
Log-based Abnormal Task Detection and Root Cause Analysis for Spark

Siyang Lu∗, BingBing Rao∗, Xiang Wei,∗, Byungchul Tak†, Long Wang‡, Liqiang Wang∗
∗Dept. of Computer Science, University of Central Florida, Orlando, FL, USA

†Dept. of Computer Science and Engineering, Kyungpook National University, Republic of Korea
‡IBM TJ Watson Research Center, Yorktown Heights, NY, USA

Email: {siyang,robin.rao,xiangwei,liqiang.wang}@knights.ucf.edu, bctak@knu.ac.kr, wanglo@us.ibm.com

Abstract—Application delays caused by abnormal tasks are
common problems in big data computing frameworks. An
abnormal task in Spark, which may run slowly without
error or warning logs, not only reduces its resident node’s
performance, but also affects other nodes’ efficiency.

Spark log files report neither root causes of abnormal tasks,
nor where and when abnormal scenarios happen. Although
Spark provides a “speculation” mechanism to detect straggler
tasks, it can only detect tailed stragglers in each stage. Since
the root causes of abnormal happening are complicated, there
are no effective ways to detect root causes.

This paper proposes an approach to detect abnormality and
analyzes root causes using Spark log files. Unlike common
online monitoring or analysis tools, our approach is a pure
off-line method that can analyze abnormality accurately. Our
approach consists of four steps. First, a parser preprocesses
raw log files to generate structured log data. Second, in
each stage of Spark application, we choose features related
to execution time and data locality of each task, as well as
memory usage and garbage collection of each node. Third,
based on the selected features, we detect where and when
abnormalities happen. Finally, we analyze the problems using
weighted factors to decide the probability of root causes. In this
paper, we consider four potential root causes of abnormalities,
which include CPU, memory, network, and disk. The proposed
method has been tested on real-world Spark benchmarks.
To simulate various scenario of root causes, we conducted
interference injections related to CPU, memory, network,
and Disk. Our experimental results show that the proposed
approach is accurate on detecting abnormal tasks as well as
finding the root causes.

Keywords-Spark; Log Analysis; Abnormal Task; Root
Cause;

I. INTRODUCTION

With rapid growth of data size and diversification of

workload types, big data computing platforms increasingly

play more important role for solving real-world problems

[8, 9]. Several outstanding frameworks are in active use

today including Hadoop [1], Spark [2], Storm and Flink.

Among them, the Apache Spark has arguably seen the

widest adoption. It supports a fast and general programming

model for large-scale data processing, in which Resilient

Distributed Dataset (RDD) [18] are used to describe the

input and intermediate data generated during the computa-

tion stages. RDDs are divided into different blocks, called

partitions, with almost equal size among different compute

nodes. Apache Spark uses pipeline to distribute various

operations that work on a single partition of RDD. In order

to serialize the execution of tasks, Spark introduces stage.

All tasks in the same stage execute the same operation in

parallel.

Compute nodes may suffer from a huge of interferences

from software (such as operating systems or other pro-

cesses) or hardware, which leads to abnormal problems. For

instance, we name a tasks an abnormal task or straggler

when it encounters significant delay in comparison with

other tasks in the same stage. In Spark, there is a mechanism

named speculation to detect this scenario, in which such

slow tasks will be re-submitted to another worker. Spark

performs speculative execution of tasks till a specified

fraction (defined by spark.speculation.quantile,

which is 75% by default) of tasks must be complete, then

it checks whether or not the running tasks run slower

than the median of all successfully completed tasks in a

stage. A task is a straggler if its current execution time is

slower than the median by a given ratio (which is defined

by speculation.multiplier, 1.5x by default). In

this paper, we propose a different approach compared with

Spark Speculation. In our method, we consider whole Spark

stages and abnormal tasks happening in any life span could

be detected. In addition, Spark’s report could be inaccurate

because Spark uses only fixed amount of finished task

durations to speculate the unfinished tasks.

When abnormal tasks (including stragglers) happen, the

performance of Spark applications could be degraded. How-

ever, it is very difficult for users to detect and analyze the

root causes. First, Spark log files are tedious and difficult

to read, and there is no straight-forward way to tell whether

abnormal tasks happen or not, even through stragglers can

be reported when speculation is enabled. Second, when an

abnormal scenario happen, there is few information about

the error in log files so that it is difficult for users to see

the concreted reasons that lead to the straggler problem.

Third, even online tools can monitor the usage and status of

system resource such as CPU, memory, disk, and network,

these tools do not directly cooperate with Spark, and users

still need many efforts to scrutinize root causes based on

their reporting. In addition, these monitoring tools usually

carry overhead and may slow down Spark’s performance.

Abnormal tasks could be caused by many reasons, where

most of them are resource contentions [5] by CPU, memory,

disk, and network. Our motivation is to help users find root

causes of abnormal tasks by analyzing only Spark logs.

In this paper, we propose an off-line approach to detect

abnormal tasks and analyze the root causes. Our method is

2017 IEEE International Conference on Web Services (ICWS)

Unrecognized Copyright Information

DOI 10.1109/ICWS.2017.135

389

based on a statistical spatial-temporal analysis for Spark

logs, which consists of Spark execution logs and Spark

garbage collection logs. There are four steps to detect

the root causes. (1) We parse Spark log files according

to key words, such as task duration, data location, time

stamp, task finish time, and generate a structured log data

file. This step will eliminate all irrelevant messages and

values. (2) We extract the related feature set directly from

structured log file based on our experimental study. (3) We

detect abnormal tasks from the log data by analyzing all

relevant features. Specifically, we calculate the mean and

standard deviation of all tasks in each stage, then determine

abnormal tasks for each stage. (4) We generate factor

combination criteria for each potential root cause based on

analyzing their weighted factor in training datasets. Thus,

our approach can effectively determine the proper root

causes for given abnormal tasks.

The major contributions of this paper are as follows:

• The approach can accurately locate where and when

abnormal tasks happen based on analyzing only Spark

logs.

• Our offline approach can detect root causes of ab-

normal tasks according to Spark logs without any

monitoring data, thus it does not have any monitoring

overhead.

• It provides an easy way for users to deeply understand

Spark logs and tune Spark performance.

• It gives an reasonable probability result for root cause

analysis.

II. SPARK ARCHITECTURE

A. Background

Apache Spark is a fast and general engine for large-scale

data processing. In order to achieve scalability and fault

tolerance, Spark introduces an abstraction called resilient

distributed dataset (RDD) , which represents a read-only

collection of objects partitioned across a set of machines

that can be rebuilt if a partition is lost. When an application

is submitted to Spark, the cluster manager will allocate

compute resource according to the requirement of the appli-

cation, then Spark scheduler distributes tasks to executors,

and tasks will be executed in parallel. During this process,

Spark driver node will monitor the status of executors and

collect the tasks results from the worker nodes. In order

to parallelize a job, Spark scheduler divides an application

into a series of stages based on data dependence. In each

stage, all tasks do not have data dependence and execute

the same function.

B. The Framework of Spark Logging

Spark driver and executors record the status of executor

and collection of execution information about tasks, stages,

and job, which are the source of Spark logs.

Each Spark executor contains two log files, Spark exe-

cution log which record by log4j [7] and Spark garbage

collection (GC) log, which are the outputs by stderr and

Figure 1. Spark workflow and log files.

stdout, respectively. Each of worker nodes and master

nodes has its own log files. When an application is finished,

we collect all Spark log files and aggregate them into an

execution log and a GC log.

III. ABNORMAL TASK DETECTION AND ROOT CAUSE

ANALYSIS

Spark log does not show abnormal tasks directly, thus

users cannot locate abnormal tasks by simply searching key-

words. This motivates us to design an automatic approach to

help users detect the abnormals and analyze the root causes.

A. Approach Overview

Figure 2. Workflow of abnormal detection and root cause analysis.

The workflow of our approach for abnormal detection

and root cause analysis is shown in Figure 2.

1) Log preprocessing: We collect all Spark logs, includ-

ing execution logs and Spark GC logs, from the driver

node and all worker nodes. Then, we eliminate noisy

data and reformat logs into more structured data.

2) Feature extraction: Based on Spark scheduling

and potential abnormal task happening conditions,

we screen execution-related, memory-related, CPU-

related data to generate two matrices: execution log

matrix and GC matrix. The details are illustrated in

Section III-B.

3) Abnormal detection: We implement a statistical anal-

ysis approach based on the analysis of four kinds

of features, including task duration, timestamps, GC

time, and other task-related features, to determine the

degree of abnormal tasks and locate their happening.

The details are discussed in Section III-C.

390

4) Root cause detection: Instead of qualitatively deciding

the exact root causes that lead to the abnormals,

we quantitatively measure the degree of abnormals

by a weighted combination of certain specific cause-

related factors. The details are sh in Section III-E.

B. Feature Execution

According to Spark scheduling strategy, we define and

classify all features into three categories, namely, execution-

related, memory-related, and CPU-related, which are shown

in Table I. For example, the execution-related features can

be extracted from Spark execution logs, including task ID,

task duration, task finished time, task started time, stage ID,

and job’s duration. Spark GC log records all JVM memory

usage, from which we can extract memory-related features

such as heap usage, young space usage, as well as features

related system CPU usage such as system time and user

time. These feature sets extracted from Spark execution log

and GC log are shown in Table I.

C. Abnormal Detection

Adopting Spark speculation may bring false negatives in

the process of abnormal detection. Hence, we provide a

more robust approach to locate where stragglers happen and

how long they take. We will also consider about special

scenarios, for example, different stages are executed in

sequence or in parallel.

One basic justification of abnormal tasks is that the

running time of abnormal tasks is relatively longer than

the normal ones. [5] uses “mean” and “median” to decide

the threshold. However, in order to seek a more reasonable

anomaly detection strategy, we consider not only the mean

or median task running time, but also the distribution of the

whole data, namely the standard deviation. In this way, we

can get a macro-awareness on the task’s execution time, and

then based on the distribution of data, a more reasonable

threshold can be set to differentiate abnormals from the

normal ones. The abnormal detection mainly includes the

following two issues.

1. Comparing task running time on different nodes
We compare task execution time on different nodes in

the same stage. Let T taski,j,k denote the execution time

of task k in stage i on node j. Let avg stagei denote

the average execution time of all tasks, which belong to

different nodes but in the same stage i.

avg stagei =
1

J∑
j=1

Kj

(
J∑

j=1

Kj∑
k=1

T taski,j,k) (1)

Work flow where J and Kj are the total number of nodes

and the number of tasks in node j, respectively.

Similarly, the standard deviation of task execution in

stage j of all nodes is denoted as std stagei. Abnormal

tasks are determined by the following conditions:

taskk

{
abnormal T taskk > avg stagei + k ∗ std stagei

normal otherwise
(2)

where k is a factor that controls the threshold for abnor-

mal detection. In this paper, we set it to 1.5 by default for

fair compare with Spark provided speculator.

Figure 3 (c) shows abnormal detection process in Word-

count under CPU interference. Figure 3 (a) and (b) are

two stages inside the whole application. Moreover, inside

each of the stage, purple-dot line is the abnormal threshold

determined by Eq. (1), and the black dot-line indicates

the threshold calculated by Spark speculation. For all

tasks within a certain stage, the execution time above that

threshold are detected as abnormals; otherwise, they are

normals. Figure 3 (d) displays memory occupation along

the execution of its corresponding working stages.

2. Locating abnormal happening
After all tasks are properly classified into “normal” and

“abnormal”, the whole time line are labeled as a vector

with binary number (i.e., 0 or 1, which denote normal

and abnormal, respectively). To smooth the outliers (for

example, 1 appears in many continuous 0) inside each

vector, which could be an abrupt change but not consistent

abnormal base, we then empirically set a sliding window

with size of 5 to flit this vector. If the sum of numbers inside

the window is larger than 2, the number in the center of the

window will be set to 1, otherwise 0.

The next step is to locate the start and end time of

this abnormal task. Note that, as Spark logs record the

task finishing time but not the start time, so we locate the

abnormal task’s start time as the recorded task finishing time

minus its execution time. Moreover, for abnormal detection

in each stage, the tasks are classified into two sets. One is

for the initial tasks whose start time stamps are the begin of

each stage, as these tasks often have more overhead (such as

loading code and Java jar packets), and the execution time

usually operates much longer than its followings. Another

set consists of the rest tasks. Our experiments show that this

classification inside each stage can lead to a much accurate

abnormal threshold. In this way, our abnormal detection

method can not only detect whether abnormals happen, but

also locate where and when they happen.

D. Factors Used for Root Causes Analysis

After abnormals are located, we analyze their root causes

inside that certain area. For different root causes, we use

different features in Spark log matrix and GC matrix to

determine criteria to decide the root causes. Specifically,

for each root cause analysis, we use the combination of

weighted factors to define the degree of probability of each

root cause. In all normal cases the factor should equal to

1, and if an abnormal tends to any root cause, the factor

will become much bigger than 1. The factors are denoted

as a,b,c,d,e,f ,g for weight calculating. All of the indexes

which are used in our factors’ definition are listed here:

391

Table I
SPARK EXECUTION LOG MATRIX & GC LOG MATRIX

Related Name Meaning

Execution-Related

Time stamp Event happening time
Task execution time A task’s running duration time

Stage ID The ID number of each stage
Host ID The Node ID number

Executor ID The ID number of each executor running in per-worker
Task ID The unique ID number of each task

Job execution time A job running duration time (an application may contains many jobs)
Stage execution time A stage running duration time

Application execution time An application running duration time (after submitted)
Data require location The location of task required data

Memory-Related

Heap space Total Heap memory usage
Before GC Young space Young space memory usage before clearing Young space
After Young GC space Young space memory usage after clearing Young space
Before Heap GC space Total Heap memory usage before GC
After Heap GC space Total Heap memory usage after GC

Full GC time Full GC execution time
GC time Minor GC execution time

GC category The time spend on one full GC operation

CPU-Related
user time CPU time spent outside kernel execution
sys time CPU time spent insides kernel execution
real time Total elapsed time of the GC operation

194 196 198 200 202 2040

500

1000

1500

2000

node1
node2
node3
node4

0 50 100 150 2000.5

1

1.5

2

2.5

3

3.5

4x 104

node1
node2
node3
node4

20 40 60 80 100 120 140 160 180 200 220
0

1

2

3

4 x 104

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6 x 106

node1
node2
node3
node4

(a) (b)

(c)

(d)

ms

s

ms

s

s

ms

kb

s

ta
sk

 d
ur

at
io

n
tim

e

stage execution time

ta
sk

 d
ur

at
io

n
tim

e

stage execution time

job execution time

ta
sk

 d
ur

at
io

n
tim

e

application execution time

m
em

or
y

us
ag

e

Figure 3. Abnormal detection under CPU interference in the experiment of WordCount: (a) Abnormal detection result in Stage-1. (b) Abnormal detection
result in Stage-2. (c) Spark execution log features for abnormal detection in the whole execution. (d) Spark GC log features for abnormal detection in
the whole execution.

j,J ,i,I ,k,K,n,N , inside which, j indicates the jth node, J
is set of nodes; i is the index of stage, I is a set of stages; k
denotes a task, K is a task set; n stands for a GC record, N
is GC records set. All factors used to determine root causes

are listed as below.

1. Degree of Abnormal Ratio (DAR)

Eq. (3) indicates the degree of abnormal ratio in a certain

stage, as defined in Eq. (3).

a =
kj′

1
J−1 ((

J∑
j=1

kj)−kj′)

(3)

where kj indicates the number of tasks in node j, and J
is the total number of nodes in the cluster. Here, we assume

that node j′ is abnormal.

2. Degree of Abnormal Duration (DAD)
The average task running time should also be considered,

as the abnormal nodes often record longer task running

time.

392

b =
avg nodej′

1
J−1 ((

J∑
j=1

avg nodej)−avg nodej′)

(4)

where avg nodej is defined as:

avg nodej =
1

Kj
(

Kj∑
k=1

T taski,j,k) (5)

0 50 100 150 2000.5

1

1.5

2

2.5

3

3.5

4x 104

node1
node2
node3
node4

stage execution time

ta
sk

 d
ur

at
io

n
tim

e

Figure 4. CPU interference injected after 20s application was submitted,
and continuously impacts 80s

3. Degree of CPU Occupation (DCO)
This factor c shown in Eq. (6) is used for expressing the

ratio between the wall-clock time and the real CPU time.

In the normal multiple-core environment, “realTime” is

often less than “sysTime+UserTime”, because GC is usually

invoked in multi-threading way. However, if the “realTime”

is bigger than “sysTime+UserTime”, it may indicate that the

system is very busy. We choose a Max value across nodes

as the final factor.

c = max
j∈J

(avg
j∈J

(
realT imei,j

sysT imei,j + userT imei,j
)) (6)

4. Memory Changing Rate (MCR)
Eq. (7) indicates the gradient of GC curve. Under CPU,

memory, and Disk interference, the interfered node’s GC

curve will change slower than the normal nodes’ GC

curve, as shown in Figure 5. k stable and k end are the

gradients of the connected lines between start position (the

corresponding memory usage at abnormal starting time) to

the stable memory usage position and the start position

to the abnormal memory end position (both the abnormal

start and end time are obtained in the previous section)

respectively. The reason we conduct this equation is that the

interfered node uses less memory than normal nodes under

interference. In this way, we use the maximum value of

k stable in the whole cluster (k stable of normal node) to

divide the minimums k end in the whole cluster (interfered

node) to get the value of this factor.

d =

max
j∈J

(k stablej)

min
j′∈J

(k end j′)
(7)

0 50 100 150 2000

1

2

3

4

5

6x 106

node1
node2
node3
node4

k_end j
k_start j

k_stable j

application execution time

m
em

or
y

us
ag

e

Figure 5. CPU interference is injected after WordCount has run for 30s,
and continuously impacts 120s.

5. Degree of Task Delay (DTD)
For network interference, the task execution time will

be affected when data transmission is delayed. Moreover,

a Spark node often accesses data from other nodes, which

leads to network interference propagation. Based on these

facts, if network interference happens inside the cluster, the

whole nodes will be affected, as shown in Figure 6, which

is the location of our detected interference. Let a be a factor

that describes the degree of interference.

e = exp(J ∗
J∏

j=1

abn probj) (8)

Where abn probj indicates the ratio of abnormal that

we detect for each node j inside that area. The reason that

we use the product of abnormal ratio other than the sum

of them is that only when all nodes are with a portion

of abnormal should we identify them with a potential of

network interference, or if sum is used, we cannot detect

this joint probability. Meanwhile, the exponential is to make

sure that the final factor e is no less than 1. In this way,

the phenomenon of error propagation will be detected and

quantified, which can only be shown in the cluster with

network interference injection.

Figure 6. Network interference is injected after WordCount has been
executed for 30s, and continuously impacts for 160s.

6. Degree of Memory Changing (DMC)

393

As network bandwidth is limited or the network speed

slows down, when one node get affected by that interfer-

ence, the task will wait for their data transformation from

other nodes. Hence, CPU will wait, and data transfer rate

becomes low. As shown in Figure 7.

0 50 100 150 200 2500

1

2

3

4

5

6x 106

node1
node2
node3
node4

application execution time

m
em

or
y

us
ag

e

kb

s

Figure 7. Network interference is injected after WordCount has been
executed for 30s, and continuously impacts for 120s.

f =

max
j∈J

{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}
min
j∈J

{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

where,mj,n =
yj,n − yj,n−1

xj,n − xj,n−1

(9)

where mj,n indicates the gradient of memory changing in

nth task on node j. Eq. (4) is to find the longest horizontal

line that presents the conditions under which tasks’ progress

become tardy (e.g., CPU is relatively idle and memory

is kept the same). We first calculate the max value of

gradient for each GC point, denoted as m. To identify the

longest horizontal line in each node, we make a trade-

off between its gradient and the corresponding horizontal

length. To determine a relative value that presents the degree

of abnormal out of normal, we finally compare the max
and min among nodes with their max “horizontal factor”

(e−|mj,n|∗(xj,n − xj,n)), where e is to ensure that the whole

factor of b not less than 1).

7. Degree of Loading Delay (DLD)
Considering that the initial task at the beginning of each

stage always have a higher overhead to load data blocks

compared to the rest tasks. To only focus on that area, the

factor of g is proposed to measure its abnormality. Similar

to factor f , instead of taking all the tasks inside the detected

stage into consideration, here, the first task of each node is

used to replace the “avg nodej”in Eq. (4). Formally, the

equation is modified as Eq. (10) shows.

g =
T taski,j′,1

avg
j∈J

(T taski,j,1)
, where j′ /∈ J (10)

0 100 200 300 400 5000

1

2

3

4

5

6

7x 104

node2
node1
node3
node4

T_task i,j`,1

avg(T_task i,j,1)

stage execution time

ta
sk

 d
ur

at
io

n
tim

e

ms

s

Figure 8. Disk interference is injected after WordCount has run for 20s,
and continuously impacts 80s

E. Root Causes Analysis

As shown in Table II, each root cause is determined by

a combination of factors with specific weights.

The nodes with CPU interference often have a relatively

lower computation capacity, which leads to less tasks allo-

cated and longer execution time for tasks on it. Factors

a and b are used to test if the interference is CPU or

not, because CPU interference can reduce the number of

scheduled tasks and increase the abnormal tasks’ execution

time. Factor c indicates the degree of CPU occupation,

and CPU interference will slow down of the performance

compared to normal cases. Factor d is used to measure

memory changing rate, because CPU interference may lead

memory change to become slowly than other regular nodes.

For the network-related interferences, because of its

propagation, the original interfered node will often recover

earlier. So our approach is to detect the first recovered

node as the initial network-interfered node, and the degree

b quantitatively describes the interference. When network

interference occurs, tasks are usually waiting for data de-

livery (factor e), the memory monitored by GC log f is

usually unchanged.

For the memory-related interferences, when memory in-

terference is injected into the cluster, we can even detect a

relatively lower CPU usage than other normal nodes. Con-

sidering this, the task numbers (factor a) and task duration

(factor b) are also added to determine such root causes with

certain weights. Moreover, the memory interference will

impact memory usage, and the factor d should be considered

for this root cause detection.

To determine disk interferences, we introduce the factor

g to measure the degree of disk interference. The task set

scheduled at the beginning of each stage could be affected

by disk I/O. Therefore, these initial tasks on disk I/O

interfered nodes behave differently from other nodes’ initial

tasks beginning tasks (factor g), CPU will become busy, and

memory usage is different with other nodes’. Therefore,

The memory changing rate (factor c) and CPU Occupation

(factor d) are also used to determine such root causes.

After deciding the combination of factors for each root

cause, we give them weights to determine root causes

394

Table II
FACTOR FOR EACH ROOT CAUSES

Factor type CPU Mem Network Disk
a DAR

√ √
b DAD

√ √ √
c DCO

√ √
d MCR

√ √ √
e DTD

√
f DMC

√
g DLD

√

accurately. Here, all weights are between 0 and 1, and the

sum of them for each root cause is 1. To decide the values

of weights, we use classical liner regression on training

sets that we obtained from experiments on WordCount,

Kmeans, and PageRank, which are discussed in more details

in Section IV.

CPU = 0.3 ∗ a+ 0.3 ∗ b+ 0.2 ∗ c+ 0.2 ∗ d
Memory = 0.25 ∗ a+ 0.25 ∗ b+ 0.5 ∗ d
Network = 0.1 ∗ b+ 0.4 ∗ e+ 0.5 ∗ f
Disk = 0.2 ∗ c+ 0.2 ∗ d+ 0.6 ∗ g

(11)

Then, Eq. (12) is proposed to calculate the final proba-

bility that the abnormal belongs to each of the root causes.

probability = 1− 1

factor
(12)

IV. EXPERIMENTS

In this section, we present the experimental results on

our abnormal detection and the root cause analysis in

three Spark applications, i.e., WordCount, Kmeans, and

PageRank which are provided by sparkbench [10].

A. Experimental Setup

To evaluate the performance of our proposed approach,

we build an Apache Spark Standalone Cluster with four

compute nodes, in which each compute node has a hard-

ware configuration with Intel Xeon CPU E5-2620 v3 @

2.40GHz, 16GB main memory, 1 Gbps Ethernet, and Cen-

tOS 6.6 with kernel 2.6. Apache Spark is v2.0.2.

B. Interference Injection

1) CPU: We spawn a bunch of processes to compete with

Apache Spark jobs for computing resources, which

triggers straggler problems in consequence of limited

CPU resource.

2) Memory: We run a program that requests a significant

amount of memory to compete with Apache Spark

jobs. Thus, Garbage Collection will be frequently

invoked to reclaim free space.

3) Disk: We simulate disk I/O contention using “dd”

command to conduct massive disk I/O operations to

compete with Apache Spark jobs.

4) Network: We simulate a scenario where network

latency has a great impact on Spark. Specifically, we

use “tc” command to limit bandwidth between two

computing nodes.

C. Experimental Result Analysis & Evaluation

We conduct experiments on three benchmarks, Word-

Count in Spark package, Kmeans and Page Rank in Spark-

Bench [10]. We run each of the benchmarks 20 times with

simulated interference injection.

Table III summarizes the probability results of our root

cause detection approach. For the first step, totally 320

abnormal cases are created, out of which 38 are detected as

normal (accuracy: 88.125%). Among these mis-classified

cases, 29 are from memory fault injection and the rest 9

are from disk IO. Meanwhile, additional 60 normal cases

are also put into our approach for root cause detection, and

no one is reported as abnormal. We also check the normal

cases’ abnormal factors to demonstrate the effectiveness of

our approach. In all three benchmarks, the impact of CPU

interference is significant, and tasks under CPU interfer-

ence can be detected as abnormal with high probability.

For memory interference, its probability is not significant

because memory interference has less direct effect on Spark

tasks, not like root causes. Injecting significant memory

interference into one node will cause the whole application

crash because the executers of Spark will fail if without

enough memory. For network interference, the results show

that the proposed approach gives a high probability. Lastly,

disk interference shows a high probability in disk root

causes. Worth mentioning here, for all different root causes,

the detected probability of CPU are always high, because

all root causes will eventually affect the efficiency of CPU.

Table III
ROOT CAUSES DIAGNOSIS RESULT

Benchmark Interference CPU Memory Network Disk

Wordcount

CPU 86.5 35.0 20.0 60.0
Memory 61.2 62.6 20.4 36.0
Network 51.5 32.5 85.0 32.4

Disk 60.2 40.5 26.2 82.5
Normal 8.5 3.5 5.2 10.3

Kmeans

CPU 86.0 53.1 24.5 42.3
Memory 60.5 53.5 35.6 30.5
Network 43.5 35.2 87.2 42.5

Disk 76.5 53.2 46.2 82.3
Normal 8.6 2.3 3.6 9.6

PageRank

CPU 83.2 43.3 24.3 52.5
Memory 65.4 67.6 26.5 45.0
Network 53.5 46.8 85.8 51.0

Disk 60.3 53.6 25.5 75.6
Normal 9.1 4.5 3.6 10.2

D. Discussion

Our approach is only tested on clusters with injecting

interference on a single node. In order to show considerable

effect, the interference will last a while. Additionally, as our

approach is based on the task analysis inside each stage,

it requires the target application with a certain amount of

task partitions for each stage. Furthermore, our approach

would be less suitable for analyzing user’s log with different

Garbage Collectors such as G1, CMS, and the new version

of Spark log with different Spark schedulers.

395

V. RELATED WORK

Abnormal tasks could lead to performance degradation

in the big data computing frameworks [14, 15] and their

root causes are complicated. Ananthanarayanan et al. [3]

classified root causes into three categories: machine char-

acteristics, which are the main reason, such as CPU usage,

memory availability, and disk failure; network characteris-

tics faults like the network bandwidth limitation and pack-

age drop; the internals of the execution environment such

as data-work partitioning. Garbageman et al. [5] proposed

that most common cause for abnormal occurrence is server

resource utilization and data skew problem only takes 3% of

total root causes. Therefore, we consider machine resources

include CPU, memory, network, and disk as main root

causes to analyze, and ignore data skew.

There are two kinds of approaches in abnormal detec-

tion, online and off-line. Some monitoring-related online

approaches have been investigated. For example, Anantha-

narayanan et al. [3] provide a tool called MANTRI that

monitors tasks and outliers using cause- and resource-aware

techniques. MANTRI uses real-time progress to detect out-

liers in their lifetime. Spark and Hadoop themselves provide

an on-line “speculation”, which is a built-in component

to detect stragglers. There are many off-line approaches

analyze log to locate the error event positions [12, 13, 18].

Moreover, Xu et al. [17] use an automatic log parser to

parse source code and combine PCA to detect anomaly, it is

based on abstract syntax tree (AST) to analyze source code

and uses machine learning to train data. Tan et al. [16]

provides an approach to analyze Hadoop log by extracting

state-machine views of a distributed system’s execution.

Moreover, it combines control-flow and data-flow generated

from debug log to catch normal system events and errors.

In our approach, we extract features directly from log, but

do not change any level of logging. Xu et al. [5] provide

an experiment-based approach to determine root causes of

stragglers using an integrated off-line and online model.

VI. CONCLUSIONS

In this paper, we propose a novel approach for Spark

log analysis, and it identifies abnormals by combining

both Spark log and GC log, and then analyze the root

causes by weighted factors without using additional system

monitoring information. Moreover, our approach can also

identify the root causes of abnormals with probability.

VII. ACKNOWLEDGEMENT

This work was supported by NSF-CAREER-1622292.

REFERENCES

[1] Apache Hadoop website. http://hadoop.apache.org/.

[2] Apache Spark website. http://Spark.apache.org/.

[3] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,

I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in

the outliers in map-reduce clusters using mantri. In

OSDI, volume 10, page 24, 2010.

[4] S. Diersen, E.-J. Lee, D. Spears, P. Chen, and L. Wang.

Classification of seismic windows using artificial neu-

ral networks. Procedia computer science, 4:1572–

1581, 2011.

[5] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and

J. Xu. Straggler root-cause and impact analysis for

massive-scale virtualized cloud datacenters. IEEE
Transactions on Services Computing, 2016.

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness:

fair allocation of multiple resource types. In NSDI,
2011.

[7] C. Gülcü. The complete log4j manual. QOS. ch, 2003.

[8] H. Huang, L. Wang, E.-J. Lee, and P. Chen. An

mpi-cuda implementation and optimization for parallel

sparse equations and least squares (lsqr). Procedia
Computer Science, 9:76–85, 2012.

[9] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang.

Cap3: A cloud auto-provisioning framework for par-

allel processing using on-demand and spot instances.

In IEEE Intl. Conference on Cloud Computing, 2013.

[10] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura.

Sparkbench: a comprehensive benchmarking suite for

in memory data analytic platform spark. In The
12th ACM International Conference on Computing
Frontiers, page 53. ACM, 2015.

[11] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan,

and Z. Yang. Symbolic analysis of concurrency errors

in openmp programs. In Intl. Conference on Parallel
Processing (ICPP). IEEE, 2013.

[12] A. Oliner and J. Stearley. What supercomputers say:

A study of five system logs. In DSN. IEEE, 2007.

[13] S. Ryza, U. Laserson, S. Owen, and J. Wills. Advanced
Analytics with Spark: Patterns for Learning from Data
at Scale. O’Reilly Media, 2015.

[14] V. Subramanian, H. Ma, L. Wang, E. Lee, and P. Chen.

Rapid 3d seismic source inversion using windows

azure and amazon EC2. In SERVICES. IEEE, 2011.

[15] V. Subramanian, L. Wang, E. Lee, and P. Chen. Rapid

processing of synthetic seismograms using windows

azure cloud. In CloudCom, 2010.

[16] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and

P. Narasimhan. Salsa: Analyzing logs as state ma-

chines. WASL, 8:6–6, 2008.

[17] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I.

Jordan. Detecting large-scale system problems by

mining console logs. In SOSP. ACM, 2009.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-

ica. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In NSDI.
USENIX Association, 2012.

[19] H. Zhang, H. Huang, and L. Wang. MRapid: An

efficient short job optimizer on Hadoop. In the 31st
IEEE International Parallel & Distributed Processing
Symposium (IPDPS). IEEE, 2017.

396

