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A B S T R A C T

Nonlinearity in load profile and variations in demand due to error margin in short term load forecasting cause power
network overloading. The state of a power system is more severe when a fault occurs in the power system network that
leads to overloading. Analyzing the effect due to these disturbances on power system network is an important feature
of this work. This paper proposes a control algorithm that focuses on sophisticated fuzzy logic approach. Advanced
fuzzy control takes overloading and variation in demand profile as input, which mitigate these disturbances by in-
corporating optimal power dispatch of renewable energy resources (RERs). To show the effectiveness and validity of
the proposed model and fuzzy control design, 9 Bus test system of the transmission network is adopted. Not only
normal mode but fault and overloading modes are used to verify the proposed approach. Competitiveness of the
proposed control design in terms of reliability and optimal utilization of RERs are verified through simulation results.

1. Introduction

Electric power infrastructure is the backbone for every country and is
an important factor that directly affects the economic policy of a country.
The traditional conventional electric power grid is not advancing in
terms of control and reliability. The era is now moving toward the smart
grid that incorporates advanced sensing, communication, security, and
control technologies, which make a grid more reliable and efficient [1].
One of the most important features of the smart grid is that it gets power
from different type of Distributed Generation (DGs) sources in order to
meet the power demand at a cheaper cost. Besides providing cheaper
power, there are some drawbacks associated with DGs and an important
one is reliability [2]. If a power grid is totally supported by renewable
energy resources (RERs), it leads to serious overloading failure because
of limited load handling capability of RERs.

In order to meet demand profile and low power losses in the power
system, electrical load forecasting is a very important factor for utilities
and power system operators. Many operating decisions such as eco-
nomic dispatch of the power plant, designing of the power network and
security network depend upon load forecasting. Electrical load fore-
casting mainly consists of four types: very short term, short term,
medium term, and long term. The short term load forecasting (STLF) is
mostly done for duration varies from hours to weeks. New advanced
technologies are introduced for monitoring of demand response profile
and integration of generation sources in smart grids. These technologies
use intelligent and adaptive elements that require more advanced
techniques to perform accurate generation and demand forecasting in

order to work optimally. The authors in [3] briefly defined various
types of load forecasting, which can be efficiently utilized in a power
system network. Similar to very short term load forecasting (VSTLF),
which is used for power flow control, STLF is used for the adjustment of
the generation and demand, where as medium term load forecasting
(MTLF) and long term load forecasting (LTLF) are used to plan assets’
utilities. Load forecasting is further classified into two groups in [3] first
group is used to forecast single value while second group is used to
forecast multiple variables. Authors in [3] also mentioned different
forecasting techniques their respective accuracy and in which scenario
they will be more useful. Authors in [4] forecasted aggregated load
using artificial neural network (ANN) while taking in account different
variables that affects the forecasted aggregated load. Among different
variables that are analyzed the most important one is the climate.
Different testing model are suggested in [4] and some of the model
include climate as input variable in order to show how forecasted ag-
gregated load is affected by climate variable. STLF is an important
factor used in determining of power plants’ work plan and choosing of
best production group. Energy companies face many economic and
technical problems such as operation, planning, and control of power
system network. Decisions about energy production, infrastructure de-
velopment, and load switching are made easier for utility companies
through STLF. Therefore, forecasting a load correctly is an important
factor in the competitive market for utility companies [5,6]. The elec-
trical utilities must manage the supply from generation sources in order
to meet the demand of its consumers. It is therefore very important for
the utilities for having advance knowledge of their related consumers
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demand. Load forecasting is an important factor especially for inter-
connected utilities where they share their respected loads in peak hours
hence reduces the burden on individual utility. Load forecasting helps
the utilities to understand the behavior of consumer demand in advance
and enables the company to make economically viable decision in re-
gard to future generation and transmission investment. Through un-
derstanding the future demand trend of the consumers, forecasting
enables the utility to schedule the maintenance of power network with
minimum impact on consumers and with less revenue losses.

Day ahead planning and scheduling of RERs balance the electrical
loads based on forecasted demand that is implemented by providing
security, integrity, power quality, and reliability constraints of power
system network. Balancing of a power network is done in advance
mostly a day ahead on forecasted values given by the demand side. The
behavior of a power system is highly nonlinear and quite different
because of the nature of various types of loads. Because of that non-
linearity in power system, there will be an error associated with forecast
due to which an imbalance will occur in the system causing the cost to
increase [7]. Forecasting for the electrical loads on power system can be
performed by using different techniques [5]. Different methods used by
various groups are based on regression analysis [8], time series analysis
[9,10], artificial neural networks (ANN) [11–13], similar day approach
[14], support vector machine [15], fuzzy logic [16–18], adaptive
neuro-fuzzy inference system (ANFIS) [19], genetic algorithms [20,21]
and some other hybrid techniques [22,23]. STLF using ANN was also
presented in [24]. Back propagation algorithm was adopted for the
training of neural network (NN). The model presented was tested under
different cases like taking load inertia, load at particular hours and
correlation in selected pattern. The NN was trained under these cir-
cumstances. Authors in [25] performed STLF using ANN and wavelet
transform (WT). Different forecasting techniques like auto regression
moving average (ARMA) are used for linear model. For non linear
model ANN is preferred but it treats high and low frequency compo-
nents in the same manner. Hence to improve forecasting ability, WT is
used with ANN. STLF while using weather parameters through bat al-
gorithm based back propagation is presented in [26].Two important
parameters, such as temperature and humidity were considered. It was
noted that back propagation does not ensure getting global optimum
solution in training time. To overcome this drawback, a new approach
to STLF using radial basis function neural network (RBFNN) was pre-
sented in [27].

STLF is applied in power sector especially in Energy Management
System (EMS) and load balancing. The most important problem about
STLF, which needs to be addressed is to develop new approaches to make
a sophisticated prediction with fewer error margins. In order to tackle
this problem, techniques like Evolutionary Algorithms (EA) [28–30] and
hybrid methods [31–33] are already applied by researchers. Based on the
available data in literature it is clearly demonstrated that techniques to
solve complex and nonlinear systems give us good approximation
[34,35]. Harmony search (HS) is one of the EA algorithms, which re-
ceived more attention due to its less complexity in terms of calculation
and application [36–40]. The authors in [41] used different hybrid
methods for STLF and shows that combining neural network model with
offline and online learning gives good approximation. The predicted
average errors are 1.72%, 1.75% and 2.06% for different weekdays. The
authors in [42] performed hourly load forecast using ANN for different
regions in Turkey and found mean absolute percentage error (MAPE) to
be 2.90 and 5.47 for these regions respectively. The authors in [43]
performed STLF by combining ANN with mathematical model. The Ab-
solute Percentage Error (APE) for these models are found to be 5.38 and
8.80, respectively. STLF using fuzzy logic and ANFIS was already im-
plemented in [44,45]. In these model, a load is forecasted by comparing
different parameters like temperature, seasonal and historical load. At
last MAPE and absolute percentage error (APE) are compared for both
methods to show their effectiveness in [44,45]. However, load fore-
casting was performed on historical statistical data without considering

unexpected disturbances. Main issue will be if forecasting varies a bit and
forecasted load at time exceed than expected. There is no uncertainty and
unexpected event involve in doing forecasting in [44,45]. Due to that
unwanted variation in demand profile the system may collapse. In this
paper, the authors perform STLF by using fuzzy logic. The authors also
propose a methodology to design a controller to avoid that unseen event,
hence increases the reliability of the system.

STLF using ANN, ANN with wavelet transform, bat algorithm based
back propagation and radial basis function neural network (RBFNN)
was presented in [24–27]. Similarly, STLF using fuzzy logic and ANFIS
was implemented in [44,45]. A common drawback of the above re-
search works is that whatever method is used for STLF there are some
forecasting errors associated with them. If appropriate actions in order
to mitigate these errors in terms of dispatching power reserves are not
taken then the whole electric power network can collapse and some
serious overloading scenario may arise. As a result excess reserve power
of utilities will be of no use if it cannot be utilized in state of emergency
situation. In addition to that, if a power system network crashes it will
cause loss of power and ultimately increase the maintenance cost. The
best way to avoid overloading in an electric power system is to use
optimal and economic time ahead scheduling and dispatching of RERs
like a wind turbine, solar etc. The forecasting methods do not include
the counter measure for unexpected disturbances like overloading and
faults as in [44,45] and also in [60,61]. The main objective of this work
is to counter these deficiencies in STLF which are due to forecasting
errors and also due to unexpected disturbances. These errors are due to
statistical historical data used for forecasting in forecasting method
which is why actual demand deviates more from forecasted demand.
There are different ways to tackle this problem. One is the use of dif-
ferent optimal control algorithms incorporating advanced mathema-
tical, traditional and hybrid methods. Due to the nonlinearity of the
power system, many optimization techniques have been developed to
solve this problem. Methods like dynamic programming [46], sto-
chastic dynamic programming [47] and mixed integer programming
[48] are already employed to solve optimal scheduling problems. But
these methods are highly complex and not suitable for real time sche-
duling of renewable reserves. Hence, new intelligent algorithms were
introduced to solve this optimization problem. Algorithms like genetic
algorithms [49–53], particle swarm optimization [54–56] and harmony
search algorithms [57,58] are used for optimal dispatching of renew-
able sources. The authors in [49,50] used chaotic quantum genetic al-
gorithm which borrows the quantum computing concept. Quantum bits
are used to encode the chromosomes. In order to improve effectively
the global search ability to get global optimal solution rather than local
optimal solution this algorithm used the quantum probability vector
encoding mechanism. The main objective function which are need to
optimize are generation cost values and green house emission cost. The
authors in [51] uses genetic algorithm (GA) with optimal power flow
(OPF) to minimize the active power losses. Optimal location and size of
wind turbines are determined through GA while OPF, nested in GA is
used to find optimal number of wind turbines. The objective function
that is minimized through GA is the annual active power loss. The
authors in [52] used GA for data optimization and then this optimized
data is used for the training of the neural network. Two parameters
temperature and irradiance are input data to GA and optimal voltages
are obtained. These optimized parameters are then used to train neural
network. However, these algorithms have some shortcomings. For ex-
ample lots of sensitive parameters are required and complex calculation
is needed. In these algorithms many iterations are performed to achieve
optimal solution which are not time efficient.

Different control algorithms have already been employed for optimal
day ahead load scheduling. Hybrid techniques incorporating hybrid
harmony search algorithm with differential evolution (HSDE) was im-
plemented in [58] for microgrid day ahead load scheduling. The algo-
rithm takes into account different constraints like state of charge of
battery, thermal capability of generator, voltage limits and power line
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capacity. Considering these constraints, the algorithm compiles and gets
an optimal solution through minimizing overall operation cost and bal-
ances the demand profile. The algorithm does not consider any un-
expected disturbances especially overloading state of power system as
depicted in Fig. 1. Furthermore if more constraints are presented then
algorithm gets more complex and number of iterations and time to get
optimal solution are increased. In case of severe overloading state in
power system the control algorithm in [58] takes more time to achieve
an optimal solution, which leads to the power system instability. In order
to tackle these deficiencies in [58] the proposed methodology includes
designing of fuzzy controller that stabilizes the power system network
even in case of power system network overloading. The response time of
the controller for unexpected disturbances is faster then that of control
algorithm in [58] hence reduces the chances of power system instability.
The controller also provide a real time energy management through
monitoring of real time demand profile and forecasted value by in-
corporating RERs in the power network as shown in Fig. 2.

Now, the second way is the integration of the controller directly to
the electric power network as shown in Fig. 2. The controller will take
action based on the errors arise due to forecasting method and variation
in demand profile, hence reduce the uncertainty of whether to dispatch
the reserve power into the network or not to avoid overloading cases.
This will increase the reliability and efficiency of the whole electric
power network. In this paper we use the second approach. Instability of
the power system and PQ disturbances are critical issues, which may
occur due to overloading and faults that can cause a significant effect on
the power system. Due to these disturbances, power system restoring
capability becomes weak, which makes it more vulnerable and sensitive
to any other variation in demand and supply profile. This paper aims to
identify the causes of occurrence of such disturbances, its effect on the
power system and how to compensate these disturbances through the
proposed methodology.

Load forecasting specially STLF and economical use of RERs are
ongoing challenges in the smart grid. STLF is performed using modern
forecasting techniques and load flow is controlled through the data
received from these techniques. To the best of authors, knowledge, this
is the first work that incorporates modern forecasting techniques and
controller to maintain load flow balance between demand and supply
based on forecasted errors data received due to these techniques. The
controller is implemented on the source side, which continuously track

the load with the passage of time to keep a balance between demand
and supply. This improves the reliability and efficiency of the whole
electric power network. In this paper, the behavior of the overloading
affects on normal transmission line and generation sources are in-
vestigated.

The key contributions of this paper are as follows.

1. STLF is performed using fuzzy logic in order to maintain balance
between supply and demand but excluding unexpected disturbances
like faults and overloading in power system network.

2. In case of these disturbances fuzzy controller is implemented in
closed loop to balance the actual and forecasted load profile.

3. Probabilistic model including variation and controller is developed
for STLF and is tested under fault and overloading modes.

The remainder of this paper is organized as follows. Section 2 in-
cludes the mathematical model of proposed algorithms in detail. Sec-
tion 3 includes result, discussion, and testing of the controller in dif-
ferent conditions. Section 4 concludes the paper.

2. Methodology

Reliability of a power grid is affected by many parameters and load
forecasting is one of them. Especially, due to integration of RERs which
are not that much reliable and more use of them can make the system
more vulnerable to the overloading. The proposed methodology com-
prises of two parts. Part first includes STLF using fuzzy logic approach
because it gives realization to real world incidents compared to the
complex mathematical algorithms. STLF using fuzzy logic involves less
calculation and easy comprehending. In addition to less complexity and
computation cost, it gives a nearly good approximation to actual values
hence, less MAPE and APE, respectively. Part second includes designing
of the controller by using the fuzzy logic. The controller is implemented
to continuously observe the state of the system, in other words, it
regularly monitors the load side real power with respect to time. Due to
any change in load, the control signal will be given to RERs to in-
corporate it in power networks. This will help the system to avoid
power system network overloading. Overloading effects on the power
system network will be more if the duration is longer. Due to excessive
overloading sometimes even if extra load is disconnected from the
system to maintain balance between demand and supply, power net-
work still becomes highly unstable. A power system network as a whole
becomes less reliable if overloading is not taken care off at the acquired
time. The power system is potentially vulnerable to any kind of unseen
disturbances. Similarly, a design algorithm will also be used for power

Fig. 1. Control algorithm.

Fig. 2. Controller in power network.
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system stability due to overloading and faults using probabilistic
modeling. That is, in case of disturbances, a decision in term of
switching of RERs on the source side will be performed.

Algorithm 1. Generation of control pulses under overloading

Algorithm 1 is used to facilitate stability analysis and power outage
in power system network in case of overloading and fault in over-
loading state. A decision is taken by giving control pulse to wind tur-
bine. Fuzzy controller is operated in closed loop that links load with
supply. Any randomness in demand is detected by controller and RERs
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will be operated to mitigate the variations. If (Os Os )n1 or if
(FOs FOs )n1 in both these scenarios a wind turbine operates, hence
optimal utilization of RERs. Also transients arise due to fault and
overloading in power system network. If proper remedial action is not
taken then these disturbances will damage power components as noted
in [2]. To show the effectiveness of the algorithm these cases also
verified through simulation results in Section 3.

The time complexity for the algorithm ifelse is of the order of one
O (1) means constant time complexity. However, as condition statement
for whileloop executed continuously up to n times then overall time
complexity of the Algorithm 1 is of order of nO n( ), which mean linear
time complexity. Here n does not mean that time complexity increase as
number of conditions increases but it means that state of the system is
continuously observed with respect to time. The algorithm in [58] is the
order of n2O n( )2 , which means quadratic time complexity. This clearly
shows that proposed methodology is better than algorithm in [58] in
terms of time complexity.

2.1. Mathematical model for STLF using fuzzy sets

There are various technical issues associated with RERs. Electric
power output from RERs mostly depends on certain conditions. In case
of wind power it has the advantage of no pollution and low generation
cost, the quality of the wind power is adversely affected by randomness,
fluctuation and intermittent nature of the wind speed. In addition, these
RERs are more vulnerable and sensitive to power quality (PQ) dis-
turbances especially when overloading of power system network oc-
curs. Because they cannot provide all of the power and must be used
occasionally. The authors in [45] performed load forecasting using
fuzzy logic and the authors in [44] used STLF using fuzzy logic and
ANFIS based on different parameters. Detailed mathematical model for
STLF is explained in this section. Fuzzy logic gives realization to real
values by assigning membership function to each input and output.
Membership functions have different ranges but all of them have the
same degree varies between 0 and 1. Closer the membership degree
value to 1, more the element belongs to the respective set and vice
versa. Two known parameter temperature (T) and humidity (F) are
used for forecasting the load (L). Temperature has two while humidity
and load have three membership functions each having different
ranges. These three parameters can be represented in the fuzzy set for
the operation because operations on sets are easy to compute. Gen-
eralized mathematical model for forecasting is as follows.

=T x µ x x µ x( , ( )), ( , ( )).A B1 1 2 2 (1)

For humidity, the fuzzy set equation becomes,

=H x µ x x µ x x µ x( , ( )), ( , ( )), ( , ( )).A B C1 1 2 2 3 3 (2)

Similarly, for forecasted load the fuzzy sets equation becomes,

=L x µ x x µ x x µ x( , ( )), ( , ( )), ( , ( )).A B C1 1 2 2 3 3 (3)

where x is the member elements of H T L, , having different range. The
µ x( ) shows the membership function in fuzzy sets H T L, , . In case of N
number of membership function, (1), (2) and (3) become:

= …T x µ x x µ x x µ x( , ( )), ( , ( )), , ( , ( )),A B n n n1 1 2 2 (4)

= …H x µ x x µ x x µ x x µ x( , ( )), ( , ( )), ( , ( )), , ( , ( )),A B C n n n1 1 2 2 3 3 (5)

= …L x µ x x µ x x µ x x µ x( , ( )), ( , ( )), ( , ( )), , ( , ( )).A B C n n n1 1 2 2 3 3 (6)

For both input and a single output, triangular membership functions are
used. The generalized form for triangular membership function is,

=
<

< <
µ

x a
a x m

m x b
x b

0

0

.A

x a
m a
b x
b m

(7)

where a b, and m are the lower limit, upper limit and mid value, re-
spectively. These limits will be different for each membership function.
The limits for the membership functions should be within the range of
the parameter used. Let’s take a simple rule and show how fuzzy set
operation will be performed in that case.

If H is low1 and T is low2 then L is low3. Where H T, and L are the
three parameters and low low1, 2 and low3 are the membership func-
tions. Let’s suppose µ µ,low low1 2 and µlow3 are the membership functions
then the fuzzy set operation will be,

=µ µ x µ x µ x( )( ) min[ ( ), ( )].low low low low1 2 1 2 (8)

It means the fuzzy set operation for the AND operator. For the operation
of the OR operator (8) becomes,

=µ µ x µ x µ x( )( ) max[ ( ), ( )].low low low low1 2 1 2 (9)

Which is for the fuzzification and antecedent part of the rule. For de-
fuzzification, we use the centroid method to get crisp output and also
easy to understand with less complexity. The crisp output is represented
as,

= =

=

F µ
xµ x dx

µ x dx
( )

( )

( )
,A

i

R

A

i

R

A

1

1 (10)

where R is the number of rules classify in the rule base. Variable x
shows the member element of the membership function µ x( )A , where
the rule will be triggered and integral shows the area under the mem-
bership function that is triggered. Eq. (10) is for continuous values. In
case of discrete state, (10) becomes,

= =

=

Z
µ x x

µ x

( )

( )
.i

n

A i i

i

n

A i

1

1 (11)

Different rules will be triggered depending upon the temperature and
humidity. These rules are the combination of the AND and OR operators
and on that basis, different mathematical steps will be followed. End
results will be forecast load as crisp values. As mentioned earlier fore-
casting always contains some error and there must be some counter-
measure to solve this problem. Error in forecasting can be calculated as
MAPE and APE. Combine these two terms can be represented as E for
error.

=APE actual i forecast i
actual

( ) ( ) 100%.
(12)

=
=

MAPE
n

actual i forecast i
actual i

1 ( ) ( )
( )

100%.
i

n

1 (13)

Fig. 3 shows demand response schematic as feedback control loop
system for controller modeling in case of disturbances. The controller
operates as closed loop system to continuously monitor power system
and able to take proper remedial action to maintain a balance between
demand and supply pattern. Provide a mechanism for optimal power
dispatchability in case of unseen disturbances. Terms regarding detail
in Fig. 3 are discussed in the next section.

2.2. Controller probabilistic modeling for overloading

Unseen incident and unexpected change in load variation make the
system unreliable and more vulnerable to overloading and faults. In
addition, this will cause serious damage to the whole power system
network. Therefore, the utility must take extra care for the unseen in-
cident and there must be some alternate way to solve the problems. A
closed loop control model for the power grid is formed with penetration

M. Ali, et al. Electrical Power and Energy Systems 113 (2019) 792–806

796



of fuzzy controller, overloading and faults. Overloading scenarios arise
due to penetration of the abrupt load on the power network. Generation
source does not have enough power to support such load due to which a
system might collapse. As a result, power transients may also occur.
This mostly happens when a utility designs a system without taking into
account the unexpected events and future load demand. In order to
analyze the future behavior of the power network due to overloading,
we consider the scenario of forecasted demand FD t( )f , forecasted
generation FG t( )f , error in forecasting E t( ) and applying controller.
Relation between demand and generation is,

= + +FG t FD t n E t( ) ( ) ( ).f f
r (14)

where nr is the nominal reserve and E t( ) is the error in the forecast.
Nominal reserve is supply from RERs through the controller to mini-
mize the effect of error and provide a balance between demand and
supply. Our main aim is the utilization of RERs in the efficient and
economic way. As control loop run continuously the parameter changes
in each interval, so (14) becomes,

= + +FG t FD t n E t( ) ( ) ( ).i
f

i
f

r i (15)

Similarly, in real time scenarios, we want actual demand AD t( )a to be
synchronized with forecasted demand with some variation R t( )v ,

= +AD t FD t R t( ) ( ) ( ).a f
v (16)

By incorporating the error term due to STLF, (16) becomes,

= + +AD t FD t R t E t( ) ( ) ( ) ( ).a f
v (17)

To continuously observe the power system, the control loop is im-
plemented as

= + +
=

AD t FD t R t E t( ) ( ( ) ( ) ( )).a

i

n

i
f

Vi i
1 (18)

where R t( )Vi is the randomness or deviation in the forecasted and actual
demand. We want balance between actual and forecasted demand and
that is possible only if R t( )Vi is reduced to zero. If E t( )i is kept to
minimum, then R t( )Vi will automatically be reduced. In that case,

=FG t FD t( ) ( ).f f (19)

Similarly, to address the actual generation real power generation is
equal to forecasted generation, a control parameter, randomness and
error term,

= + + +AG t G t R t E t FG t( ) ( 1) ( ) ( ) ( ).a
G i

F (20)

where G t( 1) is control parameter used to control the loop in order to
meet demand and response. R t( )G is the deviation factor and it is due to
some unwanted incident due to which E t( )i increases. As the system
work in closed loop (20) becomes,

= + + +
=

AG t G t R t E t FG t( ) ( ( 1) ( ) ( ) ( )).a

i

n

i Gi i i
f

1 (21)

The control parameter is of very significance. It must be very carefully
adjusted so that random parameter and error term are reduced. If in
case, randomness is reduced to zero then forecasted generation and
demand will be equal.

Moreover, shortage due to overloading can be expressed as fru-
strated demand F t( ), which is,

=F t Ex t AG t( ) ( ) ( ).a a (22)

Ex t( )a is the expressed demand and it is equal to:

= +Ex t R t AD t( ) ( ) ( ).a a (23)

where R t( ) is the returning demand. Returning demand occurs when
generation is not much and some of the load demand accumulates on
power system. Ex t( )a will be equal to AD t( )a if R t( ) approaches to zero
and is only possible if control parameters are accurately adjusted.

F t( ) occurs when,

>Ex t AG t( ) ( ).a a (24)

F t( ), will be more serious when uncertainty or error factor is included.
By combining error closed loop (20) becomes,

= +
=

F t Ex t AG t E t( ) ( ( ) ( ) ( )).
i

n

i
a

i
a

i
1 (25)

F t( ) will be fed back into power network but with some delay .
Combine both delay and F t( ) it will become backlogged demand R t( ).
As network operates in closed loop, the error approximation R t( ) will
be,

= +
=

R t Ex t AG t E t( ) ( ( ) ( ) ( )).
i

n

i
a

i
a

i
1 (26)

Similarly, the reserve can be expressed as,

=r t AG t Ex t( ) ( ) ( ).a a (27)

Excess power will be stored for worst scenarios and will be in reserve
state if,

>AG t Ex t( ) ( ).a a (28)

Considering the error factor and closed loop constraint (27) becomes,

= + +
=

r t Ex t AG t E t( ) ( ( ) ( ) ( )).
i

n

i
a

i
a

i
1 (29)

The boundary condition for r t( ) should be:

<r t n t( ) ( ).r (30)

Then increase supply through controller based on an error in fore-
casting to make r t( ) closer to n t( )r otherwise,

Fig. 3. Demand response closed loop system.
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>r t n t( ) ( ).r (31)

Then decrease the supply to make r t( ) closer to n t( )r . The ramping
constraints will be,

n t AG t G t r t( ) ( ) ( 1) ( ).r
a (32)

From (20), AG t G t( ) ( 1)a will be,

+ +n t R t E t FG t r t( ) ( ) ( ) ( ) ( ).r G i
F (33)

The problem is to avoid overloading and it can be achieved by mini-
mizing backlogged demand. This can be achieved by using a controller
that will reduce E t( )i so ultimately R t( )G will also be reduced, then (33)
becomes,

n t FG t r t( ) ( ) ( ).r
F (34)

From (14), FG t( )F can be synchronized with FD t( )F , so (34) can be
written as,

n t FD t r t( ) ( ) ( ).r
F (35)

By using a controller at an appropriate time, while countering the effect
of randomness in the load and error in forecasting, supply and demand
can be balanced.

3. Simulation results

In order to verify and evaluate the analysis, a series of simulations
were performed. The simulations were performed in MATLAB as a si-
mulation tool. This study proposes STLF for power system network
using fuzzy logic and design of fuzzy control for optimal utilization of
RERs. The main aim of this study is to provide a balance between de-
mand and supply profile during any disturbances. Here in this section, 9
Bus test system as shown in Fig. 4 is considered to check the effect and
validation of the proposed algorithm and deficiencies in STLF. Then to
verify the robustness of the proposed algorithm, 9 Bus test system will
be operated under different modes, in normal and in any disturbance
modes. Test system includes power plant of 2000MW that provides
major power. Wind turbine of 1000MW is used as a reserve source that
gets signal from the controller which contains variable load and
transmission network of 20 km each as depicted in Fig. 4.

The proposed study is based on a more general case in which an
impact on the power system is more than just normal fault. The pro-
blem under study is new from previous ones. As a result, proposed al-
gorithm is indirectly compared with STLF in [44,45] by including
variations in demand profile. As discussed in Section 1, the authors in

[45] performed STLF but excluding the uncertainties and operated on
constant data. As for the fuzzy control, direct implementation in power
network is new, however there are numerous amount of literature
about optimal control algorithm for RERs. Similarly, hybrid techniques
for the optimal day ahead scheduling of RERs were proposed in [58]
but the algorithm used was complex and involved larger number of
iterations to get an optimal solution for minimizing overall operational
cost of RERs.

In order to address the problem to improvise the deficiencies in
STLF of power network through fuzzy control, two types of case studies
are presented in this paper. To prove the robustness and reliability of
proposed algorithm, firstly STLF of power network by taking statistical
data from [44,45] is performed and deficiency to tackle unseen dis-
turbances have been visualized. Instability in real power pattern on
different buses due to variation in demand is demonstrated. The need of
controller to tackle overloading and fault scenarios can be clearly ob-
served. Secondly, the controller is designed and tested during dis-
turbances to further show the effectiveness of the proposed algorithm.
Initially, the balance between demand and supply is maintained
through the continuous spinning reserve. When overloading scenario
arise the controller will detect these variations and will mitigate them
by incorporating RERs in a power network.

3.1. Case 1: STLF using fuzzy logic and effects of overloading

Fuzzy logic has the advantage over the conventional method due to
robustness and ease in implementation because of the rule base. Fuzzy
logic is an effective tool to overcome power system problems such as
load forecasting, system planning, system control and power system
stability. Load forecasting involves many uncertainties, such as varia-
tion in temperature, humidity, seasonal variation, rainfall and week-
days with corresponding loads. The fuzzy logic approach will be more
suitable in these scenarios than numerical methods to determine values.

The fuzzy logic approach is more suitable to map the non-linear
relationship (using membership functions) between various weather
parameter and their consequences on corresponding demand pattern.
Two parameters of temperature and humidity [44,45] are used as an
input to fuzzy logic while forecasted load as an output in this study.
Between these two parameters temperature is the most important me-
teorological variable that brings major changes in the load curve. Effect
on the load is not uniform due to temperature variation. Increase or
decrease in temperature causes the use of air conditioner and heaters,
respectively [44,45]. Heat accumulates in the atmosphere because of

Fig. 4. 9 Bus test system.
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high temperature days consecutively and causes variation in peak de-
mand pattern. Fig. 5 shows temperature and humidity data for the year
2014.

STLF is performed using fuzzy logic base on historical data of
temperature and humidity. Variation in forecasted load that is output of
the system is observed based on the temperature and humidity fluc-
tuations. The membership functions for the corresponding input/output
are represented in figures given below. The two membership functions
for the temperature is shown in Fig.6 in which LT shows low tem-
perature and HT shows high temperature. Humidity has three mem-
berships functions shown in Fig. 7. These are LH for low humidity, MH
for medium humidity and HH for high humidity. The forecasted load
has also three memberships functions shown in Fig. 8, which are LL for
low load, ML for medium load and HL for high load. Among other
membership functions triangular membership function is chosen arbi-
trary for this study as is used in [44,45]. Various subsets of the fuzzy

sets have different ranges. Humidity can be best classified in (15–34),
(27–43), and (41–50) as LH MH, and HH, respectively. Temperature is
classified in (14–24), (21–36) as LT and HT, forecasted load is classified
as (0.5–1.5), (1–2) and (1.7–2.5) as LL ML, and HL.

Fig. 6. Membership function of temperature.

Fig. 7. Membership function of humidity.

Fig. 8. Membership function of forecasted load.

Fig. 5. Historical data of 2014.
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Fig. 9 shows a flowchart for STLF in which H and T are inputs to the
system. Output of the fuzzifier and fuzzy rule base enters into fuzzy
inference system where these rules are computed by using (11) and
gives out forecasted load. Table 1 shows the relation between fore-
casted and actual demand pattern corresponding to the change in T and
H for the year 2014. APE by using (12) is also calculated. Fig. 10 shows
the graphical representation of the tabulated data. As can be visualized
from the figure, actual load curve and the forecasted load curve have
almost a similar trend.

Load forecasting using reliable techniques are essential for STLF. In
this study STLF of power network using fuzzy logic is demonstrated that
produces appropriate results. However, forecasting is evaluated using

historical and statistical data without considering any disturbances
more specifically overloading and faults. To validate the efficiency of
the STLF, 9 bus test power system is operated under different scenarios.
The 9 bus test system includes one CSR with AG t( )a of 2000MW and
combine load of 300MW, 100MW on individual line. Fig. 11 shows
operation of the system under normal conditions. Respective real power
at Bus (B3), that is load side bus and at Bus (B1), that is source side bus
are shown.

AD t( )a may be more or less than AD t( )f and that deviation is due to
APE. If AG t( )a is more then it can produce balance between both the
AD t( )a and AD t( )f , which is possible in above scenario. Because the
network provide more power than needed. The behavior of the power
network in case of fault occurrence and its effect on B1 and B3 can be
visualized in Fig. 12. Fault effect at bus B7 and B9 which are source and
load buses of non faulty lines respectively, can be observed from
Fig. 13.

Symmetrical fault line to line to line (L-L-L) occurs for one second
from 10s to 11s. Due to which real power reduces to zero at B1, how-
ever at B3 negative power flows and corresponding line overloaded.
Once fault occured, system restoring capability is not that much weak
which is why system is capable to restore itself to original state with
some transients as depicted in Fig. 12. It is because of AG t( )a , which is
more than AD t( )a and help to reduce the R t( )v and E t( ) ultimately
equalizing FD t( )f and AD T( )a from (17) even though a fault occurs in
the power system network. The effect is more severe at B7 and B9 at
which transients are present within fault duration as shown in Fig. 13.
As the faulty line tripped during fault time there is an unbalance in
power distribution and load sharing on non faulty lines due to which
peaks in power at B7 and B9 is observed during the fault time. Variation
in current and voltage profiles can be observed in [59] during fault

Fig. 10. Graphical results for 2014.

Fig. 9. Flow chart for STLF.

Table 1
Actual and load forecasting for the year 2014.

H T Actual load (MW) Forecasted load (MW) APE%

18 18 1.05 1.25 19
24 20 1.15 1.25 8
26 20 1.15 1.25 8
26 22 1.4 1.25 10
30 23 1.45 1.53 5
37 31 2.1 2.25 7
45 27 2 1.7 15
43 25 1.9 1.7 11
43 24 1.6 1.7 6
43 25 1.7 1.7 0
26 22 1.4 1.25 10
16 16 1.1 1.25 14
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situation. However, system gets stable within 2 s after clearing the fault.
It means that restoring capability of a power network is at an optimum
condition.

Power system operation under full load can be visualized in Fig. 14.
From 0 s to 5 s system is operated under normal state with AD t( )a of
300MW while AG t( )a is of 2000MW. From 5 s to 11 s additional de-
mand of 1700MW falls on the network. Now total AD T( )a is of
2000MW and AG T( )a is of 2000MW, so AD t( )a is equal to AG t( )a and
system is operated under full load as depicted from Fig. 14. Initially
there is some negative power flow in the network because of sudden
extra demand of 1700MW but the system restores itself to this fluc-
tuation because demand and supply are equal. When full load operation
is clear at 11 s system stabilize itself within 4s with little bit of tran-
sients which shows that system is still operating in optimal way.

3.2. Overloading and fault scenarios

The operation of the power network under fault state will cause
serious consequences to the power system components. Recovery

measure to compensate for the loss in case of fault scenarios is also an
important research issue. Making a reliable algorithm in advance for
fault modes will greatly reduce losses in the power system network in
state of any disturbances.

The situation will be more severe if overloading occurs in the power
system network, only if one of the generation sources, trips or some
heavy industries switch into the power network. To mitigate any kind of
disturbances, protective system must operate at the right time.
However, if circuit breaker operates at multiple time slot in overloading
state, transients generate, which will ultimately lead to the fault mode.
Instability issues arise due to these disturbances in power network
hence reduces restoring capability of the network. Deficiencies in STLF
using fuzzy logic in [44,45] is that, the authors did not consider these
disturbances due to which real demand pattern differed than forecasted
demand pattern. Effects of these disturbances and error margin on STLF
can be clearly demonstrated from Table 2 that contains the same
parameter as Table 1 but with variable termV T( ). Those variations can
be easily observed in Fig. 15.

In case when one of the feeders trips or a fault occurs on one of the

Fig. 11. Normal operation of the system.

Fig. 12. System operations under fault.
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lines then corresponding feeders and line will be overloaded and an
unbalance in power distribution will occur. Due to unexpected dis-
turbance, the current demand on power system network deviates more
than forecasted and actual demand as shown in Fig. 15. The proposed
control algorithm will detect these changes to incorporate RERs that
provide extra power needed by the network. This will make the current
demand profile to match with forecasted and actual demand hence
reducing APE and providing real time power management of a power
system network. In order to validate the above statement and to vi-
sualize the deficiencies in STLF of power network, 9 bus test system is
operated under different scenarios. Operation of the power system
network under overloaded state is depicted in Figs. 16, 17. B1 and B2
are in the overload condition as illustrated in Fig. 16, while its effect on
normal B7 and B9 is shown in Fig. 17. AG t( )a is the same as in the
normal operation of 2000MW and combine load of 300MW and
100MW on individual line which is AD T( )a . However additional
variable load R t( )v of 2000MW falls on the network from 5 s to 11 s due
to E t( )i . E t( )i causes AD T( )a deviate more than FD T( )f . Now the total
demand is 2300MW including AD t( )a which is 300MW and R t( )v
which is 2000MW on power system network while AG t( )a is of
2000MW. R t( )v and E t( )i make FD t( )f deviate more than AD t( )a from
(17). Power system network can support little bit of the transients,
however extra demand of 300MW is too much for the network to
handle, which is why overloading scenario arises.

As mentioned overloading of power system network occurs on
single line containing B1 and B3 while other lines operate under normal
circumstances. In normal situation the network operates in optimum
state through equal sharing of the power as load on individual lines are
same hence balanced system. But as R t( )v of 2000MW falls on B3 due to

E t( )i the power distribution gets disturbed and the relationship between
AG t( )a and FG t( )f are also disturbed as shown in (21). As noted B7
needs a little power to support its load of 100MW so the excess power
will be drawn by B1 to support the R t( )v at B3. Which is why increase of
supply profile at B1 is observed as shown in Fig. 16. Even though B1
draws power from the network it is still unable to mitigate the over-
loading and to handle the extra demand because AG t( )a is still the same
2000MW. As a result, power at B7 reduces, hence unable to support its
own load of 100MW. Therefore overloading occurs at B7 and B9 also,
which is shown in Fig. 17. As variable load is removed at 11s, there are
transients present in the network and power network takes time to
stabilize.

The scenario will be more severe if fault arises in overloading
condition. System operation under these disturbance are shown in
Fig. 18. Overloading occurs from 5s-11s and fault for the duration of 1s
from 7 s to 8 s. Electric power network response at B1 and B3 are ob-
served.

It can be clearly visualized from Fig. 18 that how dangerous over-
loading plus fault in power network is. FD t( )f deviates more than ex-
pected forecasted value due to E t( )i . Even though variable load is re-
moved at 11s and system wants to stabilize itself for few seconds
onward but unable to do so. It is mostly due to faults in power network
that make the system more vulnerable and less reliable. Thus it causes
instability and system restorability issues. Due to R t( )v and E t( )i , the
AG t( )a does not meet the AD t( )a and also due to E t( )i , the FG t( )f

cannot be easily determined. FG t( )f depends upon FD t( )f and E t( )i as
in (15). Due to unexpected disturbance, transients are observed on both
buses B1 and B3 which will make serious damage to power system
equipments. The authors in [44,45] performed STLF excluding un-
expected disturbances and countermeasure to such cases if these sce-
narios arise.

3.3. Case 2: Control design to avoid overloading

An optimum way of performing STLF in power system network was
proposed in [44,45]. The only drawback is that authors did not include
variation in load profile due to which deviation occurred between
generation and demand response pattern. These limitations are clearly
visualized in Case 1. Previously several algorithms were already im-
plemented to tackle this problem. Authors in [58] minimize the ob-
jective function to provide an optimal power dispatch in a microgrid.
However, to mitigate uncertain load variations due to unexpected dis-
turbances in power system, there is still certain deficiencies present in
the literature. In order to address these deficiencies, the proposed
model in Case 2 utilizes fuzzy controller to continuously monitor the
real power at load buses. This fuzzy controller senses any unexpected
variations in load and gives feedback control signal to RERs. This will
optimize the power system network in terms of compensation of

Table 2
STLF with variable term V T( ).

H T Actual load
(MW)

Forecasted load
(MW)

APE% Variation in load V T( )
(MW)

18 18 1.05 1.25 19 1.05
24 20 1.15 1.25 8 1.15
26 20 1.15 1.25 8 1.15
26 22 1.4 1.25 10 1.4
30 23 1.45 1.53 5 6
37 31 2.1 2.25 7 5
45 27 2 1.7 15 6
43 25 1.9 1.7 11 7
43 24 1.6 1.7 6 3.5
43 25 1.7 1.7 0 1.6
26 22 1.4 1.25 10 1.7
16 16 1.1 1.25 14 1.7

Fig. 13. Effect of fault on normal line load.

Fig. 14. System operation under full load.
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uncertain loads. All three input have same membership function while
individual input has two membership functions with norm stand for
normal and flt stand for overloading case as shown in Fig. 19. Whereas
output has two membership functions with on and off states for dis-
turbance and normal condition, respectively as presented in Fig. 20.

In real power system, in order to make the system to work in stable
and optimum way, operator in power center needs to take urgent de-
cisions to take emergency corrective measures in case of any dis-
turbances. Different control algorithms are implemented in [58] for
optimal day ahead scheduling of RERs and are tested under dis-
turbances to validate the algorithms. However, existing algorithms for
eliminating fault involves, highly complex, highly specific and time
consuming mathematical operation and also overloading of the power
system network is not considered in control algorithms. Also, the con-
trol algorithm in [58] which uses HSDE exclude the real time man-
agement and optimization of the power system network. The case
where actual demand exceeds more than the AG t( )a or the case where

AD t( )a is less than scheduled generation is not considered. The mi-
crogrid will utilize all scheduled RERs even though AD t( )a is not that
much hence not optimal utilization of the RERs. The proposed control
algorithm in this paper will provide real time energy management
through optimal utilization of RERs through fuzzy control approach. In
this study, controller base on fuzzy logic approach is proposed that
takes decision in least expected time. In doing so, emphasis is given to
power flow control and optimal dispatched of RERs in order to prevent
overloading failure. To show the effectiveness and superiority of the
proposed control algorithm the proposed model is tested when fault and
overloading occur simultaneously in power system and result are being
compared with another competitive algorithm proposed in [58] as vi-
sualized from Fig. 22. Moreover our control algorithm also counters the
deficiencies in STLF which were not mentioned in [58]. The proposed
model under overloading scenario is depicted in Fig. 21.

Overloading occurs from 13 s to 19 s for total of 6s. Control pulse is
generated at exact same time on which overloading occurs. However, to

Fig. 15. Actual and forecasted load with variation in load.

Fig. 16. System operation under overload condition.
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show the effectiveness of the controller in mitigating the disturbance
for the stability of the electric power network, time constraint is added
that gives a control pulse to wind turbine in 1s delay time as shown in
Fig. 21. AG t( )a is of 2000MW while AD t( )a is 2300MW due to that
300MW, extra demand occurs. To achieve balance between demand
and supply pattern, generated control pulse will be fed to wind turbine
of 1000MW, which gives the excess supply to network at emergency
state in this case, which is 300MW of extra power needed by power
system network. Through optimum utilization of RERs, stability is
achieved within 2 s approximately. Due to fast response time of fuzzy
control the system get out from overloading state within 1.5 s with
negligible transients. As overloading is clear at 19s the controller au-
tomatically disconnect the RERs from the network to reserve the excess
power for future use. The proposed control algorithm operates under
closed loop to continuously observe any state of abnormalities in power
system to increase the reliability of the power system network.

For further evaluation of proposed algorithm, power system net-
work is operated under fault plus overloading condition. The proposed
model is compared with another algorithm in [58] as shown in Fig. 22.
Due to transients, a fault state arises and is from 13.2 s to 13.8 s and an
overloading state is also present from 13 s to 22 s. Fault state clears at
13.8 s but overloading condition is still present in network. Controller
will sense these disturbances and incorporate RERs to clear overloading
state soon after fault is removed. As visualized from Fig. 22, there are
some transients present due to the fault but system stabilizes within 2.5
s. Increase in power at the source bus clearly shows that RERs are in-
corporated to the network. The overloading is cleared at 22 s and RERs
will be automatically disconnected by controller to ensure optimal

Fig. 19. Membership function for inputs.

Fig. 20. Membership function for output.

Fig. 21. System operation under proposed algorithm in overload condition.

Fig. 22. Proposed method under fault and overloading with existing algo-
rithms.

Fig. 17. Overloading effect on normal line loads.

Fig. 18. System operation under fault and overload.
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utilization of RERs and system will come to its normal state within 3 s,
hence no surplus power from RERs, which results in optimum utiliza-
tion of RERs. While the algorithm proposed in [58] stabilizes the system
faster in normal mode but in case of disturbances like fault it will take
more time to find optimal solution and to stabilize the system. The more
the system will take time to stabilize the more it will harm the power
system network. Power system network is operated under different
states as depicted in Figs. 21 and 22, which clearly shows the effec-
tiveness of proposed algorithm in mitigating deficiencies in STLF and
control algorithm in [44,45,58].

4. Conclusion

The objective of this research work is to show that a fuzzy logic
based controller is highly suitable in mitigating disturbances due to
variation in STLF. The problem is formulated to optimize RERs’ usage to
increase reliability of the power system network. An effective fuzzy
control approach is adopted to detect any randomness in the power
system due to the occurrence of overloading and faults. This modeling
technique provides balance between demand and supply pattern in an
efficient way. The effectiveness and validity of the proposed controller
are tested through a 9 Bus system. The optimal result are compared
when electric power system that are operated without considering
variation in demand profile and with other proposed algorithms.
Results show that proposed algorithm is reliable under normal as well
as disturbances modes. From the results it is concluded that due to the
fast response time of the controller towards unexpected disturbances,
the system gets stable in less time as compared to the other algorithms.
This research work can be further extended to the cascaded overloading
failure and energy management system of the smart grid in case of these
disturbances and STLF using extreme machine learning under un-
expected disturbances.
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