
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Linear method for steady-state analysis of radial distribution systems

Anna Rita Di Fazioa,⁎, Mario Russoa, Sara Valeria, Michele De Santisb

a Dipartimento di Ingegneria Elettrica e dell’Informazione, Università di Cassino e del Lazio Meridionale, Cassino, Italy
b Engineering Department, Università Niccolò Cusano, Rome, Italy

A R T I C L E I N F O

Keywords:
Power system modeling
Distributed energy resources
Power distribution
Sensitivity analysis

A B S T R A C T

Linear methods for steady-state analysis of distribution systems are getting more and more important due to the
spreading of distributed energy resources, such as distributed generation, storage systems, active demand. This
paper proposes a new linear method based on a Jacobian approach for radial distribution network with lateral
derivations and distributed energy resources. The set of the linear equations modeling the distribution system is
firstly presented and, then, solved in a closed form. It includes the full π -model for lines, ZIP model for un-
controlled loads, both P-Q and P-V control for distributed energy resources. The adoption of a peculiar set of
modeling variables and the radial topology of the network allows to obtain high accuracy and low computational
times. The effectiveness of the method is tested on both a 24-nodes and a 237-nodes network. The method is
firstly applied to sensitivity analysis and compared with other linearized methods in terms of accuracy and
computational efficiency; then, it is applied to the power flow analysis and compared with the classical non
linear load flow.

1. Introduction

Linear methods for analyzing steady-state operation of distribution
systems are gaining more and more importance in the planning and
operation activities, due to the wide and rapid spread of distributed
energy resources (DERs) (i.e. distributed generation, storage systems,
active demand). Typical applications of linear methods are power flow
analysis [1–3], power system optimization studies [4,5], power losses
estimation [6], and sensitivity analysis for hosting capacity evaluation
[7], for pricing and placement of DERs and control devices [8,9], for
Volt/VAr control [10,11].

A widely-used approach in linear methods is to evaluate a given
initial operating condition of the distribution system and, then, the
sensitivity coefficients that linearly relate the variations of network
electrical variables to parameter changes (i.e. powers injected by dis-
tributed generators, power exchanges by storage systems and by vol-
tage control devices). In the present paper, this approach is adopted and
attention is focused only on the impact of active and reactive powers
injected/absorbed by DERs on the electrical variables of the network.

The initial operating condition is generally obtained by solving a
single load-flow problem in a base-case [12]. On the other hand, several
methods have been proposed to evaluate sensitivity coefficients, which
can be classified into three main categories: perturb and observe
methods, circuit theory methods and Jacobian-based methods.

Perturb and observe methods evaluate the sensitivity coefficients as

numerical derivatives, that is the ratio between the finite variation of an
electrical variable (observation) caused by an assigned DER power
variation (perturbation). The variations are evaluated by either simu-
lation [9] or actual measurements [13,14] or load-flow calculation
[15,16]. Accuracy of these methods are strictly dependent on the eva-
luation technique (f.i. high for load-flow and low for measurements),
whereas the computational efficiency is quite low if many DERs are to
be considered.

The second category includes the circuit theory methods which
derive the sensitivity coefficients from linear circuit equations, such as
the network impedance matrix [10,15,17,18], the line voltage drop
expression [11], the two-port network equations [19], the adjoint
network [20]. These methods present a trade-off between accuracy of
the results and computational efficiency, because the latter one can be
improved only by introducing model approximations and, conse-
quently, reducing accuracy.

The third category includes the Jacobian-based methods which, in
their classical formulation, obtain the sensitivity coefficients from the
inverse of the Jacobian matrix, derived from the load-flow solution
[4,8]. Since these methods use the analytical derivatives, they are the
most accurate but, on the other hand, present two main drawbacks: i.
the Jacobian matrix is available from the load-flow solution obtained by
the Newton-Raphson technique, which presents well-known con-
vergence problems in distribution systems; ii. the computational effi-
ciency significantly decreases with the increase of the number of the
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nodes in the network, due to the Jacobian matrix inversion. To over-
come the first drawback, in [16] the analytical derivatives are derived
from the Distflow equations [21] exploiting the radial topology of
distribution networks. However, the method in [16] does not overcome
the second drawback. In fact, for each DER power variation, the related
sensitivity coefficients are evaluated by solving a large set of linear
equations.

In the present paper, extending and improving the approach pre-
sented in [22], a novel Jacobian-based method for the steady-state
analysis of distribution systems is proposed by exploiting the radial
network configuration, typically adopted in distribution system opera-
tion. Starting from an initial operating point, the proposed method di-
rectly provides the closed-form analytical expressions of the sensitivity
coefficients, which linearly relate the variations of the active and re-
active power flows and of the square nodal voltage amplitudes to the
powers injected/absorbed by each DER connected to the network.

The main contributions of the paper are: (i) the model of the basic
element, namely the line-node component (LNC), is extended to ac-
count for the full π-model of lines, for voltage-dependent load models,
for different types of DER controls, and for lateral derivations; (ii) the
set of the equations representing the linear model of the whole dis-
tribution system is provided, in which the adoption of a new set of
variables for the analytical derivatives assures an improvement of the
accuracy of the results with respect to other Jacobian-based methods;
(iii) the closed form solution of the low-voltage (LV) distribution system
is derived increasing the computational efficiency, especially for large
distribution networks; (iv) the algorithm implementing the closed-form
solution is outlined. The proposed model is developed with reference to
balanced operating conditions, but its extension to unbalanced dis-
tribution systems is viable and will be presented in future studies.

The paper is organized as follows. In Section 2, the modeling
equations of the supplying system as well as of the LV network are
presented. In Section 3, the linearized model of the distribution system
is firstly derived and, then, analytically solved thus obtaining its closed-
form expression. Eventually, the method is firstly applied to sensitivity
analysis and compared with other linearized methods in terms of ac-
curacy and computational efficiency; then, it is applied to the power
flow analysis and compared with the classical non linear load flow.

2. Distribution system modeling

Fig. 1 shows a typical LV distribution system with radial topology
composed of a supplying system and the LV network. Reference is made
to a LV distribution system but the analysis can be applied to medium-
voltage (MV) distribution systems operating in radial configuration.
Assumptions related to the modeling of the supplying system and of the
LV network, which includes uncontrolled loads and DERs (i.e. photo-
voltaic generators, controllable loads, and storage systems), are de-
scribed in the following.

2.1. Supplying system

The supplying system includes the MV distribution system and a
MV/LV transformer. The former one is modeled by a voltage source
imposing the no-load voltage at the MV busbar VMV

2 , in series with the

short-circuit impedance Xcc. The transformer is modeled by its series
parameters (i.e. resistance Rtr and leakage reactance Xtr). The equiva-
lent circuit of the supplying system is shown in Fig. 2, being

= +X X Xeq cc tr , and described by the Distflow equations [21]:

= + +
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2.2. LV network

The LV network includes several feeders, each one composed of a
main and different laterals. Each main and lateral is represented by a
series of line-node components (LNCs). The generic nth LNC is com-
posed of (Fig. 3): i. the line n between nodes −n 1 and n; ii. the node n.

The line is modeled by the π equivalent circuit with series para-
meters (resistance Rn and reactance Xn) and shunt parameters (con-
ductance Gn and susceptance Bn). Applying Kirchhoff laws and Distflow
equations to the circuit in Fig. 3 yields:
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Nomenclature

P Q,MV MV powers injected by the MV voltage source
P Q,LV LV powers in-flowing LV busbars
P Q,n n powers out-flowing the node n
P Q,n

in
n
in powers in-flowing series parameters of the π-model of the

line n
P Q,n

out
n
out powers out-flowing series parameters of the π-model of

the line n
P Q,n

line
n
line powers out-flowing the line n

P Q,n
load

n
load power consumptions at the node n

P Q,n
der

n
der powers injected by DERs at the node n

P Q,n
lat

n
lat powers flowing into the lateral derived from the node n

VMV
2 square voltage at the MV busbars

VLV
2 square voltage at the LV busbars

Vn
2 square voltage amplitude at the node n

Fig. 1. Radial LV distribution system.

Fig. 2. Equivalent circuit of the supplying system.
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The node is modeled by a busbar with uncontrolled loads absorbing
Pn

load and Qn
load, DERs injecting Pn

der and Qn
der , laterals deriving Pn

lat and
Qn

lat .
Active and reactive powers absorbed by uncontrolled loads are

modeled by considering their dependence on the voltage magnitude.
The ZIP model [23], widely used in distribution system studies, is
adopted yielding:
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where P Q,n
load

n
load are the rated power consumptions; γ η ξ, ,n

P
n
P

n
P are given

ZIP coefficients for active power absorption; and γ η ξ, ,n
Q

n
Q

n
Q are given ZIP

coefficients for reactive power absorption.
DERs can operate in a P-Q or a P-V control mode [24]. For DERs

equipped with P-Q control, assigned values of active power Pn
der and

reactive power Qn
der at the node n are imposed (f. i. in the case of dis-

tributed generators, Pn
der is the maximum power extractable from the

primary energy source and Qn
der can be fixed or optimally defined to

offer ancillary services to the grid [25]):
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n
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n
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For DERs equipped with P-V control, it is assumed that the node n is
connected to an additional node n by a small fictitious impedance Xn

der.
In such a way, the P-V control imposes assigned values of active power
Pn

der and voltage Vn
der2 at n so that Distflow equations can be written at

node n as:
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Finally, for notation simplicity, the powers flowing into the lateral
are set equal to the dummy variables ∼Pn

lat
and ∼Qn

lat
, being determined by

the lateral itself:

= =∼ ∼P P Q Qn
lat

n
lat

n
lat

n
lat

(8)

3. Linear method

The proposed method aims at obtaining closed form expressions of
the variations of the electrical variables characterising each node of
the LV distribution network to changes of the system parameters in the
same or in a different node of the grid. In the reminder, active and
reactive powers absorbed by uncontrolled loads as well as active and

reactive powers injected by DERs are considered as system para-
meters.1

To define variables and parameters, a rearrangement of the LNC
enumeration according to the grid topology is required. For the sake of
simplicity but without any loss of generality, the presence of sublaterals
in the LV network is not considered to semplify the notation. In parti-
cular, as shown in Fig. 1, it is assumed that the generic feeder f
( = …f F1, , ) is composed of a main and Lf laterals, identified by index ℓ
( =ℓ 0 for the main and = … Lℓ 1, , F for the laterals). Each main and
lateral is composed of +N 1fℓ nodes, identified by index n
( = …n N0, , fℓ). The lateral ℓ is derived from a node of the main identified
by the index n fℓ. In the following variables and parameters at a generic
node are indicated by three subscripts related to the feeder, the main/
lateral and the node. It is worth noting that the way in which mains and
laterals are identified has no impact on the method.

Variables and parameters are represented by vectors composed of
active and reactive powers and the square voltage amplitude.
Concerning variables, let

=
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be the vectors of the variables at the MV busbar, at the LV busbar, and
at the node n of the lateral ℓ of the feeder f, respectively. Concerning
parameters, let
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be the vectors of, respectively: the powers absorbed by the uncontrolled
load at the node f n,ℓ, ; the powers injected by DERs with P-Q control in
the same node; and the active power and the voltage imposed by DERs
with P-V control at the node f n,ℓ, . Finally, also for the lateral a vector
of dummy variables is defined:

̃ = ∼ ∼P Qx ( , ,0)f n
lat

f n
lat

f n
lat

,ℓ, ,ℓ, ,ℓ,
T

In the following, non linear equations of the distribution system
model are linearized around an initial operating point; border con-
straints and coupling equations are added to derive the linearized
model of the whole distribution system. Then, the model is analytically
solved to obtain its closed-form expression and the related algorithm is
outlined.

3.1. Linearized model

The initial operating point is evaluated by performing a based-case
load flow solution of the LV distribution system without DERs. It is
worthy noticing that the proposed method does not require that the
load-flow solution in the initial operating point is performed by the
Newton-Raphson technique: any load flow algorithm for distribution
systems can be used.

The linearization is performed firstly for the supplying system, then
for the LV network, and finally for the whole distribution system.
Linearized equations are written in terms of variation of variables/
parameters with respect to their values in the initial operating point
(such latter values are indicated by the superscript 0 in the following).

3.1.1. Supplying system
Eqs. (1) are linearized yielding:

=x xJΔ | ΔMV
ss

LV0 (9)

Fig. 3. Equivalent circuit of the nth LNC.

1 The inclusion of the changes of the operating conditions of the MV distribution
system and of the effects of voltage regulator devices will be considered in future studies.
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where J |ss
0 is Jacobian matrix. Model (9) expresses the variations of the

variables of the MV distribution system xΔ MV as linear function of
variation of the same variables at the LV busbar xΔ LV . It is important to
notice that in xΔ MV :

= −V V VΔ MV MV MV
2 2 02

and, then, its value is assigned; in the following it is assumed that
=VΔ 0MV

2 , neglecting the changes of the operating conditions of the MV
distribution system.

3.1.2. LV network
The model of the LV network is represented by a set of feeder

models; each feeder model is composed in turns of the main model, Lf
lateral models and the coupling equations among main and laterals.
Models of both main and laterals include a set of linearized equations of
the LNC model, which is developed in Appendix A, and border con-
straints. In details:
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(12)

where Jf n,ℓ, and Jf n,ℓ, are defined in Appendix A.
Equations in (10) are the linearized model of the main. The first set

of equations are the Nf0 LCN models; each LNC model expresses the
variation of the electrical variables at each node of the main xΔ f n,0, as
linear function of: (i) the variation of the electrical variables at the
upstream node −xΔ f n,0, 1; (ii) the variations of assigned absorbed/in-
jected powers due to uncontrolled loads and DERs at the same node

xΔ f n
inj

,0, , defined by (33) in Appendix A; (iii) the variation of the powers
flowing into the lateral ̃xΔ f n

lat
,0, . The second set of equations in (10) re-

present 3 border constraints, imposing that the active and reactive
power flowing at the ending LNC of the main are null and that the
variation of the voltage at the beginning of the main is equal to the one
at the LV busbar.

Similarly to (10), each lateral in (11) is modeled by a set of Nfℓ LNC
models (with no lateral derivation) and a set of 3 border conditions
(imposing null powers at the ending nodes and the equality among the

variation of the voltage at the beginning of the lateral and at the node
n fℓ of the main, which the lateral is derived from).

Finally, coupling Eqs. (12) impose that the powers flowing out of
the main are equal to the ones flowing into the laterals.

It is important to notice that the presence of a lateral with sub-
laterals in the LV network can trivially be taken into account by writing
equations similar to (10)–(12).

3.1.3. LV distribution system
The linearized model of the whole LV distribution system is com-

posed of the model of the supplying system (9), the feeder models
(10)–(12) for = …f F1, , , and the coupling equations imposing the bal-
ance among the variations of the active and reactive powers outflowing
the LV busbar and inflowing the feeders:

∑ ∑= =
= =

P P Q QΔ Δ Δ ΔLV
f

F

f LV
f

F

f
1

,0,0
1

,0,0
(13)

The adoption of the squared voltages rather than the voltage am-
plitudes as variables of the model allows to reduce the approximations
introduced by the linearization with respect to other Jacobian methods.
The set (9)–(13) can be numerically solved for assigned x f n

inj
,ℓ, , similarly

to [16]. To avoid the solution of a large linear problem, in the following
the closed-form solution of the model is derived by exploiting the radial
topology of the distribution system.

3.2. Closed-form solution

Applying the chain rule to the first equation of the model of the
main in (10), it is induced:

̃∑
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where Mf n,0, and f kN ( ,0, )f n,0, are defined in Table 1. For assigned x f k
inj

,0,

and ̃x f k
lat

,0, , (14) is a set of Nf0 equations in +N 1f0 variables, i.e. xΔ f n,0,
and xΔ f ,0,0. Imposing the 3 border constraints in (10), the set (14) is
analytically solved with respect to xΔ f n,0, with = …n N0, , f0 applying the
same procedure as in [22], yielding:
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where f kA ( ,0, )f n,0, and af n,0, are defined in Table 1.
In a similar way the lateral models are derived, resulting:

Table 1
Expressions of vectors and matrices for main and laterals.

Mf n,ℓ, f kN ( ,ℓ, )f n,ℓ, f kA ( ,ℓ, )f n,ℓ, f kA ( ,ℓ, )f ,ℓ,0 af n,ℓ, af ,ℓ,0
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where: = − = −− −f k f kA M N a M m( ,ℓ, ) ( ,ℓ, )f f N f f N f f f N f f N f,ℓ,0 ,ℓ, ℓ
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.
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where f kA ( ,ℓ, )f n,ℓ, and af n,ℓ, are defined in Table 1.
As demonstrated in Sect. A of the Appendix B, by imposing (12) to

couple the main (15) and laterals (16) for each feeder f, it is obtained
the model of the LV network as:
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2

f f j
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where f j kU ( , , )f n,ℓ, and uf n,ℓ, are defined in Appendix B.
It is worth underlining that the model of a lateral with sublaterals

can trivially be included by writing equations similar to (15)–(17) and,
for each feeder, by hierarchically coupling firstly lateral with its sub-
laterals and then main with its laterals.

The distribution system is represented by the model of the supplying
subsystem (9) and the model of the LV network (17). As demonstrated
in Sect. B of Appendix B, imposing the balance of powers (13) at the LV
busbar the closed form expression of the model of the LV distribution
system is obtained:
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i f j
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where i j kT ( , , )f n,ℓ, is defined in Appendix B. Model (18) linearly relates
the variations of the electrical variables characterising each node of the
LV distribution network to the variations of powers injected by all the
uncontrolled loads and DERs connected to the grid. Such a model can
be applied to linear modeling of the steady-state operation as well as to
perform sensitivity analysis of the distribution system. As an example of
the former application, the simple case of a distribution system with
fixed uncontrolled loads and distributed generation with P-Q control as
DERs can be considered; assuming the distribution system without
DERs as initial operating point, using (18) the steady-state linear model
can be rewritten as

∑ ∑ ∑= +

= … = … = …
= = =

x x i j k P Q

f F L n N

T ( , , )( , ,0)

for 1, , ℓ 0, , 0, ,

f n f n
i

F

j

L

k

N

f n i j k
der

i j k
der

f f

,ℓ, ,ℓ,
0

1 0 1
,ℓ, , , , ,

T
i f j

ℓ (19)

In addition, model (18) can be used to perform sensitivity analysis. In
fact, since the linearity of the model allows the superposition effect, it
can be used to evaluate the impact of a single DER injection on the
electrical variables of a specific node of the grid, according to

=x i j kT xΔ ( , , )Δf n f n i j k
inj

,ℓ, ,ℓ, , , (20)

3.3. Algorithm

A general algorithm is presented to evaluate the closed form ex-
pression of the linear model of the LV distribution system. The algo-
rithm is divided into two procedures.

3.3.1. First procedure
The input data are:

– configuration of the distribution system;
– supplying system parameters: V X R X, , ,MV cc tr tr ;
– line parameters: R X G B, , ,n n n n;
– uncontrolled load parameters: P Q γ η ξ γ η ξ, , , , , , ,n

load
n
load

n
P

n
P

n
P

n
Q

n
Q

n
Q;

– parameters of DERs with P-Q control: P Q,n
der

n
der ;

– parameters of DERs with P-V control: P V,n
der

n
der ;

– active and reactive power flows and voltage amplitudes in the initial
operating point: xn

0 .

Such a procedure evaluates the new arrangement of the LV network
and the Jacobian matrices of the supplying system and of the LNCs. In
details, it consists of:

i. rearranging the LV network in F feeders and each feeder f in a main
=ℓ 0 with +N 1f0 nodes and = … Lℓ 1, , F laterals with +N 1fℓ nodes;

ii. evaluating the Jacobian matrix of the supplying system J |ss
0 in (9);

iii. evaluating the Jacobian matrices for each LNC:
– line: J |f n

line
,ℓ, 0 in (24);

– uncontrolled load: J |f n
load

,ℓ, 0
1 and J |f n

load
,ℓ, 0

2 in Table 14;
– DER with P-V control: J |f n

der
,ℓ, 0

1 and J |f n
der

,ℓ, 0
2 in Table 14;

– LNC: Jf n,ℓ, and Jf n,ℓ, in (34).

3.3.2. Second procedure
The input data are the output of the first procedure; in detail:

– rearrangement of the LV network;
– Jacobian matrix of the supplying system J |ss

0;
– Jacobian matrices of the LV network Jf n,ℓ, and Jf n,ℓ, ;

Such a procedure evaluates the matrices Tf n,ℓ, in (18). In detail, it
consists of:

i. for each node of both main of its laterals of a feeder, evaluating
matrices Af n,ℓ, and vectors af n,ℓ, in Table 1;

ii. for each feeder, coupling main and its laterals by evaluating ma-
trices Uf n,ℓ, and vectors uf n,ℓ, in Table 15;

iii. coupling supplying substation and feeders of the LV network by
evaluating matrices Tf n,ℓ, in Table 16.

The second procedure is described in Fig. 4.
In conclusion, such an algorithm can be implemented in any pro-

gramming language and can be included into commercial software,

Fig. 4. Algorithm.
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provided that adequate interface is implemented for the rearrangement
of input and output data.

4. Case study

The proposed method (PM) is firstly applied to sensitivity analysis
and compared with other methods used to evaluate sensitivity coeffi-
cients in terms of accuracy and computational times; then, it is applied
to the load flow problem and compared with non-linear load flow so-
lution.

4.1. Application to sensitivity analysis: accuracy

The PM is applied to perform sensitivity analysis and evaluate the
variations of the electrical variables P Q VΔ ,Δ ,Δn n n caused by changes of
injections/absorptions of the DERs connected to the grid.

To evaluate the accuracy of the PM, results are compared with the
benchmark variations of the electrical variables P Q VΔ ,Δ ,Δref n ref n ref n, , , ,
obtained by load flow solution; in particular errors are calculated for
the three electrical variable at each node as:

= −
= −
= −

e P P
e Q Q
e V V

|Δ Δ |
|Δ Δ |
|Δ Δ |.

P n ref n

Q n ref n

V n ref n

,

,

,

n

n

n

The PM is compared with other two sensitivity-based methods: the
circuit theory method (CTM), based on network impedance matrix
presented in [18], and the classical Jacobian method (JM), based on the
inverse of the Jacobian matrix. The accuracy of both CTM and JM is
evaluated in the same way.

In the following the results for two distribution systems are ana-
lyzed, namely a 24-nodes and a 237-nodes LV networks.

4.1.1. 24-nodes LV network
A 20/0.4 kV substation feeds a LV distribution grid composed of 2

main feeders, each one with 2 laterals and 2 DERs (Fig. 5). The 20 kV
distribution system is represented by its Thevenin equivalent as seen
from the MV/LV substation, assuming a 1000MVA short-circuit power
and an open-circuit voltage VMV =1.0 p.u.. Concerning the 20/0.4 kV
transformer, it has a rated power equal to 0.25MVA with
Xtr =0.015 p.u. and Rtr =0.00125 p.u.. The electrical parameters of
the lines and the rated powers absorbed by uncontrolled loads are re-
ported in Table 2. Hereafter the basis is set to 100 kVA. The total load
connected to the network is equal to 65.9 kW and 33.0 kVAr. In the
following, both small and large DER injections/absorptions are taken
into account to test the accuracy of the linearization.

Small DER powers. Two different cases are considered to take into
account power injections and absorptions of DERs:

(1) 4 DERs of PQ-type, each one injecting =P 3der kW and

=Q 1.5der kVAr; uncontrolled loads of PQ-type;
(2) 4 DERs of PQ-type, each one absorbing = −P 3der kW and

= −Q 1.5der kVAr; uncontrolled loads of PQ-type;

Tables 3 and 4 reports the average and the maximum values of the
errors for the three methods PM, JM and CTM in the cases 1 and 2,
respectively. Both the tables show that CTM presents errors of at least
one order of magnitude larger than PM and JM. For this reason, CTM is
no longer taken into consideration in the following. Furthermore, PM
and JM present errors of the same order of magnitude and in any case
PM gives better results than JM. Comparing Table 3 with Table 4 it is
apparent that the corresponding errors are very similar and conse-
quently in the following only DER power injections are analyzed.

Large DER powers. Three different cases are considered, to take into
account different types of control for DERs and of uncontrolled loads:

Fig. 5. 24-nodes LV network.

Table 2
Line and load parameters for the 24-nodes LV network.

From To R X P load Q load

Node Node (p.u.) (p.u.) (p.u.) (p.u.)

0 1 0.0105 0.0025 0.0261 0.0128
1 2 0.0059 0.0014 0.0236 0.0117
2 3 0.0114 0.0027 0.0152 0.0075
3 4 0.0079 0.0011 0.0138 0.0068
4 5 0.0095 0.0013 0.0124 0.0062
5 6 0.0052 0.0007 0.0033 0.0016
6 7 0.0040 0.0006 0.0020 0.0010

2 8 0.0106 0.0015 0.0062 0.0031
8 9 0.0120 0.0017 0.0041 0.0020
9 10 0.0040 0.0006 0.0020 0.0010

5 11 0.0089 0.0011 0.0040 0.0020
11 12 0.0037 0.0002 0.0020 0.0010

0 13 0.0006 0.0001 0.0373 0.0183
13 14 0.0190 0.0010 0.0228 0.0111
14 15 0.0100 0.0005 0.0093 0.0046
15 16 0.0088 0.0004 0.0041 0.0020
16 17 0.0408 0.0019 0.0020 0.0010

13 18 0.0038 0.0008 0.0122 0.0060
18 19 0.0512 0.0027 0.0067 0.0033
19 20 0.0236 0.0012 0.0014 0.0007

14 21 0.0632 0.0096 0.0065 0.0032
21 22 0.0017 0.0003 0.0013 0.0006

Table 3
Errors for the 24-nodes network: case 1.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.0045 0.0006 0.0576 0.0233 0.0048 0.0988
JM 0.0077 0.0040 0.0988 0.0257 0.0162 0.2135
CTM 0.0584 0.0417 0.9348 0.1960 0.1480 1.7783

Table 4
Errors for the 24-nodes network: case 2.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.0047 0.0007 0.0621 0.0247 0.0051 0.1082
JM 0.0080 0.0040 0.1043 0.0271 0.0162 0.2266
CTM 0.1470 0.0982 2.3077 0.4450 0.2881 3.9062
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(3) 4 DERs of PQ-type, each one injecting =P 20der kW and
=Q 10der kVAr; uncontrolled loads of PQ-type;

(4) DER1, DER3 of PV-type (with voltage set to 1.0 p.u.), each one in-
jecting =P 20der kW; DER2, DER4 of PQ-type, each one injecting

=P 20der kW and =Q 10der kVAr; uncontrolled loads of PQ-type;
(5) 4 DERs of PQ-type, each one injecting =P 20der kW and

=Q 10der kVAr; uncontrolled loads of ZIP-type with
= = = =γ η γ η 0n

P
n
P

n
Q

n
Q and = =ξ ξ 1n

P
n
Q ;

The results for the cases 3, 4 and 5 are reported in Tables 5–7, re-
spectively. In all the cases, PM assures higher accuracy than JM with
the only exception of the maximum error on P in the case 4.

4.1.2. 237-nodes network
The LV distribution grid is obtained by adding to the previous 24-

nodes LV network a third feeder described in the IEEE European LV test
network [26]; the resulting LV network is composed of 237 nodes and
presents multiple laterals derived from both mains and other laterals.
The total load connected to the network is equal to 108.3 kW and
46.9 kVAr. Eleven DERs are connected to the grid (3 DERs to the first
feeder, 3 DERs to the second feeder and 5 DERs to the third feeder).
Each DER injects =P 10der kW and =Q 5der kVAr. Three different cases
are considered:

(1) DERs and uncontrolled loads of PQ-type;
(2) 3 DERs of PV-type (with voltage set to 1.0 p.u.) and 8 DERs of PQ-

type; uncontrolled loads of PQ-type;
(3) DERs of PQ-type; uncontrolled loads of ZIP-type with

= = = =γ η γ η 0n
P

n
P

n
Q

n
Q and = =ξ ξ 1n

P
n
Q ;

and results are reported, respectively, in Tables 8–10. In all the cases, it
can be stated that PM assures higher accuracy than JM, with the only
exception of the maximum error on P in the case 2.

In conclusion, looking at Tables 3–10, the improvement assured by
PM in terms of accuracy is evident. It is due to the linearized model
which, taking advantage of the radial topology of the distribution
networks, adopts the square voltage amplitude variation as a variable.
In this way, the inaccuracy introduced by linearization is reduced with

respect to the classical JM. The improvement is more evident when
DERs are equipped with a PQ control (f.i. see cases 1 and 3 for the 24-
nodes network) and less evident when DERs are equipped with PV
control (f.i. see case 4 for the 24-nodes network), since in this latter case
the voltage amplitudes are imposed.

4.2. Application to sensitivity analysis: computational times

The PM is compared in terms of computational times with two
sensitivity-based methods: the classical Jacobian method (JM) and a
perturb and observe method (POM), based on a load-flow performed by
MATPOWER (MP) [27]. Computational times are evaluated referring to
the computing of sensitivity coefficients using MATLAB environment.
Table 11 reports the computational times of PM, JM and POM for both
the 24-nodes and 237-nodes networks. It is apparent that the compu-
tational times of PM are smaller than JM and POM; furthermore POM
presents the worst performance.

For each method, the relationship between the increase of the
computational times with respect to the increase of network dimension
can be deduced by introducing the ratio between the numbers of the
nodes rN and the ratio between the computational times rCT of, re-
spectively, the 237-nodes and the 24-nodes network. Table 12 reports
the values of rN and rCT for the PM, JM and POM. Looking at Table 12, it
can be deduced that:

≃ ≃ ≃r r r r r rfor PM, for JM, for POM,CT N CT N CT N
1.31 1.64

that gives evidence that the larger the network, the higher the benefit

Table 5
Errors for the 24-nodes network: case 3.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.1767 0.0250 2.1253 0.8937 0.1865 3.5174
JM 0.3184 0.1773 3.8430 1.0021 0.7351 8.2168

Table 6
Errors for the 24-nodes network: case 4.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.2738 0.4282 0.3953 1.2913 1.8620 1.7689
JM 0.3103 0.6307 0.7819 1.1258 3.3187 2.3171

Table 7
Errors for the 24-nodes network: case 5.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.1480 0.0180 1.7114 0.7267 0.1414 2.7925
JM 0.2687 0.1472 3.1653 0.8173 0.6168 6.7703

Table 8
Errors for the 237-nodes network: case 1.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.0700 0.0129 0.2869 2.1470 0.4515 1.9665
JM 0.1518 0.0813 0.4958 2.2000 1.4608 4.2183

Table 9
Errors for the 237-nodes network: case 2.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.0730 0.1971 0.3520 2.1272 7.1100 0.5614
JM 0.1257 0.3316 0.4757 1.9213 10.9870 0.8049

Table 10
Errors for the 237-nodes network: case 3.

Average error [ −10 3 p.u.] Maximum error [ −10 3 p.u.]

P Q V P Q V

PM 0.0577 0.0085 0.2321 1.7684 0.3435 1.5599
JM 0.1296 0.0706 0.4219 1.8155 1.2338 3.5001

Table 11
Computational times for 24-nodes and 237-nodes networks.

Computational time [s]

Network PM JM POM

24-nodes 0.087 0.099 2.115
237-nodes 0.872 2.087 95.613
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assured by the PM. In conclusion, the high computational efficiency of
the PM is related to the adoption of the closed-form solution, that
avoids large matrix inversion or linear system solution.

4.3. Application to the load flow problem

The aim of this subsection is to show the use of the PM as alternative
to non linear load-flow solution. Let the 24-nodes network be con-
sidered. The initial point refers to the operating conditions without
DERs. Firstly, the PM is applied to evaluate the variations of the elec-
trical variables caused by DER powers in the cases 3 and 4 of Section
4.1.1; then, the final values of the electrical variables are derived and
compared with the non linear load flow solution, evaluated by MP.
Figs. 6 and 7 report the electrical variables V P Q, ,n n n at each node along
the two mains for the cases 3 and 4, respectively. Dotted plot refers to
the initial point without DER injections; solid and dashed plots refer to
the final operating condition obtained by respectively MP and PM.
Analyzing Figs. 6 and 7 it is apparent that the PM is able to track the
large variations of the electrical variables due to DER power injections.
In particular referring to Fig. 7, it is evident that the model adopted by

the PM for DERs of PV-type accurately accounts for the variations of the
voltage profile; in this case, errors are concentrated on active and re-
active powers.

5. Conclusion

A linear method for the steady-state analysis of radial distribution
systems with distributed energy resources has been proposed.

The method adopts a Jacobian-based model of the distribution
system with a new set of variables, which is introduced to limit the
approximation caused by system equation linearization. The proposed
model is analytically solved by imposing border constraints and cou-
pling equations for the radial topology, so as to obtain the closed-form
expressions of the sensitivity coefficients.

The impact of distributed energy resources has been taken into ac-
count and, as a first step, only balanced operating condition have been
considered. Future work will include also the changes in the operating
conditions of the upstream supplying system and the actions of voltage
regulators, such as tap-changers and capacitor banks, and will extend
the proposed method to unbalanced distribution system operation.

Case studies have evidenced the good performance of the proposed
method in terms of accuracy of the results and of computational effi-
ciency of the algorithm with respect to other linear methods. Also the
effectiveness of the proposed method in modeling the impact of dif-
ferent types of distributed energy resources on the network operation
has been verified and compared with the classical non linear load flow
solution.

Appendix A

For simplicity, the linearized model of the LNC in Fig. 3 is developed adopting the original numeration of the nodes of the network. Nomenclature
for the LNC model and the expression of Jacobian matrices are reported in Tables 13 and 14, respectively.

Concerning the line, by linearizing (2):

=x xJΔ | Δn
out

n
series

n
in

0 (21)

Furthermore, by expressing (3) and (4) as variation, it results:

= −x xSΔ Δn
in

n n 1 (22)

Table 12
Increases of network dimension and computational times.

Ratio [p.u.] PM JM POM

rN 10.26 10.26 10.26
rCT 10.02 21.08 45.21

Fig. 6. Case A – Voltage, active and reactive power flows along the mains of feeder 1 (left)
and 2 (right): initial point without DER by MP (dotted) and final point with DERs in-
jection by MP (solid) and by PM (dashed).

Fig. 7. Case B – Voltage, active and reactive power flows along the mains of feeder 1 (left)
and 2 (right): initial point without DER by MP (dotted) and final point with DERs in-
jection by MP (solid) and by PM (dashed).
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=x xSΔ Δn
line

n n
out (23)

where Sn is defined in Table 14. Finally, substituting (21) for xΔ n
out in (23) and (22) for xΔ n

in in the resulting equation, it is obtained:

= −x xJΔ | Δn
line

n
line

n0 1 (24)

where =J S J S| |n
line

n n
series

n0 0 .
Concerning the node, by linearizing (5), it results:

=x P Q VJΔ | (Δ ,Δ ,Δ )n
load

n
load

n
load

n
load

n0
2 T (25)

where J |n
load

0 is defined in Table 14. The linearized model of uncontrolled loads is obtained by rewriting (25) as:

= +x J x J xΔ | Δ | Δn
load

n
load

n
load

n
load

n0 01 2 (26)

where J |n
load

01 and J |n
load

02 are defined in Table 14. Furthermore, according to (6) the linearized model of a DER with P-Q control is:

=x xΔ Δn
der

n
der (27)

In the case of a DER with P-V control, by linearizing (7), it results:

=P Q V P Q VJ(Δ ,Δ ,Δ ) | (Δ ,Δ ,Δ )n
der

n
der

n n
der

n
der

n
der

n
2 T

0
2 T (28)

where J |n
der

0 is the Jacobian matrix defined in Table 14. By substituting for QΔ n
der the expression derived from the third row of (28) in the second row

of (28), the linearized model of DER with P-V control is obtained:

= +x J x J xΔ | Δ | Δn
der

n
der

n
der

n
der

n0 01 2 (29)

where J |n
der

01 and J |n
der

02 are defined in Table 14. Finally, from (8) the linearized model of the lateral is:

̃=x xΔ Δn
lat

n
lat (30)

Line and node models of the LNC are matched by balancing active and reactive powers at the node n according to:

= − + −x x x x xΔ Δ Δ Δ Δn n
line

n
load

n
der

n
lat (31)

Table 13
Nomenclature for the LNC model.

= −x P Q V( , , )n
in

n
in

n
in

n 1
2 T Variables at the node An.

=x P Q V( , , )n
out

n
out

n
out

n
2 T Variables at the node ′A n.

=x P Q V( , , )n
line

n
line

n
line

n
2 T Variables outflowing the line.

=x P Q( , ,0)n
load

n
load

n
load T Variables for uncontrolled load.

=x P Q( , ,0)n
der

n
der

n
der T Variables for DER.

=x P Q( , ,0)n
lat

n
lat

n
lat T Variables for lateral.

J |n
series

0 Jacobian matrix for line series components.

J |n
line

0 Jacobian matrix for line.

J J J| , | , |n
load

n
load

n
load

0 1 0 2 0 Jacobian matrices for uncontrolled load.

J J J| , | , |n
der

n
der

n
der

0 1 0 2 0 Jacobian matrices for DER with P-V control.

J J,n n Jacobian matrices for LNC model.

Table 14
Expressions of matrices for LNC model.

Sn J |n
load

0 J |n
load1 0 J |n

load2 0

⎛

⎝
⎜⎜ −

⎞

⎠
⎟⎟

G
B

1 0 /2
0 1 /2
0 0 1

n

n
⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∂

∂

∂
∂

∂

∂

∂
∂

| 0 |

0 | |

0 0 0

Pnload

Pnload
Pnload

Vn

Qnload

Qn
load

Qnload

Vn

0 2 0

0 2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∂

∂

∂

∂

| 0 0

0 | 0

0 0 0

Pnload

Pnload

Qnload

Qn
load

0

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∂
∂

∂
∂

0 0 |

0 0 |

0 0 0

Pnload

Vn

Qnload

Vn

2 0

2 0

J |n
der

0 J |n
der1 0 J |n

der2 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

1 0 0

| | |

| | |

Qnder

Pn
der

Qnder

Qn
der

Qnder

Vn
der

Vn
Pn

der
Vn

Qn
der

Vn
Vn

der

0 0 2 0

2
0

2
0

2

2 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

− −

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

1 0 0

| 0

0 0 0

Qnder

Pn
der

Qnder

Qn
der

Vn
Pn

der

Vn
Qn

der

Qnder

Vn
der

Qnder

Qn
der

Vn
Vn

der

Vn
Qn

der

0

|0
2

|0

2
|0

2

|0
2

2 |0

2
|0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∂
∂

∂
∂

0 0 0

0 0

0 0 0

Qnder

Qn
der

Vn
Qn

der

|0

2
|0
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By substituting in (31) for xΔ n
line (24), for xΔ n

load (26), for xΔ n
der the sum of (27) and (29),2 and for xΔ n

lat (30), it is obtained:

̃= + − + + −−x xJ J J J x x J x J xΔ | Δ ( | Δ Δ | Δ ) Δn n n
line

n n n
load

n
load

n
der

n
der

n
der

n n
lat

0 1 0 01 1 (32)

where

≜ + − = − +−( )J I J J I J J| | ( | | )n n
load

n
der

n
load

n
der

0 0
1

0 02 2 2 2

Defining the vector of the variations of the injected powers xΔ n
inj at the node n due to uncontrolled loads and DERs as:

≜ − + +x J x x J xΔ | Δ Δ | Δn
inj

n
load

n
load

n
der

n
der

n
der

0 01 1 (33)

(32) is rewritten as:

̃= + −−x xJ J x xΔ Δ (Δ Δ )n n n n n
inj

n
lat

1 (34)

where =J J J |n n n
line

0. Eq. (34) is the model of the LNC, expressing the variation xΔ n as linear function of −xΔ n 1 and of assigned xΔ n
inj and ̃xΔ n

lat.

Appendix B

B.1. LV network

By substituting (12) for ̃xΔ f n
lat

,0, f j
in (15), it results:

∑

∑

=

− +

= …

=

=

x f k

f n P Q V

n N

A x

A a

Δ ( ,0, )Δ

( ,0, )(Δ ,Δ ,0) Δ

for 0, ,

f n
k

N

f n f k
inj

j

L

f n f f j f j f n LV

f

,0,
1

,0, ,0,

1
,0, , ,0 , ,0

T
,0,

2

f

f

j

0

0 (35)

By selecting the first and second row of (16) for =n 0 and adding a third row with zeros elements, it results:

∑= +
=

P Q f k VA x a(Δ ,Δ ,0) ( ,ℓ, )Δ Δf f
k

N

f f k
inj

f f n,ℓ,0 ,ℓ,0
T

1
,ℓ,0 ,ℓ, ,ℓ,0 ,0,

2
f

f

ℓ

ℓ (36)

where af ,ℓ,0 is equal to af ,ℓ,0 in Table 1, expect for its third element which is set to zero. Substituting (36) in (35), it is obtained:

∑

∑ ∑

∑

=

−

− +

= …

=

= =

=

x f k

f n f j k

f n V V

n N

A x

A A x

A a a

Δ ( ,0, )Δ

( ,0, ) ( , , )Δ

( ,0, ) Δ Δ

for 0, ,

f n
k

N

f n f k
inj

j

L

k

N

f n f f j f j k
inj

j

L

f n f f j f n f n LV

f

,0,
1

,0, ,0,

1 1
,0, , ,0 , ,

1
,0, , ,0 ,0,

2
,0,

2

f

f f j

j

f

j f j

0

0 (37)

By selecting the third row of (37) for =n n fℓ, it results:

∑

∑ ∑

∑

=

−

− +

=

= =

=

V f k

f n f j k

f n V b V

b x

b A x

b a

Δ ( ,0, )Δ

( ,0, ) ( , , )Δ

( ,0, ) Δ Δ

f n
k

N

f n f k
inj

j

L

k

N

f n f f j f j k
inj

j

L

f n f f j f n f n LV

,0,
2

1
,0,

T
,0,

1 1
,0,

T
, ,0 , ,

1
,0,

T
, ,0 ,0,

2
,0,

2

f

f

f

f f j

f j

f

f j f j f

ℓ

0

ℓ

ℓ

ℓ ℓ
(38)

where f nb ( ,0, )f n f,0,
T

f jℓ
is the 3th row of f kA ( ,0, )f n,0, fℓ

in Table 1 and bf n,0, fℓ
is the 3th element of af n,0, fℓ

in Table 1. The set composed of (38) for = … Lℓ 1, , f

is solved in the variables VΔ f n,0,
2

fℓ
yielding:

∑

∑ ∑

=

+

=

= =

V f k

f n f j k

V

e D x

e D A x

e d

Δ ( ,0, )Δ

( ,0, ) ( , , )Δ

Δ

f n f
k

N

f f k
inj

f
j

L

k

N

f f f j f j k
inj

f f LV

,0,
2

,ℓ
T

1
,0,

,ℓ
T

1 1
, ,0 , ,

,ℓ
T 2

f

f

f f j

j

ℓ

0

(39)

where ef ,ℓ
T is the ℓth row of = + −E I C( )f f

1; matrices f kC D, ( ,0, )f f and vectors df are defined in Table 15. Substituting (39) in (16) and (37) for

2 The general case of connecting both a DER with PQ control and an other DER with PV control is considered.
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= …f F1, , , it is obtained:

∑ ∑= +

= … = … = …
= =

x f j k V

f F L n N

U x uΔ ( , , )Δ Δ

for 1, , , ℓ 0, , 0, ,

f n
j

L

k

N

f n f j k
inj

f n LV

f f

,ℓ,
0 1

,ℓ, , , ,ℓ,
2

f f j

ℓ (40)

where f j kU ( , , )f n,ℓ, and uf n,ℓ, are defined in Table 15. Eq. (40) is the model of the LV network, expressing the variation xΔ f n,ℓ, as linear function of
assigned xΔ f j k

inj
, , and VΔ LV

2 .

B.2. Distribution system

Substituting (13) in (9), it is obtained:

∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟

= =

x P Q VJΔ | Δ , Δ ,ΔMV
ss

i

F

i
i

F

i LV0
1

,0,0
1

,0,0
2

T

(41)

The third row of (41) can be written as:

∑= +
=

xj j j V0 ( , ,0) Δ Δss ss

i

F

i
ss

LV31 32
1

,0,0 33
2

(42)

Solving (42) in VΔ LV
2 it yields:

∑=
=

xV wΔ ΔLV
i

F

i
2 T

1
,0,0

(43)

where w is defined in Table 16. Let (17) be particularized with = = =f i n,ℓ 0, 0 and substituted for xΔ i,0,0 in (43); the resulting equation is solved
with respect to VΔ LV

2 yielding:

∑ ∑ ∑=
= = =

αV i j kU xΔ ( , , )ΔLV
i

F

j

L

k

N

i i j k
inj2

1 0 1

T
,0,0 , ,

i i j

(44)

where α is defined in Table 16. Eventually, by substituting (44) into (17), it yields:

Table 15
Expressions of vectors and matrices for LV network.

Cf f kD ( ,0, )f df

…( ( ) ( ) )f n f nD a D a,0, , , ,0,f f f f fLf f Lf1 ,1,0 , ,0 …( ( ) ( ))f k f kb b,0, , , ,0,f n f f n fLf
,0, 1

T
,0,

T T …( )b b, ,f n f f n fLf
,0, 1 ,0, T

f j kU ( , , )f n,0, uf n,0, Gf n,0,

− =
− ≠

f k f k j
f n f j k f n f j k j

A G D
G D A A A

( ,0, ) ( ,0, ) 0
( ,0, ) ( , , ) ( ,0, ) ( , , ) 0

f n f n f

f n f f j f j f n f j f j

,0, ,0,

,0, , ,0 ,0, , ,0

− +G d af n f f n,0, ,0,

∑ = f nA a e( ,0, )j
Lf

f n f j f j f j1 ,0, , ,0 ,
T

f j kU ( , , )f n,ℓ, uf n,ℓ,

=

− =

− ≠

f k j

f k f n f k j

f n f j k j

a e D

A a e D A

a e D A

( ,0, ) 0

( ,ℓ, ) ( ,0, ) ( ,ℓ, ) ℓ

( ,0, ) ( , , ) 0,ℓ

f n f f

f n f n f f f f

f n f f f j f j

,ℓ, ,ℓ
T

,ℓ, ,ℓ, ,ℓ
T

ℓ ,ℓ,0

,ℓ, ,ℓ
T

, ,0

a e df n f f,ℓ, ,ℓ
T

Table 16
Expressions of vectors and matrices for distribution system.

w α β i j kT ( , , )f n,ℓ,

− j j j( , ,0) /ss ss ss
31 32

T
33 βw/ − ∑ =w u1 i

F
iT

1 ,0,0 + =

≠

α

α

i j k i j k i f

i j k i f

U u U

u U

( , , ) ( , , )

( , , )
f n f n i

f n i

,ℓ, ,ℓ, T ,0,0

,ℓ, T ,0,0
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∑ ∑ ∑=

= … = … = …
= = =

x i j k

f F L n N

T xΔ ( , , )Δ

for 1, , ℓ 0, , 0, ,

f n
i

F

j

L

k

N

f n i j k
inj

f f

,ℓ,
1 0 1

,ℓ, , ,

i f j

ℓ (45)

where i j kT ( , , )f n,ℓ, is defined in Table 16. Eq. (45) is the model of the LV distribution system, expressing the variation xΔ f n,ℓ, as linear function of
assigned xΔ f j k

inj
, , .

References

[1] Martí J, Ahmadi H, Bashualdo L. Linear power-flow formulation based on a voltage-
dependent load model. IEEE Trans Power Deliv 2013;28(3):1682–90.

[2] Garces A. A linear three-phase load flow for power distribution systems. IEEE Trans
Power Syst 2015;31(1):827–8.

[3] Wang Y, Zhang N, Li H, Yang J, Kang C. Linear three-phase power flow for un-
balanced active distribution networks with pv nodes. CSEE J Power Energy Syst
2017;3(3):321–4.

[4] O’Connell A, Flynn D, Keane A. Rolling multi-period optimization to control electric
vehicle charging in distribution networks. IEEE Trans Power Syst
2014;29(1):340–8.

[5] Ahmadi H, Martí J. Distribution system optimization based on a linear power-flow
formulation. IEEE Trans Power Deliv 2015;30(1):25–33.

[6] Ayres HM, Salles D, Freitas W. A practical second-order based method for power
losses estimation in distribution systems with distributed generation. IEEE Trans
Power Syst 2014;29(2):666–74.

[7] Jothibasu S, Santoso S. Sensitivity analysis of photovoltaic hosting capacity of
distribution circuits. In: IEEE power and energy society general meeting (PESGM);
2016. p. 1–5.

[8] Sathyanarayana BR, Heydt GT. Sensitivity-based pricing and optimal storage utili-
zation in distribution systems. IEEE Trans Power Deliv 2013;28(2):1073–82.

[9] Tamp F, Ciufo P. A sensitivity analysis toolkit for the simplification of mv dis-
tribution network voltage management. IEEE Trans Smart Grid 2014;5(2):559–68.

[10] Džafić I, Jabr R, Halilovic E, Pal B. A sensitivity approach to model local voltage
controllers in distribution networks. IEEE Trans Power Syst 2014;29(3):1419–28.

[11] Brenna M, De Berardinis E, Delli Carpini L, Foiadelli F, Paulon P, Petroni P, et al.
Automatic distributed voltage control algorithm in smart grids applications. IEEE
Trans Smart Grid 2013;4(2):877–84.

[12] Kersting W. Distribution system modeling and analysis. 3rd ed. CRC Press, Taylor
and Francis Group; 2012.

[13] Weckx S, D’Hulst R, Driesen J. Voltage sensitivity analysis of a laboratory dis-
tribution grid with incomplete data. IEEE Trans Smart Grid 2015;6(3):1271–80.

[14] Mugnier C, Christikou K, Jaton J, De Vivo M, Carpita M, Paolone M. Model-less/
measurement-based computation of voltage sensitivities in unbalanced electrical

distribution networks. In: IEEE power systems computation conference (PSCC); Jun.
2016. p. 1–7.

[15] Christakou K, LeBoudec J-Y, Paolone M, Tomozei D-C. Efficient computation of
sensitivity coefficients of node voltages and line currents in unbalanced radial
electrical distribution networks. IEEE Trans Smart Grid 2013;4(2):741–50.

[16] Kathod D, Pant V, Sharma J. A novel approach for sensitivity calculations in the
radial distribution system. IEEE Trans Power Deliv 2006;21(4):2048–57.

[17] Zhou Q, Bialek JW. Simplified calculation of voltage and loss sensitivity factors in
distribution networks. In: Power systems computation conference (PSCC); Jul.
2008. p. 1–6.

[18] Bolognani S, Zampieri S. On the existence and linear approximation of the power
flow solution in power distribution networks. IEEE Trans Power Syst
2016;31(1):163–72.

[19] Youssef KH. A new method for online sensitivity-based distributed voltage control
and short circuit analysis of unbalanced distribution feeders. IEEE Trans Smart Grid
2015;6(3):1253–60.

[20] Gurram R, Subramanyam B. Sensitivity analysis of radial distribution networ-
k–adjoint network method. Int J Elect Power Energy Syst 1999;21(5):323–6.

[21] Baran M, Wu F. Optimal sizing of capacitors placed on a radial distribution system.
IEEE Trans Power Deliv 1989;4(1):735–43.

[22] Di Fazio AR, Russo M, Valeri S, De Santis M. Sensitivity-based model of low voltage
distribution systems with distributed energy resources. Energies 2016;9.< http://
www.mdpi.com/1996-1073/9/10/801> .

[23] Bokhari A, Alkan A, Dogan R, Diaz-Aguiló M, de León F, Czarkowski D, et al.
Experimental determination of the zip coefficients for modern residential, com-
mercial, and industrial loads. IEEE Trans Power Deliv 2014;29(3):1372–81.

[24] Adhikari S, Li F, Li H. P-q and p-v control of photovoltaic generators in distribution
systems. IEEE Trans Smart Grid 2015;6(6):2929–41.

[25] Di Fazio AR, Fusco G, Russo M. Smart der control for minimizing power losses in
distribution feeders. Electr Power Syst Res 2014;109:71–9.

[26] Available: http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.
[27] Zimmerman RD, Murillo-Sánchez CE, Thomas RJ. MATPOWER: steady-state op-

erations, planning and analysis tools for power systems research and education.
IEEE Trans Power Syst 2011;26(1):1–19 Available: <http://www.pserc.cornell.
edu//matpower/> .

A.R. Di Fazio et al. Electrical Power and Energy Systems 99 (2018) 744–755

755

http://refhub.elsevier.com/S0142-0615(17)32852-1/h0005
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0005
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0010
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0010
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0015
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0015
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0015
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0020
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0020
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0020
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0025
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0025
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0030
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0030
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0030
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0040
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0040
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0045
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0045
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0050
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0050
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0055
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0055
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0055
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0060
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0060
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0065
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0065
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0075
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0075
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0075
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0080
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0080
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0090
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0090
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0090
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0095
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0095
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0095
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0100
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0100
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0105
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0105
http://www.mdpi.com/1996-1073/9/10/801
http://www.mdpi.com/1996-1073/9/10/801
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0115
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0115
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0115
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0120
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0120
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0125
http://refhub.elsevier.com/S0142-0615(17)32852-1/h0125
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html
http://www.pserc.cornell.edu//matpower/
http://www.pserc.cornell.edu//matpower/

	Linear method for steady-state analysis of radial distribution systems
	Introduction
	Distribution system modeling
	Supplying system
	LV network

	Linear method
	Linearized model
	Supplying system
	LV network
	LV distribution system

	Closed-form solution
	Algorithm
	First procedure
	Second procedure


	Case study
	Application to sensitivity analysis: accuracy
	24-nodes LV network
	237-nodes network

	Application to sensitivity analysis: computational times
	Application to the load flow problem

	Conclusion
	mk:H1_21
	mk:H1_22
	LV network
	Distribution system

	References




