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A B S T R A C T

Optimizing the power demand for smart home appliances in a smart grid is the primary challenge faced by
power supplier companies, particularly during peak periods, due to its considerable effect on the stability of a
power system. Therefore, power supplier companies have introduced dynamic pricing schemes that provide
different prices for a time horizon in which electricity prices are higher during peak periods due to the high
power demand and lower during off-peak periods. The problem of scheduling smart home appliances at ap-
propriate periods in a predefined time horizon in accordance with a dynamic pricing scheme is called power
scheduling problem in a smart home (PSPSH). The primary objectives in addressing PSPSH are to reduce the
electricity bill of users and maintain the stability of a power system by reducing the ratio of the highest power
demand to the average power demand, known as the peak-to-average ratio, and to improve user comfort level by
reducing the waiting time for appliances. In this paper, we review the most pertinent studies on optimization
methods that address PSPSH. The reviewed studies are classified into exact algorithms and metaheuristic al-
gorithms. The latter is categorized into single-based, population-based, and hybrid metaheuristic algorithms.
Accordingly, a critical analysis of state-of-the-art methods are provided and possible future directions are also
discussed.

1. Introduction

In the power sector domain, the “Age of Electricity” started in 1896
when hydroelectric power from Niagara Falls was transmitted to
Buffalo City, USA. By the end of World War II, the “Atomic Age” began.

This period focused on technologies for building and installing power
plants that use nuclear power to generate electricity with the lowest
cost. At present, we have entered the “Energy Age,” wherein the de-
mand for energy is increasing due to the multitude of appliances that
require a huge amount of power to operate. Old power grids are
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currently facing this major challenge because of the primitive nature of
their infrastructure that fails to fulfill the user requirements [1].

To overcome such challenge, researchers have become more inter-
ested in smart grids (SGs) instead of the old power grids to be able to
meet the user requirements [2].

SGs are next-generation power grids that can improve efficiency,
safety, control, and reliability by upgrading management and dis-
tribution systems of old power grids. The key to these improvement is
bi-directional communication between power supplier companies
(PSCs) and their users; such communication allows PSCs to send power
flow to users and obtain their feedback [3]. The feedback allows PSCs to
anticipate the power consumption of users in upcoming periods. In
addition, SGs are incorporated with new technologies, such as ad-
vanced software for data management and intelligent controllers, to
enhance the delivery network [4].

SGs can update their distribution systems to become more efficient
by deploying renewable energy sources (RESs) to generate power. RESs
play a pivotal role in reducing reliance on fossil fuels to generate power.
Accordingly, RESs decreases carbon emission and its impacts on the
environment [5].

The primary objectives of SGs are to make a power system efficient,
reduce power demand during peak periods, and minimize the cost of
power production. Optimizing the power consumption of users plays a
lead role in achieving the objectives of SGs. Reducing their electricity
bill (EB) is the major benefit gained by users in optimizing their power
consumption [6]. The power consumption of users can be optimized by
scheduling their smart appliances operating time in their smart homes
and shifting the load from peak to off-peak periods using the dynamic
pricing scheme discussed in Section 4.2. This optimization problem is
called the power scheduling problem in a smart home (PSPSH). PSPSH
is formulated as an optimization problem to find the best schedule for
smart appliances from all feasible schedules. Therefore, several opti-
mization algorithms have been adapted to handle PSPSH [7–9].

Research in PSPSH began 10 years ago. Several surveys have been
conducted during this period [4,5,10,11]. PSPSH has been classified
and surveyed in different ways. The authors of [4] conducted a survey
based on objective functions, including the maximization of social
welfare, minimization of electricity cost, minimization of aggregated
power consumption, minimization of aggregated power consumption
and electricity cost, and minimization of aggregated power consump-
tion and maximization of social welfare. In Ref. [5], the authors con-
ducted a survey based on user interactions, optimization approach, and
time scale.

In this survey, the methods used to address PSPSH are classified into
two classes; (i) exact algorithms and (ii) metaheuristic algorithms. The
latter is classified into local search-based, population-based, and hybrid
metaheuristic algorithms, which are discussed in Section 5.

Several papers on this subject have been published within the last
10 years by renowned publishers, such as IEEE, Springer, Elsevier,
MDIP, and others. The numbers of publications about PSPSH are pro-
vided in Fig. 1, with the distribution based on the publisher.

The structure of this survey is as follows. In Section 2, SG is defined
in terms of communication, security, and optimization. The illustration
of the features, goals, and system model of SGs is also provided in this
section. An overview of a smart home is presented in Section 3. A smart
home is defined to show its impact on PSPSH. In addition, a smart home
system is modeled and described. A comprehensive definition of PSPSH
and its constraints are provided in Section 4. PSPSH formulation, mo-
tivational schemes (e.g., dynamic pricing schemes) used in PSPSH to
motivate users to schedule their smart home appliances, and the data-
sets used in most of the literature are also discussed. In Section 5, the
optimization methods used to handle PSPSH are summarized to present
their objectives, contributions, and gaps. Lastly, this survey is con-
cluded with a comprehensive summary in Section 6.

2. Smart grid (SG)

The term (grid) traditionally refers to an electrical system that
supports various electrical operations, such as electricity distribution,
transmission, generation, and control [3].

SGs are considered the next-generation power grids; they were in-
troduced to overcome the limitations and inefficiency of traditional
power grids [5]. SGs provide new technologies to improve power dis-
tribution systems, power delivery efficiency, and system safety and
reliability [3,12,13].

2.1. Definitions of smart grid

SG has been defined differently in various literature.
US Department of Energy [14] defined the SG as:
“A smart grid uses digital technology to improve reliability, se-

curity, and efficiency (both economic and energy) of the electric system
from large generation, through the delivery systems to electricity con-
sumers and a growing number of distributed-generation and storage
resources”.

According to James Momoh [15] the SG was defined as:
“The smart grid is an advanced digital two - way power flow power

system capable of self - healing, and adaptive, resilient, and sustainable,
with foresight for prediction under different uncertainties. It is
equipped for interoperability with present and future standards of
components, devices, and systems that are cyber - secured against
malicious attack”.

Briefly, SG is defined as a power grid that provides bi-directional
communication between PSCs and users in smart homes. Through SGs,
PSCs obtain feedback from users and apply it to control and optimize
the usage of available power to achieve high performance in power
delivery and meet the power requirements of users.

2.2. Benefits and goals of smart grid

The SGs exhibit considerable advantages in distribution networks
not only in changing the lifestyle of modern society but also in avoiding
the shortcomings of old power grids. The major advantages that oblige
PSCs to update old power grids and their distribution systems to SGs are
summarized as follows [13,16]:

• Improve the quality and reliability of electrical power systems

• Enhance the efficiency and capacity of the electric power systems

• Reduce the overall cost of delivering power to users

• Reduce the EB of users by applying new approaches

• Enable new power sources to reduce carbon emission levels

• Reduce the consumption of fossil fuels in generating power

• Improve communication between PSCs and users

Fig. 1. Number of publications about PSPSH per publisher.
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2.3. Features of smart grid

Achieving system efficiency and meeting power demands of users
are the primary objectives of SGs. SGs have many features that help
achieve their optimal use. These features are described as follows
[16,17]:

• Smart Meter: a device that measures power consumption in smart
homes and makes users aware of their power consumption.
Meanwhile, it helps PSCs by providing information about user
consumption to achieve load power balance. Therefore, the smart
meter is the most critical mechanism in SGs.

• Demand-side Management (DSM): it allows PSCs to encourage
their users to modify their electric power consumption profile and
reduce power consumption during peak periods or shift their con-
sumption load from peak to off-peak periods to flatten their con-
sumption curve using the demand response (DR) program. The DR
program is in charge of providing dynamic pricing schemes (i.e., the
price of electricity is changing throughout a time horizon) or other
incentive schemes.

• Bi-directional Communication: two-way communication between
PSCs and users to send power flow and receive information for
control and feedback.

• Integration of Distributed Generation Resources: it maintains
the balance of distributed energy resource systems during peak
periods and engage RESs at points of appropriate interconnection.

• Energy Storage Devices: storage devices in SGs contribute sig-
nificantly to reducing pressure on SG's distributed systems during
peak periods by storing power during off-peak periods and then
using the stored power during peak periods.

• Distribution Automation: a mechanism that helps and improves
power system reliability by detecting faults and restoring power
lines after interruptions from control centers.

• Multiple Sensors: sensors are equipped with a power line that helps
pinpoint a problem's location.

• Self-healing: SGs can repair simple problems without technician
intervention. For damaged infrastructure problems, SGs can send a
full report regarding the problem to technicians.

• Self-monitoring: SGs are monitored automatically, and thus can
manage power distribution systems and troubleshoot outages
without technicians.

2.4. Traditional power grids versus smart grids

Many challenges affirm the incapability of traditional power grids to
meet power demand of users effectively while SGs are advancing into a
new level of distribution and power transmission. Table 1 compares

between SGs and traditional power grids.

2.5. Smart grid system model

SG comprises PSC (data center), power generators, intelligent
nodes, data network, energy network, and smart homes or buildings.
The general infrastructure of SG is presented in Fig. 2.

The data network and energy network are key factors in SG that are
regarded as its nervous system due to their function in connecting PSC
with the other components of SG and exchanging data and energy be-
tween them. The intelligent nodes use remote monitoring to manage
the distribution of power generated by power generators (e.g., solar
plants, offshore wind farms, power-heat coupling units, and fossil fuel
based power plants). PSC (data center) is typically operated to super-
vise transmission and distribution operations. These components of SG
assume full responsibility for managing all operations accurately from
power generation to power consumption [12].

3. Smart homes

A smart home is one of the technologies that serve residents. It in-
corporates residential houses with smart technology to improve the
comfort level of users (residents) by enhancing safety and healthcare
and optimizing power consumption. Users can control and monitor
smart home appliances remotely through the home energy management
system (HEMS), which provides a remote monitoring system that uses
telecommunication technology [18].

HEMS comprises hardware and software that allows users to effi-
ciently manage their power consumption by controlling smart home
appliances operation time, as discussed in Section 3.2. Several studies
have proposed different architectures for HEMS and discussed how
HEMS provides benefits in terms of improving safety and healthcare
and solving PSPSH to optimize power consumption and improve the
efficiency of power systems [8–10,19].

3.1. Definition of smart home

A smart home has been defined in several ways based on its fea-
tures.

Lutolf in Ref. [20] defined a smart home as:

“The smart home concept is the integration of different services
within a home by using a common communication system. It assures
an economic, secure and comfortable operation of the home and
includes a high degree of intelligent functionality and flexibility”.

According to Alam in Ref. [18] a smart home is defined as:

“An application of ubiquitous computing that is able to provide user

Table 1
Comparison between SGs and traditional grids.

Traditional grids SGs

Characteristic Description Characteristic Description
Electromechanical

technology
No communication between devices in a grid. Digital technology Facilitate remote control by improving communication between

devices in a grid.
One-way communication Communication between PSCs and their users one-

way.
Two-way
communication

Communication between PSCs and users is two-ways, i.e., from/to
companies and users.

Centralized generation Power is generated and distributed from main
power plants to users.

Distributed generation Power is generated and distributed from multiple power plants and
substations to limit blackouts.

Few sensors Power lines are equipped with few sensors. This
condition increases the difficulty in determining a
problem's location.

Multiple sensors Multiple sensors are equipped with a power line that helps
pinpoint a problem's location.

Manual restoration Technicians are needed to repair the failures of a
power system.

Self-healing SGs can repair simple problems without technician intervention.
For damaged infrastructure problems, SGs can send a full report
regarding the problem to technicians.

Manual monitoring A power distribution system is monitored
manually.

Self-monitoring SGs are monitored automatically, and thus can manage power
distribution systems and troubleshoot outages without technicians.
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context-aware automated or assistive services in the form of ambient
intelligence, remote home control or home automation”.

Berlo et al. in Ref. [21] defined a smart home as:

“A home or working environment, which includes the technology to
allow the devices and systems to be controlled automatically, may
be termed a smart home”.

Accordingly, a smart home can be defined as a place of residence
incorporated with technologies, such as smart appliances, which are
controlled remotely through HEMS to make the life of residents more
comfortable and safe and to optimize power consumption.

3.2. Smart home model: home energy management system (HEMS)

As mentioned earlier, SG has three major parts, including PSC and
generator component, the communication component, and the user
component.

For the user component, a smart home should be equipped with
HEMS, which comprises hardware and software, particularly the smart
meter. This device is in charge of sending/receiving signals to/from the
PSC. The PSC can send dynamic price signals through the data network
to the smart meter. The smart meter will then send the dynamic price
signals to the energy management controller (EMC) and return user
feedback to the PSC. The EMC is considered the heart of HEMS. It is in
charge of the connection and exchange of data among HEMS compo-
nents through the home gateway. The EMC connects to smart home
appliances through sensors installed in the appliances and to users
using mobile applications. Fig. 3 shows the HEMS components.

The scheduling process in HEMS can start once HEMS receives the
dynamic price signals from the PSC and the appliances scheduling in-
formation from the user, such as the valid scheduling periods for ap-
pliances, the time required by appliances to complete their operation
cycle, and the power required by each appliance.

4. Power scheduling problem in smart home (PSPSH)

A comprehensive definition for scheduling was put forward in Ref.
[22]:

“Scheduling is the allocation, subject to constraints, or resources to

objects being placed in space-time, in such a way as to minimize the
total cost of some set of the resources used”.

The primary purpose of creating a schedule is to organize people's
lives, activities, and work without interruptions while still being able to
perform on time. Scheduling problems are encountered in different
fields or domains, such as the bus scheduling problem [23], flow shop
scheduling problem [24], job shop scheduling problem [25], and power
scheduling problem [7,9].

The power scheduling problem is a problem that involves allocating
a set of machines (e.g., home appliances, industrial devices) to a time
horizon in accordance with a set of constraints. PSPSH is a problem of
scheduling the operations of smart home appliances at appropriate
periods in a predefined time horizon in accordance with a set of con-
straints and a motivational scheme to reduce the values of EB and peak-
to-average ratio (PAR) and improve the satisfaction level of users.

The motivational schemes motivate users to reduce their power
consumption during peak periods by shifting the load to off-peak per-
iods and balancing the power demand during a time horizon.
Motivational schemes are developed by PSCs on the basis of a technique
called DR, which is discussed in Section 4.2.

Fig. 2. General infrastructure of SG [12].

Fig. 3. HEMS components [7].
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This scheduling problem should be implemented in accordance with
several constraints, which are typically divided into two types [26]:

• Hard Constraints. This type of constraints must be essentially sa-
tisfied in the scheduling solution to be feasible. For example, each
home appliance must be scheduled to operate at its allowable
period.

• Soft Constraints. The satisfaction of soft constraints in the sche-
duling solution is not essential but desirable. For example, a home
appliance may be scheduled to operate in the beginning of its al-
lowable period to finish its operation as soon as possible.

4.1. PSPSH model

A comprehensive formulation for the PSPSH model and objective
functions are provided in this section. Different formulations have been
provided in the literature, including complex and direct formulations.
Therefore, a uniform, coherent, and simple formulation for PSPSH is
presented in this section. The proposed formulation is described and
defined for a single user. However, it can be easily adapted to multiple
users.

4.1.1. Power consumption calculation
In PSPSH, the scheduling time horizon for the operating time of

home appliances is typically divided into number of time slots (z-time
slot per hour); therefore, the length of time slot t is formulated as

=t
z

60 ,
(1)

The allowable scheduling time horizon T for home appliances to be
scheduled is represented in Eq. (2):

= …T t t t t[ , , , , ],n1 2 3 (2)

where t1 is the first time slot in T, tn is the last time slot in T, and n
denotes the maximum number of time slots in T.

The power consumed by an appliance at each time slot is re-
presented as follows:
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where pi
j is the power consumed by appliance i at time slot j. Appliance

i belongs to appliances S vector. Vector S is represented as follows:

= …S s s s[ , , , ],m1 2 (4)

where s1 is the first appliance in S, sm is the last appliance in S, and m
denotes the maximum number of appliances in S.

As discussed in Section 3.2, users have to provide appliances sche-
duling information, such as the allowable periods for the appliances to
be scheduled (Operation Time Period (OTP)) and the time required by
the appliances to finish their operation cycle (Length of Operation Cycle
(LOC)). OTP contains two vectors, namely, a starting period vector,
such as = …OTPs OTPs OTPs OTPs( , , , )m1 2 , and an ending period vector,
such as = …OTPe OTPe OTPe OTPe( , , , )m1 2 . Notably,
( < ∀ ∈OTPs OTPe i S,i i ).

LOC is represented as a vector that contains the LOC for each ap-
pliance, such as = …LOC l l l( , , , )m1 2 . Furthermore, considering that the
starting operation time for appliance i is Sti and the ending operation
time for the same appliance is Eti; therefore, = −l Et Sti i i. The St and Et
vectors for all appliances are represented by Eqs. (5) and (6):

= …St st st st[ , , , ],m1 2 (5)

= …Et et et et[ , , , ],m1 2 (6)

The aforementioned time parameters (i.e., OTPs OTPe LOC St, , , ,

and Et) are illustrated in Fig. 4.
As mentioned earlier, the primary objectives of solving PSPSH and

scheduling smart home appliances are EB and PAR minimization and
user comfort (UC) level maximization. In the literature, UC level is
evaluated on the basis of waiting time for smart home appliances. These
objectives and parameters are formulated and discussed in the sub-
sequent sections.

4.1.2. Electricity bill (EB)
Minimizing EB is one of the objectives of scheduling to reduce the

cost of power consumed by users. The formulation for calculating EB
through T is as follows:

∑ ∑= ×
= =

Cost p pc ,
j

n

i

m

i
j j

1 1 (7)

where pc j is the price of electricity at time slot j. Electricity price (EP)
must be received from the PSC and is generated on the basis of the DR
program, as mentioned earlier.

4.1.3. Peak-to-average ratio (PAR)
PAR denotes the ratio of the maximum power demand to the

average power demand. The value of PAR can be calculated using Eq.
(8):

=PAR P
P

,max

avg (8)

where

=
∑ =P

P

n
,avg

j
n j

1

4.1.4. User comfort (UC) level
Maximizing the UC level is one of the objectives of PSPSH. The UC

level can be evaluated on the basis of the waiting time rate (WTR) of the
operation of appliances. Reducing WTR can improve the UC level be-
cause users typically prefer starting the operation of their smart home
appliances without delay [7].

The UC level based on WTR is formulated for appliance i as follows:

= −
− −

∀ ∈ SWTR st OTPs
OTPe OTPs l

i, ,i
i i

i i i (9)

Notably, the value range of WTR is between 0 and 1; the value is
near 0 if the UC level is high and 1 otherwise.

The average WTR for all smart home appliances can be calculated
using Eq. (10):

=
∑ −

∑ − −
=

=
WTR

st OTPs
OTPe OTPs l

( )
( )

,avg
i
m

i i

i
m

i i i

1

1 (10)

Fig. 4. Illustration of time parameters [7].
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4.2. Demand response (DR)

DR refers to user response to modifying electric power usage in the
basis of dynamic EPs or other incentive methods to improve the effi-
ciency and reliability of a power system. The DR technique has two
types of programs, including incentive-based programs and time-based
pricing schemes (dynamic prices) [6].

4.2.1. Incentive-based programs
Incentive-based programs include those that offer fixed or varying

incentives to users to reduce their power usage during stressed or peak
periods of a power system. Notably, users response to these programs is
optional. However, several programs penalize users if they break the
contract when events are declared. Incentive-based programs include
interruptible/curtailable (I/C), direct load control (DLC), capacity
market program (CMP), and emergency DR programs (EDRPs) [4].

1. Direct Load Control (DLC)

This program permits PSCs to remotely turn off appliances in a
smart home. Such control is feasible through switches placed within the
premises of smart homes that allow PSCs to communicate directly with
appliances. Incentive payments are given in advance to users who
participate in DLC, to motivate them to maintain their power con-
sumption within predefined thresholds [4].

DLC has been used in several studies, particularly in residential
areas. For example, DLC was adopted in Ref. [27] to control two types
of appliance in a smart home. These appliances were used in the si-
mulation results to evaluate the DLC scheme in terms of reducing power
demand during peak periods.

2. Interruptible/Curtailable (I/C)

I/C is a program that offers advanced incentives, such as rate dis-
count or bill credit, to motivate users to curtail part of their total power
consumption to reduce load during peak periods [4]. However, several
penalties will be imposed to users who do not respond to I/C terms and
conditions. The authors of [28] presented several scenarios in the Ir-
anian power system grid in 2007 using a numerical model to evaluate
and analyze the impact of the I/C program.

3. Emergency DR Program (EDRP)

EDRP motivate users to reduce their power consumption during
peak periods by providing an incentive payment. The EDRP program
has been applied to a New York electricity grid. Participants in this
program can reduce their power consumption during emergency (peak)
periods, and the EDRP will send them payment [4].

4. Capacity Market Program (CMP)

CMP is offered to users who provide a predefined power con-
sumption curve to predict the power required to be generated. In
general, CMP participants will receive a notification one day before that
they have to contribute to reducing power consumption [4,29]. More-
over, users receive incentive payment even if they are not asked to
curtail their power consumption.

4.2.2. Time-based pricing schemes
Time-based pricing schemes allow users to choose periods of using

home appliances in accordance with EPs without curtailing power
consumption. Time-based pricing schemes (dynamic price) provide
different prices in a day, with higher prices during peak periods due to
high power demand. This situation obliges PSCs to use additional power
plants to meet user requirements. However, PSCs provide low EPs
during off-peak periods [6]. The goal of these schemes is to encourage

users to shift their load from peak to off-peak periods to reduce power
demand during peak periods. Time-based pricing schemes include time-
of-use (TOU) price, real-time price (RTP), critical peak pricing (CPP)
and inclining block rate (IBR).

1. Time-Of-Use (TOU)

TOU is a dynamic pricing scheme that provides two different prices
between off-peak and peak periods during a day. In addition, TOU has
another form, which has three prices, including low-peak, mid-peak,
and peak period prices [6]. The price curve of TOU is previously de-
termined for a quarter of a year [9]. The TOU scheme was used in Ref.
[8], where its major contribution was to schedule smart home appli-
ances in accordance with the TOU pricing scheme to obtain a well-
prepared schedule for appliances.

2. Critical Peak Pricing (CPP)

CPP is a pricing scheme similar to TOU; it provides two different
prices between off-peak and peak periods to balance power demand in
case it is extremely high compared with other power demand periods
[6]. For example, if power demand is very high at a specific period,
then the cost of generating power will be very high as well due to the
increasing number of power generators used to meet user requirements.
Therefore, the cost of generating power exceeds the price values pro-
vided by TOU. CPP is declared only on days that are forecasted to have
a very high power demand period, called a critical period (CP). In
general, the CPP price curve is announced a day before CPP for 15 days
in a year [30]. CPP plays a major role in balancing power demand in a
day by generating very high EPs during CP, and users will typically
prefer to shift their power demand out of CP. As proposed in Ref. [31],
the CPP scheme is used to calculate EB, where EP during the off-peak
periods is 250 cents/kW and 2500 cent/kW during CP.

3. Real-Time Pricing (RTP)

RTP is a pricing scheme that provides EP that is nearest to the real
generation price during a certain period [6]. EP provided in this pricing
scheme changes dynamically every hour. Two types of RTP used by
PSCs are day-ahead pricing and hourly pricing. For the day-ahead pri-
cing scheme, PSCs provide EP to users 24 h beforehand. For hourly
pricing, EP is provided every hour. Day-ahead pricing is more effective
than hourly pricing because users are given sufficient time to schedule
their power consumption [6]. Several studies have used RTP, particu-
larly the day-ahead pricing scheme [9,32,33].

4. Inclining Block Rate (IBR)

In the IBR scheme, EP increases with the total amount of electricity
consumption. In other words, if the total electricity consumption ex-
ceeds a certain threshold in the total monthly/daily/hourly consump-
tion, then EP will increase to a higher value. This scheme creates in-
centives for end users to distribute their load to different periods of the
day to avoid high EP rates. Moreover, IBR helps in balancing loads and
reducing PAR [34].

IBR has been adopted by Pacific Gas & Electric, Southern California
Edison, and San Diego Gas & Electric Companies since the 1980s. These
companies proposed two price levels for their users, where the second
level is 15%–17% higher than the first price level [35]. Recently, sev-
eral studies have combined IBR with RTP or TOU to flatten the load
demand curve and reduce PAR [7–9].

4.3. Datasets

Smart home appliances should be equipped with several sensors for
a wireless transceiver and for data processing. Different types of smart
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home appliances with varying properties are used in a smart home.
Therefore, smart home appliances are classified on the basis of different
criteria, such as operating mechanism and functions.

The smart home appliances in Refs. [7,9] were classified into shif-
table appliances (SAs) and non-shiftable appliances (NSAs), where SAs
are appliances that operate automatically (e.g., dishwasher and
washing machine) and NSAs are those that manually (e.g., light and
iron). In Refs. [8,36], smart home appliances were classified into fixed,
elastic, and SAs. The operation of fixed appliances cannot be modified
(e.g., lighting and fans), and that of SAs can be modified but without
interruption (e.g., washing machine and clothes dyer). Elastic appli-
ances can be shifted and interrupted (e.g., air conditioner and re-
frigerator). The authors of [37] used the same classification but with
different names, such as unschedulable, user-dependent, and inter-
active schedulable. In Refs. [32,38], the authors classified appliances
into two classes, including fixed appliances in the first class and shif-
table and elastic appliances in the second class. The authors of [39,40]
classified appliances into interruptible (e.g., space heater, heat pump),
non-interruptible (e.g., dishwasher, clothes washer), and fixed appli-
ances (e.g., furnace fan, fan). The authors of [33,41] categorized ap-
pliances into fixed, shiftable, and interruptible.

Notably, authors use their own classification and scheduling in-
formation for smart home appliances. Therefore, no standard classifi-
cation and dataset are available for smart home appliances.

In this section, all available smart home appliances are presented
and classified into SAs and NSAs due to the clarity of this classification,
i.e., defining whether an appliance is operating manually or auto-
matically is easy.

In Ref. [7], the authors used 10 types of SAs and 12 NSAs in the
evaluation process. The SAs used are dishwasher, air conditioner,
washing machine, clothes dryer, coffee maker, electric water heater,
dehumidifier, microwave oven, electric vehicle, and refrigerator. The
NSAs are lighting, attic fan, table fan, clothes iron, toaster, computer
charger, vacuum cleaner, TV, hairdryer, hand drill, water pump, and
blender.

The authors used an algorithm to schedule nine SAs and seven NSAs
in Ref. [9]. The SAs are air conditioner, electric radiator, rice cooker,
water heater, dishwasher, washing machine, electric kettle, humidifier,
and clothes dryer. The NSAs used are lighting, computer, vacuum
cleaner, TV, hairdryer, iron, and fan.

In Ref. [8], the authors used 13 types of smart home appliances and
we classified them into SAs and NSAs. The SAs are washing machine,
dishwasher, clothes dryer, air conditioner, refrigerator, water heater,
space heater, and coffee maker. The NSAs are lighting, fans, clothes
iron, microwave oven, and toaster.

The authors of [41] used eight SAs, namely, washing machine,
clothes dryer, dishwasher, air conditioner, refrigerator, water heater,
space heater, coffee maker, and six NSAs, namely, lighting, oven,
blender, clothes iron, vacuum cleaner, and fan.

Most of SAs and NSAs used in the literature with their description
are summarized in Tables 2 and 3, respectively.

5. Methods for power scheduling problem in smart home (PSPSH)

PSPSH is formulated as an optimization problem in which the pri-
mary objective is to schedule the operation time of appliances with the
least EB cost in accordance with EP, PAR, and UC constraint [7].

Optimization problems involve finding the best solution(s) from all
feasible solutions that can be addressed using optimization methods.
Optimization methods are classified into exact and approximate
methods [47]. Exact methods are efficient for low-scale optimization
problems where they can obtain an optimal solution. By contrast, exact
methods are unsuitable for solving high-dimensional optimization
problems. Therefore, they are unable to efficiently solve PSPSH due to
PSPSH complex, ragged, and huge search space [7,48]. Approximate
methods are more efficient than exact methods in addressing PSPSH

due to their performance in exploring high-dimensional search space.
Approximate methods are divided into approximation and heuristic/
metaheuristic algorithms (Fig. 5).

In this survey, the methods used to solve PSPSH are classified into
(i) exact algorithms and (ii) approximate methods. For approximate
methods, metaheuristic algorithms are considered in this classification
which are classified into local search-based, population-based, and
hybrid metaheuristic algorithms. Notably, heuristic algorithms are not
surveyed in this review due to their unavailability, i.e., they have not
been modeled previously in solving PSPSH.

5.1. Exact algorithms for PSPSH

Several exact algorithms have been modeled for PSPSH, including
the integer linear programming (ILP) and mixed integer linear pro-
gramming (MILP) algorithms.

A generic management methodology for minimizing the electricity
cost of single and multiple houses that used ILP was proposed in Ref.
[49]. The simulation results showed that power demand is supplied by
considering electricity cost reduction and UC level.

The authors of [50] proposed a scheduling mechanism for home
appliances using ILP. The proposed mechanism aimed to balance power
consumption and reduce PAR value. Seven smart home appliances were
used to evaluate the proposed mechanism and ILP for single and mul-
tiple homes. The simulation results showed the effectiveness of the
proposed mechanism, particularly for multiple homes where it achieved
more balanced power consumption.

MILP was modeled in Ref. [51] in terms of simultaneously mini-
mizing total EB and improving UC. An approach was applied to a single
home with a wind turbine, a photovoltaic system, and a storage battery.
The TOU scheme was used to calculate the EB for five appliances. The
simulation result proved that the proposed approach enables the re-
sidents of the smart home to live comfortably and economically. EB and
the power consumed were reduced by up to 58% and 5%, respectively.

MILP was used for the scheduling process in Ref. [52] to reduce EB,
PAR, and user discomfort. The result demonstrated the efficiency of the
proposed approach in reducing EB. Moreover, energy could be exported
to the national grid using a photovoltaic system when solar energy
production was more than the users’ demand.

An off-line HEMS was modeled in Ref. [53] to reduce EB, PAR, and
user discomfort level. The proposed model comprised a central con-
troller, smart appliances, and power generators and resources (e.g.,
backup battery, photovoltaic system). These components were con-
nected using a communication network. The central controller controls
the proposed model on the basis of MILP. The authors used six types of
SAs and NSAs to evaluate the proposed model. In the simulation results,
two scenarios were considered to evaluate the proposed model. EB was
reduced in the first and second scenarios by 68.6% and 54.4%, re-
spectively. The results proved the efficiency of the proposed model
using MILP.

HEMS was proposed to schedule the operation time of home ap-
pliances using MILP in Ref. [54]. The primary objective of the proposed
system was to maintain the UC level while reducing EB. Renewable
energy generators and batteries were used to save power. The simula-
tion results demonstrated the high efficiency of the proposed system
compared with four state-of-art systems using their datasets and sce-
narios.

The authors of [55] analyzed the scheduling mechanism power
consumed by home appliances. The objectives of this scheduling me-
chanism were to reduce EB for users and balance the power consumed
throughout the time horizon. The authors modeled MILP to achieve the
scheduling objectives for different simulated and real scenarios using
the price tariff implemented in the Czech Republic. The simulation
results showed the efficiency of the proposed model compared with the
ripple control service used in the Czech Republic.

MILP was modeled in Ref. [56] to reduce EB and PAR value by
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Table 2
SAs used in the most of the literature with their description.

No. Appliances Description

1 Space Heater The space heater is typically used to heat a single or small area in the winter season. The space heater was used in Ref. [8] alongside with other 12
appliances in the evaluation of proposed HEMS using three metaheuristic algorithms. Other studies used a space heater in the experiential step, such as
[39–42].

2 Heat Pump A heat pump is an appliance in charge of transferring heat from a source to another place. The heat pump was used in the experimental section in Refs.
[32,39] as one of the appliances used to evaluate proposed methods.

3 Portable Heater A portable heater is a small space heater which is typically used when the main heating system is inadequate. The portable heater was used in Refs.
[32,39] alongside with heat pump and other appliances to evaluate proposed methods.

4 Water Heater The water heater is one of the most popular home appliances. The water heater is typically used in the early hours of the morning of summer days,
whereas it used several times in winter days [7]. The water heater was used in evaluation part of methods used in Refs. [7–9,32,33,39–45] due to its
commonly used in homes.

5 Dish Washer The dish washer is normally used in morning and evening every day to clean dishes [7]. In Refs. [7–9,32,33,39–45], the authors used the dish washer as
one of the home appliances that used to evaluate the performance of proposed methods.

6 Refrigerator The refrigerator is the most common home appliance, which is usually used to keep food fresh [7]. The refrigerator had a high effect on the method used
in Ref. [7] due to its operation time, as it was operated at all times of the considered time horizon, whereas in Ref. [46], the refrigerator was operated for
half of the considered time horizon. In addition, the authors of [8,32,33,39,40,42–44] used the refrigerator with other home appliances to evaluate the
performance of proposed methods.

7 Clothes Washer The clothes washer has typically three operations, including wash, rinse, and spin. The clothes washer was used in Ref. [9] alongside with other eight
types of SAs in the evaluation of the adapted algorithm. In Ref. [7], the clothes washer was also used in the evaluation of a new objective function using a
metaheuristic algorithm. Other studies used a clothes washer in the experiential step, such as [8,32,33,39–41,43–46].

8 Clothes Dryer The primary use of the clothes dryer is to dry wet clothes, and it is typically used after the clothes washer finished its operation [7]. The authors of
[7–9,32,33,39–46] used the clothes dryer with other home appliances for evaluation in the experimental part.

9 Room AC The primary purpose of the room AC is to transfer warm air from a space area and replace it with cold air [7]. Several studies used the room AC in their
experiment part, such as [7–9,32,33,39,40,42–46].

10 Central AC The central AC typically has the same functions of the room AC but for a large area (i.e., not only one room). The central AC need high power rating to be
operated, wherein [32,39], the power rating of the central AC was more than the room AC by up to 67%.

11 Coffee Maker The coffee maker is usually used to make coffee every morning and evening [7]. Several studies used the coffee maker in the simulation results, such as
[7,8,33,41,43,44].

12 Electric Radiator The authors of [9] considered the electric radiator as a SA that can be operated morning and evening. In Ref. [45], the electric radiator considered to
operate twice per day regardless of the duration of the operation.

13 Humidifier The primary purpose of the humidifier is to reduce the proportion of water in the air. The humidifier has a low power rating when it was used in Refs.
[7,9,43–45] with 0.05 kW power rating.

14 Water Cooler The water cooler is in charge of cooling and dispensing water using a refrigeration system. Usually, the water cooler used for long periods, wherein [46],
the water cooler was operated for around 15 h.

Table 3
NSAs used in the most of the literature with their description.

No. Appliances Description

1 Lighting The lighting appliance was used in Ref. [7] alongside with other 11 NSAs in the evaluation step using a metaheuristic algorithm. Other studies used a
lighting appliance in the experiential step, such as [8,9,33,40–42].

2 Furnace Fan The furnace fan was operated for up to 8 h in Refs. [32,39], and used with other 11 appliances to evaluate proposed methods.
3 Fan The authors of [9] considered the fan as NSA with very low power rating. In Refs. [7,8], the fan used a higher power rating than the used in Ref. [9].

Several studies used the fan with different power rate in the experiential step, such as [32,33,39].
4 Iron Iron is one of the most popular home appliances, which is used to remove clothes creases. Several studies used the iron in their experiment part, such as

[7–9,40–42,46].
5 Toaster The toaster appliance was used in Ref. [7] as NSA in the evaluation step of the proposed method. Also, the toaster was used in the dataset in Refs.

[8,33] to evaluate the performance of proposed methods.
6 Computer Charger Computer charger is one of NSA that was used in Refs. [7,9,40,42] to evaluate the performance of proposed methods.
7 Vacuum Cleaner The vacuum cleaner was used in Refs. [7,9] alongside with other NSAs in the evaluation step using a metaheuristic algorithm. Other studies used a

vacuum cleaner in the experiential step, such as [40–42].
8 TV The TV is the most popular home appliance due to its functionality that is offered to users. The authors of [7,9,40,42] used the TV in the experimental

section of their studies.
9 Hair Dryer The hair dryer is typically used for a short time, wherein [9], the hair dryer was used for no more than 5min. Also, hair dryer was used in Refs.

[7,40,42] as one of the appliances used to evaluate proposed methods.
10 Hand Drill The hand drill is not a popular appliance in homes due to its limited functionality. In Ref. [7], the hand drill was used with other 11 NSAs and 10 SAs to

evaluate the used method.
11 Water Pump The water pump is one of the most widespread and oldest appliances. The water pump has different types with various power rating. The authors of [7]

used the water pump with a high-power rating up to 2.5 kW, wherein [46], the power rating used for the water pump is only 0.8 kW.
12 Blender The authors of [7] considered the blender as NSA with very low power rating. In Ref. [41], the blender used a higher power rating than the used in Ref.

[7] by up to 75%.
13 Electric Stove Usually, the electric stove needs relatively high-power rating to be operated. The electric stove was used by the authors of [40,42] as one of the

appliances used to evaluate proposed methods.
14 Pool Pump The pool pump is the primary machine in the swimming pool filtering system. The pool pump was used in the experiential step in Refs. [40,42].
15 Electric Vehicle The electrical vehicle has a battery which used instead of the fuel. The batteries of the electrical vehicle typically need a high-power rating [7]. In Refs.

[7,42], the battery of electrical vehicle consumed a high power compared with the other appliances, whereas the authors of [40] used lower power
rating battery in the evaluation part.

16 Microwave Oven The microwave oven is typically used for a short period with a relatively high-power rating [7,8,33].
17 Rice Cooker TA rice cooker is a kitchen appliance designed to cook or heat rice. The rice cooker was used in Refs. [9,45] as one of the appliances used to evaluate

proposed methods.
18 Electric Kettle The electric kettle needs relatively high-power rating to be operated, wherein [9,45,46], the electric kettle was operated using a 1.5 kW power rating.
19 Oven The oven is one of the most home appliances that need a very high power rating to be operated, where the authors of [41] used an oven with the 3 kW

power rating, and in Ref. [46], the oven was consumed 2 kW power rating.

S.N. Makhadmeh, et al. Renewable and Sustainable Energy Reviews 115 (2019) 109362

8



balancing power demand in the time horizon for five home appliances.
The authors used RESs to create a better schedule. The simulation re-
sults showed that the best solution was achieved using RESs. EB was
reduced by 38% without using RESs and by 47% using RESs.

5.2. Metaheuristic algorithms for PSPSH

Metaheuristic algorithms are more efficient than exact algorithms in
addressing optimization problems due to their efficiency in exploring a
search space to find the optimal solution [57].

Therefore, several metaheuristic algorithms have been successfully
applied to address PSPSH, such as genetic algorithm (GA) [8,9], particle
swarm optimization (PSO) [8,58], ant colony optimization (ACO) [8],
wind-driven optimization (WDO) [36], bacterial foraging optimization
algorithm (BFOA) [38], and tabu search (TS) algorithm [58]. Meta-
heuristic algorithms are classified into single-based, population-based,
and hybrid metaheuristic algorithms.

5.2.1. Single-based metaheuristic algorithms
A few numbers of single-based algorithms have been adapted to

solve PSPSH. In general, single-based algorithms begin by generating a
single solution and attempting to enhance it throughout iterations. The
authors of [58] proposed efficient load management using the TS al-
gorithm and the harmony search algorithm (HSA) to minimize EB, PAR,
and user discomfort level. The RTP scheme was used with 13 home
appliances, including SAs and NSAs, in the scheduling process within
24 h. However, TS proved its superiority to HSA in reducing EB and
PAR. It obtained better reduction than HSA for EB and PAR by up to
10% and 11%, respectively. However, HSA achieved better UC than TS
by up to 43%.

5.2.2. Population-based metaheuristic algorithms
Several population-based algorithms have been adapted for PSPSH.

Among which, GA, BFOA, HSA, and PSO are the most prominent.
The authors of [9] combined RTP with IBR to balance power de-

mand in a day and avoid any blackout resulting from high power de-
mands during specific periods. The authors proposed a general archi-
tecture for HEMS in a smart home. Moreover, they formulated a multi-
objective function that considered EB and UC level. GA was adapted to
schedule the power consumption of 16 operations of SAs and eight
operations of NSAs within 120 time slots (24 h) for 90 days. The si-
mulation results showed the high performance of the proposed ap-
proach using GA in achieving the objectives compared with the

unscheduled mode. The proposed approach reduced EB and PAR by up
to 26% and 35%, respectively, whereas UC level was reduced due to the
trade-off between EB reduction and UC improvement.

A new power scheduling model called generic DSM (G-DSM) was
proposed using GA in Ref. [59]. The authors scheduled eight SA op-
erations and seven NSA operations within 24 time slots (24 h). RTP was
combined with IBR for 60 days. The objectives of the proposed model
were to minimize EB and PAR and maximize UC. The simulation results
showed the efficiency of the proposed model in achieving the objectives
for single and multiple smart homes. The proposed model reduced EB
for single and multiple smart homes by 39.39% and 45.85%, respec-
tively, and PAR value by 17.17% for single and 52.24% for multiple
smart homes. In terms of UC maximization, the proposed model re-
duced the UC level due to the trade-off between EB and UC.

In Ref. [60], GA was adapted to schedule electricity usage in smart
buildings. The RTP scheme was implemented for the proposed sche-
duling. The proposed scheduling problem was formulated as a real-time
task scheduling problem to demonstrate its complexity. The experi-
mental results showed the efficiency of the algorithm in reducing EB
under various building conditions. EB was reduced by up to 34.4%.

In Ref. [8], HEMS was designed to obtain an optimal schedule for
achieving PSPSH objectives, including EB, PAR, and user discomfort
reduction in accordance with the TOU price scheme combined with
IBR. PSPSH was formulated as a multiple knapsack problem. Moreover,
the authors formulated a multi-objective function that considered EB
and UC level. GA, binary PSO (BPSO), and the ACO algorithm were
adapted and evaluated using 13 home appliances, including SAs and
NSAs, within 24 time slots (24 h) for one day. GA performed more ef-
ficiently than BPSO and ACO in achieving the objectives. EB was re-
duced by 48.79%, 40.43%, and 28.26% for GA, BPSO, and ACO, re-
spectively, compared with the unscheduled mode. EB reduction and UC
maximization exhibited an inverse relationship. However, GA per-
formed considerably better than the others in minimizing the trade-off
effect.

A load-shifting technique based on SG for a large number of appli-
ances in the residential, commercial, and industrial sectors was pro-
posed in Ref. [61]. GA was adapted to obtain an optimal schedule for
appliance operating time in accordance with the RTP scheme to reduce
EB and PAR. The simulation results showed the robust performance of
the proposed approach in optimally achieving the objectives. EB and
PAR were reduced by 5% and 18.3%, 5.8% and 18.3, and 10% and
14.2% for the residential, commercial, and industrial sectors, respec-
tively.

Fig. 5. Optimization methods.
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The authors of [62] addressed the same issue for the residential,
commercial, and industrial sectors using GA as well. However, their
primary objective was to evaluate the proposed approach on the basis
of EB and PAR reduction under different scenarios, including two re-
sidential sectors, two commercial sectors, and five industrial sectors.
The experimental results showed the efficiency of the proposed ap-
proach in achieving the objectives.

To maintain the balance of power consumed throughout a time
horizon, a threshold limit was proposed in Ref. [63]. The authors
adapted a multi-objective evolutionary algorithm to overcome this
issue by considering minimum EB and user discomfort. In the simula-
tion results, 10 types of appliances were used to evaluate the proposed
approach. During the scheduling processes, several appliances will
automatically switch off if power usage exceeds the threshold limit.
Furthermore, the proposed approach proved its efficiency in achieving
the objectives. It reduced EB by up to 13% with a minimum effect on
the trade-off between EB and UC level.

GA and the strawberry algorithm (SBA) were adapted to address
PSPSH in Ref. [42]. These algorithms were used to schedule 15 home
appliances, including SAs and NSAs, within 24 time slots (24 h) to
minimize EB and PAR and improve UC level in accordance with the
TOU price scheme. The experimental result demonstrated the efficiency
of GA, which outperformed SBA in achieving the objectives. GA re-
duced EB and PAR by 1.1% and 8.8%, respectively, and improved UC
by up to 10% compared with SBA.

BPSO and GA were adapted in Ref. [64] to reduce EB and PAR. The
TOU pricing scheme was considered in the scheduling process to cal-
culate total EB for the operations of 10 SAs and NSAs for a day. BPSO
demonstrated its efficiency when it reduced EB better than GA by 4.

An efficient HEMS was proposed in Ref. [19]. This system was
considered to obtain appropriate scheduling for home appliances to
minimize EB and electricity demand during the peak periods. Two
metaheuristic algorithms were adapted in this paper, including PSO and
GA, to schedule 20 home appliance. The simulation results showed that
the PSO obtained significant cost reduction with acceptable load curve.

The grey wolf optimizer (GWO) was adapted in Ref. [7] to address
PSPSH. A multi-objective optimization approach was proposed to ob-
tain an optimal schedule in terms of the simultaneous reduction of EB,
PAR, and user discomfort. UC level was determined on the basis of two
parameters, namely, WTR and a new parameter related to the avail-
ability of power for use by NSAs at any period. A total of 39 operations
for SAs and 12 for NSAs under seven scenarios were used to evaluate
the proposed approach. A combination of RTP and IBR was considered
due to IBR's performance in dispersing power consumption throughout
the time horizon to avoid any overload of power demand in a specific
time slot. In the simulation results, the GWO solution was first com-
pared with the GA solution using the dataset defined by the authors.
GWO exhibited and yielded better results than GA. GWO and GA re-
duced EB and PAR by 6.6% and 22%, and 4.3% and 13.3%, respec-
tively. Second GWO was compared with 19 state-of-the-art algorithms
using the recommended consumption profiles of these algorithms and
their evaluation criteria. GWO nearly outperformed the compared al-
gorithms in minimizing of EB and PAR.

In Ref. [43], GWO was adapted to reduce EB and PAR and improve
UC level. A new formulation for a smart battery was proposed to im-
prove the quality of the solution by storing power during peak period
and use the stored power at off-peak periods. The IBR scheme was
considered and combined with the RTP to balance and disperse power
demand of 38 SAs. The simulation results proved the efficiency of the
proposed smart battery in achieving the objectives. In addition, the
performance of GWO was compared with GA to show its efficiency in
the scheduling process. GWO reduced EB and PAR better than GA by
4.6% and 17%, respectively, with maintaining UC level. Therefore,
GWO outperformed GA in achieving PSPSH objectives.

The authors of [36] proposed a new mathematical model to obtain
an optimal schedule for home appliances using WDO. The primary

objective of the proposed approach was to minimize EB and PAR and
maximize UC level. Min-max regret-based knapsack problem was used
to improve the schedule. In simulation results, the authors implemented
the TOU pricing scheme to evaluate the proposed approach using six
types of home appliances. The results showed the efficacy of the pro-
posed approach compared with PSO. EB and PAR obtained by the WDO
were better than the obtained by the PSO by up to 10% and 8%, re-
spectively.

A multi-objective optimization model was solved using a multi-ob-
jective genetic algorithm by schedule the home appliances in Ref. [65].
The objectives of the proposed approach was to improve satisfaction
level of users and reduce EB. Total EB of power consumed by six home
appliances was calculated on the basis of the RTP scheme. The simu-
lation results proved the efficiency of the proposed approach in redu-
cing EB and improving UC level simultaneously. The proposed ap-
proach reduced EB by 23% with the minimum trade-off effect between
EB and UC level compared with the unscheduled mode.

A HEMS was integrated with Electricity Storage System (ESS) in Ref.
[66]. GA, cuckoo search optimization algorithm (CSOA), and crow
search algorithm (CSA) were adapted to minimize EB, peak load, and
home appliances waiting time. The RTP and the CPP schemes were
implemented to schedule 12 appliances, including SAs and NSAs. The
CSOA performed better than CSA and GA in reducing EB under both
pricing schemes with and without the integration of ESS. EB using
CSOA was reduced by 13.06% and 23.30% without and with ESS
compared with the unscheduled mode using RTP, respectively, and
23.41% and 38.97% using CPP for the same cases. The reduction of EB
using RTP without and with ESS was 11.98% and 22.30% using CSA,
and 11.93% and 22.34% using GA, respectively. EB was reduced using
CPP by 23.12% and 36.76% using CSA without and with ESS, and by
22.83% and 35.29% using GA without and with ESS, respectively. For
PAR reduction, CSOA outperformed CSA and GA as well, where CSOA
reduced PAR value by 6.82% compared with GA and 7.02% compared
with CSA using RTP scheme, and up to 4% compared with GA and up to
3% compared with CSA using CPP. In terms of WTR reduction and UC
improvement, the CSOA obtained the minimum trade-off effect be-
tween EB and WTR.

PSPSH was addressed using flower pollination algorithm (FPA) and
HSA in Ref. [67]. The CPP scheme was implemented as a pricing curve
in the evaluation process. The primary purpose of this study was to
schedule power consumption of 16 SA operations and reduce total EB
and PAR and evaluate the behavior of waiting time during the sche-
duling process. In the simulation results, FPA performed better than
HSA in terms of EB and PAR reduction. The FPA and HSA reduced EB by
11% and 2%, respectively, and PAR value by 23% and 21%, respec-
tively. However, HSA outperformed the FPA in reducing the trade-off
effect between EB and UC level.

HSA and earthworm optimization algorithm (EWA) were adapted in
Ref. [68] to reduce EB and PAR by shifting load of home appliances
from peak to off-peak periods. The TOU was used as pricing scheme for
bill calculation of power consumed by six appliances for a day (24 time
slots). In the simulation results, the EWA reduced EB and PAR by up to
17% and 6.8%, whereas HSA reduced EB and PAR by up to 12% and
9%. The results showed that EWA outperformed HSA in reducing EB,
whereas HSA performed better than EWA in terms of PAR reduction. In
addition, HSA reduced the trade-off effect between EB and UC con-
siderably better than the EWA.

In Ref. [69], the authors adapted GA and EWA to address PSPSH.
The primary objective of the adaptation was to reduce cost, PAR, and
WTR of 13 SA operations and two NSA operations. In simulation results,
EB was reduced by 35% and 20% using GA and EWA compared with the
unscheduled mode, respectively. Moreover, GA outperformed EWA in
reducing PAR value as well, where GA reduced PAR by 50% and EWA
by 40%. In terms of UC maximization, both algorithms almost showed
the same results.

The elephant herding optimization (EHO) algorithm was adapted in
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Ref. [70] to reduce EB, PAR, and user discomfort level. The TOU pricing
scheme was used to calculate cost of power consumed by 12 SAs and
NSAs. In the simulation results, EHO demonstrated its efficiency in
achieving the objectives compared with enhanced differential evolution
(EDE) and the unscheduled mode. EHO reduced EB to 21.95% of the
unscheduled mode, whereas EDE reduced it to 24.39%. In addition,
EHO reduced WTR considerably better than EDE. However, EDE per-
formed better than EHO in terms of PAR reduction, where it reduced
PAR value by 15% compared with EHO.

The artificial fish swarm algorithm (AFSA) and GA were adapted in
Ref. [71] to optimally reduce PAR, user discomfort and cost of power
consumed by seven appliances, including SAs and NSAs, in accordance
with the RTP scheme. The simulation results showed that the two
adapted algorithms reduced cost, PAR, and user discomfort efficiently.
However, AFSA obtained a better schedule than GA. AFSA reduced EB
and PAR by 11% and 8% compared with GA. Besides, AFSA solution
showed a better trade-off effect between EB and UC than GA.

The pigeon inspired optimization (PIO) and EDE were adapted in
Ref. [72] to address PSPSH. The authors implemented the CPP scheme
as pricing tariff. The PIO achieved better schedule than EDE in terms of
PAR and WTR reduction, where the PIO reduced PAR value and WTR
by 3% and 23% more than the obtained by EDE, respectively. However,
EDE performed better than the PIO in reducing EB by up to 38%.

HEMS was designed on the basis of BFOA and social spider opti-
mization (SSO) algorithm in Ref. [33]. This design aimed to reduce cost
of power consumed by 12 appliances within 24 h in accordance with
the RTP scheme. Besides, the proposed design aimed to reduce PAR
value and user discomfort level. The BFOA showed better result in
terms of EB reduction by reducing it by up to 18.41%, whereas SSO
reduced EB by 10.83%. SSO outperformed BFOA in reducing PAR and
user discomfort, where SSO reduced PAR by 1% better than the BFOA
with minimum trade-off effect between EB and UC level.

GA and biogeography-based optimization (BBO) were adapted to
reduce EB value and PAR and improve UC in Ref. [39]. Power con-
sumption of 16 operations of smart home appliances was used to
evaluate the adapted algorithms in accordance with the CPP. The si-
mulation results showed that BBO outperformed GA in terms of EB and
PAR reduction by 2% and 4%, respectively. UC level was divided into
three different categories on the basis of appliances types. BBO out-
performed GA in one category, whereas GA got better UC in the others.

A massive number of studies were conducted to address PSPSH
using metaheuristic algorithms. Therefore, a summary of most of these
studies is provided in Table 4 to show their main points.

5.2.3. Hybrid metaheuristic algorithms
In Ref. [38], the authors proposed a hybrid version of GA and WDO

called the genetic wind-driven (GWD) algorithm for PSPSH in a re-
sidential area. Four other algorithms, including GA, BPSO, BFOA, and
WDO, were adapted to evaluate the performance of the proposed GWD
in reducing demand during peak hours and shifting it to off-peak hours
in accordance with the RTP scheme. The objectives of this study were to
reduce EB and PAR and improve UC level using the power consumption
of 12 appliances, including SAs and NSAs. A multi-objective function
that included EB and user discomfort reduction was formulated. The
simulation results were divided into scheduling for single and multiple
smart homes. In a single smart home, the schedule of GWD was com-
pared only with GA and WDO. GWD performed better than GA and
WDO. EB was reduced to 60%, 62%, and 30% of the unscheduled so-
lution using GA, WDO, and GWD, respectively. Moreover, GWD ob-
tained the lowest PAR value up to 40% of the unscheduled solution. In
terms of improving UC, the three algorithms exhibited the same effect
on the trade-off between UC and EB. Therefore, the three algorithms
had the same UC level. For multiple homes, the authors showed the
performance of GA, BPSO, WDO, and BFOA for 50 homes. After sche-
duling the power consumed by 50 homes, the EB obtained by the al-
gorithms was 35%, 50%, 61%, and 45% of the unscheduled solution for Ta

bl
e
4

Su
m
m
ar
y
of

m
os
t
of

th
e
st
ud

ie
s
us
ed

m
et
ah

eu
ri
st
ic

al
go

ri
th
m
s
to

ad
dr
es
s
PS

PS
H
.

N
O
.

A
ut
ho

r
M
et
ho

d
O
bj
ec
ti
ve

s
D
R
Sc
he

m
e

D
at
a

Si
m
ul
at
io
n
R
es
ul
ts

1.
H
af
sa

[7
3]

PI
O

an
d
ED

E
EB

an
d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

TO
U

6
ap

pl
ia
nc

es
ED

E
ou

tp
er
fo
rm

ed
PI
O

in
te
rm

s
of

EB
by

7%
,a

nd
W
TR

by
20

%
,
w
he

re
as

bo
th

al
go

ri
th
m
s
ob

ta
in
ed

sa
m
e
PA

R
.

2.
M
as
ha

b
[7
4]

H
SA

an
d
BA

T
EB

an
d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

C
PP

11
ap

pl
ia
nc

es
H
SA

pe
rf
or
m
ed

be
tt
er

th
an

BA
T
in

te
rm

s
of

EB
by

11
%
,P

A
R
by

20
%
,
an

d
W
TR

by
up

to
47

%
.

3.
Sa

ad
ia

[4
5]

BF
O
A

an
d
PI
O

EB
an

d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

C
PP

16
ap

pl
ia
nc

es
PI
O
ou

tp
er
fo
rm

ed
BF

O
A
in

te
rm

s
of

EB
an

d
PA

R
re
du

ct
io
n
by

10
%

an
d
15

%
,r
es
pe

ct
iv
el
y,

w
hi
le

BF
O
A
go

tb
et
te
r
re
su
lt
s
in

te
rm

s
of

U
C
m
ax

im
iz
at
io
n
du

e
to

th
e
tr
ad

e-
off

be
tw

ee
n
EB

an
d
U
C
.

4.
H
as
an

[7
5]

BF
O
A

an
d
SB

A
EB

an
d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

R
TP

12
ap

pl
ia
nc

es
BF

O
A
ou

tp
er
fo
rm

ed
SB

A
in

te
rm

s
of

EB
re
du

ct
io
n
by

up
to

5%
,w

hi
le

SB
A
go

t
be

tt
er

re
su
lt
s
in

te
rm

s
of

PA
R
re
du

ct
io
n
by

19
%

co
m
pa

re
d
w
it
h
BF

O
A
.U

C
le
ve

l
w
as

di
vi
de

d
in
to

th
re
e
di
ff
er
en

t
ca
te
go

ri
es

on
th
e
ba

si
s
of

ap
pl
ia
nc

es
ty
pe

s.
5.

Bu
sh
ra

[7
6]

FP
A

EB
an

d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

R
TP

16
ap

pl
ia
nc

es
Th

e
re
su
lt
s
of

FP
A
w
as

co
m
pa

re
d
w
it
h
re
su
lt
s
of

G
A
.F

PA
ou

tp
er
fo
rm

ed
G
A
in

re
du

ci
ng

EB
an

d
PA

R
by

up
to

12
.5
%

an
d

40
%
,
re
sp
ec
ti
ve

ly
,w

hi
le

G
A

ob
ta
in
ed

be
tt
er

re
su
lt
s
in

te
rm

s
of

U
C
m
ax

im
iz
at
io
n.

6.
Sy

ed
a
[7
7]

G
W
O

an
d
BF

O
A

EB
an

d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

TO
U

6
ap

pl
ia
nc

es
G
W
O

ou
tp
er
fo
rm

ed
BF

O
A

in
re
du

ci
ng

PA
R
an

d
us
er

di
sc
om

fo
rt
.B

FO
A

ac
hi
ev

ed
be

tt
er

re
su
lt
s
in

te
rm

s
of

EB
re
du

ct
io
n,

w
he

re
BF

O
A

re
du

ce
d
EB

by
32

%
an

d
G
W
O

by
21

%
co

m
pa

re
d
w
it
h
th
e
un

sc
he

du
le
d
m
od

e.
7.

A
nw

ar
[4
0]

H
SA

an
d
FA

EB
an

d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

C
PP

16
ap

pl
ia
nc

es
H
SA

ou
tp
er
fo
rm

ed
FA

in
te
rm

s
of

EB
an

d
us
er

di
sc
om

fo
rt

re
du

ct
io
n,

an
d
FA

go
t
be

tt
er

re
su
lt
s
in

te
rm

s
of

PA
R
re
du

ct
io
n.

8.
A
dn

an
[7
8]

H
SA

,F
A
,a

nd
BF

O
A

EB
an

d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

TO
U

15
ap

pl
ia
nc

es
FA

pe
rf
or
m
ed

be
tt
er

th
an

BF
O
A
an

d
H
SA

in
te
rm

s
of

EB
re
du

ct
io
n,

w
he

re
th
e
EB

w
as

re
du

ce
d
us
in
g
FA

by
14

%
,u

si
ng

H
SA

by
11

%
,a

nd
us
in
g
H
SA

by
10

%
co

m
pa

re
d
w
it
h
th
e
un

sc
he

du
le
d
m
od

e.
H
ow

ev
er
,B

FO
A
ob

ta
in
ed

a
be

tt
er

so
lu
ti
on

in
te
rm

s
of

PA
R
re
du

ct
io
n.

H
SA

ob
ta
in
ed

th
e
be

st
tr
ad

e-
off

eff
ec
t
be

tw
ee
n
U
C
an

d
EB

.
9.

M
ah

no
or

[7
9]

G
A

an
d
C
SA

EB
an

d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

R
TP

6
ap

pl
ia
nc

es
C
SA

ob
ta
in
ed

a
be

tt
er

sc
he

du
le

th
an

G
A
in

te
rm

s
of

EB
by

28
%

an
d
PA

R
by

52
%
,w

hi
le

G
A
ou

tp
er
fo
rm

ed
C
SA

in
re
du

ci
ng

th
e
tr
ad

e-
off

eff
ec
t
be

tw
ee
n
EB

an
d
U
C
.

10
.

M
uh

am
m
ad

[8
0]

SB
A

an
d
ED

E
EB

an
d
PA

R
m
in
im

iz
at
io
n,

U
C

m
ax

im
iz
at
io
n

R
TP

16
ap

pl
ia
nc

es
SB

A
ou

tp
er
fo
rm

ed
ED

E
in

te
rm

s
of

EB
re
du

ct
io
n
by

30
%
,w

hi
le

ED
E
pe

rf
or
m
ed

be
tt
er

in
te
rm

s
of

PA
R
m
in
im

iz
at
io
n
an

d
U
C
m
ax

im
iz
at
io
n
th
an

SB
A
.

S.N. Makhadmeh, et al. Renewable and Sustainable Energy Reviews 115 (2019) 109362

11



GA, BPSO, WDO, and BFOA, respectively. However, BFOA out-
performed the other algorithms in PAR reduction, while BPSO obtained
the best UC level.

HEMS was integrated with RESs and ESS in Ref. [81]. GA, BPSO,
WDO, BFOA, and a hybrid GA-PSO (HGPO) algorithm were adapted to
reduce the power demand for 12 SAs and NSAs during peak periods in
accordance with the RTP scheme. The results showed that the in-
tegration of RESs and ESS reduced EB and PAR by 19.94% and 21.55%,
respectively. Moreover, the HGPO algorithm outperformed the other
heuristic algorithms and further reduced EB by 25.12% and PAR by
24.88%.

In Ref. [82], the authors proposed HEMS to shift the load to off-peak
periods and balance the load throughout a time horizon. The objective
of the proposed system was to reduce EB and PAR and improve UC
level. The authors used the day-ahead and hourly pricing schemes to
schedule nine types of SAs and NSAs. In addition, the authors proposed
real-time rescheduling to schedule appliances using the hourly pricing
scheme, and formulated it as a knapsack problem. A hybrid version of
GA and BFOA, called foraging and genetic algorithm (HBG) optimiza-
tion, was proposed to optimally achieve the objectives. In the simula-
tion results, TOU, RTP, and CPP were used to evaluate the proposed
technique. The results demonstrated the efficiency of HBG and the
proposed technique.

An energy management model with nearly zero energy building was
proposed using GA, EDE, teaching-learning-based optimization (TLBO),
and a hybrid version of EDE and TLBO, called enhanced differential
teaching-learning algorithm (EDTLA), in Ref. [83] to manage energy
consumption while considering UC level. The objectives of the proposed
system were reducing EB, PAR, user discomfort level, and carbon
emission. The proposed system was integrated with RES and ESS to
improve the results. 12 types of home appliances were used to evaluate
the proposed system and algorithms in accordance with the RTP
scheme. The simulation results presented the performance of the in-
tegration using the proposed algorithm in achieving the objectives and
reducing the level of carbon emission. The results showed that EB was
reduced by up to 14.70%, 33.82%, 12.76%, and 36.02% using GA,
TLBO, EDE, and EDTLA, respectively, compared with the unscheduled
mode without the proposed integration. Meanwhile, EB was reduced by
36.76%, 64.70%, 52.94%, and 67.44% using GA, TLBO, EDE, and
EDTLA, respectively, with the proposed integration. In terms of PAR
reduction, the proposed algorithm integrated with RES outperformed
the others. The value of PAR without the proposed integration was
reduced by 17.30%, 30.76%, 15.38%, and 43.61% using GA, TLBO,
EDE, and EDTLA, respectively, compared with the unscheduled mode.
The proposed integration reduced PAR by 11.29%, 14.51%, 11.02%,
and 29.41 using GA, TLBO, EDE, and EDTLA, respectively. To control
carbon emission, the percentage of CO2 was calculated. The CO2 per-
centage of reduction using the proposed system was 40.35% for the
unscheduled solution and 46.41%, 46.03%, 56.82%, and 54.94 using
GA, TLBO, EDE, and EDTLA, respectively. Moreover, EDE obtained the
best trade-off between EB and UC.

In Ref. [84], the authors proposed a new hybrid version of GA and
HSA (genetic harmony search algorithm (GHSA)) to efficiently reduce
EB, PAR, and user discomfort. The CPP and RTP pricing schemes were
used to calculate EB for 10 types of appliances. In the simulation results,
the performance and solutions obtained by the proposed algorithm
were compared with GA, WDO, and HSA for single and multiple homes.
GHSA outperformed the other algorithms in reducing EB and PAR.
Using the RTP scheme, EB was reduced by 13.37%, 20.58%, 25.63%,
and 29.86% using WDO, HSA, GA, and GHSA, respectively, for single
home, and reduced by 50.54%, 25.91%, 31.31%, and 56.06% using
WDO, HSA, GA, and GHSA, respectively, for multiple homes. Using the
CPP scheme, EB for single and multiple homes were reduced by 31.52%
and 41.94% using WDO, 36.05% and 40.82% using HSA, 39.65% and
44.04% using GA, and 46.19% and 54.04% using the proposed algo-
rithm, respectively. The proposed GHSA obtained the best PAR for

single and multiple homes using the two prices schemes. The value of
PAR for single and multiple homes using RTP scheme was reduced by
38.32% and 47.77% using GHSA, respectively, whereas it was reduced
using WDO by 13.97% and 43.09%, using HSA by 35.32% and 34.55%,
and using GA by 25.54% and 43.45%, respectively. Using CPP, the
value of PAR for single and multiple homes was reduced by 6.58% and
43.27% using WDO, 30.53% and 47.01% using HSA, 27.34% and
42.66% using GA, and 37.52% and 50.08% using the proposed GHSA,
respectively. In addition, the proposed GHSA obtained the best trade-off
effect between EB and UC for multiple homes, whereas it obtained the
best trade-off using only the CPP for single home and HSA obtained the
best using the RTP scheme.

A controller for HEMS on the basis of FA, GA, TLBO, and optimal
stopping rule (OSR) theory were proposed in Ref. [85] to reduce the
power consumption at peak periods and EB and improve UC level.
Moreover, the authors proposed three versions of hybrid algorithms,
including OSR-TLBO, OSR-GA, and OSR-FA, to enhance the quality of
the solution and optimally achieve the objectives. The simulation re-
sults showed the high performance of the proposed hybrid versions in
attaining the objectives for single and multiple homes.

The authors of [86] adapted BFOA and FPA to schedule 14 appli-
ances within 24 h in accordance with the RTP and CPP schemes. The
authors hybridized BFOA and FPA (HBFPA) to optimally obtain better
schedule. The primary objectives were to reduce EB and PAR and im-
prove UC level. The results proved that the proposed HBFPA out-
performed the others in achieving the objectives under both pricing
schemes for single and multiple homes.

The authors of [87] proposed a smart power system to share energy
sources between users through HEMS. Four algorithms were intended
to address PSPSH. These algorithms were flower pollination genetic
algorithm (FGA), genetic teaching learning-based optimization
(GTLBO), flower pollination teaching learning-based optimization
(FTLBO), and flower pollination BAT (FBAT). The primary purpose of
these hybridizations was to obtain an optimal schedule on the basis of
EB and PAR without compromising UC level. The authors used six types
of appliances to evaluate the proposed algorithms in accordance with
the RTP scheme. In the simulation results, the proposed algorithms
were compared with GA, TLBO, FPA, and BAT to show their perfor-
mance in achieving PSPSH objectives. EB percentage of reduction ob-
tained by the adapted and hybridized algorithms were 37.95%,
26.74%, 3.87%, and 12.32% using GA, TLBO, FPA, and BAT, respec-
tively, and 39.17%, 40.75%, 25.23%, and 64.49% using GTLBO,
FTLBO, FBAT, and FGA, respectively. For PAR reduction, GA, TLBO,
FPA, and BAT reduced PAR value by 9.87%, 12.96%, 5.55%, and
2.46%, respectively, whereas GTLBO, FTLBO, FBAT, and FGA reduced
it by 32.09%, 45.06%, 27.16%, and 33.95%, respectively. Notably, FGA
obtained the best EB by lowering it by 64.49%, whereas FTLBO ob-
tained the best PAR. In terms of UC maximization, BAT algorithm
achieved the highest UC level by minimizing the trade-off effect be-
tween EB and UC.

In Ref. [41], HEMS was designed on the basis of a hybrid version of
BFOA and HSA (HBH) to find the best schedule for 11 appliances. The
obtained schedule evaluated on the basis of EB, PAR, and UC level.
Seasonal TOU pricing scheme (summer and winter prices) was con-
sidered for calculating cost of power consumed by the appliances. Dy-
namic programming approach was used to coordinate the extensive
data obtained from multiple homes. The proposed method was eval-
uated and compared with existing methods to measure its performance.
The simulation results were divided into two parts, including summer
and winter cases. In the summer case, EB of single home was reduced by
2.58%, 4.76%, and 2.68% using BFA, HSA, and HBH, respectively,
before the proposed coordination, and reduced by 17.30%, 16.00%,
and 13.39% after the coordination using the same algorithms. The EB of
multiple homes was reduced by up to 3% for the three algorithms be-
fore the coordination, and 2.83%, 17.15%, and 13.27% after co-
ordination using BFA, HSA, and HBH, respectively. The value of PAR of
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single and multiple homes using BFA, HSA, and HBH was reduced by
49.17% and 24.42%, 47.14% and 25.91%, and 49.79% and 24.60%,
respectively, before the coordination. After the coordination, PAR was
reduced by 43.25% and 23.36%, 42.08% and 28.25%, and 47.97% and
23.81% for single and multiple homes using BFA, HSA, and HBH, re-
spectively. In the winter case, EB of single and multiple homes were
reduced by 7.45% and 9.52%, 1.22% and 0.00%, and 2.26% and 1%
using BFA, HSA, and HBH, respectively, before the proposed co-
ordination, and reduced by 13.16% and 14.43%, 13.96% and 13.42%,
and 11.86% and 14.65% after the coordination using the same algo-
rithms. The value of PAR of single and multiple homes using BFA, HSA,
and HBH was reduced by 43.23% and 26.05%, 41.83% and 35.11%,
and 37.48% and 25.86%, respectively, before the coordination. After
the coordination, PAR was reduced by 46.01% and 25.08%, 41.48%
and 33.35%, and 35.34% and 24.55% for single and multiple homes
using BFA, HSA, and HBH, respectively.

The authors of [88] adapted moth-flame optimization (MFO) algo-
rithm and GA to address PSPSH using HEMS. To improve the schedule
and achieve the objectives optimally, the authors hybridized the MFO
and GA (time-constrained genetic-moth flame optimization (TG-MFO)).
In addition, TG-MFO was combined with time constraints of appliances
to get maximum UC level. Moreover, RESs and EES were integrated
with the HEMS to obtain a better solution. In the simulation results, TG-
MFO solution was compared with five metaheuristic algorithms, in-
cluding GA, MFO, FA, ACO, and CSA. The proposed TG-MFO out-
performed the others in accomplishing the objectives. In addition, the
proposed TG-MFO showed better results for multiple users compared
with the unscheduled mode.

5.3. Main algorithms for PSPSH: pros and cons

A large number of metaheuristic algorithms have been adapted for
PSPSH, particularly population-based algorithms, as presented in
Section 5.2. Fig. 6 shows the number of times each metaheuristic al-
gorithm has been used to address PSPSH. The figure clearly shows that
GA is the most adapted algorithm for PSPSH, having been adapted 25
times to address PSPSH. This large number of GA adaptation is attrib-
uted to its simplicity and suitability in addressing non-linear problems
[8]. GA has two parameters that allow it to find a convenient schedule
and balance exploration and exploitation throughout the iterations of
the scheduling process. These parameters are crossover and mutation
[9]. However, GA suffers from imbalance between exploration and
exploitation; consequently, the optimal solution is not obtained in
certain cases [7].

BFOA and HSA have been adapted seven times (Fig. 6), making
them the second and third most popular algorithms used to address

PSPSH. BFOA and HSA have elicited the attention of many PSPSH re-
searchers because BFOA has flexible constraints and simple computa-
tional equations [38], while HSA has a robust and direct searching
process [41]. However, BFOA exhibits an excellent ability to exploit a
search space, while HSA has proven its efficiency in exploring a search
space [41]. Therefore, both algorithms suffer from the imbalance be-
tween exploration and exploitation.

PSO has been adapted five times to address PSPSH. PSO is a robust
population-based optimization algorithm with a good ability to solve
optimization problems that have non-linear and non-differential func-
tions [8]. Moreover, PSO can be implemented easily due to the sim-
plicity of its mathematical equations. By contrast, PSO exhibits a high
probability of getting stuck in local search due to its fixed parameters
that restrict its movement between local and global optima, particularly
in a deep and rugged search space, such as that of PSPSH [7].

5.4. Discussion

This study provides a comprehensive overview of PSPSH. PSPSH is a
problem in scheduling the operations of smart home appliances at ap-
propriate periods in a predefined time horizon in accordance with a
dynamic price scheme or another incentive method to reduce EB and
PAR and improve the satisfaction level of users.

Several methods have been adapted to obtain optimal scheduling,
including (i) exact algorithms and (ii) metaheuristic algorithms. The
latter is classified into local search-based, population-based, and hybrid
metaheuristic algorithms. The best solutions are obtained by the hybrid
metaheuristic algorithms [38,41,81,82].

Notably, several methods do not consider NSAs in the scheduling
process, which results in unexpected power consumption once users
operate these appliances [67,68]. Therefore, the power consumed by
users may exceed the highest allowable power consumption limit
(threshold) and lead to blackouts in smart homes. Meanwhile, other
methods used NSAs as SAs in the scheduling operation, with the authors
setting the time parameters for NSAs [59]. However, all NSAs are op-
erated manually and nobody can tell in advance when and for how long
users will use them. Therefore, setting time parameters for each NSA in
advance seems impractical.

Most of these methods formulate the objective function as a single
objective (EB reduction) in the evaluation process, while a few methods
formulate the objective function as a multi-objective optimization
function [8,42]. The multi-objective optimization function in these
studies considers minimizing EB and improving UC level while dis-
regarding the impact of PAR. However, this issue was addressed in Ref.
[7], where the authors formulated the objective function as a multi-
objective optimization function that considered EB and PAR

Fig. 6. Number of times each metaheuristic algorithm has been used to address PSPSH.
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minimization and UC maximization.
Moreover, most of these methods use a small number of smart home

appliances under one scenario, which leads to a limitation in the ana-
lysis and evaluation of algorithm performance [8,42].

6. Conclusion and future direction

This survey presented an overview of SGs, smart homes and their
relation to PSPSH. A comprehensive definition of PSPSH and its ele-
ments and criteria, including objective functions, pricing schemes, and
datasets, is provided and discussed. The state-of-the-art published to
address PSPSH are reviewed and classified into exact, and metaheuristic
algorithms. The latter is classified into local search-based, population-
based, and hybrid metaheuristic algorithms. This review showed that
the best solutions are obtained by hybrid metaheuristic algorithms. In
addition, the review identified the gaps in the state-of-the-art of PSPSH
and their unfavorable effects on the PSPSH solution.

Possible future directions can be considered to improve the quality
of the PSPSH solution and obtain better or near-optimal schedule as
follows:

• Objective Function: Very few studies have formulated the objec-
tive function of PSPSH as a multi-objective optimization function.
These studies considered minimizing EB and improving UC level
while disregarding the impact of PAR. However, the impact of PAR
is beneficial in balancing power demand to avoid blackouts resulting
from a high power demand during a short period. This issue has
been addressed by only one study, and thus its results cannot be
compared with those of other studies. Several studies can address
this issue to obtain a better solution for simultaneously reducing EB,
PAR, and user discomfort level.

• External Power Resources: New external power resources can be
developed and used to contribute to improving the schedule, such as
RESs and ESS. Notably, several studies have used these external
power resources but without mathematical formulation for the op-
timization technique. Moreover, most of these studies have not used
standard data for RESs, and thus their results are incomparable.
However, these external power resources can be formulated math-
ematically and standard data obtained from official websites or
analyses can be used to make studies and results more realistic and
comparable.

• Standard Datasets: A standard dataset is one of the most critical
issues being faced by authors in solving PSPSH. The datasets used to
address PSPSH and evaluate the adapted algorithms differ from one
study to another. This problem is due to the unavailability of stan-
dard datasets for PSPSH. This issue can be solved by proposing and
publishing standard datasets and making them available for authors
to facilitate comparison studies.

• Improving the Behavior of the Adapted Algorithms: As men-
tioned earlier, the best solutions for PSPSH are obtained using hy-
brid metaheuristic algorithms. In most studies, the authors com-
bined two population-based metaheuristic algorithms to improve
the results. However, the hybrid version of a metaheuristic algo-
rithm with local-based or exact methods may obtain a better solu-
tion for PSPSH due to their effectiveness in enhancing the ex-
ploitation side of the algorithm and increasing its ability to find the
local optimal solution at each iteration of the search.
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