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Feedback control and optimal control techniques are
discussed for servo actuators that are widely used in
micro-electro-mechanical systems (MEMS) technology of
manufacturing. A typical servo actuator is the voice-coil
motor used for actuating micro machine tool axes, bonding
machines and hydraulic/pneumatic valve drives. State-
of-the-art feedback control techniques are deficient with
regard to high precision positioning and process duration.
To improve on this deficiency, optimal control techniques
are applied to a dynamical model of servo drives. Since
Coulombic friction is modeled as sign function depending
on the sign of the velocity, the optimal control problem
belongs to the class of nonsmooth optimization problems.
Time-optimal controls are computed for a variety of con-
trol bounds. It is shown that time-optimal controls are
of bang-bang type and reduce transfer times consider-
ably. Switching times are optimized directly by appropriate
nonlinear programming methods. Optimal controls are
studied under state constraints that limit deviations in
positions and velocities of the slider and load mass. The
goal of reducing such deviations can also be achieved by
energy-optimal controls with larger transfer times. Real-
time implementations of the computed optimal control
signals indicate an excellent agreement between predicted
trajectories and experimental results.
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1. Introduction

The drives in MEMS manufacturing machines are mostly
based on linear electric motors. The linear motor shown
in Figs. 1 and 2 is applied for servo axes in wire bond-
ing machines, wafer steppers and ultra high precision
positioning stages for laser cutters in MEMS manufac-
turing. Since this type of actuator is also very common for
loudspeakers, it is called voice-coil motor. In the field of
loudspeaker techniques, its function is the high-frequency
conversion of electrical pulses into mechanical vibrations
of the cone which produce the acoustic sound waves. State-
of-the-art feedback control is deficient with regard to high
precision positioning, vibration performance, as well as
process duration. The goal of this paper is to improve on
these deficiencies by applying optimal control methods.

In section 2, we introduce the linear dynamical model
developed in [21]. However, due to Coulombic fric-
tion, state-dependent discontinuities may occur in the
dynamics. Using state-of-the-art feedback control, the
performance of the servo actuator is briefly discussed in
section 3. To improve on some deficiencies of feedback
control, nonsmooth optimal control problems are formu-
lated in section 4. To compute optimal control and state
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Fig. 1. Servo actuator (voice-coil motor) with real-time-system-control
and flexible load. Test bench in the IPP mechatronics laboratory,
Clausthal University of Technology.

trajectories, we discretize the control problem and apply
large-scale nonlinear programming methods.

We determine both time-optimal and energy-optimal
controls. In section 5, it is shown that time-optimal con-
trols are of bang-bang type, where the number of degrees
of freedom (switching times and final time) matches the
number of terminal conditions. Changes in the sign of the
slider velocity and thus discontinuities in the dynamics
occur in a certain range of control bounds. Necessary and
sufficient conditions are discussed on the basis of opti-
mal multiprocess control problems [7, 8, 2]. Section 5.2
presents results on sensitivity derivatives of switching
times under parameter variations. The excellent agree-
ment between computed (predicted) optimal trajectories
and experimental results is demonstrated in section 5.3.
Some results for state-constrained optimal solutions are
given in section 5.4. Finally, energy-optimal control solu-
tions are briefly discussed in section 6. The paper is a
modified and enlarged version of a paper presented at the
IEEE CDC Conference 2008 [6]. Here, we give a more
detailed analysis of time-optimal solutions and treat both
state-constrained and energy-optimal solutions.

2. Dynamic Control Model of the
Servo Actuator

Though the servo drive system (voice-coil motor) shown in
Figs. 1 and 2 is a rather simple drive system, it incorporates
all main characteristics of servo drives with feedback con-
trolled motors in combination with flexible transmission
devices and machine structure. The stator of the voice-coil
motor is an iron core with rare earth permanent magnetic
excitation. A copper coil is guided in the air gap on a slider.
The coil and slider mass is denoted by m1. The linear guide
produces the Coulombic friction force FR, which acts in

Fig. 2. Physical model of the servo actuator

Table 1. Physical parameters

DSPACE sampling time Ts = 0.1 ms
Amplifier switching frequency f PWM = 50 kHz
Amplifier intermediate voltage Umax ≤ 10 V
Coil resistance R = 2 �

Coil inductivity L = 2 mH
Force constant KF = 12 N / A
Back–EMF constant KS = 12 V s / m
Motor mass (slider, guide, coil) m1 = 1.03 kg
Load mass m2 = 0.56 kg
Spring constant K = 2.4 kN /m
Guide friction force FR = 2.1 N
Linear encoder resolution �x = 1 μm

the direction opposite to the slider velocity. A load mass
m2 is mounted on the slider with a spring k that has negligi-
ble damping. A coil current I induces the actuating force F
(so called Lorenz force) given by the equation F = KF · I .
The moving coil with the velocity v1 generates a voltage
U (also called back-EMF) according to U = KS · v1. The
system parameters are given in Table 1.

The dynamic process of the voice-coil motor is studied
in the time interval t ∈ [0, tf ] with t measured in seconds;
the final time tf > 0 is either fixed or free. The state
variables are as follows: The motor mass position x1(t), the
motor mass velocity v1(t), the load mass position x2(t),
the load mass velocity v2(t) and the electric current I(t).
The input variable (control) of the motor is the voltage
U(t). The dynamic equations are given by the following
linear differential system, where as usual, the dot denotes
the time derivative:

ẋ1 = v1, (1)

v̇1 =
1

m1
[ KF · I − K · (x1 − x2) − FR · sign(v1) ], (2)

ẋ2 = v2, (3)

v̇2 =
K

m2
· (x1 − x2), (4)

İ =
1

L
[ U − R · I − KS · v1 ]. (5)
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The Coulombic friction force is modeled by the expression
−FR · sign(v1) in equation (2), where the sign function is
defined by

sign(v1) =

⎧⎪⎨
⎪⎩

1, if v1 > 0

0, if v1 = 0

−1, if v1 < 0

⎫⎪⎬
⎪⎭ .

For the monorail guides applied here, stick-slip and vis-
cous friction can be neglected due to the small operation
velocities and the very small difference between Coulom-
bic friction and stiction. The Coulombic friction force
−FR · sign(v1) induces a state-dependent jump in (2) and
thus leads to an ordinary differential equation (ODE) with
a non-differentiable right hand side. Therefore, the opti-
mal control problem formulated in section 4 falls into the
class of nonsmooth optimization problems.

The ODE (2) is slightly inexact and simplifies the real
behaviour of the motor, since it does not reflect accu-
rately the static friction in a position of rest. To actuate
the slider from a position of rest, the absolute value of the
accelerating force

Fa = KF · I − K · (x1 − x2)

has to exceed the static Coulombic friction force FR. This
deficiency can be removed by adding the term

min

{
−Fa, −FR ·

Fa

|Fa|

}
(when v1 = 0) (6)

in the bracket on the right hand side of equation (2). In the
numerical calculations we replace the condition v1 = 0
in (6) by |v1| ≤ εv with an appropriate small constant
εv > 0. To simplify the analysis, we ignore this term in
the following.

The control constraint is given by

−Umax ≤ U(t) ≤ Umax , 0 ≤ t ≤ tf , (7)

where Umax ≤ 10 V for mechanical reasons. For the state
vector x = (x1, v1, x2, v2, I)∗ ∈ IR5, the initial and terminal
boundary conditions are chosen as

x(0) = (0, 0, 0, 0, 0)∗, x(tf ) = (0.01, 0, 0.01, 0, 0)∗,

(8)

where positions are measured in meters.

3. Feedback Control Performance

In typical industrial applications, the voice-coil motor
servo axis is equipped with a numerical control system
for setpoint generation and a cascade feedback controller
as is shown in Fig. 3. Fig. 4 shows the measured and
simulated performance of the motor/slider as well as the
load mass for ramp and step response. This elucidates
the fact that the system requires very soft setpoint values
(i.e., a setpoint ramp with small slope) to avoid over-
shoot and vibrations for the load. The application of
state space feedback control or H∞-control in combina-
tion with feedforward filters can increase damping but
yields no significant positioning performance enhance-
ment. Thus realistic state-of-the-art control techniques
enable this voice-coil motor axis to reach positioning times
of 0.3 to 0.4 s for 10 mm positioning task given in (8).

4. Optimal Control Model of a
Servo-Actuator

The system (1)–(5) can be written as

ẋ = f (x, U) = Ax + BU + C · sign(v1) (9)

with a 5 × 5-matrix A and vectors B, C ∈ IR5 defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

−
K

m1
0

K

m1
0

KF

m1

0 0 0 1 0
K

m2
0 −

K

m2
0 0

0 −
KS

L
0 0 −

R

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
1

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−FR

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Fig. 3. Feedback control of the servo actuator
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(a) (b)

Fig. 4. Ramp and step response measured (a) at the slider and (b) at the load mass.

We consider two types of cost functionals to be minimized
subject to the conditions (1)–(8): either the time-optimal
case,

minimize the final time tf , (10)

or a criterion with a quadratic penalty on the control
variable that will be referred to as the “energy optimal”
case,

minimize

tf∫
0

U(t)2dt for fixed tf > 0. (11)

Of course, the fixed final time tf in (11) must be larger
than the minimal time in (10). To avoid larger oscilla-
tions in the servo actuator system, state constraints of the
form

−cv ≤ v1(t) − v2(t) ≤ cv, (12)

−cx ≤ x1(t) − x2(t) ≤ cx , (13)

are imposed with prescribed constants cv > 0, cx > 0.
Due to space limitations, only the state constraint (12) for
the velocities will be addressed in section 5.4. The state
constraint (13) is difficult to handle numerically since it
is of third order; cf. the definition of the order of a state
constraint in [11, 15]. This may lead to chattering junctions
of bang-bang and boundary arcs as it has actually been
observed in computations. For large final times tf , energy-
optimal solutions are shown to satisfy the state constraints
(12) and (13) with bounds of practical relevance; cf. the
brief exposition in section 6.

5. Time-Optimal Control

5.1. Computation of Bang-Bang Controls

Computations in the time-optimal case show that the opti-
mal solution is a concatenation of finitely many bang-bang

arcs with at most one subarc [tv
1, tv

2] with negative velocity
v1(t) < 0 for tv

1 < t < tv
2 . Let us support these findings

by theoretical considerations. The optimal solution is a
combination of arcs [tk−1, tk] where either v1(t) > 0 or
v1(t) < 0 or v1(t) = 0 holds. Since the entire solution is
time-optimal, the control on each subarc which transfers
the intitial point x(tk−1) to the final point x(tk) must be
time-optimal.

The linear system (9) is completely controllable, since
the 5 × 5 Kalman matrix D = (B, AB, A2B, A3B, A4B)

has maximal rank 5. Hence, the time-optimal control is
bang-bang with U(t) = ±Umax; cf. [12]. This property
allows us to exclude subarcs with v1(t) = 0. Intuitively
one would argue that such subarcs are not compatible with
time-optimality. The proof proceeds by contradiction. If
v1(t) = 0 holds, then equation (1) implies that x1(t) = x1c

is a constant and thus equation (2) yields KF · I − K(x1c −

x2) = 0 in view of FR sign(v1) = 0. By differentiating the
last equality using (5) we obtain

KF (±Umax − R · I) + Kv2 = 0.

Differentiating this relation using equations (5) and (4)
and the above equality K(x1c −x2) = 0 = KF · I we arrive
at the relation

0 = KFR (±Umax − R · I)/L2 + IKFK/m2.

Hence, I(t) must be a constant which implies İ =

±Umax − R · I = 0 in view of (5). Inserting this into
the preceding equality we get I = 0 which gives a con-
tradiction to ±Umax − R · I = 0 and Umax > 0. This
completes the proof that there is no subarc with v1(t) = 0.

Thus we may view the optimal control problem as a
multiprocess optimal control problem where the dynam-
ics (2) becomes discontinuous when v1(t) changes sign.
We can apply the necessary optimality conditions for mul-
tiprocess optimal control problem in Clarke, Vinter [7, 8]
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and Augustin, Maurer [2]. The Hamiltonian function is
defined by

H(x, λ, U) = 1 + λ (Ax + BU + C sign (v1)),

where λ = (λx1 , λv1 , λx2 , λv2 , λI ) ∈ IR5 is the adjoint vari-
able. The adjoint equations λ̇ = −Hx = −λA are given
by the linear equation

λ̇x1 =
K

m1
λv1 −

K

m2
λv2 , λ̇v1 = −λx1 +

KS

L
λI ,

λ̇x2 = −
K

m1
λv1 +

K

m2
λv2 , λ̇v2 = −λx2 , (14)

λ̇I = −
KF

m1
λv1 +

R

L
λI .

Note that the adjoint equations do not depend on the
friction constant FR, since the term C · sign(v1) in (9)
is piecewisely constant. Boundary conditions are not
prescribed for λ ∈ IR5, since the initial and terminal condi-
tions are specified for each of the five state variables in (8).
The control that minimizes the Hamiltonian is determined
by

U(t) = −sign (λI(t)) Umax . (15)

To solve the optimal control problem, we discretize the
problem using Euler’s method or Heun’s second order
integration method. The resulting large-scale optimiza-
tion problem is implemented using the modeling language
AMPL (Fourer et al. [9, 10]) and is solved by the nonlinear
programming code IPOPT (Wächter, Biegler [20]). Using
N = 20000 grid points, our computations show that, for
all values of Umax > 0 the control has the following struc-
ture with 4 switching times 0 < t1 < t2 < t3 < t4 < tf
and the free final time t5 := tf :

U(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Umax for 0 ≤ t < t1
−Umax for t1 < t < t2

Umax for t2 < t < t3
−Umax for t3 < t < t4

Umax for t4 < t ≤ t5

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (16)

This control structure is not surprising, since one intu-
itively expects that five degrees of freedom, namely the
five variables t1, t2, t3, t4, tf , suffice to satisfy the five termi-
nal conditions in (8). This discretization and optimization
approach provides switching times that are correct up
to 3-4 decimals. After determining the correct control
structure, we apply a refined numerical method for com-
puting the switching times with high precision. Due to
the control structure (16), the bang-bang control prob-
lem is equivalent to an optimization problem, where the

switching times ti (i = 1, 2, 3, 4) and the free final time
tf are considered as the only optimization variables; cf.
Agrachev et al. [1], Osmolovskii, Maurer [19]. Instead of
optimizing the switching times directly, we use the arc-
parametrization method in Maurer et al. [16] to optimize
the arclengths of the bang-bang arcs defined by

ξj = tj − tj−1, (j = 1, 2, 3, 4, 5), t0 := 0, t5 := tf .

This method can be implemented using the Fortran code
NUDOCCCS developed by Büskens [3].

The sign distribution of the motor mass velocity v1(t)
in [0, tf ] depends crucially on the value Umax of the con-
trol bound. We can summarize our numerical results as
follows. There exist two control bounds

U1
max := 1.85476, U2

max = 2.38327,

with the following property: for all bounds Umax with

U1
max < Umax < U2

max (17)

we have v1(t) > 0 for all 0 < t < tf , while for

Umax < U1
max or U2

max < Umax (18)

the velocity v1(t) has the sign distribution

v1(t) =

⎧⎪⎨
⎪⎩

> 0 for 0 < t < tv
1

< 0 for tv
1 < t < tv

2

> 0 for tv
2 < t < tf

⎫⎪⎬
⎪⎭ . (19)

The intermediate times tv
1, tv

2 satisfy

t1 < tv
1 < t2 < tv

2 < t3.

For bounds Umax satisfying the inequalities in (18) we
thus encounter a multiprocess control problem with two
different dynamical systems defined either by the friction
force FR or −FR in equation (2). The velocity v1(t) is zero
at the points tv

1 and tv
2, which yields two additional interior

conditions

v1(t
v
1) = 0, v1(t

v
2) = 0. (20)

Applying the necessary conditions in [8], [2], we find that
the adjoint variable λv1 may have jumps according to

λv1((t
v
k)+) = λv1((t

v
k)−) + ρk , k = 1, 2, (21)

where ρk , k = 1, 2, are multipliers obtained from the
transversality conditions [2], eq. (32)–(34). Computations
show that ρk = 0, k = 1, 2,; hence, the adjoint variable
λv1(t) is continuous at tv

k , k = 1, 2.
We choose the control bounds Umax = 2 and Umax = 3

to illustrate the different control strategies described in
(17) and (18).
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(a) (b)

(c) (d)

Fig. 5. Umax = 2: time-optimal solution on normalized time interval [0, 1]; (a) positions x1(t), x2(t); (b) velocities v1(t), v2(t); (c) electric current
I(t); (d) control U(t) and scaled switching function σ(t) satisfying (15); enlarged time axis to better display the tiny terminal bang-bang arc.

Case Umax = 2. Fig. 5 displays the optimal state and con-
trol variables for the control constraint Umax = 2. Recall
from (17) that v1(t) remains positive for 0 < t < tf . The
switching times and final time are computed as

t1 = 0.074140, t2 = 0.0820268, t3 = 0.101444,

t4 = 0.110420, tf = 0.111184.

The initial value of the adjoint variable λ(t) ∈ IR5

satisfying the adjoint equation (14) is given by

λ(0) = (−4.82918, −0.100808, −4.09481,

− 0.057766, −0.001074).

With these values, the reader may verify that the switching
function

σ(t) := HU(t) = λI (t)/L (22)

obeys the control law (15) with high accuracy; Fig. 5(d).
The local optimality of this trajectory follows from the
fact that the 5 × 5 Jacobian matrix of the terminal con-
ditions computed with respect to the switching times
and final time is a regular matrix. Hence, first order
sufficient conditions are satisfied for this time-optimal
control problem; cf. [17, 19].

Case Umax = 3. The optimal state and control variables
are depicted in Fig. 6. In view of (18) and (19), we have
v1(t) < 0 for tv

1 < t < tv
2. Here, the times tv

1, tv
2 are

treated as additional optimization variables which allows
us to apply again the arc-parametrization method in [16].
We obtain the switching times, the two intermediate times
and the final time

t1 = 0.0416854, tv
1 = 0.0480052, t2 = 0.0525894,

tv
2 = 0.0563559, t3 = 0.0786491, t4 = 0.0878590,

tf = 0.0886180.

The computed initial value of the adjoint variable is

λ(0) = (−4.40300, −0.065128, 1.34424,

− 0.005169, −0.00692).

Again, the switching function σ(t) := λI (t)/L satisfies
the control law (15) precisely; cf. Fig. 6(d).

5.2. Sensitivity Analysis of Arclengths

We give a brief outlook on sensitivity analysis of optimal
solutions when system parameters are subject to pertur-
bations. For purpose of demonstration, we choose the
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(a) (b)

(c) (d)

Fig. 6. Umax = 3: time-optimal solution on normalized time interval [0, 1]; (a) positions x1(t), x2(t); (b) velocities v1(t), v2(t); (c) electric current
I(t); (d) control U(t) and scaled switching function σ(t) satisfying (15).

bound Umax = 3. The corresponding optimal control has
7 subarcs with arclengths

ξ1 = t1, ξ2 = tv
1 − t1, ξ3 = t2 − tv

1, ξ4 = tv
2 − t2,

ξ5 = t3 − tv
2, ξ6 = t4 − t3, ξ7 = tf − t4.

The arc-parametrization method [16] in combination with
the code NUDOCCCS [3] allows to compute the sensitiv-
ity derivatives dξi/dp, i = 1, . . . , 7, with respect to any
parameter p in the system. The existence of parametric
sensitivity derivatives follows from the fact that second-
order sufficient conditions hold for the switching time
optimization problem. The precomputation of parametric
sensitivity derivatives then enables us to design real-time
control approximations to perturbed optimal solutions; cf.
the theory and numerical approach in [4, 5]. We consider
the following two parameters: the load mass m2 with nom-
inal value m0

2 = 0.56 and the resistance R with nominal
value R0 = 2. In Table 2, we have listed the nominal val-
ues ξi of the arclengths and the corresponding sensitivity
derivatives.

5.3. Comparison of Numerical Solutions and
Experimental Results

The computed optimal control solutions were imple-
mented on the test bench in the IPP mechatronics

Table 2. Sensitivity derivatives of arclengths: parameters m2
and R

i ξi dξi/dm2 dξi/dR

1 0.041685 0.008917 0.010355
2 0.0063199 −0.003495 0.001788
3 0.0045841 0.002253 −0.003302
4 0.0037666 0.007321 −0.002233
5 0.022931 0.001764 0.000936
6 0.0092098 0.001446 0.003410
7 0.00075901 0.2879e−6 −0.000449

laboratory, Clausthal University of Technology; cf. Fig. 1.
Control signals are applied with the real-time-system sam-
pling time of Ts = 0.1 ms ; cf. Table 1. Since the computed
minimal times have order of magnitude 0.1 s, approxi-
mately 1000 values of the computed optimal control can
be used in the experimental test bench. Both for the con-
trol bounds Umax = 2 and Umax = 3, where v1(t) changes
sign, we obtain an excellent agreement between the pre-
dicted optimal solution, the simulated solution with 1000
control signals and the experimental solution; cf. Figs. 7, 8.

The small deviations between predicted and measured
positions result from friction uncertainties of the guide
as well as from noise in the analogue position capturing
unit. Positioning times realised at this plant by feedback
position control and stepwise reference input are in the
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Fig. 7. Umax = 2 : positions x1(t), x2(t); predicted (solid), simulated (dashed), real-time (dashed-dot).

Fig. 8. Umax = 3 : (a) positions x1(t), x2(t), (b) electric current I(t); predicted (solid), simulated (dashed), experimental (dashed-dot).

range of 0.2 s [21] if the step response should be overshoot
free. This indicates that the described control method is
very efficient.

5.4. State Constraints

Higher values of the voltage control bound Umax lead
to higher discrepancies in positions and velocities of the
slider and the mass load. Hence, it is reasonable to impose
constraints on these deviations. We restrict the discussion
to the state constraint |v1(t)−v2(t)| ≤ cv for the velocities,
which can be written as two inequalities:

S1(x) := v1 − v2 − cv ≤ 0,
(23)

S2(x) := −cv − (v1 − v2) ≤ 0.

Computations show that by using these constraints we
can also achieve a significant reduction of the deviation
||x1 − x2||∞. We refer the reader to Maurer [15] and Hartl
et al. [11] for the discussion of necessary conditions for
state-constrained optimal control problems. It suffices to
analyze the component S1. The constraint has order 2 since
the control variable U appears for the first time in the
second time derivative of S1:

d2S1

dt2
=

KF

m1L
(U − RI − KSv1) −

m1 + m2

m1 · m2
K (v1 − v2) .

A boundary arc [ ten, tex] for the constraint S1(x) ≤ 0 is
characterized by the equation S1(x(t)) = 0 for ten ≤ t ≤

tex. Along a boundary arc the equation d2S1(t)/dt2 = 0
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(a) (b)

(d)(c)

Fig. 9. Umax = 3, |v1 − v2| ≤ 0.1: time–optimal solution on normalized time interval [0, 1] subject to state constraints |v1(t) − v2(t)| ≤ 0.1;
(a) difference v1(t) − v2(t); (b) adjoints λv1 (t) and λv2 (t) (with jumps); (c) multipliers μ1(t), μ2(t) and adjoint λx1 (t); (d) control U(t) and scaled
switching function σ(t).

holds, from which we obtain the following feedback
expression for the boundary control:

Ub(x) =
(m1 + m2)KL

m2KF
· cv + RI + KSv1.

The augmented Hamiltonian H̃ is obtained from the
Hamiltonian H by adjoining the state constraint with a
multiplier μ1 ∈ IR,

H̃(x, U, λ, μ) = 1 + λ(Ax + BU + C sign(v1))

+ μ1(v1 − v2 − cv).

The Minimum Principle [11, 15] implies that the mul-
tiplier function satisfies μ1(t) ≥ 0 and μ1(t) = 0 if
v1(t)− v2(t) < cv for all t ∈ [0, tf ]. The adjoint equations
(14) are replaced by λ̇ = −H̃x , which shows that only the
equations for λv1 and λv2 are modified:

λ̇v1 = −λx1 + λI
KS

L
− μ1, λ̇v2 = −λx2 + μ1.

It is assumed in [15, 11] that the boundary control Ub(x(t))
lies in the interior of the control set. Then it follows
from the minimum principle that the switching function
vanishes:

1

L
λI(t) = H̃U(t) = 0 for ten ≤ t ≤ tex. (24)

This relation allows us to compute the multiplier μ1. On
the boundary arc we have in view of (24),

λ̇I = −λv1

KF

m1
+ λI

R

L
= −λv1

KF

m1
, (25)

which implies λv1(t) = 0 and thus the relation

0 = λ̇v1 = −λx1 + λI
KS

L
− μ1 = −λx1 − μ1. (26)

Hence, the multiplier is given by

μ1(t) = −λx1(t) ≥ 0. (27)

In an analogous way, the multiplier for the second state
constraint S2(x) = −cv − (v1 − v2) ≤ 0 in (23) is com-
puted as μ2(t) = λx2(t) ≥ 0. These relations are clearly
illustrated in Fig. 9(c). Moreover, the adjoint variables λv1

and λv2 may have jumps at the entry time and exit time
according to

λv1(τ+) = λv1(τ−) − ν1(τ ), ν1(τ ) ≥ 0, (28)

λv2(τ+) = λv2(τ−) + ν2(τ ), ν2(τ ) ≥ 0, (29)

τ ∈ {ten, tex}, cf. [15, 11].
Fig. 9 displays the optimal solution for the rather

restrictive bound cv = 0.1. The structure of the opti-
mal control is complicated, since there are two boundary
arcs with v1(t) − v2(t) = cv, one boundary arc with
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(a) (b)

(d)(c)

Fig. 10. Umax = 3: energy-optimal solutions on normalized time interval [0, 1]; (a) positions x1(t), x2(t) for final time tf = 0.09, (b) velocities
v1(t), v2(t) for final time tf = 0.09, (c) optimal control U(t) and σ(t) = −λI/2L for final time tf = 0.09 (d) optimal control for final times
tf = 0.09, tf = 0.1, tf = 0.11.

v1(t) − v2(t) = −cv and 10 interior bang-bang arcs. The
final time tf = 0.098725 is about 11.5% higher than in the
unconstrained case; cf. 5.1.

6. Energy-Optimal Control

In this section, we consider the “energy-optimal” cost
functional (11) of minimizing

tf∫
0

U(t)2dt (30)

with a fixed final time tf > tmin, where tmin is the minimal
time computed in section 5.1. In this case, the Hamiltonian

H(x(t), λ(t), U) = U2 + λ(t)(Ax(t)

+ B · U + C sign (v1(t)))

is regular and admits a unique minimizer

U(t) = Proj [−Umax,Umax] (−λI(t)/2L),

where Proj denotes the projection onto the control set.
Fig. 10(c) confirms this control law. The adjoints satisfy
the same adjoint equations as in the time-optimal case,
cf. (14). In particular, it follows that the Hamiltonian is
regular and any optimal control U(t) is continuous. It is
well known that the quadratic cost functional smoothes the
structure of the optimal control. Using the control bound

Table 3. Differences in positions and velocities for time-
optimal (tf = 0.088618) and energy-optimal solutions (tf =

0.09, 0.1, 0.11)

tf ‖x1 − x2‖∞ ‖v1 − v2‖∞

0.088618 0.002979 0.337792
0.09 0.002174 0.238127
0.1 0.001940 0.150524
0.11 0.001594 0.111915

Umax = 3, Fig. 10(d) depicts optimal solutions for 3 final
times that differ from the minimal time tmin = 0.088618
by less than 25%. Note that already for the final time tf =

0.09 the velocity v1(t) does not change sign. In this case,
the optimal solution consists of four boundary arcs and
three interior arcs.

A practical side-effect of energy-optimal controls is that
they reduce oscillations in positions and velocities with
increasing final time; cf. Table 3. As an example, consider
the energy-optimal functional, where the final time tf is
increased by only 1.5%, tf = 1.015 · tmin. It is remarkable
that the maximum difference ||v1 − v2||∞ in the velocities
is reduced by 30 % compared to the time-optimal case.

7. Conclusion

An optimal control problem for an electrodynamical servo
drive system, the voice-coil motor, was formulated. The
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Coulombic friction force gives rise to state-dependent
jumps in the dynamical system. This feature leads us to
consider a nonsmooth control problem, when the velocity
of the slider changes sign. We showed that time-optimal
controls are bang-bang and determined those control
bounds for which the slider velocity changed sign. The
arc-parametrization method in [16] in conjunction with the
routine NUDOCCCS [3, 5] were applied to directly opti-
mizing the switching times. We could observe an excellent
agreement between the computed optimal trajectories and
experimental results on a test bench developed by the third
author. Oscillations in the positions and velocities can be
significantly reduced by either imposing state inequal-
ity constraints or determining energy-optimal solutions
which, however, need larger process durations.

One last but very interesting result of our study is
the fact, that time or energy-optimal control of the input
variable allows much better positioning results than state-
of-the-art feedback control. We expect that further investi-
gations for different servo axis applications can yield hints
for the setpoint generation in the numerical control system
in order to reach the time optimal control performance also
with feedback control structures.

We became aware of the recent work of Kim et al. [13],
in which a similar but simpler time-optimal control model
was discussed. The authors use a different numerical
approach which, however, does not provide adjoint vari-
ables to test necessary conditions. It would be of interest
to apply the methods of this paper to the model in [13].
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