’’ and the chaotic
sequences, sd, in the interval [0, 1] for the ‘‘cogni-
tive part’’:

viðt þ 1Þ ¼ wðtÞ � viðtÞ þ c1 � sd � ½piðtÞ � xiðtÞ�
þ c2 � Gd � ½pgðtÞ � xiðtÞ� ð19Þ



Table 1
Data for the fifteen thermal units of generating unit capacity and
coefficients

Unit P min
i (MW) P max

i (MW) a ($/MW2) b ($/MW) c ($)

1 150 455 0.000299 10.1 671
2 150 455 0.000183 10.2 574
3 20 130 0.001126 8.8 374
4 20 130 0.001126 8.8 374
5 150 470 0.000205 10.4 461
6 135 460 0.000301 10.1 630
7 135 465 0.000364 9.8 548
8 60 300 0.000338 11.2 227
9 25 162 0.000807 11.2 173

10 25 160 0.001203 10.7 175
11 20 80 0.003586 10.2 186
12 20 80 0.005513 9.9 230
13 25 85 0.000371 13.1 225
14 15 55 0.001929 12.1 309
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4. Constraints handling with PSO approaches

A key factor in the application of PSO approaches to the
optimization of an EDP is how the PSO algorithm handles
the constraints relating to the problem.

Most optimization problems have constraints. The
search space in constrained optimization problems consists
of two kinds of points: feasible and unfeasible. Feasible
points satisfy all the constraints, while unfeasible points
violate at least one of them. Therefore, the solution or set
of solutions obtained as the final result of an optimization
method must necessarily be feasible, i.e., they must satisfy
all constraints. The methods based on the use of penalty
functions are usually employed to treat constrained optimi-
zation problems [61,62]. A constrained problem can be
transformed into an unconstrained one by penalizing the
constraints and building a single objective function, which
in turn is minimized using an unconstrained optimization
algorithm.

Over the last few decades, several methods have been
proposed to handle constraints in optimization problems
[63]. These methods can be grouped into four categories:
methods that preserve the feasibility of solutions, pen-
alty-based methods, methods that clearly distinguish
between feasible and unfeasible solutions and hybrid
methods.

When optimization algorithms are used for constrained
optimization problems, it is common to handle constraints
using concepts of penalty functions (which penalize unfea-
sible solutions), i.e., one attempt to solve an unconstrained
problem in the search space S using a modified fitness func-
tion f (we are minimizing the fitness function in this paper)
such as
15 15 55 0.004447 12.4 323
min f ¼
f ðP iÞ; if P i 2 F

f ðP iÞ þ penaltyðP iÞ; otherwise

�
ð20Þ
Table 2
Data for the fifteen thermal units of ramp-rate limits and prohibited zones
of the generating units

Unit P 0
i URi

(MW/h)
DRi

(MW/h)
Prohibited zones

Zone 1 Zone 2 Zone 3

1 400 80 120
2 300 80 120 [185 255] [305 335] [420 450]
3 105 130 130
4 100 130 130
5 90 80 120 [180 200] [305 335] [390 420]
6 400 80 120 [230 255] [365 395] [430 455]
7 350 80 120
8 95 65 100
9 105 60 100

10 110 60 100
11 60 80 80
12 40 80 80 [30 40] [55 65]
13 30 80 80
14 20 55 55
15 20 55 55
where penalty(Pi) is zero and no constraint is violated;
otherwise it is positive. The penalty function is usually
based on a distance measured to the nearest solution in
the feasible region F or to the effort to repair the
solution.

In this work, the methodology used to constraint han-
dling in PSO approaches is divided into two steps. The first
step involves finding solutions for the decision variables
that lie within user-defined upper (limupper) and lower (lim-

lower) bounds, that is, x 2 [limlower,limupper]. Whenever a
lower bound or an upper bound restriction fails to be sat-
isfied, a repair rule is applied according to Eqs. (21) and
(22), respectively:

P j
iðtþ1Þ¼ P j

i ðtÞþb � randi½0; 1� limupperðP j
i ðtÞÞ� limlowerðP j

iðtÞÞ
� �

ð21Þ

P j
iðtþ1Þ¼ P j

i ðtÞ�b � randi½0; 1� limupperðP j
i ðtÞÞ� limlowerðP j

iðtÞÞ
� �

ð22Þ
where b 2 [0,1] is a user-defined parameter (b is set to 0.01
in this work); t is the current generation number, and
rand[0,1] is a uniformly distributed random value between
0 and 1.

In the second step, if the equality constraint of Eq. (1)
and inequality constraints of Eqs. (5)–(7) are not solved,
Eq. (3) is rewritten as

min f ¼
Xn

i¼1

F iðP iÞ þ q1

Xn

i¼1

P i � P L � P D

 !2

þ q2

Xn

j¼1

V k;j

ð23Þ
where q1 and q2 are positive constants (penalty factors)
associate with the power balance and prohibited zones
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constraints, respectively. These penalty factors were
tuned empirically and their values are q1 = 50 and q2 = 1
in the studied cases in this work. The Vj is expressed as
follows:
V k;j ¼
1; if P k;j violates the prohibited zones

0; otherwise

�
ð24Þ

5. Simulation results

In this paper, to assess the efficiency of the proposed
PSO approaches, two case studies (15 and 20 generators)
of EDPs were applied in which the objective functions were
ramp-rate limits, prohibited operating zones in the power
system operation, and transmission losses are employed
to demonstrate were taken into account.
Bij ¼ 10�3 �
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Bi0 ¼ 10�3 � ½�0:1 �0:2 2:8 �0:1 0:1 �0:3 �0:2 �0:2 0:6 3:9 �1:7 0:0 �3:2 6:7 �6:4� ð26Þ

B00 ¼ 0:0055 ð27Þ
Each PSO approach was implemented in Matlab (Math-
Works). All the programs were run on a 3.2 GHz Pentium IV
processor with 2 GB of RAM (Random Access Memory).

In each case study, 50 independent runs were made for
each of the optimization methods involving 50 different ini-
tial trial solutions for each optimization method. The setup
of PSO approaches (star or gbest topology) used was the
following: c1 = c2 = 2.05, wmax = 1.1, and wmin = 0.8. In
these case studies, the stopping criterion tmax was 100 gen-
erations for the proposed PSO algorithms. The population
size N was 50 and 30 to case studies I and II, respectively.
All the B-coefficients are given in per unit (p.u.) on a
100 MVA base capacity.

5.1. Case study I: Fifteen-unit system

This case study consists of fifteen thermal units. All ther-
mal units are within the ramp-rate limits and prohibited
operating zones. The data shown in Tables 1 and 2 are also
available in [19,30,31,43,64]. In this case, the load demand
expected to be determined is PD = 2630 MW. The B matrix
of the transmission loss coefficient is given by
Table 3 shows the mean time, the minimum, mean and
standard deviations, and the maximum cost achieved by
the PSO approaches. As indicated in Table 3, the PSO(4)
was the approach that obtained the minimum cost for
the EDP of fifteen thermal units. However, the PSO(6)



Table 3
Convergence results (50 runs) of a case study I considering a fifteen-unit system with PD = 2630 MW

Method Minimum cost ($/h) Mean cost ($/h) Standard deviation of cost ($/h) Maximum cost ($/h) Mean CPU time (s)

PSO(1) 32775.68 35340.70 1942.84 38104.54 0.59
PSO(2) 32700.59 35090.89 1881.94 38023.80 0.64
PSO(3) 32656.97 35059.71 1853.71 37899.13 0.64
PSO(4) 32508.12 35122.79 1918.62 38044.42 0.69
PSO(5) 32833.18 34712.56 1848.07 38020.55 0.60
PSO(6) 32721.30 32941.16 1513.57 38040.89 0.60
PSO(7) 32831.48 34839.63 1901.38 37966.58 0.64
PSO(8) 32582.77 34396.46 1752.32 38031.86 0.58
Evolution strategy [19] 32568.54 32,620 – 32,710 0.48*

Particle swarm optimization [30] 33,858 33,039 – 33,331 26.59*

Genetic algorithm [30] 33,113 33,228 – 33,337 49.31*

* Values obtained from references.
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obtained the best mean cost among the tested PSO
techniques.

The best result obtained for solution vector Pi, i = 1, . . . ,
15 by PSO(4) with minimum cost of 32,508.12 $/h is given
in Tables 3 and 4. Table 4 compares also the results
obtained in this paper with those of other studies reported
in the literature. Note that in the case study of fifteen
Bij ¼ 10�3 �
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thermal units, the results of the PSO(4) were comparatively
lower than recent studies presented in the literature in
[19,30,31].
5.2. Case study II: Twenty-unit system

This case study consists of twenty thermal units. This
system supplies a total load demand of PD = 2500 MW.
The data shown in Table 5 are also available in [65]. In this
second case, the Bi0 and B00 present zero values. The B

matrix of the transmission line loss coefficient is given by
In this second case, the results of numerical simulation of
tested PSO approaches are summarized in Table 6. From
Table 6 it can see that the PSO approaches perform better



Table 4
Comparison of four methods: best result for the case study I

Unit power
output
(MW)

PSO(4)
proposed

Evolution
strategy
[19]

Particle swarm
optimization
[30]

Genetic
algorithm
[30]

P1 440.4990 455.00 439.12 415.31
P2 179.5947 380.00 407.97 359.72
P3 21.0524 130.00 119.63 104.42
P4 87.1376 150.00 129.99 74.98
P5 360.7675 168.92 151.07 380.28
P6 395.8330 459.34 459.99 426.79
P7 432.0085 430.00 425.56 341.32
P8 168.9198 97.42 98.56 124.79
P9 162.0000 30.61 113.49 133.14
P10 138.4343 142.56 101.11 89.26
P11 52.6294 80.00 33.91 60.06
P12 66.8875 85.00 79.96 50.00
P13 62.7471 15.00 25.00 38.77
P14 47.5574 15.00 41.41 41.94
P15 27.6065 15.00 35.61 22.64
Total power,

(MW)
2643.6745 2653.85 2662.41 2668.44

PL, (MW) 13.6745 23.85 32.42 38.28
Total cost,

($/h)
32508.12 32568.54 32858.00 33113.00

Table 5
Data for the twenty thermal units of generating unit capacity and
coefficients

Unit P min
i (MW) P max

i (MW) a ($/MW2) b ($/MW) c ($)

1 150 600 0.00068 18.19 1000
2 50 200 0.00071 19.26 970
3 50 200 0.00650 19.80 600
4 50 200 0.00500 19.10 700
5 50 160 0.00738 18.10 420
6 20 100 0.00612 19.26 360
7 25 125 0.00790 17.14 490
8 50 150 0.00813 18.92 660
9 50 200 0.00522 18.27 765

10 30 150 0.00573 18.92 770
11 100 300 0.00480 16.69 800
12 150 500 0.00310 16.76 970
13 40 160 0.00850 17.36 900
14 20 130 0.00511 18.70 700
15 25 185 0.00398 18.70 450
16 20 80 0.07120 14.26 370
17 30 85 0.00890 19.14 480
18 30 120 0.00713 18.92 680
19 40 120 0.00622 18.47 700
20 30 100 0.00773 19.79 850

Table 6
Convergence results (50 runs) of a case study II considering a twenty-unit
system with PD = 2500 MW

Method Minimum
cost ($/h)

Mean
cost
($/h)

Standard
deviation of
cost ($/h)

Maximum
cost ($/h)

Mean
CPU
time (s)

PSO(1) 60803.51 61223.95 507.56 62982.19 0.37
PSO(2) 59852.13 61142.17 437.21 62925.14 0.44
PSO(3) 59804.05 61171.84 532.44 63184.63 0.44
PSO(4) 60526.15 61123.36 330.89 62757.19 0.50
PSO(5) 60833.87 61220.93 516.21 62977.63 0.40
PSO(6) 60775.01 61098.15 178.48 61573.73 0.40
PSO(7) 60709.73 61106.08 252.83 62354.42 0.45
PSO(8) 60782.43 61101.92 299.08 62669.33 0.36
Lambda-

iteration
method
[65]

62456.6391 – – – 0.033*

Hopfield
neural
network
[65]

62456.6341 – – – 0.006*

* Values obtained from references.

Table 7
Comparison of three methods: best result for the case study II

Unit
power
output,
(MW)

PSO(3)
proposed

Lambda-iteration
method [65]

Hopfield neural
network [65]

P1 563.3155 512.7805 512.7804
P2 106.5639 169.1033 169.1035
P3 98.7093 126.8898 126.8897
P4 117.3171 102.8657 102.8656
P5 67.0781 113.6836 113.6836
P6 51.4702 73.5710 73.5709
P7 47.7261 115.2878 115.2876
P8 82.4271 116.3994 116.3994
P9 52.0884 100.4062 100.4063
P10 106.5097 106.0267 106.0267
P11 197.9428 150.2394 150.2395
P12 488.3315 292.7648 292.7647
P13 99.9464 119.1154 119.1155
P14 79.8941 30.8340 30.8342
P15 101.525 115.8057 115.8056
P16 25.8380 36.2545 36.2545
P17 70.0153 66.8590 66.8590
P18 53.9530 87.9720 87.9720
P19 65.4271 100.8033 100.8033
P20 36.2552 54.3050 54.3050
Total

power,
(MW)

2512.3343 2591.9670 2591.9669

PL,
(MW)

12.3343 91.9670 91.9669

Total
cost,
($/h)

59804.05 62456.6391 62456.6341
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than the lambda-iteration and Hopfield neural network
methods [65] in terms of quality of solution. As indicated
in Table 6, the PSO(3) was the approach that obtained
the minimum cost for the EDP of twenty thermal units with
transmission losses. However, the PSO(6) obtained the best
mean cost among the tested techniques. The best result
obtained for solution vector Pi, i = 1, . . . , 20 by PSO(3)
with minimum cost of 59,804.05 $/h is given in Table 7.

It is clear from Table 7, the total power obtained by
PSO(3) is closed to the constraint of PD = 2500 MW. In
this context, these PSO(3) approach performs better than
the lambda-iteration and Hopfield neural network methods
[65] in terms of the power loss.
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6. Conclusion

This paper has demonstrated the feasibility of employ-
ing modified PSO approaches for efficient solving of EDPs
with generator constraints. PSO is an effective optimization
method that belongs to the category of evolutionary meth-
ods. Its development is based on the observations of social
behavior of animals such as bird flocking, fish schooling,
and swarm theory. Like evolutionary algorithms, PSO
technique conducts search using a population of particles,
corresponding to individuals. Each particle represents a
candidate solution to the problem at hand.

In relation to the procedure involved in solving the
EDP, the simulation results achieved by PSO(4) and
PSO(3) to the case studies I and II, respectively, were better
than the presented results in literature. The results of these
simulations with modified PSO approaches are very
encouraging and represent an important contribution to
PSO algorithm setups.

In this paper, to enrich the searching behavior and to
avoid being trapped into local optimum, a chaotic
sequence based on logistic map is incorporated as a ran-
domizer instead of traditional uniform random function
into the PSO(5)–(8) approaches. The track of chaotic var-
iable can travel ergodically over the whole search space.
In general, the above chaotic variable has special charac-
ters, i.e. ergodicity, pseudo-randomness and irregularity.
The chaotic PSO(5)–(8) approaches exhibit slightly better
performance in terms of mean solutions (in 50 runs) when
compared to the PSO(1) in two case studies, due to its abil-
ity to achieve sustainable development keeping the diver-
sity of particles.

Methods combining PSO with Gaussian and chaotic sig-
nals can be very effective in solving EDPs. In future, we will
focus mainly on the conception of PSO approaches incor-
porating local search with Cauchy and exponential proba-
bility density functions for the solution of EDPs taking
generator constraints into account.
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[45] Dorigo M, Stützle T. Ant colony optimization. Cambridge
(MA): MIT; 2004 [A Bradford Book].

[46] Kennedy JF, Eberhart RC, Shi RC. Swarm intelligence. San Fran-
cisco (CA, USA): Morgan Kaufmann Pub.; 2001.

[47] Castro LN, Timmis JI. Artificial immune systems: a new computa-
tional intelligence approach. London (UK): Springer-Verlag; 2002.

[48] Passino KM. Biomimicry of bacterial foraging for distributed
optimization and control. IEEE Contr Syst 2002;22(3):52–67.

[49] Wilson EO. Sociobiology: the new synthesis. Cambridge (MA): Bel-
knap Press; 1975.

[50] Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing hierar-
chical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Trans Evol Comput 2004;8(3):240–55.

[51] Strogatz SH. Nonlinear dynamics and chaos. Massachussetts: Per-
seus Publishing; 2000.

[52] Parker TS, Chua LO. Practical numerical algorithms for chaotic
system. Berlin (Germany): Springer-Verlag; 1989.

[53] Li B, Jiang W. Optimizing complex functions by chaos search.
Cybern Syst 1998;29(4):409–19.

[54] Jiang C, Ma Y, Wang C. PID controller parameters optimization of
hydro-turbine governing systems using deterministic-chaotic-muta-
tion evolutionary programming (DCMEP). Energy Conv Manage,
47(9–10):1222–30.

[55] Li L, Yang Y, Peng H, Wang X. Parameters identification of chaotic
systems via chaotic ant swarm. Chaos Solitons Fractals
2006;28(15):82–90.

[56] Wang L, Smith K. On chaotic simulated annealing. IEEE Trans
Neural Networks 1998;9(4):716–8.

[57] Liao GC, Tsao TP. Application embedded chaos search immune
genetic algorithm for short-term unit commitment. Elect Power Syst
Res 2004;71(2):135–44.

[58] Zilong G, Sun’an W, Jian Z. A novel immune evolutionary algorithm
incorporating chaos optimization. Pattern Recogn Lett
2006;27(1):2–8.

[59] Mingjun J, Huanwen T. Application of chaos in simulated annealing.
Chaos Solitons Fractals 2004;21(4):933–41.

[60] Shengsong L, Min W, Zhijian H. Hybrid algorithm of chaos
optimisation and SLP for optimal power flow problems with
multimodal characteristic. IEEE Proc Gener Transm Distrib
2003;150(5):543–7.

[61] Arora JS. Introduction to optimum design. New York (NY,
USA): MGraw-Hill; 1989.

[62] Rao SS. Engineering optimization. 3rd ed. Hoboken (NJ,
USA): John Wiley & Sons; 1996.

[63] Michalewicz Z, Schoenauer M. Evolutionary algorithms for con-
strained parameter optimization problems. Evol Comput
1996;4(1):1–32.

[64] Gaing ZL. Closure to Discussion of Particle swarm optimization to
solving the economic dispatch considering the generator constraints.
IEEE Trans Power Syst 2004;19(4):2122–3.

[65] Su CT, Lin CT. New approach with a Hopfield modeling framework
to economic dispatch. IEEE Trans Power Syst 2000;15(2):541–5.


	Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches
	Introduction
	Formulation of an EDP with generator constraints
	Optimization methodology based on PSO for the EDP
	Fundamentals of PSO
	New PSO approaches based on Gaussian distribution and/or chaotic sequences

	Constraints handling with PSO approaches
	Simulation results
	Case study I: Fifteen-unit system
	Case study II: Twenty-unit system

	Conclusion
	Acknowledgments
	References


