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a b s t r a c t

Analytical expressions for penetration of a long rigid projectile with a nose shape of an ovoid of Rankine
into a semi-infinite incompressible elasticeperfectly-plastic target have been developed earlier. Using
these expressions it is shown that the drag force applied by the target on the projectile can be
approximated as a bilinear function of the square of the penetration velocity in terms of three non-
dimensional constants {Sc, ac, bmax}. The value of Sc characterizes the constant value of the drag force
for low penetration velocities. Cavitation (separation of the target material from the projectile’s surface)
first occurs when the penetration velocity reaches a value associated with ac. The parameter bmax

controls the dependence of the drag force on the square of the penetration velocity as the separation
point on the projectile’s surface approaches its tip. Analytical expressions for these constants are
determined in terms of the material parameters of the target material. Also, a simple formula for the
penetration depth is developed and a method is proposed for determining the constants {Sc, ac, bmax}
directly from experimental data.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Backman and Goldsmith [3] document scientific interest in
penetration mechanics from the beginning of the 19th century and
a collection of experimental data can be found in [2]. Here, atten-
tion is limited to the case of a rigid projectile penetrating a semi-
infinite incompressible elasticeperfectly-plastic target. Fig. 1
shows a typical axisymmetric projectile which has a nose that
smoothly transitions to a circular cylinder of radius R. The projectile
moves with velocity V in the negative e3 direction without rotation
so the balance of linear momentum for the motion is given by

M _V ¼ �F; (1)

where M is the projectile’s mass and F is the drag force applied in
the positive e3 direction by the target material on the projectile.
Letting s be the instantaneous depth of penetration and using the
specifications

V ¼ _s; Vð0Þ ¼ V0; sð0Þ ¼ 0; (2)

it is convenient to introduce the normalized variables
All rights reserved.
S ¼ F
pR2Y

; a ¼ rV2

Y
; a0 ¼ rV2

0
Y

; l ¼ 2rpR2s
M

: (3)

Then, multiplying Eq. (1) by V yields

_a ¼ �S _l;
da
dl

¼ �S: (4)

In these expressions, V0 is the impact velocity, and {r, Y} are,
respectively, the constant density and yield strength (in uniaxial
stress) of the target. Moreover, S is the normalized drag force that
the target applies to the projectile, a is a normalized inertia (kinetic
energy) in the target and l is the normalized instantaneous depth
of penetration.

Hill [6] describes research done between May 1943 and March
1946 on cavitation during penetration of a rigid projectile into
metal. He notes that due to melting at the projectile’s surface the
effects of friction are negligible. Consequently the traction vector
t applied by the target material on the projectile can be
approximated as a contact pressure P applied in the opposite
direction to the outward unit normal n to the projectile’s surface
(see Fig. 1)

t ¼ �Pn: (5)
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Fig. 1. Sketch of the nose region of a rigid projectile penetrating an incompressible
elasticeperfectly plastic target.
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Using this expression S is given by

S ¼ 2
R2Y

ZR
0

P rdr: (6)

For long projectiles and deep penetration into thick targets the
effect of the entrance phase, cavitation at the projectile’s tail and
the transient development of the plastic region can be neglected to
obtain asymptotic expressions for P and S. Typical expressions for
these quantities found in the literature can be written in the forms

P ¼ YðPY þ PIaÞ; S ¼ SY þ SIa; (7)

where {PY, SY} characterize the effects of plasticity in the target and
{PI, SI} characterize the effects of inertia in the target.

In his analysis of the effects of cavitation Hill [6] suggested that
PY in Eq. (7) is reasonably constant and that it can be estimated
using static solutions for cavity expansion of the type developed in
[5]. In particular, for expansion of a spherical cavity Bishop et al. [5]
developed the expression

PY ¼ 2
3

�
1þ ln

�
2G
Y

��
; (8)

where use has been made of the relationship between the shear
modulus G, Young’s modulus E and Poisson’s ratio n given by

G ¼ E
2ð1þ nÞ: (9)

In addition, Hill [6] proposed an expression for PI of the form

PI ¼ k
d
dx

�
r
dr
dx

�
; (10)

where k is a positive non-dimensional empirical constant and x is
an axial coordinate measured from a material point in the projec-
tile. For convenience, here x is specified by

x ¼ z� z3ðtÞ �
R
2
; �R

2
� x � �R

2
þ L; _z3ðtÞ ¼ �V ; (11)

where z3(t) denotes the axial location of the projectile’s tip (see
Fig. 1) and L is its length. Since the projectile’s nose smoothly
transitions to a circular cylinder at its tail it follows that
dr
x
¼ 0 for x ¼ �R

2
þ L: (12)
d

Moreover, Hill [6] confined attention to nose shapes for which

r
dr
dx

¼ 0 for x ¼ �R
2
: (13)

An important consequence of expression (10) is that for values
of the penetration velocity V (related to a) less than a critical value
Vc (related to ac), the contact pressure remains non-negative over
the entire curved surface of the projectile so the target material
remains in contact with the projectile until its tail with no cavita-
tion near the projectile’s nose

P � 0 for � R
2
� x � �R

2
þ L with a < ac: (14)

Next, assuming that PY is constant, Eq. (10) can be substituted into
Eq. (6) and use can be made of Eqs. (6), (7), (12) and (13) to deduce
that

SY ¼ PY ; SI ¼ 0 for a < ac: (15)

This means that for penetration velocities V less than the critical
value Vc (a< ac) the drag force is constant. Rosenberg and Dekel [9]
confirmed this empirical result by analyzing details of a series of
numerical simulations of nearly rigid projectiles with different nose
shapes. Also, Rapoport and Rubin [8] used simplifications of
expressions developed in [12] for a projectile with the shape of an
ovoid of Rankine to prove this result analytically. Moreover, Rapo-
port and Rubin [8] pointed out that this constant value of drag is not
expected using cavity expansion models for which the influence of
inertia in the target on the drag force is always non-negative.

Next, using expressions (7) and (10) with PY constant, it follows
that cavitation (separation) occurs at the location x¼ xs and the
value a¼ as when the pressure P(xs) vanishes so that

PðxsÞ ¼ Y ½PY þ PIðxsÞas� ¼ 0 0 as ¼ � PY
PIðxsÞ

with

x ¼ xs and x ¼ xs; (16)

where x is the normalized radius of the projectile

x ¼ r
R
: (17)

The value ac is the minimum value of as which occurs when x¼ xc

ac ¼ minðasÞ with x ¼ xc: (18)

In Eqs. (16) and (18) it has been convenient to introduce the
non-dimensional variables {xs, xc} to characterize the values of the
radius at the point of cavitation. For higher values of the penetra-
tion velocity (a� ac) the drag force is obtained by integrating only
over the portion of the projectile’s surface that is in contact with the
target. Again, assuming that PY is constant it follows that both
plasticity and inertia in the target influence the normalized drag
force so that

S ¼ SY ðxsÞ þ SIðxsÞa for a � ac; (19)

where the functions {SY, SI} depend on the normalized separation
point xs and are given by

SY ðxsÞ ¼ x2sPY ; SIðxsÞ ¼ kx2s

�
dr
dx

ðxsÞ
�2

: (20)

In particular, it is important to note that since xs depends on the
penetration velocity through the solution of Eq. (16), the drag force
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predicted by Eq. (19) appears to be a nonlinear function of a during
cavitation. However, the numerical simulations of Batra andWright
[4] and of Rosenberg and Dekel [9] indicate the unexpected result
that the drag force during cavitation is nearly linear in a. Specifi-
cally, Rosenberg and Dekel [9] proposed an expression for the drag
force S for the full range of penetration velocities, which can be
rewritten in the form

S ¼ SRD ¼ ScRD þ bRDha� acRDi; ScRD ¼ BacRD;

acRD ¼ rVcRD

Y
; bRD ¼ B

2
; (21)

where ScRD characterizes the low velocity drag force, acRD charac-
terizes the normalized velocity at the onset of cavitation, B is
a positive constant that characterizes the shape of the projectile’s
nose and the Macaulay brackets hxi are defined by

hxi ¼ 1
2
ðxþ jxjÞ: (22)

Although the drag force in Eq. (21) is characterized by three
constants {ScRD, acRD, bRD} Rosenberg and Dekel [9] made an
assumption that effectively reduced the number of constants to two
{acRD, bRD}. It should be emphasized that the empirical values of
these constants were obtained in [9] by calibration with numerical
simulations for different targets and different projectile noses.
Moreover, Rosenberg and Dekel [9] developed an expression for the
penetration depth of a projectile with impact velocity V0 which can
be rewritten in the form

lfRD ¼ 1
ScRD

�
ða0�ha0�acRDiÞþ

ScRD

bRD
ln
�
1þha0�acRDi

2acRD

��
; (23)

where use has been made of the normalized variables (3) and (21).
In particular, it was demonstrated that this functional form can be
used to predict accurate values of the penetration depth for a range
of targets, nose shapes and impact velocities. Moreover, Rosenberg
and Dekel [9] showed that the value of acRD depends on both the
geometry of the projectile’s nose and on the material properties of
the target, whereas bRD¼ B/2 is an empirical constant that depends
only on the geometry of the nose of the projectile. Specifically,
Rosenberg and Dekel [9] found that values of B for flat, spherical,
conical and ogival noses are given by

B ¼ 1:25 ðflatÞ; B ¼ 0:5 ðsphericalÞ; B ¼ 0:24 ðconicalÞ;

B ¼ 0:15 ðogivalÞ: (24)

In this regard, it is unclear why the simulations of Batra andWright
[4] for a spherical nosed projectile suggest that for (2� a� 6) the
value of B controlling the slope of the Sea curve is given by 0.01546
(¼2� 0.0773) instead of the value 0.5 in Eq. (24).

The objective of this paper is to provide theoretical support for
conclusions of the type (21) and (23) which indicate that below
a critical value Vc of the penetration velocity V (a< ac) the drag
force is nearly constant and above the critical value Vc (a� ac) the
drag force can be approximated as a linear function of a. This is
accomplished by using the simplified expressions in [8], which are
based on the full analysis in [12] for flow past an ovoid of Rankine.
In particular, it will be shown that an accurate approximation of S
for this theory is given by

S ¼ Ssimple ¼ Sc þ bmaxha� aci; (25)

and that the final value lf of the normalized penetration depth is
obtained by substituting Eq. (25) into Eq. (4) and integrating the
result using the initial conditions (3) and the final condition that
a vanishes to obtain the expression

lf ¼
1
Sc

�
ða0�ha0�aciÞþ Sc

bmax
ln
�
1þbmaxha0�aci

Sc

��
: (26)

Expressions (25) and (26) are similar to Eqs. (21) and (23) except
that they depend on three constants {Sc, ac, bmax} instead of only
the two constants {acRD, bRD} in Eqs. (21) and (23). Moreover, in
Section 2 analytical expressions for the constants {Sc, ac, bmax} are
developed that depend on the value G/Y of the target material and
on the maximum value amax of a for the range of impact velocities
of consideration

Sc ¼ Sc

�
G
Y

�
; ac ¼ ac

�
G
Y

�
; bmax ¼ bmax

�
G
Y
;amax

�
: (27)

Also, it is noted that the result (26) differs from the well known
Poncelet solution [3], which depends on two empirical constants
and does not include the fact that the drag force is nearly constant
for a< ac. In this regard, the Poncelet equation can be considered
applicable when the velocity dependent part of the drag force due
to cavitation dominates the constant low velocity value of drag
associated plasticity in the target.

An outline of this paper is as follows. Section 2 reviews some
aspects of the solution developed in [12] and records simplified
expressions given in [8]. Also, analytical expressions are given for
the three constants (27). Section 3 discussed specific examples and
Section 4 presents conclusions and discussion.

2. Basic equations for an ovoid of Rankine

The velocity field v in the target around an ovoid of Rankine is
a special case of flow of an incompressible fluid with a velocity
potential f for which

v ¼ Vf; V2f ¼ 0: (28)

Also, the Cauchy stress T is expressed in the form

T ¼ �pIþ T0; T0$I ¼ 0; (29)

where the pressure p is an arbitrary function of position x and time
t, T0 is the deviatoric part of T and A $ B¼ tr(ABT) is the inner
product between two second order tensors {A,B}. It then follows
that in the absence of body force the balance of linear momentum
can be written in the form

V

�
r

�
vf

vt
þ 1
2
v$v

�
þ p
�
¼ div T0: (30)

Following the work in [12] the shape of an ovoid of Rankine is
given by

r ¼ brðxÞ ¼
"
R2 � x2

2
þ x

2

�
x2 þ 2R2

�1=2#1=2
; (31)

where the variable x is defined by Eq. (11). Moreover, the velocity
potential f can be expressed in terms of the potentials of a moving
point source and a uniform stream to obtain

f ¼ _z3R2

4
�
x2 þ r2

�1=2 : (32)

It then can be shown that the rate of deformation tensor D asso-
ciated with the velocity gradient L is a deviatoric tensor D0, such
that
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L ¼ vv=vx; D ¼ 1
2

�
L þ LT

�
; D0 ¼ D; D0$I ¼ 0: (33)
In particular, this velocity field provides a realistic model for
penetration problems since it ensures impenetrability of the target
material with the surface of the nose of the projectile with the
ovoid shape (see Fig. 2). This velocity field has also been used by
Alekseevskii [1] and Tate [10,11] to study penetration problems.

In the solution presented in [12] the strains in the elastic region
of the target are assumed to be small and the devatoric stress in
that region is determined by the equations

T0 ¼ 2G 3
0;

v 30

vt
¼ D0; div T0 ¼ 0: (34)

In the plastic region the strains can be arbitrarily large and T0 is
specified by the Levy-Mises equation

T0 ¼ Y

ffiffiffi
2
3

r
D0

jD0j: (35)

In particular, it was shown in [12] that for an ovoid of Rankine (35)
yields the special result that the divergence of T0 can be expressed
as the gradient of a scalar

div T0 ¼ V

"
� Y ln

 
x2 þ r2

R2

!#
: (36)

Although Tate [11] used the same expression (35) he apparently did
not recognize the result (36), which allows the equation of motion
(31) to be integrated exactly pointwise in the entire target region.

The solution in [12] discusses approximate boundary conditions
characterizing the free front and rear surfaces of a target of finite
thickness. Also, approximate continuity conditions are used at the
elasticeplastic boundary which intersects the r¼ 0 axis at the point
z¼ z2(t), as shown in Fig. 1. For the special case of deep penetration
of a long projectile into a semi-infinite target, the effects of the
target’s front and rear surfaces and the development of the plastic
region can be neglected. In particular, the asymptotic expressions
for the contact pressure P applied by the target to the projectile’s
surface and for the drag forceS recorded in [8] yield the normalized
results that

PðxsÞ ¼ Y ½PY ðxsÞ þ PIðxsÞas�; (37a)

SðxsÞ ¼ SY ðxsÞ þ SIðxsÞas; (37b)

where the functions {PY, PI, SY, SI} are specified by
-3.0

-1.5

0.0

1.5

3.0

-6.0 -3.0 0.0 3.0 6.0

r/
R

z/R

Fig. 2. Streamlines relative to a moving projectile with a nose shape of an ovoid of
Rankine. The circles on a given streamline denote the positions of a material point that
starts at the left edge and moves towards the right with the time interval between
neighboring circles being constant.
PYðxsÞ ¼ ln
�
3G�

1� x2s
��

þ 1
�
8� 9x2s

2

�
;

Y 3 4� 3xs

PIðxsÞ ¼ 1
2

�
1� 3x2s

� �
1� x2s

�
;

SY ðxsÞ ¼ x2s ln
�
3G
Y

1
x2s

�
�
�
1� x2s

�
ln
�
1� x2s

�
þ 4
9
ln
�
4� 3x2s

4

�
; SIðxsÞ ¼ 1

2
x2s
�
1� x2s

�2
: ð38Þ

The value of as is determined by the cavitation condition that the
pressure P(xs) vanishes at the cavitation point

as ¼ asðxsÞ ¼ �PY ðxsÞ
PIðxsÞ

for
1ffiffiffi
3

p < xs < 1; (39)

where the range of xs is restricted so that as is positive.
Moreover, at the onset of cavitation near the projectile’s nose as

attains a local minimum value ac. This occurs for the value of x
which satisfies the equation

das
dxs

ðxÞ ¼ 4x	
1� 3x2


2	1� x2

2g1ðxÞ;

g1ðxÞ ¼ �68þ 168x2 � 189x4 þ 81x6

3
	
4� 3x2


2
� 2

�
2� 3x2

�
ln
�
3G
	
1� x2



Y

�
¼ 0 with

1ffiffiffi
3

p < x < 1: (40)

The function g1(x) has one local maximum in the range of interest.
For G/Y smaller than a critical value gc the local maximum of g1(x) is
negative and there is no real solution x of Eq. (40). The critical value
gc of G/Y for the existence of a real solution of x can be determined
by solving Eq. (40) for G/Y and writing the solution in the form

G
Y
¼ g2ðxÞ;

g2ðxÞ ¼
1

3
	
1�x2


exp"	�68þ168x2�189x4þ81x6



6
	
4�3x2


2	2�3x2



#
: (41)

It can be shown that the critical value gc defined by the minimum
value of g2(x) is obtained when x satisfies the equation

g3ðxÞ ¼ 416�1404x2þ1716x4�891x6þ162x8 ¼ 0;

ffiffiffi
2
3

r
<x<1:

(42)

The solution of this equation yields the condition that

G
Y
� gc ¼ 12:4715: (43)

If the value of G/Y is greater than gc then the local maximum of
g1(x) is positive, which yields two real solutions of Eq. (40). These
two solutions are shown in Fig. 3, which plots as in Eq. (39) as
a function of xs for G/Y> gc. The smaller solution of Eq. (40),
denoted by xc, causes the function as to have a local minimum and it
can be used in Eq. (39) to obtain the value ac of a at the onset of
cavitation

ac ¼ asðxcÞ: (44)
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Again, for G/Y greater than gc there are two solutions of the
equation

aðxsÞ ¼ ac: (45)

The smallest solution is xc and the largest solution is denoted by xc
�.

For values of penetration velocity V below the cavitation value Vc
(a< ac) the separation point xs remains very close to the projectile’s
tail (xsz 1, rz R) which is the branch of the curve in Fig. 3 below
the value ac. When a reaches the cavitation value ac the separation
point jumps from the value xc

� to xc, as shown in Fig. 3.
In general, the value of Ss in Eq. (38) can be discontinuous at this

value of ac with

SsðxcÞsSs

�
x�c
�
: (46)

Therefore, the function Ss has one branch for 0� as� ac and
another branch for as> ac. The separation point x0 associated with
as¼ 0 is obtained by using the functional form (39) and solving the
equation

asðx0Þ ¼ 0: (47)

Then, the complete solution for the drag force S can be obtained by
evaluating the function (37b) for xc

�� xs� x0 characterizing the
lower branch and for 1=

ffiffiffi
3

p
< xs � xc characterizing the upper

branch.
It will be shown that the function (37b) for S can be approxi-

mated by the simple solution (25) where Sc and ac are given by

Sc ¼ SðxcÞ; ac ¼ asðxcÞ: (48)
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Fig. 4. Plot of Sc(x) in Eq. (37b) as a function of G/Y in the target using Eq. (41) with
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ffiffiffi
3

p
< x � xc.
in terms of the functions (38) and (39) and the solution xc of Eq. (40)
with the restriction (43). Next, an estimate of the value of b can be
obtained by observing from Eqs. (38) and (39) that the value as
approaches infinity as xs approaches the value 1=

ffiffiffi
3

p
. In this limit

resistance of inertia in the target dominates the resistance of
plasticity in the target and b attains the limiting value

b ¼ bN ¼ 2
27

¼ 0:074074: (49)

However, it will be shown that a better approximation of b for
lower values of penetration velocity can be obtained by matching
the simple solution (25) to the value determined by Eq. (37b) for
the maximum value amax of a in the range of velocities being
considered. In particular, using this idea the value xmax is deter-
mined by using the functional form (39) and solving the equation

asðxmaxÞ ¼ amax with
1ffiffiffi
3

p < xmax < xc and amax>ac: (50)

Then, the value bmax of b is determined by the expression

b ¼ bmax

�
G
Y
;amax

�
¼ SðxmaxÞ � Sc

amax � ac
: (51)

For the remainder of this paper the value amax is specified by

amax ¼ 10ac: (52)

With this specification the parameters (27) can be plotted graphi-
cally in terms of the value of G/Y. Specifically, Figs. 4e6 show plots
of Sc(x) in (37b), ac¼ as(x) in Eq. (39) and bmax in Eq. (51) as
functions of G/Y using Eq. (41) with 1=

ffiffiffi
3

p
< x � xc. Thus, given

a value of G/Y for the target these figures can be used to determine
0.0718
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Fig. 6. Plot of bmax in Eq. (51) as a function of G/Y in the target using Eq. (41) with
1=

ffiffiffi
3

p
< x � xc and amax in Eq. (52).



Table 1
Material parameters and results of the simple formulas.

Aluminum Steel

r [Mg/m3] 2.785 7.9
G [GPa] 25.9 76.9
Y [GPa] 0.4 0.4
G/Y 64.75 192.25
Sc 4.778 5.761
ac 26.29 32.99
bmax 0.07193 0.07198
ScRD 4.828 5.683
acRD 32.18 37.88
bRD 0.075 0.075
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the values of {Sc, ac, bmax} in the simple form (25) for S. Moreover, it
can be seen that bmax shown in Fig. 5 is nearly constant and is
slightly smaller than the limiting value (49).
3. Examples

In order to examine the validity of the equations developed in
Section 2 comparison is made with the results of Rosenberg and
Dekel [9] for aluminum and steel targets. Table 1 records the values
of the density r, shear modulus G, yield strength Y for these
materials as well as the values of {Sc, ac, bmax} predicted by the
model of Section 2. As mentioned previously the formulas
proposed by Rosenberg and Dekel [9] are based on two empirical
constants that are obtained by analysis of numerical simulations.
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Fig. 7. Aluminum: comparison with the
Their formulas were shown to be accurate for two target materials
and four nose shapes. In particular, the value bRD in Eq. (21) for an
ogival shaped nose was given by

bRD ¼ 0:075; (53)

which is very close to the value of bmax in Table 1 for the ovoid of
Rankine used here. Therefore, for the examples in this section
comparison will only be made with the results in [9] for the
simulations of an ogive. Table 1 also includes the values of {ScRD,
acRD, bRD} obtained using the empirical constants in [9] and the
expressions (21). From Table 1 it can be seen that the values of {Sc,
bmax} obtained analytically are close to the values {ScRD, bRD} ob-
tained empirically. But the analytical values of ac are smaller than
the empirical values acRD.

Figs. 7 and 8 show the results for Aluminum and steel, respec-
tively. Specifically, the values of Ss are determined by equations
(37)e(39) with x0� xs�xc

� for the nearly constant values of Ss and
with xc� xs� xmax for the higher values of Ss. The values of Ssimple
and lf were determined by Eqs. (25) and (26), respectively, for
0� a� amax, using the values of {Sc, ac, bmax} reported in Table 1.
Similarly, the solution denoted by RD is determined by the
expressions (21) and (23) using the values of {ScRD, acRD, bRD} re-
ported in Table 1. These results indicate that the assumption used
by Rosenberg and Dekel [9] to reduce the number empirical
constants to two has an influence on the value of the velocity
(associated with ac and acRD) at the onset of cavitation. However,
this parameter seems to have a small effect on the predictions of
the penetration depth.
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Fig. 8. Steel: Comparison with the results of Rosenberg and Dekel [9].
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4. Conclusions and discussion

Yarin et al. [12] developed an analytical solution for penetration
of a rigid projectile with a nose shape of an ovoid of Rankine into an
incompressible elasticeperfectly-plastic target. Rapoport and
Rubin [8] used these analytical expressions to develop simplified
equations which predict the drag force and velocity at the onset of
cavitation for the full range of impact velocities. Here, these
formulas have been used to propose a simplified form Ssimple in Eq.
(25) for the drag force applied by the target on the projectile for any
penetration velocity. This form depends on three parameters {Sc,
ac, bmax} which have been determined analytically in terms of the
material constants of the target. Specifically, Sc characterizes the
constant drag force for penetration velocities V below the value Vc
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Fig. 9. Plots showing how experimental data for penetration depth might be use
(associated with ac) at the onset of cavitation (i.e. separation of the
target material from the projectile’s surface) and bmax controls the
dependence of drag force on inertia in the target for larger values of
penetration velocity. This simple form for the drag force is used to
obtain an analytical expression for the penetration depth lf (26) of
a projectile with impact velocity V0 (associated with a0). The
analytical expressions (25) and (26) for the proposed simplified
analytical solution are identical to the empirical expressions (21)
and (23) developed by Rosenberg and Dekel [9], except that the
empirical expressions depend on only two empirical constants
{ScRD, bRD}.

Figs. 7 and 8 suggest that accurate values for the constants {Sc,
ac, bmax} can be obtained by plotting the drag force S versus a and
matching the bilinear form with the expression (25). However,
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measurement of the drag force for a range of penetration velocities
V is not easy. Instead, most experimental data gives values for the
penetration depth lf as a function of the impact velocity (associated
with a0). Here, a method is proposed to determine the constants
{Sc, ac, bmax} directly from the experimental data for lf as a function
of a0. Specifically, the analytical expression (26) with the constant
for Aluminum and Steel in Table 1 is used to generate the plots of
a0/lf versus a0 shown in Fig. 9a,b. Also, included in Fig. 9 are lines
connecting the points {ac, Sc} and {amax,Ssimple(amax)} used to
generate these curves. Using the expression Ssimple in Eq. (25) it is
clear that the constant value of a0/lf for small values of a0 deter-
mines the constant Sc. Moreover, the value of ac can be estimated
by finding the intersection of a straight line that is tangent to the
curve for high values of a0 with the horizontal portion of the curve.
Then, the value of bmax can be determined by numerically solving
the analytical expression (26) for bmax with {a0, lf} taken to be the
largest values in the data set.

The work in Rosenberg and Dekel [9] shows that their empirical
expressions are accurate for a range of nose shapes. In particular,
the expressions (21) suggest that ScRD and bRD are sensitive to the
changes in the nose shape. Since these expressions depend on only
two empirical constants it is not clear whether or not the value of
acRD is also sensitive to changes in the nose shape. Consequently, it
is not known if the analytical expressions developed here for an
ovoid of Rankine can be generalized for different nose shapes or if
they can be modified to include the effects of hardening in the
target and inevitable deformation of the projectile at high impact
velocities.

The work presented here considers penetration of rigid
projectiles into incompressible elasticeperfectly plastic targets. The
theoretical results have been presented for a large range of impact
velocities which include velocities well in excess of the critical
value when cavitation occurs and the target material separates
from the projectile’s surface at a point on the projectile’s nose.
Obviously, projectiles made from real materials will deform and
erode above critical values of impact velocities. For example, the
work in [7] considered penetration into 6061-T6511 aluminum
targets of ogive nosed projectiles made of two steels VAR 4340 and
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Fig. 10. Analysis of the experimental data in [7] for penetration into targets of 6061-T6511 A
The solid lines correspond to predictions of ovoid of Rankine model (OR).
AerMet 100. It was stated in [7] that as the impact velocity
increases: “(1) the projectiles remained rigid and visibly unde-
formed; (2) the projectile’s deformed during penetration without
nose erosion, deviated from the target centerline, and exited the
side of the target or turned severely within the target; and (3) the
projectile’s eroded during penetration and lost mass.”

Since the projectile’s used in the experiments in [7] had ogive
noses it is expected that the predictions of the ovoid of Rankine
model (denoted by OR) discussed here should provide reasonably
accurate results in comparison with the experimental data. For the
following analysis the density r of the 6061-T6511 aluminum
targets is taken from [7] and the shear modulus G is taken from
Table 1 here

r ¼ 2:710 Mg=m3; G ¼ 25:9 GPa: (54)

Next, using the value of yield strength Y¼ 0.276 GPa of 6061-T6511
aluminum reported in [7] it is possible to interpolate the results of
the OR model given in Figs. 4 and 5 to obtain the theoretical
predictions

Sc ¼ 5:1136; ac ¼ 28:585 ðVc ¼ 1:706 km=sÞ for

Y ¼ 0:276 GPa: (55)

The radius of each projectile in [7] was R¼ 3.555 mm and the
values of the mass of each projectile, the impact velocity and
penetration depth are taken from Tables 1 and 2 in [7] for the lower
velocities for which the projectiles remained rigid and penetration
was rather straight. This data is plotted in Fig. 10. Also, included in
Fig. 10 are the theoretical predictions of the OR model using the
assumption that the impact velocities are lower than the critical
velocity Vc (or ac) for cavitation to occur. Specifically, for a0� ac Eq.
(26) yields the theoretical result that

lf ¼ 1
Sc

a0; (56)

which is used to plot the straight lines in Fig. 10a,c.
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The results in Fig. 10a,b indicate that the OR model is inconsis-
tent with the experimental datawhen Y¼ 0.276 GPa. Moreover, the
highest value of a0 in these figures is greater than the theoretical
prediction (55) of the critical value ac for cavitation. However, using
the results in Figs. 4 and 5 it is possible to determine a value for Y
which causes the theoretical line (56) to pass through the experi-
mental data point with the highest impact velocity to obtain the
theoretical results

Sc ¼ 4:8243; ac ¼ 26:607 ðVc ¼ 1:9315 km=sÞ for
Y ¼ 0:38 GPa: ð57Þ
This value of Y is close to the value Y¼ 0.4 GPa listed in Table 1.
Moreover, the theoretical results plotted in Fig. 10c are very close to
the experimental data and the value of Sc in Eq. (57) is within the
experimental scatter shown in Fig. 10d. The fact that the experi-
mental data shown in Fig. 10c is well represented by the straight
line (56), suggested by the OR model, is a strong indication that the
drag force applied by the target on the projectile in this range of
velocities is truly constant and is not dependent on the penetration
velocity, as suggested by the cavity expansion model. These results
are also consistent with the fact that the highest value of a0 for the
experimental data in Fig. 10c,d is less than the theoretical value ac
in Eq. (57) for the onset of cavitation. Apparently, the value of the
yield strength Y used in the cavity expansion model must be
reduced to compensate for the unphysical dependence of the drag
force on penetration velocity in order to approximate experimental
data for penetration depth caused by impact velocities below the
critical value for cavitation.
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