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ABSTRACT This paper conducts a comprehensive study on the application of big data and machine learning
in the electrical power grid introduced through the emergence of the next-generation power system—the
smart grid (SG). Connectivity lies at the core of this new grid infrastructure, which is provided by the Internet
of Things (IoT). This connectivity, and constant communication required in this system, also introduced a
massive data volume that demands techniques far superior to conventional methods for proper analysis and
decision-making. The IoT-integrated SG system can provide efficient load forecasting and data acquisition
technique along with cost-effectiveness. Big data analysis and machine learning techniques are essential to
reaping these benefits. In the complex connected system of SG, cyber security becomes a critical issue; IoT
devices and their data turning into major targets of attacks. Such security concerns and their solutions are also
included in this paper. Key information obtained through literature review is tabulated in the corresponding
sections to provide a clear synopsis; and the findings of this rigorous review are listed to give a concise
picture of this area of study and promising future fields of academic and industrial research, with current
limitations with viable solutions along with their effectiveness.

INDEX TERMS Big data analysis, cyber security, IoT, machine learning, smart grid.

LIST OF ABBREVIATIONS
IoT Internet of things
ML Machine learning
SG Smart grid
DER Distributed energy resources
DEM Dynamic energy management
CPL Constant power load
MOSFET Metal-oxide-semiconductor field-effect tran-

sistor
HDFS Hadoop file system
LPRF Low power radio frequency
OFDM Orthogonal frequency-division multiplexing
HAN Home area network
NAN Neighbor area network
WAN Wide area network
HG Home gateway
ESP Energy service provider
PDC Phasor data concentrator

PMU Phasor measurement unit
TCP/IP Transmission control protocol/Internet proto-

col
WAMS Wide area measurement system
UDP User datagram protocol
NRECA National rural electric cooperative associa-

tion
NLP Natural language processing
PCA Principal component analysis
K-NN k-nearest neighbors
ANN Artificial neural network
CFD Computational fluid dynamics
CxO Corporate officer
BDC Billing and debt collection
SCADA Supervisory control and data acquisition
PLC Programmable logic controller
EMS Energy management system
DMS Distribution management system
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CPS Cyber physical system
HEMS Home energy management system
WLAN Wireless LAN
MPO Meter point operator
DoS Denial of service
DDoS Distributed denial of service
FDIA False data injection attack
MITM Man-in-the-middle attack
RF Radio frequency
NERC North American Reliability Corporation
API Application program interface
MSE Mean squared error
HMM Hidden Markov model
PID Proportional integral derivative
RMT Random matrix theory
DNN Deep neural network
SNN Shallow neural network
DSHW Double seasonal Holt-Winters
GPU Graphics processing unit
UCSD University of California San Diego
PV Photovoltaic
MV/LV Medium voltage/Low voltage
MPPT Maximum power point tracking
AMI Advanced metering infrastructure
ISMS Information security management system
SoGP Standard of good practice
IACS Industrial automation and control systems
AES Advanced encryption standard
TDEA Triple-data encryption algorithm
DSS Digital signature standard
DSA Digital signature algorithm
RSA Rivest, Shamir, and Adleman
ECDSA Elliptic curve digital signature algorithm
SHA Secure hash algorithm
CMAC Cipher-based message authentication code
CCM Cipher block chaining-message authentica-

tion code
GCM Galois/counter mode
GMAC Galois message authentication code
HMAC Hash-based message authentication code
CFB Cipher feedback
CBC Cipher-block chaining
ECB Electronic codebook
XTS XEX-based tweaked-codebook mode with

ciphertext stealing
TDES Triple data encryption standard
TECB TDEA electronic codebook
TCBC TDEA cipher-block chaining
TCFB TDEA cipher feedback
TOFB TDEA output feedback
CTR Counter-mode
IaaS Infrastructure-as-a-service
SaaS Software-as-a-service
PaaS Platform-as-a-service
DaaS Data-as-a-service
CVM Core vector machine

µPMU Micro phasor measurement unit
PPMV Power plant model validation tool
FRAT Flight risk assessment tool
SVM Support vector machine
PQ Power quality
SEMMA Sample, Explore, Modify, Model, Assess
CRISP-DM Cross Industry Standard Process for Data

Mining
ELM Extreme learning machine
ANFIS Adaptive neuro-fuzzy inference system
RVM Relevance vector machine
EMD Empirical mode decomposition
GMR Generalized mapping regressor
CRO Coral reef optimization
iSSO Improved simplified swarm optimization
HAP Hybrid swarm technique
PSO Particle swarm optimization
ACO Ant colony optimization
TPSD Three-phase signal decomposition
WRELM Weighted regularized extreme learning

machine
SSA Seasonal separation algorithm
FEEMD Fast ensemble empirical mode decomposition
VMD Variation mode decomposition
PACF Partial autocorrelation function
MLP Multilayer perceptron
LMS Least median square
CRO-ELM Coral reef optimization – extreme learning

machine
GPR Gaussian process regression
LVQ Learning vector quantization
SOM Self-organizing map
SVR Support vector regression

I. INTRODUCTION
The electrical power system is poised to move towards the
next-generation smart grid (SG) system, and thus this topic
has acclaimed significant attention in the research commu-
nity [1]–[7]. SG is the integration of information and dig-
ital communication technologies with power grid systems
to enable bi-directional communication and power flow that
can enhance security, reliability, and efficiency of the power
system [8]–[10]. Smart grid solutions aim at calculation
of optimum generation-transmission-distribution pattern and
storing power system data. For the growing concern about
environment along with efficient generation and distribution,
distributed energy resources (DER) with smart microgrid
can be a potential solution [11]. It can be said that dis-
tributed smart microgrid can bring additional benefits for
global power system planning [12]. In other words, SG is the
integration of technologies, systems and processes to make
power grid intelligent and automated [13]. Fig. 1 shows basic
constructions of conventional grid and smart grid to demon-
strate their dissimilarities. Unlike the unidirectional power
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FIGURE 1. Utility grids: (a) conventional grid (b) smart grid. In the conventional system power flows from in one direction only;
but for smart grid, there is no strict structure. Generation can occur at the consumer side too, such as the wind and the solar
farms at the outer periphery of the topology. Power flow can also be bidirectional, demonstrated by the energy storages and
the house in this illustration.

flow in the conventional system, power and information flow
between the generation and distribution sides in a bidirec-
tional manner.

Constant connectivity and communication is one of the
core components of smart grid, and that requires devices
equipped with such capabilities. The network created by such
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devices, connected to other nodes of the system through the
internet, are called the ‘‘internet of things (IoT)’’. In the
internet of things each object has its own identity in the digital
world. Everything is connected through a complex network.
IoT comprises of smart objects which possess self-awareness,
interaction with the environment and data processing. Smart
devices are capable to communicate with other such devices
in this system [14]. Most common smart devices employed
in the grid, such as the smart meter, falls into this category.
These devices provide the detailed data required for accu-
rate information and automated decision support which give
the smart grid the unique capabilities it demonstrates over
the legacy system. All this data need to be handled in real
time, and stored to use historical data to create decisions
based on certain cases. Various research works have been
conducted with data obtained from intelligent devices in
substations, feeders, and various databases [15]. Information
sources can be market data, lighting data, power system
data, geographical data, weather data etc. [16]. Optimization
from generation to distribution requires reliable, accurate and
efficient prediction model for electric energy consumption.
For example, energy consumption data (kWh) from 100,000’s
of customer smart meters at 15 minutes sampling intervals
shows that ensuring the quality of the collected data poses
a unique challenge for prediction models and evaluation of
their efficacy for SG [17]. There are several factors which
require to be predicted, such as: renewable generation, power
purchases from energy markets, 24 hour planning of load
distribution etc. [18], [19]. These factors are the part and
parcel of SG sustainability and security [20]. Predictability
of electricity consumption has been studied with dynamic
demand response in [21]. High volume of data from SG
increases the complexity of data analysis. Dynamic energy
management (DEM) is required for processing this huge
amount of data for power flow optimization, system mon-
itoring, real-time operation, and production planning [22],
[23]. Data of such magnitude, which cannot be processed
through traditional processes, is termed as ‘‘big data’’, and it
has also become a centerpiece of current research. Researches
on big data-based power generation, optimization and fore-
casting techniques are extended to the renewable energy
based system such as wind energy system [23], [24]. A por-
tion of the data produced in SG contains individual users’
confidential information. This type of data is required to
be protected under legal regulations [25], [26]. Moreover,
this data contains classified and sensitive information of an
organization or central grid of a country. Manipulation of
such data can affect the safe operation of the grid. Therefore
security and privacy is a very important issue [27]. An IoT
integrated SG is a cyber-physical system [28], which makes
it prone to cyberattacks. Therefore, adequate protection sys-
tems are required to ensure proper operation of the smart
grid, safekeeping of data, and thwart any attack aimed at
the power system. Machine learning is an attractive solu-
tion processing big data, and implementing effective security
solutions.

This paper presents a concise picture of the electricity
grid’s transition towards the smart grid, the ensuing rise in
IoT usage, and the challenges this new system brings forward.
The most obvious trials are of course the handling of the huge
amount of data in this connected system, their proper analysis
and safety, as well as protecting this new power grid from
attacks generated in both physical and cyber dimensions. This
work can act as a base for future academic and industrial
researchers, while pointing out the current limitations with
possible solutions along with their effectiveness.

The rest of the paper is organized as follows: a short history
of the power grid from its inception is presented in section II.
Discussion on IoT components, its applications and issues
is carried out in section III. Section IV focuses on big data,
and the role of big data analysis in smart grid. Section V
puts forward machine learning as a method capable of han-
dling the big data generated in the IoT-based smart grid, and
highlights its capabilities in renewable energy forecasting.
Emerging security threats to the smart grid, its data, and
devices are discussed in section VI, including protection and
threat-detection techniques. The excerpt of this detailed study
is presented in section VII, with future research directions
outlined. Finally, the conclusions are drawn in section VIII.

II. CHANGES IN THE CENTURY-OLD GRID
In the early days of electric power systems, AC and DC
contended to become the industry standard. The AC system
prevailed and have been in use ever since. The reason of AC’s
dominance is its ability to use transformers for changing the
voltage level, and enabling the transmission of high voltage
electricity which reduces loss. The first demonstration of the
AC transmission system took place in 1886, at Great Bar-
rington,Massachusetts, USA, byWilliam Stanley andGeorge
Westinghouse [29]. Westinghouse later formed the Westing-
house Electric Company that went on supply AC power to
Buffalo, NewYork from the Adams Power Plant at the Niagra
Falls in 1896. Thus the dominance of AC system is estab-
lished, and the worldwide power grid adopted this technology
as electrification expanded massively over the next century.
Now, in the 21st century, technology has advanced astro-
nomically as compared to the late 1800s; however, the grid
system in the world largely resembles the century-old system
that initiated the process of electrification. The advanced
technologies that emerged in the power sector include power
electronics, renewable energy sources, distributed generation,
advanced monitoring and communication system etc. The
legacy grid was not designed to accommodate these devices,
and thus they create significant problems when integrated
with the existing grid infrastructure. For example, power
electronics based loads act differently than the generally
perceived loads of resistive, capacitive, and inductive prop-
erties; electronics devices exhibit constant power load (CPL)
properties that cause significant system-instabilities [30].
Distributed generation causes bi-directional power flow and
thus contradicts the historically unidirectional flow of the
grid. Renewable sources often generate intermittent DC
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power (e.g. solar energy) opposing the predominant AC sys-
tems. The renewable sources of AC (e.g. wind energy) are
highly varying as well. All these which makes integrating
renewable sources in the existing grid a huge challenge. How-
ever, even though these next-generation systems disrupt the
grid architecture in place, adopting these technologies is the
way to move forward, not the other way round. Therefore, the
current timemarks the transition period for the electricity grid
– a metamorphosis that will supplant the archaic system with
an architecture well-capable to accommodate the advanced
concepts and tools. This next-generation system is called
the ‘‘smart grid’’. The grid evolution timeline in presented
in Table 1.

TABLE 1. Significant events in the evolution of electricity grid.

III. APPLICATION OF INTERNET OF THINGS (IOT)
IN DISTRIBUTED POWER SYSTEM
The underpinnings those make the smart grid do so many
things that the legacy grid is incapable of are a lot of con-
nected devices, which are capable exchanging information,
and receive commands to act in a certain way. This extensive
communication is made possible by the internet, and all these
devices are connected to their respective networks. Devices
connected to the internet are currently part and parcels of the
daily life, and more and more of such devices are emerging
every day. An example of such devices can be smart ther-
mostats. Such devices, which use the internet to stay con-
nected to resources located elsewhere physically, and carry
out their tasks through the resulting exchange, are termed as
IoT devices. IoT stands for ‘‘internet of things’’, which can be
defined as the interrelated system that links up such devices,
and facilitate data transfer without any human intervention.
According to Gubbi et al. [31], IoT is an interconnection of
sensing and actuating devices providing the ability to share
information across platforms through an unified framework,
developing a common operating picture for enabling inno-
vative applications. This is achieved by seamless ubiqui-
tous sensing, data analytics and information representation

with cloud computing as the unifying framework. Each of
those objects has its own embedded computing system which
enables it to be identified and to be interconnected with each
other. The IoT architecture is shown in fig. 2. IoT will consist
of more than 30 billion objects by 2020 [32]. The astronomic
increase in number of IoT devices is visualized in fig. 3.
From a mere 13 billion in 2015, their predicted population
reaching 30 billion and beyond in a timespan of five years
perfectly demonstrates the current trend of IoT application.
These devices are able to operate with a less amount of
external intervention and are capable of responding to the
environment spontaneously.

FIGURE 2. IoT architecture. Data collected by sensors can be sent to
different systems which use various software platforms to carry out
intended tasks [38].

FIGURE 3. Predicted number of IoT devices over the years. The
astronomic rise in this number demonstrates the recent trend of IoT
application [32], [39].

IoT includes, but not limited to, technologies such as med-
ical equipment, smart vehicles, smart grid, smart homes, and
smart cities. IoT applications bring forth numerous benefits.
It can reduce human intervention in the process of intercon-
necting devices. The most important impacts can be observed
in the power sector, home appliances, and in smart cities.
Smart grids which contain the attributes of IoT may be the
possible solution of future global energy crisis. Efficiency at
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TABLE 2. IoT Components for Monitoring Power Transmission Lines, with Corresponding Monitoring Techniques [44].

transmission and distribution ends can be escalated. Renew-
able energy sources can be more effectively utilized under
IoT based networks. Currently, smart homes have monitoring
systems that increases the cost effectiveness [33]. It also
reduces the unwanted consumptions of energy. In a smart
city, optimization of schedule for public transport can be
done with IoT. However, though the general lifestyle has
caught up with this technology, it is hardly present in the
grid system. Incorporating these connecting devices in the
grid infrastructure is a major step to advance towards smart
grid – which can be evidenced by the significance put on
IoT in designing microgrids [34]. Niche uses of IoT devices
are also emerging with applications that are already exists,
or anticipated to appear in near future. Smart homes, where
household appliances can be controlled by connected intelli-
gent devices is an example of such use. Connected vehicles,
distributed energy resources (DER), green buildings are some
more applications [35]–[37].

Smart energy system aims at reducing energy loss while
simultaneously providing sufficient energy and services to
everyone. In India more than 30 percent loss in electricity
occurs during the power production process [40]. In France
and Australia, 35% wastage of water occurs due to the leak-
age in the system; therefore, the electricity used in processing
that water also goes to waste. To meet the increasing demand
as well as reduce the energy wastage, a real-time tracker
of supply and demand sides of distribution system needs to
be developed – which IoT can provide. Centralized systems
should be replaced with a distributed microgrid, which pro-
vides real-time monitoring and communication to the grid,
along with remote sensing technique, two-way communica-
tion and demand response.

Useful IoT devices for using in the power sector has
already been developed, smart meter being one of them.
The fundamental concept of smart meters is to provide a
two-way communication simultaneously while measuring
power. The measurement data is transmitted to the utility sup-
pliers through a mesh network. Low power radio frequency
(LPRF) communication using a sub-1 GHz mesh network
is used in USA to convey these data. Wired narrowband
orthogonal frequency-division multiplexing (OFDM) pow-
erline communication technologies are used in France and

Spain. Energy information can be sent to the demand side
following this same mechanism. IEEE 802.15.4 2.4 GHz
ZigBee R©standard is used in USA for this purpose. UK and
Japan are considering sub-1 GHz RF solutions. A combined
implementation with both hybrid RF and powerline commu-
nication can be a feasible way to provide necessary energy
information to consumer homes. Smart meters allow better
tracking of consumption and generation, and better energy
management, among other things.

Similar to the smart meter, IoT can be integrated in smart
grid through all of its major subsystems: generation, transmis-
sion, distribution, and utilization [41]–[43]. For example, IoT
can provide monitoring services for the power transmission
line, where one part of this monitoring system is deployed at
the transmission line to monitor the condition and readings
of the conductors; another portion of monitoring system is
deployed at the transmission towers. This portion monitors
the environmental conditions of the towers. A wireless com-
munication technology is used to establish communication
between the transmission line and the towers. The main
monitoring components are listed in table 2 [44]. Possible
integration of IoT technology in all of smart grid’s subsystems
are listed in table 3. The major security concerns for each
of these subsystems are also mentioned in this table; such
security threats are discussed in detail in section VI.

Seamless communication is a core feature of smart grid,
essential for its proper functioning; and IoT integration can
aid in smart grid communication too. Mainly four models
are currently being used for communication technologies:
device to device, device to cloud, device to gateway, and
back-end data sharing pattern [44]. Three layered commu-
nication systems for IoT implemented smart grid system
has also been developed, the layers being: home area net-
work (HAN), neighbor area network (NAN), and wide area
network (WAN). HAN comprises both wired and wireless
technologies, e.g. wired technology is powerline communi-
cations, and wireless communications are ZigBee, Bluetooth,
andWiFi. A home gateway (HG) is a key component of HAN,
which collects data from home appliances. NAN requires a
communication system which can cover a radius of more
than thousand meters. NAN collects data from the energy
meters in HAN and transmits those data to the WAN [52].
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TABLE 3. IoT application in smart grid.

FIGURE 4. Structure for IoT implemented layers for SGs [57]. Each IoT
layer corresponds to a certain layer of SG infrastructure.

WAN serves as interconnection between every component
of communication link such as network gateways, NANs,
distributed grid devices, utility control centers, and substa-
tions. Core and Backhaul are two interconnected networks
of WAN. Detailed discussions of HAN, NAN and WAN sys-
tems are included later in this section. Information from the
physical systems in IoT integrated smart grid is fed into data
concentrator [53]–[55]. From data concentrator information
is met with the requirements of internet protocols for web
services or cloud computing platforms. Those web services
and cloud computing platforms further process the data. The
energy service providers’ (ESP) sites are connected with the
Aggregation layer [53]–[56]. The underlying layers of IoT are
depicted in fig. 4.

Efficient load management is a key benefit of employing
the IoT technology. As a general practice, system distur-
bances that cause shortage in power generation are com-
pensated by adjusting the amount of load from the demand
side. This adjustment of load keeps the other components of
grid running. Smart load control and load shedding should

FIGURE 5. System architecture for load shedding and smart load
controlling algorithm [58]. All the components of the system are
connected to the cloud which makes decisions based on the system
inputs, and sends out commands for execution. The directions of the
arrows indicate the flow of data.

aim at minimizing power outage in sudden change of a load
in the grid. An automated system to do such tasks with
the help of IoT devices was presented in [58]. This method
worked by predicting the day-ahead load, and tracking the
available generation. When it found the load to be greater
than the supply, it could suggest the consumers to switch
off some appliances, or schedule possible loads to run at
off-peak hours. Fig. 5 shows the working principle of this
method. Subscriber (consumer) data, weather information,
and historical data from the grid were used for the prediction
in this system. All the analysis and decision-making was con-
ducted in a cloud infrastructure; while the system components
communicated through powerline communication or some
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wireless technology. Simulation results showed this system
to be quicker in responding to emergencies, and its potential
to avoid sudden power outage [58].

The integration of IoT devices bring some unique chal-
lenges with them in the smart grid scenario which are inherent
to such technology, and the fact from which all that stems
from is latency. Latency is defined as the difference between
the time of data generation and the time when it becomes
available for applications. In other words, it is the time delay
for the data to become available. Latency in IoT architecture
can be characterized as communication latency and phasor
data concentrator (PDC) latency. Communication latency on
the network is comprised of transmission delays, propagation
delays, processing delays, and queuing delays. PDC latency,
on the other hand, comprises of PDC device latency and
PDC wait-time. Wait-time latency indicates the time each
PDC has to wait for certain user-configurable time-duration
so that slower PMU data can be reached and processed for
time alignment operation at PDC. The maximum tolerable
latency is 40 ms which includes latencies introduced by
communication network, PMU, PDC, etc. This requirement
must bemet by any IoT architecture for the system to function
deterministically [59], [60].

Communication infrastructure is a critical aspect of IoT
deployment. Typicalmeans of communication are leased tele-
phone lines, power lines, microwave and fiber optic, among
others. IoT functions require real-time processing of syn-
chrophasor data at wide area level to aid in making informed
decisions. The protection and control commands should be
available for the destination in a deterministic manner. Com-
munication channel capacity, latency and hence efficiency,
are therefore important for successful implementation of IoT
system. Channel capacity defines the amount of data that can
be carried by a communication network. In IoT system, all
PMUs send phasor data directly or indirectly to central PDC
(phasor data concentrators) for concentration through time
alignment and data aggregation. The aggregated data streams
are used by analytic functions to identify anomalies and
issue corresponding commands to rectify. With an expected
3000 PMUs transmitting 4 phasors, 6 analog quantities, and
8 digital quantities each to central PDC, all in floating-point
format at 25 or 50 messages per second rate, 68 Mbps on
a serial port, or 135 Mbps in TCP IP, or 122 Mbps in
UDP is required. As discussed in [61], a typical serial port
cannot handle the above traffic and hence an Ethernet port
with TCP/IP or UDP is preferred. Essentially, the chosen
communication infrastructure should enable the bandwidth
requirement in a reliable way.

Since IoT data contains critical information, it is imperative
that the data to be secured from all types of attacks. Attackers
can modify the data to cause system instabilities or even
blackout. To ensure the reliability, a two-layer communica-
tion security can be constructed: one inside substations using
already deployed security measures for all data communi-
cation, and the other by secured means such as encryption
for data stream outside substation. All analytical functions

using IoT data assume that the incoming data is error free and
continuous. But PMU measurements can become unavail-
able due to unexpected failure of the PMUs or PDCs or
due to loss of communication links caused by congestion
of communication network. This missing data will result
in wrong outputs from the analytical functions. Practical
counter measures for reliable and secure data transfer are:
building in as much redundancy as possible in PMUs, PDCs
and communication; proper PMU placement and wide area
measurement system (WAMS) design; and usage of robust
analytic functions [62].

IV. SMART GRID WITH BIG DATA ANALYSIS
As it is mentioned in the previous section, integrating IoT
devices in every sector of the grid infrastructure is a manda-
tory step for moving towards smart grid. It has also been
stated that the defining feature of these devices is their ability
to communicate with other devices and control centers, and
send useful information. Thus, an unprecedented amount of
data gets generated in an interconnected network [63]–[66],
posing challenges to the conventional methods of data trans-
fer, storage, and analysis. As documented in [67], water con-
sumption data of 61,263 houses in Surrey, Canada amounted
to 5 MB, information about speeds and locations of vehi-
cles passing through the Madrid Highway, Spain generated
450 MB of data, and monitoring a 400 square kilometer area
in Cologne, Germany for a day created a dataset sized at
4.03 GB – recording information of around 700 vehicles.
Monitoring of transmission line, generation unit, substation
state, smart metering [68], and data acquisition from smart
home - all produce a large amount of data from the smart grid,
which are to be stored in a cloud-based system for proper
analysis. Cloud supported IoT system has been proposed
in [69] to manage all those data.

Enter big data analysis [70], which has become a
buzzword in the global scientific and data analyst commu-
nities [71]–[73]. Big data refers to massive amount of data
that require more advanced methods to be captured, curated,
managed, and analyzed than the traditional tools and signal
processingmodels. The amount of data that defines big data is
not explicitly defined, rather it moves as the technology pro-
gresses. Generally, data demonstrating three characteristics
can be labeled as big data: it has a large volume; the velocity
or frequency of this data generation, storage, or transmission
is high; and there is a lot of variation of data in the dataset.
These features match with the data IoT devices generate, and
thus the data generated in the smart grid can be considered
big data. Fig. 6 shows how expanding in the aforementioned
three sectors define big data. Although big data means a
massive amount of data, technically it covers the predictive
and behavioral analysis using those data. This huge amount of
data is available at every aspect of our lives, and demands crit-
ical analysis. Scientists, businessmen, social welfare organi-
zations, economists, and many others need to process through
this large volume of information that is available online. Big
data analytics is based on thismassive data, and the associated
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FIGURE 6. Big data characteristics: large volume of data with lots of
variations which are generated, stored, or transmitted at a high at a high
velocity can be labeled as big data.

FIGURE 7. The components that create big data analytics. Big data and
the techniques to analyze it has created the discipline of big data
analytics [87].

analytic techniques, which is visualized in fig. 7. These tech-
niques are based on different platforms such as Windows,
Linux, Mac etc., and they require certain levels of expertise.
They also have certain limitations, which hinders the rise of
a single superior tool. Different tools with their platforms,
required skill levels, and limitations is presented in table 4.
Table 5 lists some more analysis techniques to juxtapose their

FIGURE 8. Most used data science techniques in 2017. Regression tops
this list, attracting 60% of the users [94].

advantages, applications, difficulty level to master, required
system to run, associated software, and financial cost. From
this table, it can be seen that most of the systems has a
high cost involved, and all the high-cost systems have an
‘expert’ level difficulty. Table 6 demonstrates some notable
works on big data analysis in smart grid to point out their
specific applications. Fig. 8 shows the use percentage of the
most-used data science techniques in 2017, where regression
appeared as the most popular one with 60% usage. Clustering
was used by 55% user, while visualization and decision tree
attracted 50% of all users. A 2014 report published by the
National Rural Electric Cooperative Association (NRECA)
of the USA enlisted big data capabilities as a crucial com-
ponent of the next generation power grid, or in other words,
smart grid. It states that the ever-increasing deployment of
phasor measurement units (PMU), and synchrophasors at
transmission, distribution, and distributed generation sectors
will generate massive amounts of data - which will vary
as the direction of power flow will change depending on
seasonal and daily conditions [74]. Such deployments of
PMU can also lead to proactive control of grids, preventing
faults from taking place instead of clearing a fault after
its occurrence [75]. Analyzing big data is stated as a key
functionality for energy management systems (EMS) for
smart grids, control algorithms, and future energy market
models in [76]–[83]. Zhou and Yang [84] presented ways to
determine residential energy consumption through big data
analysis. Demand side management through bid data analysis
has also caught much attention [85], [86]. Dynamic energy
management through such data analysis is also a promising
technology [23].

13968 VOLUME 7, 2019



E. Hossain et al.: Application of Big Data and Machine Learning in SG, and Associated Security Concerns

TABLE 4. Different analytical tools for big data, their platforms, required skill levels, and limitations (adapted from [88]).

TABLE 5. Advantages, application, difficulty level, system requirement, software platform, and cost associated with some big data analysis techniques
(adapted from [89]).

TABLE 6. Applications of big data analysis in smart grid.

Agelidis et al. mentioned big data as one of the chal-
lenges in the information and communication technology
part of smart grid [95]. Data in smart grid come from var-
ious sources. Mainly two domains provide smart grid data:

generation domain and service provider domain [96]. Uncer-
tainty in data analysis demands development of methods for
long and short-term data patterns from distributed energy
resources (DER). Few of the proposed models are Gaussian
model [97], finite state Markov models [98], hidden Markov
model (HMM) [99], [100], proportional integral derivative
(PID) controller [101], and online learning techniques [102].
At the service provider domain, smart appliances provide
information for energy price estimation [23], [103]. A flask
framework called OASIS dashboard was developed for the
visualization of real time energy data from the energy sources
in Puerto Rico in [96]. Reference architecture for smart
grid using big data and intelligent agent technologies was
developed in [104]. In this architecture, agent-oriented pro-
gramming methodologies were adopted in Hadoop plat-
forms [104]. This system supported interoperability in smart
grid systems. Application of random matrix theory (RMT)
for high-dimension smart grid modeling was demonstrated
in [90], which claimed to provide better accuracy, and prac-
ticality for large interconnected systems such as smart grid.
Five case studies conducted in that work verified the proposed
system’s capabilities.
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TABLE 7. Steps involved in machine learning and data mining [135].

For the development of energy efficient and sustain-
able data processing system, a framework with robust time
advanced workload and energy management was developed
in [105] to integrate renewable energy sources, distributed
storage unit, dynamic pricing unit etc. for green DC systems.
In that work, a resource allocation problem was developed
so that the net cost of the system could be minimized with
spatio-temporal variations of workloads and electricity mar-
ket prices. Net cost of the system comprised of network
operational cost and the worst-case energy transaction cost.
An optimal solution was achieved by Lagrange dual based
distributed solver using strong duality of convex reformula-
tion [105]. Large amount of data from a power system require
fast and efficient computing, which has been a concern for
several researchers. Task parallelism with multi-core, cluster,
and grid computing can reduce the computational time in
an efficient data mining algorithm [106]. A grid computing
framework was developed for higher computing efficiency
in [107]. In this framework, the overall architecture consisted
of three layers: resource layer, grid middleware and applica-
tion layer [107]. The data generated in the smart grid raises
two major concerns. Firstly, the data must be processed and
transferred in an efficient way within an acceptable limit of
time. And secondly, security concerns are very important
issues regarding IoT integrated smart grid [108]. To provide
an insight on these issues, the next two sections are organized
to address these concerns.

V. MACHINE LEARNING APPLICATION IN SMART GRID
The obvious question that arises from the big data genera-
tion from smart grid is efficient ways to analyze them for
extracting valuable information. Without the extraction of
useful information, the collected data holds little or no value.
Machine learning appears as the tool required for the tall task
of going through the massive amount of data generated in an
IoT-based grid system. It fits in as the final piece of the smart
grid system which is driven by data collection, analysis, and
decision making. Machine learning techniques provide an
efficient way to analyze, and then make appropriate decisions
to run the grid; and thus enables the smart grid to function as
it is intended to.

Machine learning (ML) is a term which refers to learn-
ing and making predictions from available data by a sys-
tem. It is comprised of various algorithms which analyze
the available data through a set of instructions to produce
data-driven predictions and/or decisions. Machine learning
undergoes the rigorous process of designing and program-
ming explicit algorithms with expected performance. The
steps and associated standards of this process are presented in
table 7. Machine learning functionalities include predictions
of consumption, price, power generation, future optimum
schedule, fault detection, adaptive control, sizing, and detec-
tion of network intruders during a data breach [109]–[116].
Xu et al. [117] presented an assessment model for ana-
lyzing transient stability which employed extreme learning
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machine, and demonstrated impressive accuracy and compu-
tational speed when tested on New England 39 bus system.
Wang et al. [118] pursued a similar objective with their novel
core vector machine (CVM) algorithm to utilize big data gen-
erated by PMU, their system was also tested on the New Eng-
land bus system. For transmission systems, machine learning
can be employed to analyzed the phasor measurement unit
(PMU), and micro phasor measurement unit (µPMU) data
for uses such as system visualization and frequency detec-
tion. Machine learning can be used in these purposes along-
side other software such as power plant model validation
tool (PPMV), and free flight risk assessment tool (FRAT).
Several machine learning methods are being introduced at
different phases of renewable energy power system based
SGs, creating a whole new prospect for research [119]–[121].
For example, the support vector machines (SVM) have been
widely implemented into several problems of renewable
energy power systems, which provided many optimization
and prediction techniques in SG [122]–[124]. Economic opti-
mization for smart grid prosumer node with a two-level
control scheme is developed in [125]. Machine learning
based fast and accurate algorithm for monitoring power qual-
ity (PQ) events in an SG has been developed recently in [126]
and [127]. Li et al. [128] applied machine learning to analyze
user predilections in a smart grid to find out usage pattern
and preferences. Remani et al. [129] demonstrated a gener-
alized use of reinforced learning to schedule residential load
considering renewable energy sources and all possible tariff
types. For distributed generation systems, islanding detection
using machine learning and wavelet design was investigated
in [130]. Application of particle swarm optimization (PSO)
to enhance stability for unplanned islanding in microgrid is
proposed in [131]. Big data analysis to monitor and detect
such islanding incidents comes before this stabilization stage.
A hybrid system for demand side management employing
entropy based feature selection, machine learning, and soft
computing was proposed by Jurado et al. [132]. Several
algorithms such as extreme learning machine, support vector
regression, improved second order, decay radial basis func-
tion neural network, and error correction to train common
radial basis function networks for predicting load was investi-
gated in [133]. Ryu et al. [91] proposed a deep neural network
(DNN) load forecasting method for short term prediction
at the load side which demonstrated as high as 29% less
error compared to existing systems such as shallow neural
network (SNN), and double seasonal Holt-Winters (DSHW).
A graphics processing unit (GPU) based load forecasting
method has been proposed in [92]. A 45 MW smart grid in
University of California San Diego (UCSD) is considered
in [134]. This grid supplies 54000 consumers from both
renewable and non-renewable energy sources. The UCSD
grid is equipped with advanced monitoring and storage tech-
niques. In that work, big data analyses have been done lever-
aging large amount of data and the Hadoop system. Machine
learning can also be applied for various security applications
in smart grid. A concise presentation of such uses is shown

in fig. 9. However, the most promising and much needed use
of machine learning in the next generation energy system is
the renewable energy sector. And therefore, in the following
subsections, implementation of machine learning in SG with
renewable energy sources is discussed.

FIGURE 9. Application of machine learning in smart grid security.
Unsupervised and supervised – both approaches can be used to carry out
an array of tasks including threat identification and data
categorization [136].

A. MACHINE LEARNING APPLICATION IN WIND
ENERGY FORECASTING
Wind power is one of the fastest growing renewable energy
sources in the world. About 12% of the world’s electricity
will be supplied by wind generation by 2020 [137]. Inte-
gration of wind power sources with the grid provides sev-
eral technical, economic, and environmental benefits [138].
But due to the intermittent and stochastic nature of wind
power, it provides some obstacles during power genera-
tion and distribution. Variation in wind speed causes fluc-
tuation in the output of wind power plant, which leads to
instability in the grid. Hence proper forecasting is required
for wind energy based power grids, and can aid in mak-
ing operational strategies [139]–[142]. This forecasting is
complex, because from controlling wind turbine to inte-
grating wind power into energy system, time duration for
prediction changes from milliseconds or seconds to min-
utes or hours [143], [144]. Previously, several prediction
models such as fuzzy modeling [145], auto regressive mov-
ing average [146], artificial neural network [147], [148],
K-nearest neighbor classification [149], computational fluid
dynamics (CFD) pre-calculated flow fields [150], extreme
learning machine (ELM) [151]–[153], adaptive neuro-fuzzy
inference system (ANFIS) [154], combination of relevance
vector machine (RVM) and differential empirical mode
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decomposition (EMD) [155], combination of soft comput-
ing model and wavelet transformation [156], wavelet trans-
form and SVM [157] etc. have been developed and applied.
Applications of data mining for prediction of wind power
was reviewed in [158]. Machine learning technique has been
applied to diagnose wind turbine faults using operational data
from supervisory control and data acquisition (SCADA) sys-
tem of south-east Ireland [159]. Generalized mapping regres-
sor (GMR) was employed in [160] to create steady-state
model of wind farms that can help in detecting faults in case of
an anomaly. Fan et al. [161] employed Bayesian clustering to
create a dual stage hybrid forecasting model to aid in schedul-
ing of a wind farm, and trading of wind power. This proposed
system was validated by applying on a 74 MW wind farm
at Oklahoma, United States. Parallel execution of Gaussian
process and neural network sub models to predict wind power
was presented in [162]. Short term wind power prediction
using ELM and coral reefs optimization (CRO) algorithm
was presented in [163] which demonstrated superior perfor-
mance when applied to a wind farm in the United States.
A similar objective was pursued in China through hybrid
machine learning models based on variational mode decom-
position and quantile regression averaging, which attained
absolute error as low as 4.34% [164]. Improved simplified
swarm optimization (iSSO), an improvement of simplified
swarm optimization by means of bias and weight justifica-
tion, showed impressive results when used to predict wind
power generation at the Mai LaoWind Farm at Taiwan [165].
Hybrid swarm technique (HAP) consisting of particle swarm
optimization (PSO) and ant colony optimization (ACO) to
predict wind power in short term from parameters such as
ambient temperature and wind speed is presented in [166].
This system achieved a mean absolute percentage error rating
of 3.5%. Wang et al. [167] developed a novel hybrid strat-
egy based on a three-phase signal decomposition (TPSD)
technique, feature extraction (FE) and weighted regularized
extreme learning machine (WRELM) model. This model
was able to do a multi-step ahead wind speed prediction.
In this model, a three-phase signal decomposition framework
including seasonal separation algorithm (SSA), fast ensem-
ble empirical mode decomposition (FEEMD), and varia-
tion mode decomposition (VMD) were used to control the
unstable and irregular natures of wind speed. An FE pro-
cess including partial autocorrelation function (PACF) and
regression analysis was used to utilize the effective and
beneficial features of wind speed fluctuations. In this way,
the optimal input features for a prediction model was deter-
mined. To improve the forecasting accuracy and efficiency,
an improved extreme learning machine (ELM), named
weighted regularized extreme learning machine (WRELM)
was developed by utilizing these features. Application of rein-
forcement learning in energy trading in smart grids with wind
energy generation was demonstrated by Xiao et al. [168].
Their proposed system used historical energy trading data,
and energy price, to reduce power plant scheduling. The
energy exchange scenarios between microgrids were also

investigated using game-theory approach in [169], where it
was shown that overstated trading information can result in
reduced utility of smart grids.

B. MACHINE LEARNING APPLICATION IN SOLAR
ENERGY FORECASTING
Solar energy is one of the most prominent renewable
energy sources. Solar photovoltaic (PV) systems had
22 GW of global capacity in 2009 and almost 139 GW
in 2013 [170], [171]. Similar to wind energy sources, the solar
power systems too are impeded by many difficulties. Many
natural and man-made impediments such as weather condi-
tions, seasonal changes, topographic elevation, discontinuous
production, and intra-hour variability have effects on solar
PV system performance. As a result, solar energy information
should be acquired in advance tominimize the operating costs
caused by the various obstacles mentioned above. Prediction
models for both meteorological forecasts and system out-
puts were presented in [172]–[178]. A forecasting approach
aiming at very short-term solar power forecast based on the
city of Évora, Portugal was proposed in [93]. This model
used a vector autoregressive model fitted with recursive least
squares. Data from smart meter and other smart components
at medium voltage/low voltage (MV/LV) substation level
were used in this model. Chaouachi et al. [179] proposed
a neuro-fuzzy system for maximum power point tracking
(MPPT) in 20 kW solar photovoltaic (PV) system. This
method utilized classifier running on fuzzy logic in accor-
dance with three artificial neural network having multiple
layers. Reference [180] utilized those two methods for an
intelligent energy management system that could predict PV
generation 24 hours ahead. Another day-ahead forecasting
method that could take weather data into consideration was
presented by Yang et al. [181]. Their method was a hybrid
one, employing three different machine learning techniques
in the three stages of the prediction system, and was trained
on data collected from the Taiwan Central Weather Bureau.
Hossain et al. [182] employed machine learning techniques
such as multilayer perceptron (MLP), least median square
(LMS), and support vector machine (SVM) in forecasting
of solar power in two-phase experiment, where the second
phase concentrated on parameter optimization to find out
performance enhancement margin before and after such opti-
mization. They concluded that increased attention in param-
eter optimization and selection of feature subset could go
a long way to increase prediction accuracy. Li et al. [183]
proposed a solar irradiance forecasting technique employ-
ing SVM regression and hidden Markov model. A coral
reefs optimization - extreme learning machine (CRO–ELM)
algorithm was proposed in [184] to predict solar irradia-
tion worldwide – which demonstrated better performance
than conventional ELM and SVM. Salcedo-Sanz et al. [185]
also employed Gaussian process regression (GPR) for such
prediction. This method outperformed statistical regression
algorithms in terms of robustness to prediction numbers, bias,
and accuracy. A hierarchical model was proposed based on
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FIGURE 10. Security concerns of IoT integrated SG system. These can be
categorized into four major types: physical threat, network threat,
software threat, and encryption threat. The security concerns under each
type are marked in corresponding color.

the machine learning algorithms by Li et al. [186]. In this
work, 15-minute averaged power measurements were col-
lected from the year 2014. Computing error statistics models
were used to test its accuracy. The hierarchical forecasting
approach utilized machine learning tools at a micro level to
predict each inverter performance. Then it evaluated the per-
formances at a larger level by adding up the micro level pre-
dictions. In that way, it provided a bigger picture of the plant.
This framework is visualized in fig. 36. Table 8 summarizes
the applications of machine learning techniques in renewable
source integrated smart grid encountered in literature.

VI. CYBER SECURITY IN SMART GRID
A. CYBER-SECURITY CHALLENGES IN SMART GRID
As IoT integrated smart grid systems create a complex
interconnected web as well as a large volume of data which
is often stored in cloud storages, breach of data security
is a serious concern [187]. Threat to the security of this
complex network is always very critical and sensitive as both
the demand side and the supply side of power system are
affected [188], [189]. Various types of security threats for
IoT integrated SG system is depicted in fig. 10 [190]. Such
cyber-attacks to smart grid systems can be carried out to
cause damage to its crucial components, to gain foothold
or superiority in its control system for exploitation, eco-
nomic intimidation, or sabotage. The system-assets targeted
in-general in cyber-attacks are depicted in fig. 11, which
shows financial information and intellectual property being
the most attractive targets to attackers, attacked almost 80%
of the instances. Research data and other information as
well as control systems are the other major targets. Infor-
mation generated from the IoT devices comprise of most
of the targets, and that alone can suffice to demonstrate
the magnitude of the need of cyber-security for smart grid
systems. Table 9 shows the information that are available in a
smart grid, and can be targeted for attacks. The components

FIGURE 11. Typical targets of cyber-attacks: intellectual property and
financial information are the two most sought after assets for attackers.

FIGURE 12. Predicted attack sources over the years. IoT always remains a
major vulnerability against cyber-threats. ‘‘CxO issues’’ indicate data
breaches at corporate officer levels.

vulnerable to cyber-threats in a utility’s digital infrastructure
are shown in table 10. The vulnerability of IoT devices to
cyber-attacks rated them the most probable way of attacking
both in 2016 and 2017 [191], [192]. Potential sources of
attacks over the years are shown in fig. 12. Along with IoT
vulnerabilities, data breaches at corporate officer levels were
the second most serious threat in 2016 (shown as ‘‘CxO
issues’’). 2017 saw the rise of automation vulnerabilities,
along with malware and ransomware attacks – quite a few
of which were state-sponsored. The authors predict the use
of artificial intelligence to be the most serious weapon in
cyber-attacks, with advanced malwares, ransomwares, state-
sponsored attacks, and weakness in data protection regula-
tions. The most probable outcomes of cyber-attacks to smart
grids can be: operational failures, synchronization loss, power
supply interruption, high financial damages, social welfare
damages, data theft, cascading failures, and complete black-
outs [193]. Direct impacts of blackouts can be production loss
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TABLE 8. Application of machine learning techniques in smart grids with renewable energy sources.

and business shutdown, food spoilage, damage of electrical
and electronic devices, data loss, inoperability of life-support
systems in hospitals and elsewhere, loss of critical infras-
tructure such as waste-water treatment plants etc. Indirectly,
blackouts may result in property loss from arson and looting

– which was observed in many previous occasions, overtime
payment of personnel engaged in emergency management,
potential increase of insurance rates etc. [194].

In a data-based system like the smart grid, false data injec-
tion can have devastating effects, and that motivation acts
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TABLE 9. Available information in a smart grid system that can be targeted in cyber-attacks [195].

TABLE 10. Vulnerable components of digital electrical utility
infrastructure that can be targeted for cyber-attacks [194].

behind false data injection attacks (FDIA). The objective of
such attacks is to alter original data in an attempt to mis-
lead the system. Load distribution attack, stealthy deception
attack, covert cyber deception attack, data integrity attack,
and malicious data attack – all these terms are also used to
mention such attacks [196], [197]. FDIAs need to be capable
of escaping bad data detection (BDD) protocols in place,
and perform stealth attacks on the system state estimation
mechanism [196] – which is fundamental to monitor the state
of a power system [197]. Also, most of the legacy BDD
systems fail to detect such attacks [197]. Along with affecting
the state estimations, FDIA can disrupt electricity markets
through false economic dispatch and data [196], [198], [199].
False data can occur in the cyberspace, or in the physical
space to affect device operation. These can result in flooding
of a communication network, corruption of data, authenti-
cation failure, replacement of data packet from communica-
tion channels connecting phasor measurement units (PMU)

and control center etc. [196], [200]. FDIAs are modeled
mathematically in [197] and [201]. The advanced metering
infrastructure (AMI) is one of the most targeted parts of
a smart grid for cyber-attacks due to its large proportions
and cyber-physical properties [202]. Wei et al. [202] listed
the attacks on AMI components such as smart meters, and
communication network, FDIA, and distributed denial of
service (DDoS) appeared as risks in both sectors. Thus false
data injection poses a significant threat that can be carried out
in stealth to misguide the state estimation process, and disrupt
measurement and monitoring systems in smart grid [199].
Energy trading is also a prominent feature of smart grids,
which requires the exchange of energy prices, contracts, and
transactions between grid entities. Because of these, the sys-
tem attracts attacks including availability attacks, integrity
attacks, and confidentiality attacks. If the energy trading sec-
tor is exploited, energy, money, and data theft as well as DoS
attacks are possible [203].

Among consumer-level energy appliances, home energy
management system (HEMS) is a common one. In an HEMS,
security and privacy of communication infrastructure is pro-
vided by the home gateway (HG) system. Network and soft-
ware attacks are both capable of damaging HEMS. Smart
meters which record energy data from the user-end to billing
have a connection which is stable and trustable with the
home gateway system. Neither of these devices can be shut
down remotely. They do not have the physical access of
HEMS. Smart meters use wireless LAN (WLAN) and other
communication networks which should be tamper proof.
Home gateway serves as a communication channel of SG.
Its configuration is controlled by the suppliers. Any error in
the data can be reported to the meter point operator (MPO).
Network attack is the most important concern of HG. Every
component of HG has cryptographic key-stores, which use
different protocols for secret key generation, key exchange
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and management. Different protection levels are associated
with each protocol. Table 11 compares some of the most
common attack types to demonstrate their relative effects on
smart meter systems, and associated financial impacts. It can
be concluded from this comparison that availability attacks
are themost severe ones, as they have themost adverse effects
on the smart meter systems, while all three attack types have
serious financial tolls. If compared within the availability
attack categories, radio frequency jamming, and reply attacks
are themost effective ones financial sabotage and smart meter
communication blockade; however, denial of service (DoS) is
the weapon of choice for inducing delay in the smart meter
system effectively [204].

TABLE 11. Common attack types and their impacts (adapted from [204]).

To visualize the process of cyber-attacks in a smart grid
system, a simple scenario can be considered where the state
of a power system is expressed in complex magnitudes of
voltages and bus angles. Taking the voltage magnitudes as V,
and the angles as δ, the state vector as S can be defined
as [193]:

S = [δ1δ2δ3......δnV1V2V3......Vn]T (1)

The state estimation can be stated as below [205]:

min J (X ) =
m∑
i=1

wi(zi − hi(X ))2 (2)

Here, h(X ) acts as the measurement function to represent
the measurement of the weights: z and w, mis the maximum
number of measurement. Without any error,

Zi = hi(X ) (3)

With error, this will be:

Zi = hi(X )+ ei (4)

Here e indicates the measurement error. Now if a cyber-
attack aimed at inserting malicious data in this power system
is launched, and it succeeds in modifying the measurement
data with an attack vector, α, then the control system will
receive the following measurement data:

Zi = hi(X )+ ei + α (5)

FIGURE 13. Attacks on major power grid components during 1994-2004;
the transmission system faced most of the attacks, reaching 62%.

For contingency analysis [206], with W&W 6 bus system
considered as the benchmark, power security was intended
to be maintained for N-1 contingencies by the North Amer-
ican Reliability Corporation (NERC) [207]. Even so, power
systems remain exposed to damages resulting from outages
in multiple branches – for example N-k contingencies. For N
number of branches, total contingencies to be considered for
k outages can be formulated as:

Total = (
N
k
) =

N !
k!(N − k)!

(6)

Now if N-2 contingency is considered (taking k = 2), the
possible combinations of simultaneous attacks will be:

(
N
2
) =

N !
2!(N − 2)!

=
N (N − 1)

2
= (

(N 2
− N )
2

) (7)

Therefore, it is very much possible to cripple power sys-
tems with well-planned attacks.

Cyber-attacks on infrastructure is a very possible reality.
In the fiscal year of 2014 alone, 79 such attacks on the United
States energy companies have been recorded by aDepartment
of Homeland Security division. In 2013, this number was
145. 37% of USA energy companies failed to prevent attack-
ers in the time-period of April 2013 to 2014 [208]. During
1994-2004, the transmission system was attacked the most
worldwide – a staggering 62% of all attacks in this period
were aimed at this part of the power system, as presented by
the Journal of Energy Security [209]. Attack percentages on
all major power grid components in this time are presented
in fig. 13. Some recent attacks are presented in table 12. In this
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TABLE 12. Some recent cyber-attack incidents.

FIGURE 14. Likelihood of electric supply interruption from cyber-attacks,
as predicted by utility executives. Moderate likelihood of such attacks are
almost the same globally, but significant likelihood of attacks on
European utilities is very low.

age of connected systems, cyber-security thus appeared as a
serious concern in the energy sector. 63% of utility executives
believe their countries’ utility grids face significant of mod-
erate risks of being targets of cyber-attacks in the next five
years, as found in a global survey conducted in October 2017.
Their concerns regarding electric supply interruption from
cyber-attacks are visualized in fig. 14, which shows mod-
erate likelihood of attacks worldwide is almost 50%, with
a similar scenario over North America, Asia Pacific, and
Europe. However, while considering significant likelihood,
Europe expects the least amount of attacks [210]. A survey
conducted byMcAfee in 2007 documented large-scale DDoS
attacks. Frequencies of those attacks on infrastructures of
different countries are shown in fig. 15. Brazil’s systems
appear to be the most attacked ones, hit 80% of the time,
followed closely by India, France, Spain, and Italy [209]. This
survey contrasts with the one presented in fig. 16, as the most
three of the most hit countries (France, Spain, and Italy) are
European. But these attack statistics are from 2007, and the

FIGURE 15. Reported large scale distributed denial of service (DDoS)
attacks in different countries in 2007, Brazil was the most attacked one,
while the United Kingdom and Japan stayed relatively safe.

survey visualized in fig. 15 is from 2017: which demonstrates
the significant improvement in European cyber-infrastructure
that almost negated significant likelihood of cyber-attacks in
that region. Both of these surveys, however distant their time
periods are, placed the United States as a prime target of
attacks. Then it is no surprise to find this country as the one
facing the most damages – $17.6 million – as documented in
a 2017 report [211]. These losses faced by different countries
are presented in fig. 15, where no other country faced somuch
penalty as the US, and Australia was the least hurt – capping
the damage costs at $4.3 million. But being the target of
the majority of cyber-attacks may have made the United
States evolve as one the most prepared countries to face
such adversaries, as shown in fig. 17 [212]. However, this
2015 preparedness index did not help the city of Atlanta in the
state of Georgia, USA, when most of its municipal activities
shuddered to a halt after being attacked by a ransomware
on March, 2018. This situation persisted for five days, after
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FIGURE 16. Costs of cyber-crimes in average around the world. The
United States faced a huge $17.6 million cost caused by such crimes, more
than double of what faced by the second most hurt country – Japan.

FIGURE 17. The countries most prepared to fend off cyber-attacks. All
these countries have a very similar preparedness profile, though being
leaded by the United States by a very small margin.

which the system recovered partially [213]. This is just a
demonstration of the fast-evolving cyber-threats, and the need
of better counter-measures.

B. COUNTER-MEASURES FOR CYBER-THREATS
Deploying smart grid system has far reaching impacts on an
organization, and affects all the components of its technolog-
ical infrastructure. Thus, security measures also need to be
equally pervasive. Cyber-security strategies can be divided
into two primary categories: protection and detection. Pro-
tection strategies can be hardware and administrative levels
alongside the most-obvious software safeguards, while the
detection can be done by applying machine learning tech-
niques – which can predict threats as well as identify anoma-
lies according to the features. Machine learning is applicable
in most of the common tasks including classification, regres-
sion, and prediction; and thus appears as a promising solution
to cyber-vulnerabilities in this age of big data and lacking
cyber-defense. Security at the smart meters [218] is a good
way to start on cyber protection. Also, the general approach
of most organization is to enforce security at the smart meter,
which is the tactical end point of their responsibility area. But

FIGURE 18. Layered security framework for smart grids. This
comprehensive approach considers security at each stage of the
infrastructure, rather than only smart meter placed at consumer location.
Strategic direction and technical execution forms the two major
contributors in defining the framework responsibilities [219].

such approaches fail to realize that the meter is not the only
vulnerable area in the infrastructure. Thus, it is imperative
for organizations to create a framework for assessing types
of risks, and start this evaluation from the very top: security
concerns associated with the strategy of their organization.
A layered approach is needed for securing the smart grid,
and the direction of strategy along with technical execution
leads the way to such security layers. The driving forces and
requirements of business process of any organization defines
the strategic direction; while technical execution embodies
data privacy, security, data integrity, network security, physi-
cal security, encryption, meter security, and associated oper-
ational procedures. In a layered security framework, the data
use and security requirements are influenced by each layer
according to its responsibility and accountability [219]. This
layered security framework is demonstrated in fig. 18, where
the security considerations of each layer are indicated.

Since an IoT-centric cyber-physical system such as smart
grid provides a large volume of data, proper protection and
management of this data in an SG is very critical. From
the generation end to the distribution end, all kinds of data
are protected with various methods. Previously, a number of
work have been carried out on this purpose. Yuan et al. [220]
developed a method for determining load distribution attack
behavior. Requirements and standards of cyber security
requirements have also been discussed previously in [221]
and [222]. Certain standards are also enacted by various
standardization organizations for cyber security which cover
diverse areas such as management of information security,
software size and quality, best practices, cyber security out-
comes, secure integrated software and hardware testing, and
industrial automation and control systems. These are pre-
sented in table 13. Data aggregation in the AMI system [223]
is a target for attacks as well, and [224] presented a decentral-
ized way of conducting that task efficiently while maintaining
data privacy. Cloud computing is another important aspect of
SG. This even produced the term ‘cloud grid’ in China, which
integrates the nation’s power system with big data analysis
facilities, IoT, information and communication technologies,
and of course, cloud computing [225]. Security concerns
regarding cloud based infrastructure have been addressed
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TABLE 13. Current cyber-security standards and standardization organizations.

TABLE 14. Encryption algorithms for cyber-security.

previously in [226] and [227]. Cryptography can provide
protection of data from security breach. Cryptography is a
method where data is stored in an encrypted manner. There

are several algorithms in use for carrying out this task of
encryption. They can be classified into various categories
according to their working principles. Table 14 presents these
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security algorithms classified according to their techniques
and security-key lengths. Use of quantum computer for
encryption purpose can be very useful for data security [228].
In a quantum computer, data is stored as ‘‘qubits’’ rather than
‘‘bits’’. From the Heisenberg’s uncertainty principle, the val-
ues of momentum and position of a physical system can be
determined only with some characteristic uncertainty. This is
the fundamental approach for quantum computer-based cryp-
tography. External intervention or eavesdropping behavior
will alter the state of the qubits. It will ultimately disrupt
the integrity of the transferred information. Both private-
key cryptography and public-key cryptography requires key
distribution. In private-key cryptography, both ends of data
transmission have a shared key to encrypt and decrypt data.
However, in public-key cryptography, the key distribution is
always done by a public-key sever. A method using cryptog-
raphy has been proposed to approach the cyber security issue
from modern quantum computing in [228].

For security measure in cloud computing based smart grid,
a framework has been proposed by Baek et al. [247]. A flexi-
ble, scalable, and secure informationmanagement framework
with cloud computing topology has been developed. The
framework has three hierarchical levels: top, regional and
end-user levels. A brief description of all the levels of this
hierarchy is depicted in table 15. For a secure communication
link between two different levels, identity of the higher level
can be used for the lower level to develop an encrypted
network [247]. The cloud computing centers have four major
components: infrastructure-as-a-service (IaaS), software-as-
a-service (SaaS), platform-as-a-service (PaaS), and data-as-
a-service (DaaS). IaaS provides demand response for all
applications and services in the system. SaaS provides ser-
vices to the users; one such service can be optimization of
power. PaaS develops tools and libraries for cloud computing
applications. DaaS can be used for statistical purpose. There
are four main clusters in the proposed framework: informa-
tion storage, general user services, control and management
services, and electricity distribution services [56].

For the detection part of cyber-security, data analysis, often
employingmachine learning is an obvious choice for counter-
ing cyber-attacks in the data-driven architecture of smart grid,
and thus it has been heavily investigated in contemporary
literature. Traditional signature based manual methods are
almost useless in the current complex systems, and machine
learning has non-linear analysis capabilities to detect false
data injection in complex systems [200]. Efficient threat
detection is particularly crucial for smart grids because of
their sensitivity to delays: the system gets exposed to higher
risks as the threat remains undetected for longer periods of
time [197]. Buczak and Guven [248] conducted a detailed
study on data mining and machine learning methods used for
intrusion detection. They identified threemajor types of intru-
sion detection systems: signature-based (detects attacks from
their signatures), anomaly-based (detects attacks by devia-
tion from normal system behavior), and hybrid (combina-
tion of misused-based and anomaly-based methods). Further

TABLE 15. Hierarchy of smart grid security framework with cloud
computing topology.

information on anomaly detection can be found in [249],
while additional comparison of machine learning techniques
for intrusion detection is available in [250]. Security threats
to machine learning techniques specifically can be found
in [187].

For detecting false data insertion attacks (FDIA), general
machine learning techniques artificial neural network (ANN)
and support vector machines (SVM) were used previously,
while implementation of other techniques in such detection
were also conducted. Wang et al. [200] employed margin
setting algorithm (MSA) which claimed better results than
the two methods mentioned before. Other notable techniques
used for this cause are Bayesian framework, particle swarm
optimization (PSO), adaboost, random forests, and common
path mining method [200], [251]–[253]. Ahmed et al. [197]
proposed a machine learning approach based on Euclidean
distance to detect FDIAs. They have also investigated on fea-
ture selection schemes with less complexity with improved
accuracy that employed genetic algorithm for bad data detec-
tion [201]. Ozay et al. [254] used supervised learning to
classify measurement data as secure or compromised, and
thus detected FDIA. Their method was capable of identify-
ing attacks that are unobservable, and predict attacks using
observation sets. False data and stealth attack detection in
wide area measurement in smart grid monitoring system was
demonstrated in [199]. Xin et al. [255] presented a detailed
study on machine learning and deep learning methods for
intrusion detection, where the definitions of these areas are
provided with descriptions of methods falling into each cat-
egory. Wei et al. [202] discussed on detection of electricity
theft, and provided an overview on the works done in that
sector. Machine learning techniques such as principal compo-
nent analysis (PCA) [256], as well as game theory approaches
such as the Stackelberg game [257] can be applied in for
detecting energy theft. Different types of software attacks and
their counter measures [44] are depicted in table 16.

VII. OUTCOMES
The findings of this paper can be summarized as following:
• The electricity grid is currently going through the first
major change from its inception almost two centuries
earlier. This next-generation grid system is combining
power system, information technology, communication
and control systems to create a robust and adaptive
infrastructure better suited to accommodate new and
emerging technologies. This new grid is called the smart
grid.
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TABLE 16. Different software attacks and their counter measures [44], [202].

• Connectivity and exchange of information lies at the
core of smart grid functionality, which made connected
devices a corner-stone for this technology. These devices
are called the ‘‘internet of things (IoT)’’, and enable
the grid components to exchange data to maintain an
up-to-date system status and receive commands to act
as grid conditions change. IoT devices are increasing
significantly in number each year, and are bringing
unique opportunities and challenges with their wider
implementation.

• IoT devices generate a huge amount of data, which
cannot be handled through conventional analysis tech-
niques. This massive data is termed as ‘‘big data’’, and
it motivated the move towards new data analysis tech-
niques. Big data generated from IoT devices are also
exposed to security threats, and that have attracted a lot
of attention as well.

• Machine learning is a useful way to sift through big data,
and extract useful information that can extensively aid in
demand and generation pattern recognition, generation
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forecasting, control etc. A number of methods have
already been presented in existing literature, and more
novel techniques are being worked on for enhanced
performance in specific use cases.

• Every sector of the smart grid – generation, trans-
mission, and distribution – are in significant risk of
cyber-attacks, and many such attacks have already been
carried out. Security of data is thus a major concern in
smart grid, and significant amount of work has already
been conducted on detection of cyber-security threats
and protection mechanisms to counter them. Many of
these counter-measures have used machine learning
techniques, as conventional methods are often useless in
the new data-centric, non-linear system.

Based on this study, the following can be stated for future
works in this field:
• The viability of the current grid infrastructure need to
be validated through approaches such as mathemati-
cal modeling to find out the optimum timeframe and
technological approach to move towards the smart grid
architecture.

• The challenges in transitioning to the renewable
energy-centric smart grid, and their feasible solutions
need to be investigated. Possible business models, gov-
ernment initiatives, and their approach to implementa-
tion of smart grid can also be studied.

• IoT devices can be worked on to make them more
compact, cheap, energy efficient, and robust. Advanced
communication protocols can also be investigated to
improve throughput and security. Monitoring schemes
of power generation facility, pumps, and turbines can be
further developed.

• Better forecasting techniques for demand and genera-
tion, especially renewable energy generation is essential
for proper operation of renewable-energy based smart
grids.

• Machine learning algorithms can be developed to meet
power quality standards in a smart grid using the avail-
able data. Machine learning algorithms can also be
applied in wind-solar hybrid system to further utilize our
available resources.

• More research is required to develop viable solutions for
other security concerns such as physical threats, network
attacks and encryption attacks. Communication systems
also need to be more efficient, with more protective
measure.

VIII. CONCLUSION
The electricity grid is transitioning towards an IoT-based,
connected smart grid, and with the benefits of such a system,
concerns are also emerging that were unprecedented until
now. The big data generated in the smart grid is requiring
novel analysis techniques such as machine learning meth-
ods for proper handling and data extraction. The connected
devices, and the data they generate are also bringing forth
the dire necessities of proper protection, as they are being

targeted to attacks of varying magnitudes which highlighted
the lack of proper counter-measures in place. In an attempt
to present an overall picture of these issues, this paper had
presented a brief timeline of the grid’s journey to the smart
grid, and how internet of things (IoT) had become a part
and parcel of the electricity grid. Challenges associated with
IoT-generated big data, namely their analysis and protection,
as well as other security concerns in the smart grid had also
been discussed. The outcomes of this study had been pre-
sented finally with future research directions outlined briefly
to aid researchers in this field.
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