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Abstract Reactive power planning (RPP) is generally defined as an optimal allocation of addi-

tional reactive power sources that should be installed in the network for a predefined horizon of

planning at minimum cost while satisfying equality and inequality constraints. The optimal place-

ments of new VAR sources can be selected according to certain indices related to the objectives to

be studied. In this paper, various solution methods for solving the RPP problem are extensively

reviewed which are generally categorized into analytical approaches, arithmetic programming

approaches, and meta-heuristic optimization techniques. The research focuses on the disparate

applications of meta-heuristic algorithms for solving the RPP problem. They are subcategorized

into evolution based, and swarm intelligence. Also, a study is performed via the multi-objective for-

mulations of reactive power planning and operations to clarify their merits and demerits.
� 2015 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, reactive power planning (RPP) problem has
become one of the most challenging problems in power
systems. It has been an important stage of transmission expan-
sion planning (TEP) problem in recent years [1–3]. In addition,

reactive power control/dispatch is an important function in the
planning process for the future of power systems. It aims to
utilize all the reactive power sources efficiently, which are suit-

ably located and sized in the planning process [4–10].
Generally, the various RPP solutions are divided into three

groups which are analytical approaches [11–13], arithmetic

programming approaches [3,4,11,12–15,16(Ch. 2),17(Ch.
3),18–23], and meta-heuristic optimization techniques. Various
Meta-heuristic Optimization Algorithms (MOA) have been
applied to the RPP problem such as Genetic Algorithms

(GA) [5,24–33], Differential Evolution (DE) [6,17,24,34–42],
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Figure 1 Flowchart of the RPP problem.
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Harmony Search (HS) [43–45], Seeker Optimization
Algorithm (SOA) [46–48], Evolutionary Programming (EP)
[49–54], Ant Colony Optimization (ACO) [7,55], Immune

Algorithm (IA) [8], Particle Swarm Optimization (PSO)
[2,9,16,56–58], Artificial Bee Colony (ABC) [59], Gravitational
Search Algorithm (GSA) [60,61], Firefly Algorithm (FA) [62],

Teaching Learning Algorithm (TLA) [63], Chemical Reaction
Optimization (CRO) [64], Water Cycle Algorithm (WCA) [65],
and Differential Search Algorithm (DSA) [66]. Hybrid tech-

niques have been suggested in some researches that make use
of advantages of different algorithms simultaneously to
improve the quality of solution [5,10,16(Ch. 5),53,55,67–75].

Also, multi-objective formulation of optimization problems

for reactive power planning and operation has been treated
using the mathematical sum approach [1,11,24,25,28,35–38,5
0,51,53,56,68], weighting functions [27,29,40,43,44,47,69],

e-constraint approach [6,18,20,43,76,77], fuzzy goal program-
ming techniques [28,58], and Pareto concept [4,8,16(Ch.
4),17,26,31–34,57].

Various conventional methods have been presented to solve
the RPP problem and assured their incompetence in handling
multi-objective nonlinear problems and they may converge to

a local optimum. MOAs that mimic the nature opened a new
era in computation. For the past decades, numerous research
applications of MOAs have been concentrated for solving
the RPP problem. In this particular area, the research is still

young which broadens the scope and viability of MOAs
exploring new modifications and developments in solving the
RPP problem. This paper presents a broad overview of solu-

tion methods for solving the RPP problem which are analytical
approaches, arithmetic programming approaches, and meta-
heuristic optimization techniques. Also, the different applica-

tions of meta-heuristic algorithms for solving the RPP problem
are extensively reviewed and thoroughly discussed. Further-
more, the multi-objective formulations of reactive power plan-

ning and operations are studied to clarify their merits and
demerits. This paper is organized as follows. The formulation
of the RPP problem is presented in Section 2. Section 3 dis-
cusses the different methods applied to solve the RPP problem.

The multi-objective formulations of the RPP problem are dis-
cussed in Section 4. The concluding remarks are highlighted in
Section 5.
2. General formulation of the RPP problem

The purpose of the RPP problem is to determine ‘‘where” and

‘‘how many” new VAR compensators must be added to a net-
work for a predefined horizon of planning at minimum cost
while satisfying an adequate voltage profile during normal

conditions and contingencies. Fig. 1 illustrates the flowchart
of the RPP problem.

After defining the system data, the generation/load patterns
are developed for a predefined horizon of planning. Then, the

optimal locations of new reactive power sources are identified.
They may be selected according to certain indices or all load
buses may be considered as candidate buses [14,15].

After that, the control variables (RPP variables) are opti-
mized to achieve certain objective functions subject to set of
equality and inequality constraints. Control variables include

generator bus terminal voltages, reactive power generation of
existing and new VAR sources and transformer tap ratio.
The generator bus voltages are continuous in nature, while

both reactive power generation of existing and new VAR
sources and transformer tap ratio are discrete. The dependent
variables include load bus voltage magnitude, active power

generation at slack bus, the power flows through the transmis-
sion lines, and reactive power outputs of the generators.

There are various objective functions that have been uti-
lized in the RPP problem such as minimization of VAR invest-

ment cost and system operational cost of real power losses,
improvement of voltage profile, and enhancement of voltage
stability. However, the modeling of each objective has different

shapes. Conventionally, the classical objective of the RPP
problem is to achieve the minimum investment cost of addi-
tional reactive power supplies and minimize the system opera-

tional cost of power losses [1,11,24,25,28,35–38,50,51,53,56,68]
as follows:

Min F ¼ MinðIC þOCÞ ð1Þ
where IC is the investment cost of new reactive power supplies
and OC is the operational cost of power losses. The investment
costs of VAR sources can be generally modeled with two com-

ponents, a fixed installation cost at bus i (ei) and a variable
purchase cost of capacitive or inductive source at bus i (Cci|
Qci|), [16,24–26,28,31,34,35,37,38,50,51,53,56,68] as follows:

IC ¼
XNc

i¼1

ðei þ Cci jQci
jÞ ð2Þ

where Nc is the reactive compensator buses. This model

requires considering the reactive power devices to be already
installed before the optimization for its size. On the
other hand, another general model of IC has been used as
[1–3,27,43]:

IC ¼
XNb

i¼1

ei þ Cci jQci
j� �
bC ð3Þ

where Nb is the total number of busses, and bC is the binary
decision variables for installing capacitive source. Although
the complexity of using binary variables to indicate whether
the VAR source will be installed, this model will give a chance
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to consider all load buses to be candidates to install new reac-

tive power sources. Traditionally, the annual cost of energy
losses has been used as a direct measure to the operational
costs (OC) [1,16,24,25,28,31,34–38,51,53,56,68] as follows:

OC ¼ h
XNL

i¼1

dLP
L
loss ð4Þ

where h is the per unit energy cost, dL is the duration of load

level (h), NL is the number of load level duration, and PL
loss s

the real power loss during the period of load level L. On the
other side, the minimization of network transmission power
losses (Ploss) has been sometimes used directly instead of con-

verting it to operational costs in the reactive power operation
[4,29,32,39–41,46,47] and planning [20,43,44,52]. Also, the
power system has to satisfy equality and inequality constraints
corresponding to the load flow model and operational vari-

ables as follows:

Qgi
�QLi

þQn
Ci
þQCi

� Vi

XNb

j¼1

VjðGi sin hij � Bij cos hijÞ ¼ 0;

i ¼ 1; 2; . . .Nb ð5Þ

Pgi � PLi
� Vi

XNb

j¼1

VjðGij cos hij þ Bij sin hijÞ ¼ 0;

i ¼ 1; 2; . . . . . . :Nb ð6Þ

Qmin
g i 6 Qg i 6 Qmax

g i ; i ¼ 1; 2; . . . . . .Npv ð7Þ

Vmin
i 6 Vi 6 Vmax

i ; i ¼ 1; 2; . . . . . .Nb ð8Þ

Tmin
k 6 Tk 6 Tmax

k ; k ¼ 1; 2; . . . . . .Nt ð9Þ

Sflow
L

�� �� 6 Smax
L ; L ¼ 1; 2; . . . . . .NL ð10Þ

0 6 QC e 6 Qmax
C e ; e ¼ 1; 2; . . . . . .NC ð11Þ

0 6 Qn
C j 6 Q

maxðnÞ
C j � bC j; j 2 candidate buses ð12Þ

Pmin
s 6 Ps 6 Pmax

s ð13Þ
where Vi and Vj are voltages at buses i and j, respectively; hij is
phase angle between buses i and j; Gij and Bij are mutual con-
ductance and susceptance between buses i and j, respectively;
(Pgi � PLi) and (Qgi � QLi) are the net real power injection at

bus i, and the net reactive power injection at bus i, respectively;
QCi is the capacitive or inductive power of existing VAR
source installed at bus i. QCi

n refers to the capacitive or induc-

tive power of new VAR source installed at bus i. Qgi is the
reactive power output of a generator i, and Npv refers to the
total number of voltage-controlled buses. Vi is the voltage
magnitude of bus i. Tk is the tapping change of a transformer

k, and Nt refers to the total number of on-load tap changing
transformers. Sflow refers to the apparent power flow, Smax is
the maximum MVA rating of the transmission lines and trans-

formers, and NL refers to all transmission lines in the system.
QCe is the reactive power output of existing VAR source at
bus e, Qmax

C s its maximum capacity, and NC refers to the total

number of existing VAR sources. n refers to the new installed
VAR sources, and bC is always equal 1 for the investment cost
of VAR sources modeled in Eq. (3). Ps is the active power

generation at the slack bus.

3. Solution methods for the RPP problem

RPP is a nonlinear multi-objective constrained combinatorial
optimization problem for large power systems with a lot of
uncertainties. Generally, the RPP problem has been solved

by analytical approaches, arithmetic programming
approaches, and meta-heuristic optimization techniques.
Fig. 2 depicts the family and subcategories of the solution
algorithms for the RPP problem. As shown, the several appli-

cations of meta-heuristic algorithms are subcategorized into
evolution based, and swarm intelligence [78]. Added to that,
hybridization between different algorithms is taken into con-

sideration to improve the solution quality.

3.1. Analytical approaches

Analytical approaches are very important to understand the
different effects and benefits of the location and size of reactive
power sources [11–13]. The issues of RPP have been analyzed

with reactive power pricing in [11] where a trade-off between
the transmission loss and installation cost of new capacitors
has been executed incorporating detailed hourly loading condi-
tions. In [12], three economic benefits with assumption of a

constant VAR injection and a fixed location have been ana-
lyzed. These benefits include reducing losses, shifting reactive
power flow to real power flow, and increasing the transfer

capability. The economic benefits have been updated by exe-
cuting a set of optimal power flow (OPF) runs. Also, the reac-
tive market-based of economic dispatch has been addressed in

[13]. However, the benefits to the utilities from the allocation,
installation, and operation of VAR compensators have not
been discussed. Analytical approaches lend a lot of informa-
tion and clear vision about the economic and technical benefits

under different scenarios. They are quite helpful to design
future framework of reactive power management and pricing
for different players in the deregulated environment. On the

other hand, they are time-consuming and may not be suitable
for medium and large-scale power systems. Analytical
approaches are as accurate as the model developed. They are

based on its corresponding OPF which has been usually solved
using nonlinear algorithms such as Modular Incore Nonlinear
Optimization System (MINOS) [11–13] using General Alge-

braic Modeling Systems (GAMS) procedures [79].

3.2. Arithmetic programming approaches

Arithmetic programming approaches are also called Conven-

tional Optimization Algorithms (COAs). A variety of conven-
tional methods have been widely used to solve the reactive
power operation and planning for years [14–16(Ch. 2),17(Ch.

3)]. COAs have been developed and implemented to solve
the RPP problem. Table 1 shows a comparison between vari-
ous COAs that have been applied to the RPP problem.

3.3. Meta-heuristic optimization algorithms

Meta-heuristic Optimization Algorithms (MOAs) are exten-

sively used in solving multi-objective optimization problems



Figure 2 Family and subcategories of the solution algorithms for the RPP problem.
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since they can find multiple optimal solutions in a single run.

Different MOAs are applied efficiently to solve the RPP prob-
lem. Table 2 shows a comparison between various MOAs that
have been applied to the RPP problem.

Since, the settings of their key parameters have a large
impact on their performance, the adaptive MOAs have been
developed recently and applied to the RPP problem. Some of

the adaptive MOAs reported are as follows: the IHS algorithm
[44], Chaotic DE algorithm [17], JADE-vPS algorithm [6],
adaptive model of IA [8], EPSO [10,71], improved model of

DE algorithm [42,80], SARGA [30], FAPSO algorithm [67],
and MNSGA-II [31–33,76]. Although the adaptive models of
MOAs reduce the complexity of parameter selection, the
selected adaptation strategy influences on their performance

and they have a high computational burden that needs more
calculations to adapt the parameters.

4. Multi-objectives treatment of the RPP problem

In recent years, the RPP problem has been formulated as
multi-objective optimization problem. Several methods have

been presented to handle the multi-objective formulation of
the reactive power planning and operation problems.
4.1. The mathematical sum approach

Multi-objective RPP problem has been treated using the math-

ematical sum approach as in Eq. (1) to minimize both the
investment and operational costs [1,11,24,25,28,35–38,51,53,5
6,68]. Although this model is very simple, it doesn’t prefer

any objective over the others. Also, it is restricted where the
multi-objectives should be with the same nature as in Eq.
(1); both objectives are in the same kind (costs in dollar), else
it will be meaningless.

4.2. The weighted sum approach

Multi-objective RPP problem has been treated also using

weighted objective functions [27,29,40,43,44,47,69]. Weighted
sum of different objectives can be generally modeled as
follows:

Min F ¼ Min
XNF

i¼1

xiFi where
XNF

i¼1

xi ¼ 1 ð14Þ

where xi and Fi are the weighting factor and the objective
function for each goal i, respectively and NF is the total



Table 1 Comparison among COAs implemented to solve the RPP problem.

Category Ref. Remarks Merits Demerits

NonLinear Programming

(NLP) method Modular

Incore Nonlinear

Optimization System

(MINOS) solver*

[11–13] � MINOS employs a project Lagrangian algorithm

with a linear approximation to the nonlinear

constraints. It then uses the reduced-gradient algo-

rithm for solving a linearly constrained sub-prob-

lem with a sequence of iterations

� Fast computation performance. It

solves quickly a large number of single

optimizations which corresponds to

different loading and contingency

conditions

� It is based on simplifications of sequential

linearization

� It is highly dependent on choosing the starting

point

� It finds locally optimal solutions

Mixed Integer NonLinear

Programming (MINLP)

solver (KNITRO 8 solver)

[19] � The load uncertainty and different contingencies

have been considered in multi-scenarios extracted

using a scenario tree reduction methodology. KNI-

TRO implements the interior method where, the

nonlinear programming problem is replaced by a

series of barrier sub-problems

� Fast computational performance.

� Very suitable to handle with both con-

tinuous and discrete variables

� No need for calculating 1st or 2nd

derivatives of the nonlinear objectives

or constraints

� Iterative approach for computing steps

� It could be trapped in a local optimum and there

is no guarantee to find the global optimum even

if you run the algorithms for infinite long

because the diversity of the solutions is limited

� The multi-objective functions have been treated

mathematically sum for each scenario in [19]

� Neglecting the effect of transformer tap chang-

ing on the RPP problem in [3]

Interior Point (IP) method [3] � RPP problem has been formulated as a stage of

TEP problem

� The candidate buses to install VAR sources have

been selected based on L-index as a voltage stabil-

ity index

DIscrete and Continuous

OPTimizer (DICOPT)

solver*

[4,18] � DICOPT solves a series of NLP and Mixed Integer

Programming (MIP) sub-problems. It is based on

outer approximation of the objective function,

equality relaxation, and augmented penalty of the

inequality constraints and the objective function.

� Suitable for solving the RPP problem

as a MINLP problem that involves

integer variables and continuous

variables

� Fast computation performance

� It does not necessarily obtain the global

optimum

� It is based on linear approximations of nonlin-

ear functions at each iterations and accumulat-

ing them due to outer-approximations

Penalty Successive Conic

Programming (PSCP)

method

[22] � PSCP method is generally a linear program with

an additional nonlinear conic constraints corre-

sponding to multiple state constraints as a penalty

function

� The PSCP algorithm has been solved by polyno-

mial time primal–dual IP methods to find a com-

mon value of the decision variables in each state

in a successive manner

� Very fast computational method

� This method handled with outage sce-

narios and different load levels under

voltage profile and stability constraints

� The solution of each conic program employs a

linearization of the power flow equations at

the current operating point

� High computational burden due to multiple

states VAR planning includes outage scenarios

and different load levels

Dual Projected Pseudo

Quasi-Newton (DPPQN)

method

[20] � This method considered only power losses as a sin-

gle objective RPP problem

� The investment cost for reactive power sources has

been handled as budget constraint

� Fast computational technique

� Efficient for solving RPP problems

� It becomes too slow if number of variables is

large

� It ignored the effect of generator voltages and

tap changing transformers considering only the

VAR patterns as control variables

� Complex and high computational burden due to

many levels and load cases

Branch and Bound (B&B)

method

[21,23] � This method employed a sequence of MIP method

where, sensitivities of voltage stability margin and

voltage magnitude have been used in this RPP

formulation

� In B&B, the search continues by creating two new

sub-problems, each one is then solved by the same

procedure, resulting in a search-tree of sub-

problems

� No need for restarting the tree search

and only a single tree is required

� It is fast

� It provides good solutions for large-

scale power systems

� The formulation has been approximated to be

linear using voltage stability margin sensitivities

and voltage magnitude sensitivities

� It finds locally optimal solutions

* MINOS solver [11–13], and DICOPT solver [4,18] have been formulated in GAMS software [79].
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Table 2 Comparison among MOAs implemented to solve the RPP problem.

Category Ref. Remarks Capabilities Demerits

Genetic

Algorithm (GA)

[27–

29,50]

� The chromosomes are coded as binary bit strings

This model is called Simple GA (SGA)

� In [29], SGA has been applied to solve the reactive

power dispatch based on the Fuzzy Goal Pro-

gramming (FGP) to minimize the weighted sum

of membership goals

� It involves a high degree of randomness

� Good diversity of the solutions to avoid being

trapped in a local optimum

� Easy to use

� Slow convergence rate

� No guarantee that GA will find a global optimum

� Some difficulties in chromosome encoding

� It is highly dependent on crossover and mutation

rates

[28] � The RPP problem has been formulated in a

stochastic model which represented the uncertain-

ties of generator outputs and load demands with

specified probability distributions

� SGA based on Monte Carlo simulation has been

used as a solution tool to minimize both the costs

of energy loss and investments of new VAR

sources

� The violation probability shouldn’t exceed a cho-

sen confidence level

� Different planning schemes have been presented

by altering the confidence levels of the objective

and constraints

� The voltage constraints may be violated in some

exceptional cases

� The most appropriate choice hasn’t been

determined

� The effect of tapping change of transformers

hasn’t been considered in the model

[24,25] � The chromosomes have been coded as a finite-

length string of real numbers This model is called

real coded GA (RGA)

� Blend crossover (BLX-a) and normally dis-

tributed mutation operators have been applied

directly to real values

� It can find the global optima as the number of

iterations approaches infinite

� Easy to be modified and joined with other

approaches

� Since BLX-a is based on the interval process for

real variables, the new off-springs depend on the

location of both parents and so they will be close

to the parents if both parents are close to each

other, and vice versa [5]

[30] � A self-adaptive model of real coded genetic algo-

rithm (SARGA) has been presented to solve the

optimal reactive power dispatch (ORPD) problem

The simulated binary crossover (SBX) operator

has been used to create offsprings relative to the

difference in parent solutions

� In this type of crossover, close-parent solutions

are monotonically more likely chosen as offspring

than solutions distant from parents

� It is highly dependent on crossover and mutation

rates and effect on stability and convergence

� It finds sub-optimal solutions

[5] � Representation of both binary and real variables

has been deemed This improved GA carried out

the uniform mutation operator to the mixed vari-

ables with some modifications, the blend cross-

over operator (BLX-a), and simple crossover for

real and integer parts, respectively

� Design for binary and real search spaces

[26] � Non-Dominated Sorting Genetic Algorithm II

(NSGA-II) has been utilized to solve the multi-

objective RPP to minimize the investment costs

of shunt compensation and the average load bus

voltage deviation as well NSGA-II ranks the indi-

viduals based on the concept of Pareto non-

dominance

� Updating Pareto set using a Crowding Distance

(CD) operator

� More diversity of non-dominated solutions

� Lateral diversity is lost

� More computational complexity

[31–

33,66

(Ch. 8)]

� A Modified NSGA-II (MNSGA-II) has been

applied to the RPP problem In [31,33], Pareto-

front has been created by converting the multi-

objectives into single one using conventional

weighted sum method and varying the weighting

� Dynamic modification of Pareto set using

Dynamic Crowding Distance (DCD)

� High uniformity and maintains good diversity

since the lowest DCD individual has been

removed every time and DCD has been recalcu-

lated for the remaining individuals

� High computational complexity

� In [33], the best compromise solution hasn’t been

included and the obtained Pareto front has been

considered to give more choices to the decision
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factors randomly. In [31,66 (Ch. 8)], the best com-

promise solution among Pareto-optimal solutions

has been determined based on TOPSIS method

� In [32], MNSGA-II has been employed to the

ORPD to minimize the real power losses and

maximize the voltage stability using the L-index.

In this paper, multiple runs of single objective

optimization with weighted sum of objectives

have been used to obtain Pareto-set

maker. Otherwise, the effect of the existing reac-

tive power sources has been ignored in this reac-

tive power dispatch model

Differential

Evolution (DE)

[34–

37,25,38]

� DE algorithm has been used to solve the RPP

problem to minimize both the VAR and energy

loss costs

� In [34,35], the discrete variables have been treated

as continuous and then rounding it to the nearest

integer

� In [36], the RPP problem has been formulated as a

contingency constrained optimal RPP problem.

The single line contingency analysis firstly has

been used to identify the severe state and its volt-

age violated buses. Then, these voltage violations

have been added as an additional constraint to the

base RPP problem

� In [37,38], Fast Voltage Stability Index (FVSI) has

been used to identify the weak buses for the RPP

problem which has been solved using DE

algorithm

� It can find near optimal solution regardl

initial parameter values

� Efficient method where it cannot be

trapped in local minima

� Suitable convergence speed

� Robust

� It uses few number of control parameters

� Simple in coding and easy to use

� Easily handling integer and discrete optim

� Very suitable to solve multi-dimensional fu

optimization as the RPP problem

� Efficiency is very sensitive to the setting the con-

trol parameters. It is dependent on three main

parameters which are population size (Np), muta-

tion rate (F), and crossover rate (CR)

� Parameter tuning mostly by trial-and-error

� Crossover has the potential to destroy the direc-

tional information provided by the difference vec-

tors for the sake of increasing diversity

� The convergence is unstable with a small popula-

tion size

� It may drop in local best

[39,40] � A multi-objective reactive power and voltage con-

trol problem has been solved by DE approach. In

[39], the candidate buses for VAR injection have

been selected based on L-index to minimize real

losses, voltage deviation and voltage stability

index (L-index)

� In [40], the power losses and the voltage deviation

have been minimized

[41] � DE algorithm has been implemented to achieve

losses minimization, voltage profile improvement,

and voltage stability enhancement

� Handling the RPP problem as a single objective

optimization problem

[52] � DE algorithm has been tested to solve the RPP

problem, including the placement and sizing of

TCSC devices. The main factor to determine the

optimal location of the TCSCs has been the loss

reduction while, voltage stability enhancement,

and voltage deviation reduction have been added

as penalty terms

� Severe line outages have been taken into co

ation to improve voltage stability

� It considered real power of generators as decision

variables which have more effects on losses

� More complex by solving both P and Q optimiza-

tion problems in a single step

(continued on next page)
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Table 2 (continued)

Category Ref. Remarks Capabilities Demerits

[17] � A Self Adaptive DE (Chaotic DE) algorithm has

been implemented to the RPP problem. It changes

the mutation and crossover parameters to be

updated each generation

� Self adaptation of mutation and crossover rates

to improve efficiency

� Efficiency is still sensitive to population size

� More computational burden

[42] � An improved model of DE has been presented to

minimize both the energy loss and the installation

costs while, the critical lines and buses to install

FACTS controllers have been determined based

on FVSI

� The mutation factor has been changed dynami-

cally instead of being constant as in the classic

DE model

[6] � A new adaptive DE algorithm called (JADE-vPS)

has been applied to minimize the total fuel cost

with satisfying a minimum voltage stability mar-

gin for the optimal power flow. In this paper, an

adaptive penalty function has been introduced

where the penalty coefficients has been altered

automatically from data gathered from the search

process

� Not only mutation factor and crossover rate have

been already self-adapted, but also population

size has been automatically adapted in a very sim-

ilar manner to the other two parameters.

� High computational burden and complexity

Immune

Algorithm (IA)

[8] � IA has been implemented in adaptive model to

solve the reactive power flow in order to minimize

power losses, voltage deviation, and enhance sta-

tic voltage stability. Crossover rates, mutation

rates and clone rates have been used all adaptive

to change automatically at each generation related

to the global affinity function

� Adaptive parameters avoid premature conver-

gence and falling into a local optimal solution

trap

� Good efficiency and convergence

� More computational burden and complexity

Seeker

Optimization

Algorithm (SOA)

[46,48] � In [46], SOA has been executed to the ORPD

problem to minimize the real losses as a single

objective function. In [48], SOA has been imple-

mented to minimize the power losses, voltage

deviation and increasing voltage stability using

L-index. This ORPD has been handled as mini-

mizing different single objective functions

� Easy to understand

� Suitable performance in balancing global search

ability and convergence speed

� Although SOA handled only continuous vari-

ables, Refs. [46,47] tackled this problem by

searching in a continuous space, and then curtail-

ing the corresponding dimensions of the seekers’

real-values into the integers

� SOA may be stuck at a local optimum for multi-

modal functions

� SOA is heavily dependent on its structures and

parameters

[47] � A multi-objective reactive power control has been

addressed using SOA. In this paper, the multi-

objective functions were to minimize the transmis-

sion loss and voltage deviations while the voltage

stability margin would be maximized by minimiz-

ing the eigenvalue of the non-singular power flow

Jacobian matrix

� The different objectives have been normalized to

be treated as a single objective with weighting

factors

� Such complexities to determine the weighting

factors

Harmony search

algorithm

[43] � HS method has been used to determine the loca-

tions and the outputs of Static VAR Compen-

sators (SVCs) to minimize the total investment

costs, average voltage deviation and total system

loss

� Simple in concept

� Easy to be implemented

� Suitable convergence speed

� It is dependent on three parameters which are

harmony memory considering rate, pitch adjust-

ment rate, and bandwidth vector
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[45] � HS algorithm has been to minimize transmission

loss, L-voltage stability index, and voltage

deviation

� Each objective function has been handled sepa-

rately as a single objective optimization

[44] � An Improved Harmony Search (IHS) algorithm

has been carried out to reduce losses, installation

cost, and achieve better voltage improvement by

assigning the SVC placement and sizing

� Dynamically Altering PAR and bw to elim

the drawbacks of keeping constants in th

model

� More computational burden and complexity

Evolutionary

programming

(EP) and evo-

lutionary

strategies

(ES)

[50,51] � EP and ES work on the basis of organic evolution

models. In [50], the RPP problem has been

decomposed into P and Q optimization modules

and each one is solved iteratively using EP and

evolutionary strategy

� In [51], the RPP problem has been solved using

EP method considering the highest load buses to

place the new VAR sources

� Simple and direct method to represent s

variables

� More randomness

� Good diversity

� ES converges faster compared to EP

� EP is less likely to fall into a local minimu

� ES has a higher probability to fall into a local

minimum

� No guarantee for finding optimal solutions in a

finite amount of time

� Parameter tuning is needed

� Such a complexity in the system of mutations

[54] � EP technique has been applied to solve two sepa-

rate RPP procedures which addressed the optimal

reactive power dispatch and the optimal trans-

former tap changer setting

� A single objective optimization has been imple-

mented for minimizing only transmission losses

[66(Ch.

6),67]

� A Covariance Matrix Adapted Evolution Strategy

(CMAES) has been employed to solve the RPP

problem. In [67], the RPP problem handled the

voltage stability index (L-index) as an additional

constraint with specified threshold

� In [66 (Ch. 6)] , CMAES has been applied to solve

RPP problem in hybrid (pool and bilateral coordi-

nated) electricity market. In this chapter, different

objectives have been considered which were the

total production cost of real and reactive power

and the allocation cost of additional reactive

power sources (SVC)

� Self-adaptation of the covariance matrix

and the global step size during each gene

to increase efficiency

� Due to its consistency, CMAES has been u

used to generate reference Pareto-front to

pare the performance of other MOAs [31

(Ch. 8)]

� Slower convergence performance

� The adaptation process in CMAES is very com-

plex and the computational burden of sophisticat-

edly strategy parameters is very high

Ant Colony

Optimization

(ACO) algorithm

[55] � ACO algorithm has been hybrid with immune

algorithm to solve the problem of reactive power

optimization to reduce only the transmission loss

� Stochastic kind

� Inherent parallelism

� Adaptation capability

� Using positive feedback

� Convergence is guaranteed

� Using trial and errors to parameters initializations

� Its mathematical execution and analysis is

difficult

� slower convergence speed

[7] � The ORPD has been solved using ACO method to

minimize the losses as a single objective function.

Sensitivity parameters have been used to express

objectives and dependent variables in terms of

control variables and based on a modified model

of fast decoupled load flow

� Linear approximation using sensitivities

� Each objective function has been handled sepa-

rately as a single objective optimization problem

Particle Swarm

Optimization

(PSO) algorithm

[58] � Simple in concept

� Easy to be implemented

� Suitable convergence speed

� Slow convergence rate

� Trapping into local optima

(continued on next page)
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Table 2 (continued)

Category Ref. Remarks Capabilities Demerits

� PSO algorithm has been applied to find the opti-

mal placement of FACTS devices based on the

contingency severity index (CSI) values which

consider single and multiple contingency

� Efficient

� Having few parameters to be adjusted

� Less dependent on initial points

� It is dependent on the inertia weight and learning

constants.

� Using trial and errors to parameters initializations

� The effect of tap settings hasn’t been considered

for more simplicity in handling the RPP problem

as a stage of the TEP problem

[2] � PSO method has been applied to the RPP prob-

lem as a second stage to minimize of the VAR

investment costs. This model considered load

uncertainties and the uncertainties of wind turbine

output obtained by a probability distribution

function (PDF) using MCS while the reliability

has been taken into consideration

[56] � PSO algorithm has been used for solving the RPP

problem to minimize the operation cost and

investment cost of reactive power sources

� Handling the integer variables has been done by

rounding it to the nearest discrete after relating

it as floating variable

� The state variables have been added to the objec-

tive as penalties, such complexity is existed to

determine the penalty factors

[57] � The RPP problem has been solved using PSO

technique incorporated with Pareto dominance

to minimize real power losses and installation

costs

� A well-distributed Pareto front by adding an

external archive to decide whether a solution

can be stored or not, based on Pareto dominance

� More computational burden and complexity to

update the best positions based on the global best

stored in the archive using crowding and roulette

wheel selection

[16 (Ch.

4)]

� A Vector Evaluated PSO (VEPSO) method has

been implemented on the multi-objective RPP

problem

� Good efficiency

� A fuzzy based mechanism is employed to extract

the best compromise solution over the trade-off

front

� More computational burden and complexity to

determine Pareto front that VEPSO generates

two swarms where each one is based on an objec-

tive, and to extract the best compromise solution

[9] � A modified PSO method has been applied for

scheduling of reactive power control variables to

maximize the reactive power reserves. In this

paper, the e-constraint approach has been used

to assure desired static voltage stability margin

based on a proximity indicator

� Better efficiency where, a fly-back mechanism has

been applied to enable any violated particle to fly

back to its previous position

� More computational burden to execute the fly-

back mechanism

Artificial Bee

Colony (ABC)

algorithm

[59] � ABC was inspired by the foraging behavior of

honey bee swarm. It has been executed for han-

dling the ORPD problem in deregulated power

systems after assuming an already established real

power market

� It is as simple as PSO and DE with few control

parameters such as colony size and maximum

cycle number

� It is robust against initialization

� It has the ability to explore local solutions

� ABC has poor exploitation characteristics

� Its convergence speed is also an issue in some

cases

� It may get stuck in local optimum

Gravitational

Search

Algorithm

(GSA)

[60,61] � GSA was based on Newton’s law of gravity and

motion. In [60], it has been applied to the RPP

using FACTS to minimize the losses and bus volt-

age deviations. In [61], opposition-based GSA for

population initialization has been presented to

solve the ORPD problem

� It is simple and easy to implement

� It has a high randomness of the individual moves.

Thus, it provides the global exploration in the

search space

� The local search ability of GSA is weak

� In [60], it isn’t robust against initialization. This

feature is improved in [61]

� In [60,61], the considered problem was formulated

as a single objective optimization problem

Firefly

Algorithm (FA)

[62] � FA was based on swarm behavior and has many

similarities with PSO algorithm. It has been

applied to minimize the real power loss or the

voltage deviations

� FA is simple and easy to implement

� It is good at exploration

� It includes the self-improving process with the

current space and it improves its own space from

the previous stages

� FA often traps into local optima

� The minimization of power losses or voltage pro-

file improvement is handled as a single goal

optimization

� Its parameters were set fixed and they do not

change with the time

Teaching [63] TLA often converges to local optima
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Learning

Algorithm (TLA)

� TLA was based on the simulation of a classical

learning process which composed of two phases:

(i) learning through teacher and (ii) learning

through interacting with the other learners. It

has been applied to handle the ORPD problem

considering only the power loss

It has balanced global search ability and c

gence rate.

It has a good capability for global and

searching

The exploration features need more support

Power loss was the only considered objective

Chemical

Reaction

Optimization

(CRO)

[64] � CRO was based on the various chemical reactions

occur among the molecules. It has been applied to

the RPP using FACTS to minimize the transmis-

sion loss, improve the voltage profile and voltage

stability

� CRO is easy to implement

� However, CRO behaves like a random sea

traverse the whole solution space, which

confine the algorithm’s search ability

� It is robust against initial seeds

� The local search needs more modifications since it

may stick in local optima

� However, it has good robustness indices for solv-

ing the considered RPP in [64], it is highly sensi-

tive to the initial kinetic energy and the

concerned loss rate

Water Cycle

Algorithm

(WCA)

[65] � WCA is inspired from nature and based on the

observation of water cycle and how rivers and

streams flow downhill toward the sea in the real

world. It has been applied to minimize the

weighted sum of the losses and the voltage

deviations

� It is simple and easy to use

� It has few control parameters

� It has a good exploration features

� Its local search ability of is weak

� It is often traps into local optima

� Its robustness and consistence need more uphold

Differential

Search

Algorithm

(DSA)

[66] � DSA was inspired by migration of super-organ-

isms utilizing the concept of Brownian like

motion. It has been applied to solve the non-feasi-

bility problem solution of the fuel cost minimiza-

tion problem (for a given operating point) by

optimizing the RPP problem

� The candidate placements of VAR sources have

been selected based on FVSI

� It has a good exploration feature in the

space to locate the region of global optimu

� Therefore, its convergence rate is fast but it

a problem in some cases

� The minimization of fuel cost or load voltage

deviations is handled as mono-objective optimiza-

tion in two separate levels

� Transformer tap settings and VAR sources are

treated as continuous variables

� Its exploitation of the optimal solution requires

more support

� DSA is still novel and further researches are nec-

essary to be developed and improved

Hybrid

techniques

[16 (Ch.

5),68]

� A hybrid PSO-DE algorithm has been imple-

mented for solving the reactive power control

problem in electricity market

� PSO-DE algorithm carried out a differential oper-

ator from DE in the update of particle velocity of

PSO

� A selection strategy has been added that a p

is moved to a new location only if the new

tion yields a better fitness value

� Slow convergence rate

� More computational burden and complexity

� Both algorithms are very sensitive to the setting of

the control parameters

� Using trial and errors to parameters initializations

� A hybrid PSO-GA algorithm has been imple-

mented to minimize the cost of reactive power

generation, reactive power compensators and

active power losses. BLX-a, and uniform muta-

tion operators from GA algorithm are applied

on the PSO particles

� Crossover and mutation are done if there

change in the global position for a number

ations to avoid premature convergence

[69] � Another model of hybrid PSO-GA has been per-

formed to search for the optimal placement of

SVC. PSO algorithm is implemented firstly until

� Simple hybrid model and easy to impleme

� Good diversity

� Slower convergence performance

� More control parameters which needed to be

tuned

� Using trial and errors to parameters initializations

(continued on next page)
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Table 2 (continued)

Category Ref. Remarks Capabilities Demerits

its stopping iteration number is reached. Then,

GA updates the population considering the last

PSO population as its initial population

[55] � IA has been combined with ACO algorithm com-

posing a hybrid Artificial Immune Ant Colony

Algorithm (AIACA) to minimize objective only

the real power losses

� It makes use of the positive feedback principle of

ACO method and the rapidity of IA to avoid

trapping into a local optimal solution

� Handling the reduction of the transmission loss as

a single objective optimization problem

� Slow convergence rate

Hybrid

techniques

[53] � A Hybrid Evolutionary Programming method

(HEP) has been executed to solve the RPP which

combines EP technique as a base stage search

toward the optimal region, and a direct search

technique to reduce the size of search region to

locally search for the global optimum. The fittest

individuals in the combined population haven’t

been chosen in the next generation but they have

greater chances than others

� The direct search technique tackles difficulties in

a fine-tuning of local search in EP method by

direct searching toward the optimal region

� Reducing the size of search region

� Finer convergence and improving the solution

quality

� The direct search technique is very dependent on

the initial starting point

� Slower convergence speed

� Parameter tuning is needed

� Such a complexity in the system of mutations

[70] � A hybrid method combines the direct search, and

PSO technique has been implemented to solve the

ORPD, and compared with HEP method

� Handling a single objective optimization problem

which is the real losses

[10,71] � Evolutionary Particle Swarm Algorithm (EPSO)

method has been applied to the reactive power

control and planning. EPSO formulation is based

on the particle movement like the classical PSO

where, the weights are mutated using EP mutation

factor

� More diversity of solutions

� Considering different contingencies and load

levels in [71]

� Such a complexity due to EP mutations

� Parameter tuning is needed

[73] � A hybrid between fuzzy reasoning approach and

PSO method has been introduced. Fuzzy member-

ship of loss sensitivity at each bus has been evalu-

ated to determine candidate buses to install shunt

capacitors. PSO has been used immediately to

minimize the investment costs and transmission

losses as well

� Simple model as it provides two different levels

where, fuzzy memberships are used for capacitor

placements and the control variables are handled

by PSO technique

� It is still dependent on the inertia weight and

learning constants

� It may trapped into local optima

� Using trial and errors to parameters initializations

[67] � A Fuzzy Adaptive PSO (FAPSO) method has

been presented for solving the problem of reactive

power and voltage control. A fuzzy optimization

approach based on pseudo-goal function has been

used to convert the different objectives, which

were the active power loss, voltage deviation and

the voltage stability index, into a single-objective

optimization problem. Then, this single-objective

optimization problem has been solved using the

FAPSO approach

� In FAPSO approach, the inertia weight and the

learning coefficients have been dynamically var-

ied by fuzzy rules based on the fitness values of

particles during optimization process

� More complexity of representing fuzzy

memberships

� More computational burden to adapt PSO

parameters

� Slow convergence rate

[72,74] � Fast computational performance

� Handling easily conflicting objectives
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number of objective functions. A normalization process has

been incorporated to the weighted sum approach in [44,47].
In [44], each objective function (real power losses, voltage devi-
ation, and VAR investment cost) has been normalized in a

comparative manner with its base case value. Also, the normal-
ization process can be done as a fuzzification process [47] to
map all objectives within the range of [0,1]. Then it is generally
modeled as weighted sum defined in Eq. (14). The normaliza-

tion process enables comparing the different objectives in a
fairly manner. The optimal solution is greatly affected by the
selection of the weights. Another problem associated with this

approach is that it may find solutions that are close to one or
more operating constraint violations [26].
4.3. The e-constraint approach

The e-constraint approach has been used in tackling multi-
objective problems of reactive power planning and control
[6,18,20,43,76,77]. This method optimizes the main objective

(Fm) as a single objective optimization problem while, it con-
siders other objectives as constraints restricted by some chosen
threshold levels.

Min Fm while Fi 6 ei
i ¼ 1; 2; 3; . . . . . .NF; i–m

ð15Þ

where ei is a threshold level specified by the user for each
objective (Fi). Choosing ei is easier than choosing adequate
values for weight factors (x), but the optimal solution still

depends on its value. In [20], the capacitors has been
installed to minimize the real losses (main objective) while
its investment cost has been handled with budget limit (e-
constraint). Also, the loading parameter (k) has been a con-

strained to guarantee a minimum voltage stability margin in
[6,18]. In [9], Schur’s inequality has been used to assure
required static voltage stability margin. The eigenvalue anal-

ysis has been used as a stability margin proximity indicator
where a threshold value of proximity indicator must be spec-
ified for secure operation. Also, the objective of enhancing

the voltage stability has been achieved by restricting the sta-
tic voltage stability index (L-index) by a maximum level
[76,77].
4.4. The fuzzy goal programming approach

Fuzzy Goal Programming (FGP) has been presented in
[29,67] for solving the problem of reactive power and volt-

age control. The active power loss, voltage deviation and
the voltage stability index (L-index) have been converted
into a single-objective optimization problem. In [29], GA

has been employed as a solution tool to the FGP formula-
tion to minimize the weighted sum of membership goals.
Fuzzy adaptive particle swarm optimization (FAPSO)

approach has been implemented based on the maximum–
minimum value of all membership functions of the objec-
tives and constraints [67]. The main advantage of the FGP
formulation is treating the multi-objective as a single objec-

tive optimization problem effectively without selecting
weights or thresholds as in the weighted sum or e-
constraint methods, respectively.
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4.5. The Pareto optimality approach

Multi-objective RPP problem has been achieved using the con-
cept of Pareto-optimality [4,8,16(Ch. 4),17,26,31–34,57]. The
solution is said to be Pareto-optimal if there is no a better solu-

tion in terms of all objectives.

4.5.1. Methods of creating Pareto front

Meta-heuristic algorithms typically generate sets of solutions,

allowing computation of the Pareto set based on the non-
dominance concept [8,26,57]. Also, Pareto-front has been cre-
ated using various runs of single objective optimization with

varied weight factors of different objectives [31–34,76(Chs. 7
and 8)]. The e-constraint method has also been implemented
with Pareto optimal front where the specified bounds of objec-
tive constraints are changed to get the Pareto front [4]. How-

ever, this method is time-consuming and tends to find weak
non-dominated solutions in Pareto front since it depends on
the objective bounds specified by the user. Moreover, Vector

Evaluated PSO (VEPSO) method has been used to solve the
multi-objective RPP problem to minimize the operational
and installation costs and the voltage stability index (L-index).

VEPSO determines Pareto front by generating two swarms,
one swarm for each objective [16(Ch. 4)]. The strength of Par-
eto Evolutionary Algorithm (SPEA) has been used for solving
the multi-objective RPP problem to minimize the real power

loss and the bus voltage deviations [17]. It firstly stores the
non-dominated solutions in an external Pareto set to give sca-
lar fitness values (strength) to individuals. Then, it uses cluster-

ing approach to reduce the Pareto set when the number of the
non-dominated solutions exceeds the pre-specified value. The
fitness (strength) of any individual is calculated based on only

the solutions stored in the external Pareto set. The selection
operator is applied to the population individuals and all solu-
tions in the external Pareto set.

4.5.2. The best compromise solution over Pareto solutions

Determination of a single optimal solution that simultaneously
optimizes all multi-objective functions is difficult. However,

the decision makers can perform a trade-off analysis and select
among the set of the non-dominated solutions [33,34,57]. The
fuzzy decision-making tool has been presented to determine

the best compromise solution for the RPP problem [4,16(Ch.
4),17]. Each objective Fi is fuzzified with a membership func-
tion li as in Eq. (16) and Fig. 3 shows its related fuzzy model-
ing. Then, the best solution is selected, which achieves the

maximum membership lk which is defined in Eq. (17) or the
maximum normalizing membership lk which is defined in
Eq. (18) [4]:
Figure 3 Fuzzy membership model for objective functions.
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where k refers to each non-dominated solution, M is the num-
ber of objectives, n is the total number of the non-dominated

solutions, and xi refers to weight value of the ith objective
function. This method suffers from the problem of how to
select the weight values xi. In [4], the weight values xi has been

selected based on the importance of economic and technical
aspects. Moreover, the best compromise solution could be
obtained using the Technique for Order of Preference by Sim-

ilarity to Ideal Solution (TOPSIS) method [31,32,76(Chs. 7
and 8)] as a multiple criteria decision making approach. In this
technique, the relative performance of each non-dominated
solution with respect to each criterion is identified and the geo-

metric distance between each solution and the ideal solution in
each criterion is calculated. Finally, the best compromise solu-
tion can be determined according to the maximum relative

closeness to the ideal solution. In [32], TOPSIS approach has
been used to rank the obtained MNSGA-II solutions for the
reactive power dispatch to minimize two objectives, real power

losses and L-index. The best compromise solution has been
determined by a single decision maker. In [31], TOPSIS
approach has been also used to find the best compromise for

the RPP problem to minimize the combined operating and
VAR allocation cost improves the voltage profile and enhances
the voltage stability. In spite of its simplicity, TOPSIS
approach does not take the relationships of different criteria

into consideration. On the other hand, Pareto concept has
been incorporated to the immune algorithm in [8] to define
the partial affinity of an antibody (solution) to each antigen

(objective). Then, the best compromise solution was based
on the global affinity (sum of partial affinities).

5. Conclusion

Meta-heuristic optimization algorithms are going to be a new
revolution in computer science. They opened a new era in the

next generation of computation and optimization. In this
paper, the solution algorithms of one of the widely significant
optimization problems in electric power systems which is

the RPP problem are extensively reviewed and thoroughly
discussed. They are categorized into analytical approaches,
arithmetic programming approaches, and meta-heuristic
optimization techniques.

Analytical approaches present detailed information about
the installations of reactive power compensators and its eco-
nomic and technical benefits under different scenarios. They

are quite helpful to design future framework of reactive power
management and pricing for different players in the deregu-
lated environment. However, they are time-consuming and

may not also be suitable for medium and large-scale power sys-
tems. They are as accurate as the corresponding OPF model.
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Arithmetic programming approaches have been widely
used to solve the reactive power operation and planning for
years. They are usually based on some simplifications such

as sequential linearization and using the first and second differ-
entiations of objective function and constraints. They may
converge to a local optimum. They are very weak in handling

multi-objective nonlinear problems. On the other side, they
have fast computation performance and thus they provide
the capability to solve a large number of single optimizations

associated with different loading and contingency conditions.
An overview of a range of MOAs drawn from an evolution-

ary based or swarm intelligence is presented including GA,
DE, HS, SOA, EP, ACO, IA, PSO, ABC, GSA, FA, TLA,

CRO, WCA, and DSA. Each algorithm is distinguished with
different features. Generally speaking, they perform with
heuristic population-based search strategies that involve

stochastic variation and selection. They are very suitable in
solving multi-objective RPP problem. They are robust, effec-
tive, consistent, and can find multiple optimal solutions in a

single simulation run.
Particularly, the scope of this area is really vast and there

are great opportunities in applying novel approaches/algo-

rithms to solve the RPP problem. Moreover, hybridization
of different techniques is another research area to make use
of different advantages to improve the quality of solution of
the RPP problem. Otherwise, the adaptive strategies of MOAs

to the strategic parameters are required to reduce the complex-
ities of its selection.

Also, the multi-objective reactive power planning and oper-

ation are discussed to clarify their merits and demerits. Meta-
heuristic algorithms typically generate Pareto set based on the
non-dominance concept. Also, Pareto-front can be created

using the conventional weighted sum or the e-constraint
method.
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