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Abstract: This study presents a smart energy management system (SEMS) to optimise the operation of the microgrid. The SEMS
consists of power forecasting module, energy storage system (ESS) management module and optimisation module. The
characteristic of the photovoltaics (PV) output in different weather conditions has been studied and then a 1-day-ahead power
forecasting module is presented. As energy storage needs to be optimised across multiple-time steps, considering the
influence of energy price structures, their economics are particularly complex. Therefore the ESS module is applied to
determine the optimal operation strategies. Accordingly, multiple-time set points of the storage device, and economic
performance of ESS are also evaluated. Smart management of ESS, economic load dispatch and operation optimisation of
distributed generation (DG) are simplified into a single-object optimisation problem in the SEMS. Finally, a matrix real-coded
genetic algorithm (MRC-GA) optimisation module is described to achieve a practical method for load management, including
three different operation policies and produces diagrams of the distributed generators and ESS.
1 Introduction

The deregulation in the electric power industry and pressing
concerns about global environmental issues as well as the
increasing energy consumption have led to an increase in
installation capacity of distributed generation (DG) sources
and energy storage system (ESS) [1–4]. These sources
comprise several technologies, such as diesel engines,
microturbines, and fuel cells either in combined heat and
power operation or purely for electricity production,
photovoltaics (PV), small wind turbines, hydroturbine etc.
The coordinated operation and control of DG sources together
with storage devices such as flywheels, energy capacitors,
batteries and controllable loads such as water heaters and air
conditioners is central to the concept of microgrids [5, 6].
Microgrids mostly operate interconnected to the utility grid,
but also can turn into an islanded mode, in case of external
faults. From the grid’s point of view, a microgrid can be
regarded as a controllable entity within the power system that
can be operated as a single aggregated electrical load, giving
attractive remuneration, even as a small source of power or
ancillary service supporting the network [7].

Recent developments and advances in energy storage and
power electronics technologies are making the application of
energy storage technologies a potentially viable solution for
the microgrid, allowing the system to be operated in a more
flexible, economic manner. Sortomme and El-Sharkawi [8]
using particle swarm optimisation, reduced the costs of
microgrids with controllable loads and battery storage by
selling stored energy at high prices and shave peak loads of
the larger system. Chakraborty et al. [9] used linear
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programming algorithms to minimise microgrid operation
cost and optimise battery charge states. Marnay et al. [10]
using Berkeley Lab’s distributed energy resources customer
adoption model, optimised electrical and thermal storage
charge scheduling to maximise benefits owing to the energy
pricing differences between on-peak and off-peak periods.
Dukpa et al. [11] propose a new optimal participation
strategy for a wind electric generator (WEG) that employs an
energy storage device for participating in the day-ahead unit
commitment process. Taking stochastic power output into
account, the authors have also proposed a novel smart
energy management system (SEMS) that can coordinate
power forecasting, energy storage and energy exchanging
together and then make proper short-term scheduling to
minimise the total operation cost. SEMS identifies optimal
operating schedules based on available distributed energy
resources (DER) equipment options and their associated
capital and operating and maintenance (O&M) costs, load
forecasting, energy price structures and fuel prices. Instead
of conventional solar forecasting, power forecasting module
of PV system with 1-day-ahead weather forecasts is
presented for the SEMS. Then, a matrix real-coded genetic
algorithm (MRC-GA) is applied to minimise the microgrid
cost, in which each GA chromosome consists of a two-
dimensional real number matrix representing the generation
schedule of ESS and DG sources.

The paper is organised as follows. In Section 2, the features
of the DG sources are analysed and the stochastic
characteristic of the DG power output is pointed out, e.g.
wind power or solar power will change with the variation
of wind speed and direction, solar irradiation and
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circumstance temperature. The neural network (NN) is
incorporated to avoid complexities of mathematical model-
based statistical prediction in SEMS. Based on the output of
the forecasting module, the SEMS optimisation module
chooses a predesigned optimisation schemes such that the
operation cost can be minimised. The information of the
forecasting module is also utilised to define the threshold for
charging and discharging rate for a particular hour in
advance. In Section 3, MRC-GA is used for the optimisation
module. In each optimisation step, the power balance and
storage states are considered to obey the physical constraints.
The output of this module defines the direction and amount
of the power flow between sources, storages, loads and grid
in a cost-optimised way. In Section 4, we present and discuss
results obtained under the computational simulations.
Conclusions are given in Section 5.

2 Smart energy management system

A typical SEMS is shown in Fig. 1. The objective of the
SEMS is to generate suitable set points for all the sources
and storages in such a way that economically optimised
power dispatch will be maintained to fulfil certain load
demand. Because wind power or solar power always change
with the variation of wind speed and direction, solar
irradiation and circumstance temperature, generation
forecast as well as some fast online algorithms are used to
define the energy availability and, finally, to define the
optimised power dispatch signals to the loads. The use of
energy storage requires an optimisation scheme that
considers the time-integral part of the load flow. Therefore
the energy management has to perform energy scheduling a
single day or multiple days ahead. An intelligent energy
management system is thus required which enables short-
term energy allocation scheduling at minimised costs based
on power generation and load demand. The SEMS
optimises the microgrid operation according to the open
market prices, the bids and the forecasted generation of the
DG sources, and the forecasted loads, and sends signals to
the controllers of the DG sources to be committed, and if
applicable, to determine the level of their production.

2.1 Power forecasting module

The prediction of power generation is a complicated task for
the microgrids since most DG sources connected are
renewable energy sources whose power generation varies
largely with the external conditions like sunshine,
temperature etc. However, on the other hand, designing an
efficient controller needs prediction of the generation with
IET Renew. Power Gener., 2011, Vol. 5, Iss. 3, pp. 258–267
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considerable accuracy. Forecasting of renewable generation
is a challenging task and its relevance increases rapidly
with more penetration of renewable energy sources in the
power grid. In the proposed SEMS, a neutral network [12–
14] is incorporated to forecast power generation of a PV
energy source, and it can be easily extended to the other
renewable-based energy sources. Knowledge of available
future generation from renewable sources lets the SEMS to
store energy in advance, giving the system more flexibility
to take advantage of real-time grid pricing by avoiding
purchases or making a well-timed sale.

For PV array, there are many factors that can influence the
output character such as solar irradiation, array transfer
efficiency, installation angle, atmospheric pressure,
temperature and so on [15–17]. To make the description
about the proposed method understandable, Fig. 2 is taken
as an example, which shows the system’s hourly output
from 19–25 December 2006 recorded in the database of the
SCADA system.

Fig. 2 shows the variational features of the power output of
PV system in sunny weather. From Fig. 2, it is found that the
power output curves of PV system are similar in shape.
Through the statistics and analysis of the database of
the historical power data, if there is no change in day type,
the output power on the forecasting day varies with the
historical power output. Therefore in the forecasting model
of the output power, the past relevant power output data are
treated as input variable. Considering the number of the
input variable, the forecasting model takes only the data of
the day before the forecast day.

Fig. 2 Power output of PV system in sunny weather
Fig. 1 Schematic of the inputs and outputs of SEMS
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From Fig. 3, one can see that when it is sunny, the variation
of power output of the PV system within 1 day can roughly
reflect the variation of the solar irradiation intensity.
However, when the day-type changes, from sunny to rainy,
the power output will drop sharply. Without the input
variable to reflect the change in solar radiation intensity, the
prediction of the power output will become inaccurate.
Therefore a proper variable should be chosen to show the
drastic changes in the PV array power output when such
changes occur. At present, with the constant improvement
in the ability to forecast weather and network information,
in establishing the forecasting model, if weather forecast
information on forecasting day can also serve as one of the
input variables, then the ability to forecast will improve.
However, the meteorological parameters in weather forecast
are usually described in the relatively ambiguous terms: for
instance, sunny, sunny to cloudy, overcast, overcast with
light rain, light rain to heavy rain etc. Thus, the conversion
of ambiguous, uncertain and vague day type into the
accuracy value, which can be accepted by the algorithm of
the NN, requires enormous and effective power output for
statistics and analysis. The paper expects to quantise the
day type in light of the progressively perfect PV
supervising system database.

Figs. 4 and 5 illustrate the PV array output power for
cloudy and rainy days, respectively. The figures also show
that the output power from 11 to 12 in the cloudy day is
2.666 kWh, and that (power output) from 11 to 12 in the
rainy day is 0.367 kWh, whereas that (power output) from
11 to 12 in the sunny day is generally 9 kWh. Hence, based
on the statistics of the historical power output data, such
information as sunny, cloudy, rainy, overcast can be
mapped as a day-type coefficient ranging from 0 to 1 and
treated as the input variables of the forecasting model.

In addition to the historical output power and the day type
discussed above, the effect of the air temperature on PV array
power output should also be considered that historical output
power data maps the shape of its curve, day-type information
illustrates the rough height of the curve, and the air
temperature in the same day type will show the delicate
change of the curve’s height, that is, the maximum power
output. Figs. 6 and 7 show the daily output power of a PV
array from 19 December 2006 to 26 December 2006 (the
day type is roughly sunny) and the maximum air
temperature in Wuhan urban area, respectively. The two
charts demonstrate that higher power output of the PV

Fig. 3 Power output of PV system and solar intensity in sunny
weather
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system correlates to higher solar intensity, while under this
condition the temperature is usually higher.

Meanwhile, seasonal factors also have effect on PV power
output. Such an effect comes from the differences in solar
radiation intensity; namely, the curve of the power output

Fig. 4 Power output of cloudy day

Fig. 5 Power output of rainy day

Fig. 6 Daily overall energy output
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changes with radiation intensity, seasonal differences in
power output is also specifically illustrated. Moreover, due
to the different geographical locations and the considerably
different climates, the degree to which the effect of the
seasonal factors on power output feature is also different.

The forecasting model is shown as Fig. 8, the input vector
is X ¼ (x1, x2, . . . , x28), where x1, x2, . . . , x24 represent the
generated energy of 24 time series of yesterday. X25 and x26

represent the highest temperature and day type of yesterday,
X27 and x28 represent the highest temperature and day type
of the forecasting day, respectively. Output variable y1,
y2, . . . , y24 represent the forecasting generated energy of
24 time series of that day.

2.2 ESS management module

In practice, the ESS used in microgrid system consists of a
matrix of identical batteries based on the size of PV power.
Dozens of batteries would be connected in series to boost
the voltage level of the battery matrix, whereas multiple
battery strings are connected in parallel to increase the
working current level of the battery storage system. We
consider an aggregated ESS for representing batteries in a
battery storage matrix.

The economics of the ESS are particularly complex, both
because they require optimisation across multiple-time steps
and because of the influence of tariff structures. Note that
facilities with on-site generation will incur electricity bills
more biased towards demand (peak power) charges and less
towards energy charges, thereby making the timing and
control of chargeable peaks of particular operational
importance. Thus, the energy stored in the ESS are used as
the state variable, the power output of the ESS can be
calculated as the difference between stored energies of three

Fig. 7 Highest temperature of several days

Fig. 8 Topology of the forecasting module
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consecutive stages. Time stages used are all of 1 h. Energy
stored in the storage device is expressed as follows.

1. If the ESS is charging (P(t) , 0)

−hCP(t) ≤ KCQmax
s (1)

QS(t + 1) = QS(t) − hCP(t)Dt (2)

2. If the ESS is discharging (P(t) . 0)

P(t)/hD ≤ KDQmax
s (3)

QS(t + 1) = QS(t) − P(t)Dt/hD (4)

3. If the ESS is idle (P(t) = 0)

QS(t + 1) = QS(t) − Whourly (5)

where hC is the charging efficiency, hD is the discharging
efficiency, KC is the maximum portion of rated capacity that
can be added to storage in an hour, KD is the maximum
portion of rated capacity that can be withdraw from storage
in an hour, Qmax is the rated maximum stored energy,
Whourly (kWh) is ESS hourly discharged energy, QS(t)
(kWh) is aggregated capacity of all batteries at hour t, P (t)
(kW) is electrical power of ESS output at hour t and Dt is
scheduling interval (1 h in this paper).

In order to establish an economical analysis, one must
consider the ESS capital, operating and maintenance costs
and parameters of which they depend, and energy purchase
and sale costs.

ESS capital cost is defined as a function of two main parts.
One is related to the storable energy; the other depends on the
peak power that the storage must deliver and is controlled by
the charge/discharge control system according to the demand
requirements. Therefore the ESS capital cost will be
expressed as

Ccapital = CPPmax + CW W max (6)

where Pmax (kW) and W max (kWh) are ESS power and energy
capacities, CP ($/kW) and CW ($/kWh) are their specific
costs.

The hourly capital cost for ESS has been calculated from

C1 = r(1 + r)n

(1 + r)n − 1

( )
Ccapital

k ∗ Ta

( )
(7)

where r is the interest rate, n the depreciation period in years,
C1 is the hourly cost for depreciation, k is the capacity factor
and Ta is their operating hours of the year.

Energy storage hourly operating and maintenance cost is
defined as a function of two main parts: one related to the
ESS rated power and the other depending on its hourly
discharged energy

C2 = COPmax + CMWhourly (8)

where CO ($/kW) and CM ($/kWh) are operating cost and
maintenance costs.
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Energy purchase cost is defined as

C3 =
∑

P(t),0,t=1,...,24

CT(t)P(t) (9)

A total cost of all the considered costs is defined as

CS =
∑3

i=1

Ci (10)

In order to obtain the highest profit of energy prices
differences between light-load and peak-load periods,
energy storage charge/discharge operation must be
scheduled such as, to store low-price energy during light-
load periods and then to deliver it during peak-load ones.
As a result of this strategy, load will be levelled according
to time-of-use rates. The daily benefit because of this
operation can be expressed as

C4 =
∑

P(t).0,t=1,...,24

CT(t)P(t) (11)

where CT(t) ($/kWh) is time-of-use rate in hour t, benefits can
be made only if ESS efficiency is greater than the ratio (off-
peak energy price/peak energy price).

The main goal of the ESS management module is to
maximise the net present value. This net present value is
determined through an economical analysis, over ESS
lifespan, considering the ESS capital, operating and
maintenance costs and parameters of which they depend,
and energy purchase and sale costs. Based on (1)–(10), we
formulate the net present value as follows

TB =
∑

t=1,...,24

C4 −
∑

t=1,...,24

Cs (12)

State of charge limits

Qmin
s ≤ QS(t) ≤ Qmax

s (13)

QS(0) = QI initial state of charge (14)

QS(T ) = QE final state of charge (15)

Output power limits

Psl(t) = min(hD(QS(t − 1) − Qmin
s ), hDKDQmax

s )

if P(t) . 0
(16)

Psl(t) = max((Qmax
s − Q(t − 1))/hC, KCQmax

s /hC)

if P(t) , 0
(17)

The equality constraint of the ESS periodical behaviour

QS(0) = QI = QS(T ) = QE

1

hD

∑
P(t).0,t=1,...,24

P(t) + hC

∑
P(t),0,t=1,...,24

P(t)

+
∑

P(t)=0,t=1,...,24

Whourly = 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(18)

where Qmin
s (kWh) is the minimum capacity of ESS, Qmax

s
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(kWh) is the maximum capacity of ESS and Psl(t) is the
power limit of ESS at hour t.

2.3 Operation policies

According to the output of the power forecasting, the goal of
the SEMS is to optimise energy flows among generation,
supply and points of use to minimise operating cost or
maximise profit while satisfying generating unit and
network constraints. The output of this module is a set of
recommended energy flows for a given period as a set of
vectors from source to destination over each hour. The
system can use available storage unit to offset expensive
energy purchases or to store energy for an anticipated price
spike. The optimisation procedure depends on the market
policy adopted in the microgrid operation. In the following
section, three possible operation policies are described.

1. The microgrid is separated from the upstream distribution
grid and the SEMS aims to serve the total demand of the
microgrid, using its local production. During the operating
conditions, the SEMS minimises the operational cost of the
microgrid, taking into account the regulation space of ESS,
demand and DG bids. When the power produced by the
local sources is greater than the load demand, if the
remaining capacity of ESS is not enough, the excess power
can be exported to the ESS; and if the remaining capacity
of ESS is enough, the sources of high price can be closed
to maintain the energy balance between supply and demand.
2. The SEMS aims at serving the total demand of the microgrid,
using its local production, as much as possible, without exporting
power to the upstream distribution grid. For the overall
distribution grid operation, such behaviour is beneficial,
because at the time of peak demand, when energy prices in the
open market are high, the microgrid relieves possible network
congestion by partly or fully supplying its energy needs. From
the consumers’ point of view, the SEMS minimises the
operational cost of the microgrid, taking into account open
market prices, demand and DG bids. The consumers of the
microgrid share the benefits of reduced operational costs.
3. The microgrid participates in the open market, buying and
selling active and reactive power to the grid, probably via an
aggregator or similar energy service provider. According to
this policy, the SEMS tries to maximise the value of the
microgrid, that is, maximise the corresponding revenues of
the aggregator, by exchanging power with the grid. The
consumers are charged for their power consumption
according to the bids of the generators. The microgrid
behaves as a single generator capable of relieving possible
network congestions not only in the microgrid itself, but
also by transferring energy to nearby feeders of the
distribution network.

2.4 Objective function

According to the first policy, the SEMS aims to minimise the
microgrid operational cost by using its local production. The
objective function for each hour intervals can be written as

TC =
∑T

t=1

∑L

i=1

[ui(t)PGi(t)BGi(t) + SGi|ui(t) − ui(t − 1)|]
{

+
∑M

j=1

uj(t)PSj(t)BSj(t)

}
(19)
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where L is total number of generators, M is total number of
storages, T is total number of hours, ui(t) is the status of
unit i at hour t, PGi(t) is active power production of the ith
generator at hour t, PSj(t) is active power production of the
jth storage at hour t, SGi is the start-up or shutdown cost,
BGi(t) is bid of the ith generator at hour t, BSj(t) is bid of
the jth storage at hour t.

In the second policy, the SEMS sells energy to the
consumers of the microgrid from the local sources and the
upstream network. If the power produced by the DG
sources is not enough or too expensive to cover the local
load, energy is bought from the upstream network and sold
to the consumers or stored in the ESS. Consumers and ESS
are assumed to be charged at open market prices. If the
power purchased from the upstream network is too
expensive, the SEMS sells energy to the consumers from
the local sources and the ESS.

TD =
∑T

t=1

∑L

i=1

[ui(t)PGi(t)BGi(t) + SGi|ui(t) − ui(t − 1)|]
{

+
∑M

j=1

uj(t)PSj(t)BSj(t) + PGRID(t)BGRID(t)

}
(20)

where PGRID(t) is power bought or sold from/to the utility at
hour t, BGRID(t) is energy price of the utility at hour t.

Different from the second policy, the SEMS of the third
policy sells the excess production to the upstream network
at the market price from the DG sources and the ESS. The
total cost associated with energy production, energy storage
and energy exchanging needs to be minimised over all
problem variables.

2.5 Constraints

Unit constraints in SEMS, including unit capacity, ramping
rates, minimum up/down, crew, fuel, start-up, shut-down,
emission of individual units and a group of units, and ac
power transmission constraints, calculates the commitment
of units for supplying the hourly load. The constraints for
the problem are given by

1. System power balance

∑L

i=1

PGi +
∑M

j=1

PSj = DL In the first policy (21)

∑L

i=1

PGi +
∑M

j=1

PSj + PGRID = DL

In the second and third policies (22)

2. Spinning reserve constraint

∑N

i=1

u(t)Pmax
i (t) ≥ DL(t) + R(t) (23)

3. Unit generation output limits

Pmin
i ≤ Pi ≤ Pmax

i (24)
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where Pmin
i is the minimum power production of unit i, Pmax

i is
the maximum power production of unit I and DL is the load
demand.

3 MRC-GA optimisation module

In this work, the MRC-GA is developed to solve optimisation
through genetic operations and avoid coping with economic
dispatch problem in each hour. In the following sections the
implementation of different components of the proposed
algorithm are presented.

3.1 Coding

The solution of generator commitment in the SEMS is
represented by a real-valued matrix.

Gk = [X1, X 2, . . . , X t, . . . , XT ] = [R1, R2, . . . , Ri, . . . , RN ]T

=

C1,1 C1,2 · · · C1,t · · · C1,T

C2,1 C2,2 · · · C2,t · · · C2,T

..

. ..
.

· · · ..
.

· · · ..
.

Ci,1 Ci,2 · · · Ci,t · · · Ci,T

..

. ..
.

· · · ..
.

· · · ..
.

CN ,T CN ,2 · · · CN ,t · · · CN ,T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where Gk is the kth individual of genetic populations; Ci,t is
the ith row, tth column element of coding matrix, which is
power production of the unit i at time t; Xt is the tth column
vector of coding matrix, which is load distribution among
the units at time t; Ri is the ith row vector of coding matrix,
which is short-term scheduling of the unit i.

The states of power generation units depend on the specific
values of the real-valued matrix elements.

u(t) = 0, Ci,t = 0
1, Ci,t = 0

{
(26)

3.2 Generation of the initial group

The properties of initial group have an important impact on
the efficiency of the calculation and the results. To achieve
global optimal solution, the column matrix vector of the
initial group should be coded in sequence. For example, the
initialisation process of Xt is as follows:

1. Generate an array of the random number Arand

Arand = [ar1, ar2, . . . , ari, . . . , arN ] (27)

2. Calculate the array of the percentage coefficient Pperc from
Arand

Pperc = [pp1, pp2, . . . , ppi, . . . , ppN ] (28)

ppi = ari/
∑N

i=1

ari i = 1, 2, . . . , N (29)
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3. Initialise Xt as following

Xt = [C1,t, C2,t, . . . , Ci,t , . . . , CN ,t] (30)

Ci,t = ppiDL(t) i = 1, 2, . . . , N (31)

3.3 Individual adjustment method

1. Owing to the accuracy requirements of unit commitment
problem, each element of the vector Xt should keep finite
number of digits after the decimal point. Here, three digits
are preserved.
2. Each variable is limited to its lower/upper bounds. We
adjust the elements value of column Xt to satisfy unit
generation output limits. The method is as follows

C∗
i,t =

Pmax
i , Ci,t . Pmax

i

Ci,t, Pmin
i , Ci,t , Pmax

i

Pmin
i , lPmin

i , Ci,t , Pmin
i

0, else

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(32)

where Ci,t is the value before adjustment; C∗
i,t is the adjusted

value; l is the constant between 0 and 1, and in this paper
is taken to 0.6.
3. To satisfy the system spinning reserve constraints, we adjust
the states of the units. If

∑N
i=1 u(t)Pmax

i (t) , DL(t) + R(t), a
new unit will be open and its power output is equal to the
least value.
4. After the above three-step adjustments, the sum of all
elements of the column Xt may not be equal to the total
system load at time t, thus making load distribution
adjustment. Specific adjustment approach is as follows.

If
∑N

i=1 u(t)Pi(t) , DL(t), power output of the ESS will be
increased to meet the system power balance; on the contrast, if∑N

i=1 u(t)Pi(t) . DL(t), power output of the ESS will be
reduced. In the adjustments, power output of the ESS is
limited to its lower/upper bounds.

3.4 Selection of fitness function

After the individual adjustment method, the ESS commitment
schedule obtained through GA relaxation may be infeasible
for the equality constraint of the periodical behaviour. In
practice, heuristic methods could be chosen to find a
feasible solution. We pick the ESS commitment and send it
to fitness function to guarantee that the final solution is
feasible. In order to speed up the algorithm convergence,
fitness function is defined as the following form

ffit = A/(TD +
∑M

i=1

dPeqi) (33)

Peqi =
1

hD

∑
P(t).0,t=1,...,24

P(t) + hC

∑
P(t),0,t=1,...,24

P(t)

∣∣∣∣∣
+

∑
P(t)=0,t=1,...,24

Whourly

∣∣∣∣∣ (34)

where Peqi is the violation value of the equality constraint of
the ESS i periodical behaviour; d is the punishment
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coefficient; A is the positive constant to calculate the fitness
function, and in this paper is taken to 1 000 000.

According to the above-mentioned genetic algorithm, the
optimisation problem is formulated and solved as a large-
scale network problem with side constraints. Output from the
model includes SEMS schedules, spinning and operating
reserve, and trades curves such as that between fuel usage
and the number of unit switches. The flowchart in Fig. 9
illustrates the implementation of this iterative technique.

4 Simulations and discussion

4.1 Power forecasting

Training data in the forecasting model were the historical
generating data and meteorological data in the PV
monitoring system. Two groups of data will be tested. In
the first group, no day-type difference (three sunny days), in
the second group, day type is different (the first two days
are sunny and the third day is rainy).

Fig. 10 is the forecasting result, N1 is the forecasting net
without the information of weather forecast, and N2 is the
one with the weather forecast. It shows that when the day
type is the same, the forecasting output of N1 has a similar

Fig. 9 Iterative method
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correspond to the actual power output as the N2 does, but
slightly inferior in both accuracy and stability. However,
when the day type is different, N1 failed, and N2 is
effective with a decrease in the forecasting precision.
Table 1 illustrates the mean absolute percent error (MAPE)
of the forecasting model. When the day type is the same,
the forecasting error of model N1 and model N2 is 16.47%
and 11.59%, which was not big. However, when the day
type is different, the error of model N 1 is 203.72%, which
is a huge difference compared to the actual capacity, and
this model failed. The forecasting error of model N2 is
18.91%, although there still exists difference compared to
the actual figure, it still has high reference value.

Based on the effect analysis of day type, temperature and
season on PV array power generation, neuron net was
employed to design a new PV array power forecasting
model. The historical data of the PV array were referred to
in the forecasting model to forecast the generating capacity,
reducing the influence on the forecasting precision because
of the randomness of the PV cell and its installation set-up.
At the same time, the information of the weather forecast
was added to the input. When the day type is different, the
forecasting model cannot fail.

Fig. 10 Forecasting results of the model

a Day type is the same
b Day type is different

Table 1 Mean absolute percent error

Number Model N1, % Model N2, %

(a) 16.47 11.59

(b) 203.72 18.91
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4.2 Cost optimisation

In this study, the electricity sources include PVs, small wind
turbines, microturbines, and fuel cells etc. The DG bids, the
load bids, if demand-side bidding options are implemented,
and the market prices are placed in one list according to
their differential cost at the highest level of production for
the specific period. This list is sorted in ascending order,
until the total demand is met. The DG bids are assumed to
be linear. Table 2 provides the minimum and the maximum
operating limits of the DG sources. Table 3 summarises the
bids coefficients assumed by the DG sources. Table 4
provides the load demand for local resident of the microgrid
on a sunny day of December. Table 5 provides the hourly
energy price of open market according to [7].

It is assumed that results obtained from the aforementioned
analysis show that, without DG installations, the actual
operating cost for the day considered is $303.9, and the
price per kilowatt hour is $0.179. This is the base case
scenario. Based on the power forecasting, SEMS provides
the microgrid with an optimal schedule for each installed
technology. The graphics in Fig. 11 show example SEMS
operating results for the electrical balances of the microgrid
on typical days. In these results, each with a slightly
different optimal operation of the DG sources and it is

Table 2 Installed DG sources

ID Type Min power,

kW

Max power,

kW

Start up/down

cost, $

1 MT 6 30 0.14

2 FC 3 30 0.24

3 FC2 2 20 0.18

4 PV 0 20 0

5 ESS 233 30 0

Table 3 Bids of the DG sources

Hour MT FC1 FC2 PV

1 0.107 0.166 0.175 –

2 0.107 0.166 0.176 –

3 0.108 0.167 0.176 –

4 0.108 0.1677 0.177 –

5 0.109 0.167 0.178 –

6 0.109 0.168 0.179 –

7 0.11 0.168 0.18 –

8 0.111 0.169 0.181 0.084

9 0.112 0.170 0.183 0.085

10 0.112 0.171 0.186 0.086

11 0.116 0.172 0.187 0.087

12 0.117 0.171 0.188 0.088

13 0.115 0.170 0.187 0.086

14 0.115 0.170 0.186 0.085

15 0.115 0.170 0.187 0.084

16 0.117 0.171 0.187 0.083

17 0.118 0.173 0.189 0.085

18 0.119 0.173 0.190 0.086

19 0.118 0.174 0.191 –

20 0.115 0.173 0.189 –

21 0.112 0.171 0.186 –

22 0.110 0.170 0.185 –

23 0.109 0.169 0.183 –

24 0.108 0.167 0.182 –
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presented in detail to demonstrate the scheduling capability.
The various policies in the graphs indicate the different
sources of the energy. The purple portion underneath the
x-axis in these figures is the hourly storage charging of
the ESS, whereas the portion above the x-axis indicates

Table 5 Hourly price of open market

t 1 2 3 4 5 6

$/kWh 0.033 0.027 0.020 0.017 0.017 0.029

t 7 8 9 10 11 12

$/kWh 0.033 0.054 0.215 0.572 0.572 0.572

t 13 14 15 16 17 18

$/kWh 0.215 0.572 0.286 0.279 0.086 0.059

t 19 20 21 22 23 24

$/kWh 0.050 0.061 0.181 0.077 0.043 0.037

Table 4 Typical load

t 1 2 3 4 5 6

PL/kW 52 50 50 51 56 63

t 7 8 9 10 11 12

PL/kW 70 75 76 80 78 74

t 13 14 15 16 17 18

PL/kW 72 72 76 80 85 88

t 19 20 21 22 23 24

PL/kW 90 87 78 71 65 56
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storage discharging. The blue portion of grid curve
underneath the x-axis indicates the excess power of the
microgrid that can be sold to the upstream distribution grid,
whereas the other portion above it is the power purchased
from the upstream distribution grid. In Table 6, the
operational costs of the microgrid to run the computational
simulations are considered.

As shown in Fig. 11a, the microgrid is separated from the
upstream distribution grid and the SEMS aims at serving the
total demand of the microgrid, using its local production. The
SEMS sums up the DG sources bids in ascending order and
the demand-side bids in descending order in order to decide
which DG sources will operate for the next hour and which
loads will be served. The daily costs are $286.69.

As shown in Fig. 11b, some generation capacity of the
microgrid is replaced by storage and the upstream
distribution, but the daily costs are reduced to ¥251.03. In
other words, the added value of the storage and other
complexity is very modest in this example. An explanation
for this is that storage can take advantage of both economic
and temporal inefficiencies, that is, by charging the battery
via utility purchases during off-peak hours and then
consuming the stored power during on-peak hours.

As shown in Fig. 11c, the SEMS sells energy to the
consumers of the microgrid and also the excess production
from the DG sources and the ESS, if any, to the upstream
network at the market price. If the power produced by the
DG sources is not enough or too expensive to cover the
local load, power is bought from the upstream network and
Fig. 11 Typical operation results

a Operation result in the first policy
b Operation result in the second policy
c Operation result in the third policy
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sold to the consumers and the ESS. The daily costs are
$219.05, where the compensation to DG sources is $262.15
and the profit of energy prices differences between light-
load and peak-load periods is $43.10.

5 Conclusion

In this paper, an SEMS has been proposed to optimally
coordinate the power production of DG sources and ESS, and
therefore minimise the operational costs of microgrids. The
SEMS here takes an account of all relevant technical
constraints, power forecasting, smart management of ESS,
economic load dispatch and operational costs. The results
show that the forecasting model is able to predict hourly
power generation according to the weather forecasting inputs.
Based on power forecasting, the SEMS is developed using
MRC-GA optimisation module to make an optimal operation
schedule in such way that economically optimised power
dispatch can be maintained to fulfil certain load demand. It is
also shown that, the SEMS is beneficial to reduce energy
prices for the consumers and the daily costs are reduced by
27.92% below the third policy. Some further researches can
be performed to perfect this method by concerning more
relevant factors, such as the industrial and commercial profiles
of a city or region. Diagrams corresponding to these factors
will be done to reach more well-defined relationships between
the optimal cooperation of the production of the DG sources
and ESS and the operational costs of the microgrid.
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