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This paper presents a new approach for the estimation of two-dimensional (2D) direction-
of-arrival (DOA) of more sources than sensors using an Acoustic Vector Sensor (AVS). The
approach is developed based on Khatri–Rao (KR) product by exploiting the subspace
characteristics of the time variant covariance matrices of the uncorrelated quasi-
stationary source signals. An AVS is used to measure both the acoustic pressure and
pressure gradients in a complete sound field and the DOAs are determined in both
horizontal and vertical planes. The identifiability of the presented KR-AVS approach
is studied in both theoretic analysis and computer simulations. Computer simulations
demonstrated that 2D DOAs of six speech sources are successfully estimated. Superior root
mean square error (RMSE) is obtained using the new KR-AVS array approach compared to
the other geometries of the non-uniform linear array, the 2D L-shape array, and the 2D
triangular array.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Two-dimensional (2D) direction of arrival (DOA) esti-
mation with array sensors is essential for source localiza-
tion in audio surveillance, auditory scene analysis, hearing
aids, etc. In these applications, the sources come from not
only the horizontal plane but also the vertical plane. In
addition, the number of sources can exceed the number of
sensors. Using small aperture arrays provides a great
convenience in configuration and portability too. There-
fore, the DOA estimation in 2D space using small aperture
arrays is highly desirable. The conventional linear array
approaches [1–4] are only able to estimate the DOAs in the
horizontal plane. In addition, they have the front and back
ambiguous problem. Therefore, they are less efficient for
the situations with sources located at different heights.
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The four-element Acoustic Vector Sensor (AVS) first pre-
sented in [5] for DOA estimation is an acoustic sensor that
is capable of measuring acoustic pressure gradient as well
as pressure as in a standard microphone. This combination
makes it possible for the sensor to measure the complete
sound field.

The AVS has been studied for overdetermined DOA
estimation where the number of sources is less than the
number of sensors [5–8]. In this case, the 2D DOA can be
estimated by employing the subspace approach such as the
MUSIC (MUltiple SIgnal Classification) [10,11]. By applying
eigenvector decomposition to the local covariance matrix,
the source subspace and noise subspace are identified based
on their eigenvalues, and then the DOAs are estimated based
on searching the steering vectors orthogonal to the noise
subspace. However, when the number of sources is equal to
or more than the number of senors, the noise subspace
cannot be identified using the MUSIC approach on the local
covariance matrix. To localize more speech sources, the
time–frequency spareness was exploited to find low-rank
covariance matrices in [3]. However, it proves difficult to
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identify low rank covariance matrices when ambient noise
is high.

In this work, we are interested to study the under-
determined 2D DOA estimation problem where the num-
ber of sources is more than the number of sensors using an
AVS. We would like to deal with the sources of audio or
speech signals which are so-called quasi-stationary sig-
nals. It is known that for such quasi-stationary signals the
covariance matrix of the array output is locally static over a
short period of time and exhibits difference over a long
time period. Using the subspace characteristics of the
time-variant covariance matrices of the quasi-stationary
source signals, the underdetermined DOA estimation
problem can be transformed to an overdetermined DOA
estimation problem. Therefore, we develop a subspace
approach based on Khatri–Rao product [4]. By applying
the vectorization to local covariance matrices and stacking
the resulting vectors into a virtual matrix, the degree of
freedom is increased by square of its original value. Then
we apply a detection criterion similar to the MUSIC on the
virtual matrix and estimate the azimuth and elevation
angles. Our identifiable analysis and simulations show that
the 2D DOAs of six speech sources are successfully esti-
mated using an AVS.

2. Problem formulation

We consider a four-element AVS [5] and K wideband
sources impinging on the array from far field with azimuth
angles of θkA ð�1801;1801� and elevation angles of
ϕkA ½�901;901�, k¼ 1;…;KðKZ4Þ. The output signals of
the sensors are modeled in time–frequency domain as

xðt; f Þ ¼ Asðt; f Þþvðt; f Þ; t ¼ 0;1;2;… ð1Þ
where t is the time index and f is the frequency index. Here,
xðt; f Þ ¼ ½x1ðt; f Þ;…; x4ðt; f Þ�T is the received signal vector,
sðt; f Þ ¼ ½s1ðt; f Þ;…; sK ðt; f Þ�T is the source vector, vðt; f ÞAC4

represents the spatial noise vector. For convenience we omit
the frequency index f during the derivation in the rest of the
paper. The matrix A¼ ½að r!1Þ;…; að r!K Þ�AR4�K is the array
response matrix, and að r!kÞ is the 4�1 AVS array manifold
for source k [5]:

aðrk!Þ9 ½1; cos θk cos ϕk; sin θk cos ϕk; sin ϕk�T ; ð2Þ
where the vector r!¼ ½ cos θk cos ϕk; sin θk cos ϕk; sin ϕk�T is
the unit source bearing vector where the azimuth and
elevation angles are defined as θkA ½�1801;1801� and
ϕkA ½�901;901�. Note that only the bearing angle θk is
considered for a linear array studied in [4,12]. Next, we will
derive the approach for the 2D DOA estimation with both θk
and ϕk.

When the source signals sk(t) and noise signals vðtÞ are
assumed mutually uncorrelated, a local covariance matrix
can be defined as

Rm ¼ EfxðtÞxHðtÞg ¼ADmA
T þC; ð3Þ

for 8tA ½ðm�1ÞL;mL�1�, where m¼ 1;2;… denotes the
frame index, L is the frame size, and Dm ¼Diag
ðdm1; dm2;…; dmK ÞARK�K is the source covariance matrix
at frame m. These local covariance matrices may be esti-
mated by local averaging. To estimate the DOAs θ1;…; θK ,
the conventional MUSIC criterion is based on a single
instance of the local covariance matrix RmAC4. Since the
degree of freedom for Rm is equal to 4, it is insufficient to
identify KZ4 sources.

3. The proposed KR-AVS approach

In this section, we present the approach using the
Khatri–Rao product and AVS (KR-AVS) for 2D DOA estima-
tion of KZ4 sources. The approach will transform the
above underdetermined DOA estimation problem into an
overdetermined problem.

3.1. The 2D KR-AVS criterion

Let us apply the vectorization computation to the
covariance matrix Rm to obtain

ym9vecðRmÞ ¼ vecðADmA
T ÞþvecðCÞ

¼ ðA � AÞdmþvecðCÞ ð4Þ
where vecð�Þ stands for vectorization computation; i.e.,
V¼ ½v1; v2;…; vn� then vecðVÞ ¼ ½vT1 ; vT2;…; vTn�T , and the
symbol �stands for the Khatri–Rao (KR) product: A�
A¼ ½að r!1Þ � að r!1Þ;…; að r!K Þ � að r!K Þ�AR16�K , and �
denotes the Kronecker product, the vector is dm ¼
½dm1;…;dmK �T .

Now we can see that the expression of (4) has a similar
structure as the signal model in (1). The KR product
ðA � AÞ can be considered as the transformed array
response matrix, which has virtual array dimension 16
much greater than the physical dimension of 4.

Now consider we have the local covariance matrices
R1;…;RM , we stack their vectorization vectors to obtain

Y9 ½y1;…; yM� ¼ ðA � AÞΨT þvecðCÞ1T
M ; ð5Þ

where the matrix is defined as Ψ¼ ½d1;…;dM�T ARM�K and
1M ¼ ½1;…;1�T ARM . For the quasi-stationary source sig-
nals and a large number of frames McK , the matrix
½Ψ 1M�ARM�ðKþ1Þ can be safely assumed as a full column
rank. That is, there exists a collection of K linearly
independent columns in Ψ. In a real world, most of the
audio and speech signals whose power spectrums are not
flat can satisfy this assumption.

Therefore, the noise covariance term vecðCÞ1T
M in (5)

has identical columns and can be eliminated by applying
the orthogonal component projection matrix P?

1M ¼ IM�
ð1=MÞ1M1

T
M to (5). Then we have the following decom-

position form:

YP?
1M

¼ ðA � AÞðP?
1M
ΨÞT ð6Þ

Noted that when a subset JðJoKÞ of the K sources is
stationary, the matrix ½Ψ 1M �ARM�ðKþ1Þ cannot be assumed
as a full column rank. There exists a collection of K� J
linearly independent columns in Ψ. Together with the
stationary noise, the J stationary sources are eliminated by
the orthogonal component project matrix P?

1M
. Therefore,

only the K� J sources are to be considered in the DOA
estimation process.

Now consider the subspace of YP?
1M
. For ease of exposi-

tion of idea, we assume that the decomposition (6) is
unique. We will soon provide the conditions under which
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this assumption is valid. Since we have rankðP?
1M
ΨÞ ¼

rankðΨÞ ¼ K , when the decomposition is unique, we have
the subspace

RðYP?
1M Þ ¼RðA � AÞ: ð7Þ

Then by applying singular value decomposition (SVD) on
matrix YP?

1M
, we can write

YP?
1M ¼ ½UsUn�

Σs 0
0 0

� � VH
s

VH
n

" #
; ð8Þ

where UsAR16�K and VsARM�K are the left and right
singular matrices associated with the nonzero singular
values, respectively, UnAR16�ð16�KÞ and VnARM�ð16�KÞ

are the left and right singular matrices associated with
the zero singular values, respectively. Σs is a diagonal
matrix whose diagonals contain the nonzero singular
values. Using the SVD result we have that RðA � AÞ ¼Us

and RðA � AÞ is orthogonal to Un. Therefore, we have that

UT
n½A � A� ¼UT

n½að r
!

1Þ�að r!1Þ;…; að r!K Þ�að r!K Þ� ¼ 0: ð9Þ

The 2D KR-AVS criterion similar to the MUSIC algorithm
is derived as

J θ;φð Þ ¼ 1

‖UH
n ðað r

!Þ � að r!ÞÞ‖2
: ð10Þ

The directional spectra Jðθ;φÞ from all valid frequency bins
are summed to yield a final directional spectrum. The
bearing vectors ½θ;ϕ� that give the spectrum peaks on the
final directional spectrum correspond to the source DOAs.
3.2. Conditions for unique identification

Before we can apply the KR-AVS criterion (10) for the
DOA estimation, it is crucial to determine conditions under
which the DOAs of sources are uniquely identifiable. It is
similarly to say under what conditions the decomposition
(6) is unique.

We say that decomposition (6) is unique if Ψ̂ ¼ P?
1M
Ψ

and A¼A � A are unique up to permutation of r!i. Let the
element of A at the jth row and kth column be denoted as
Aðj; kÞ ðj¼ 1;…;4; k¼ 1;…;K).

Then if we consider Ŷ ¼ YP?
1M

as 3-dimensional tensor of
size M � 4� 4, we can write Ŷðm; j1; j2Þ ðm¼ 1;…;M;

j1 ¼ 1;…;4; j2 ¼ 1;…;4) into the following canonical decom-
position (CANDECOMP/PARAFAC) as

Ŷðm; j1; j2Þ ¼ ∑
K

k ¼ 1
Ψ̂ðm; kÞ � Aðj1; kÞ � Aðj2; kÞ: ð11Þ

So the decomposition (6) is further decomposed to the form
(11) with factors Ψ̂;A;A. And this means that now
we can study uniqueness of decomposition (11) instead of
decomposition (6).

Now we are going to apply the following theorem [9].

Theorem 1. Consider a real 3-dimensional array Aði1; i2; i3Þ
of size n1 � n2 � n3 and its canonical decomposition

Aði1; i2; i3Þ ¼ ∑
r

k ¼ 1
A1ði1; kÞ � A2ði2; kÞ � A3ði3; kÞ: ð12Þ
If

2rþ2rkrankðA1ÞþkrankðA2ÞþkrankðA3Þ;
where krankðAÞ is the maximum number k such that any k
columns of matrix A are linearly independent, then the
decomposition (12) is unique up to permutation and rescal-
ing of factors.

By Kruskal theorem we can get sufficient condition for
uniqueness of decomposition (11) up to permutation and
rescaling (rescaling is not important for us if we assume
ðað r!ÞÞ1 � 1) in (2) in terms of Kruskal ranks of Ψ̂ and A: if

2Kþ2rkrankðΨ̂Þþ2krankðAÞ; ð13Þ

then the decomposition (11) is essentially unique.
By using the result krankðΨ̂Þ ¼ rankðΨ̂Þ ¼ K , the condi-

tion (13) is then simply rewritten as

Kr2krankðAÞ�2: ð14Þ

Eq. (14) implies that the number of sources K that satisfies
the unique decomposition (11) is essentially up-bounded
by the krankðAÞ. To investigate krankðAÞ, we provide the
following lemma:

Lemma 2. For the AVS array in (2) and a set of KZ4
distinguishable sources (i.e., r!ia r!j for all ia j), the follow-
ing is true:

krankðAÞ ¼ 3 if 4 or more sources lie on the same plane

4 otherwise

�

Proof. Consider any four sources with unit source bearing
vectors r!kAR3; k¼ 1;2;3;4. The array response matrix is
given as A¼ ½að r!1Þ; að r!2Þ; að r!3Þ; að r!4Þ�, where að r!kÞ ¼
½1 r!T

k �T . To study the krankðAÞ, let us investigate the linearly
independent rows of the matrix A. Let the row vector v!i

denote the ith row of A; i¼ 1;2;3;4, then we have
v!1 ¼ ½1 1 1 1�, v!2 ¼ ½ cos θ1 cos ϕ1;…; cos θ4 cos ϕ4�, v!3 ¼
½ sin θ1 cos ϕ1;…; sin θ4 cos ϕ4�, and v!4 ¼ ½ sin ϕ1;…;

sin ϕ4�. If we assume that the vectors v!i; i¼ 1;2;3;4 are
linearly independent, we have that the matrix A is a full rank
and rankðAÞ ¼ 4. It implies that krankðAÞ ¼ 4. If we assume
that the vectors v!i; i¼ 1;2;3;4 are linearly dependent, then
there exist scalars ci; i¼ 1;2;3;4 not all zeros such that

c1 v
!

1þc2 v
!

2þc3 v
!

3þc4 v
!

4 ¼ 0: ð15Þ
Let us consider a 3-dimensional Cartesian coordinate system
and the Cartesian coordinates ðxi; yi; ziÞ ¼ ð cos θi cos ϕi;

sin θi cos ϕi; sin ϕiÞ; i¼ 1;2;3;4. Using (15), we have

c2xiþc3yiþc4ziþc1 ¼ 0; i¼ 1;2;3;4 ð16Þ
Eq. (16) is a plane equation with the four Cartesian coordi-
nates ðxi; yi; ziÞ located on the plane. It implies that the four
sources lie on the sample plane. Similarly, if we assume that
the four sources lie on the same plane, it can be easily
showed that the vectors v!i; i¼ 1;2;3;4 are linear depen-
dent. In this case, we eliminate the first row of A and obtain
A0 ¼ ½ r!1; r

!
2; r
!

3; r
!

4�. Since the four sources are distin-
guishable, we have rankðA0Þ ¼ 3. It implies that krankðAÞ ¼ 3.
Therefore, we conclude that Lemma 2 is true. □
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Using Lemma 2, it follows from the condition (14) that
Kr6 for any four sources not lying on the same plane and
Kr4 for four or more sources lying on the same plane.
Since the rank of the matrix A � A determines the
identifiability too, it is necessary to further investigate
the full column rank of the matrix A � A. We will use the
following lemma (see Property 2 in [4]):
Lemma 3. For two matrices AACn�k and BACm�k, with
krankðAÞZ1 and krankðBÞZ1, it holds true that

krankðA � BÞZminfk; krankðAÞþkrankðBÞ�1g: ð17Þ

When there are 4 or more sources lying on the same
plane, we have that krankðAÞ ¼ 3 and rankðA � AÞZmin
fK;2krankðAÞ�1g. It implies that the matrix A � AAR16�K

is of full column rank for Kr5. Considering the condition
Kr4 given by (14), we can conclude that for the AVS array
in (2), the DOAs of K sources are uniquely identifiable if
Kr5 and there are no more than 4 sources lying on the
same plane. In case that all the sources lying on the same
plane, the DOAs of K sources are uniquely identifiable if
Kr4.

When there are no 4 or more sources lying on the same
plane, we have that rankðA � AÞZkrankðA � AÞZmin
fK;2krankðAÞ�1g, and it follows rankðA � AÞZK , for
Kr6. Therefore, the matrix A � AAR16�K is of full col-
umn rank for Kr6. We can conclude that for the AVS
array in (2), the DOAs of K sources are uniquely identifiable
if Kr6.
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Fig. 1. The six speech source waveforms used for the 2D DOA estimat
Note that the degree of freedom can be further increased
by forming an array of AVSs [14]. However, the identifiability
analysis of the KR-AVS criterion using an array of AVSs
becomes very challenging as a proof of the full column rank
of A � A is not straightforward. The study of an array of AVSs
is beyond the scope of this paper.

4. Experiment results

In this section, the performance of the proposed KR-
AVS approach is evaluated through computer simulations
and compared with the other array geometries with a
similar number of sensors. The simulations are carried
out with real wideband speech signals employed as the
sources. The six speech source signals that were used in
our simulation were plotted in Fig. 1. All the speech signals
are downloaded from BBC News. The speech sources
consist of different speakers. We cut the signals to 2.3 s
long and re-sampled to a sampling rate of 22 kHz. An
additive Gaussian noise is added to the source signals with
various signal to noise ratio (SNR) to be defined as

SNR¼
1
T ∑

T�1
t ¼ 0Ef‖As tð Þ‖2g
Ef‖vðtÞ‖2g ; ð18Þ

where T is the total number of samples. The wideband
speech signals are transformed into the frequency-domain
by the short-time Fourier transform (STFT) with frame
length L¼512 or around 25 ms. In speech processing, it is
generally assumed that the speech signals are stationary
within 25 ms. There are total M¼98 frames. The frequency
band to be processed is [800 Hz, 6000 Hz]. The output
1.5 2 2.5

1.5 2 2.5

1.5 2 2.5

1.5 2 2.5

1.5 2 2.5

1.5 2 2.5

econds)

ion. The sources are randomly distributed to the six directions.



Fig. 2. 2D DOA spectrum of the KR-AVS approach using four-element AVS with four wideband real-speech sources on the same plane (with the same
elevation angles �301).

Fig. 3. 2D DOA spectrum of the KR-AVS approach using four-element AVS with five wideband real-speech sources (four of the sources lie on the same
plane).
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signals of the sensors were obtained using the model given
in (1). The DOA spectrum for each frequency bin is
computed based on (10), then we summed the DOA
spectra over all the valid frequency bins. The angle indices
corresponding to peaks of the combined DOA spectrum
are identified as the source directions.

4.1. Identification verification of the KR-AVS approach

We verify the identification of the proposed KR-AVS
approach in three different source and position settings.
We set the SNR as 10 dB in this evaluation and plotted the
normalized DOA spectrum for a better visibility. Fig. 2
shows the DOA spectrum of the KR-AVS approach for the
four speech sources lying on the same plane (here we set
the sources to be the same elevation angles) and the true
DOAs are defined as fðθ1;ϕ1Þ;…; ðθ4;ϕ4Þg ¼ fð�1501; �301Þ;
ð�601; �301Þ; ð601; �301Þ; ð1001; �301Þg. It is seen that
there are four peaks corresponding to the true angles in
a line at ϕ¼ �301. By mapping the peaks to the angle
indices, we can obtain the estimated DOAs of the four
speech sources. Fig. 3 shows the DOA spectrum of the
KR-AVS approach for the five speech sources with four
sources lying on the same plane where the true DOAs are
defined as fðθ1;ϕ1Þ;…; ðθ5;ϕ5Þg ¼ fð�1501; �301Þ; ð�601;
�301Þ; ð601; �301Þ; ð1001; �301Þ; ð�1201;601Þg. It is seen
that there are five peaks corresponding to the true angles.
The DOAs of the five sources are successfully identified.
Fig. 4 shows the DOA spectrum of the KR-AVS approach
for the six speech sources where no four sources lie
on the same plane, and the true DOAs are defined as
fðθ1;ϕ1Þ;…; ðθ6;ϕ6Þg ¼ fð1201; �301Þ; ð101;101Þ; ð1101;301Þ;
ð�1401;101Þ; ð�901;601Þ; ð�601; �601Þg. It is seen that
all the sources are successfully identified and both the



Fig. 4. 2D DOA spectrum of the KR-AVS approach using four-element AVS with six wideband real-speech sources.

Speech source
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azimuth and elevation angles are well estimated. The
above results verified our theoretic analysis of the pro-
posed KR-AVS approach in Section 3.
mic1 mic2 mic3 mic4d 2d 3d
x

θ

Fig. 5. Non-uniform linear array geometry with four sensors for one-
dimensional DOA estimation.
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Fig. 6. L-shape array geometry with five sensors for two-dimensional
DOA estimation.
4.2. Comparison of various array geometries

We now compare the AVS array with the non-uniform
linear array, the 2D L-shape array [13], and the 2D
triangular array. To the author's knowledge, only the
identification ability of the linear array [4] and the
L-shape array [13] geometries has been studied for DOA
estimation using the Khatri–Rao criterion. In this paper,
we first time demonstrate the non-uniform linear array
and the triangular array geometries for underdetermined
DOA estimation using the Khatri–Rao criterion. The setup
of each array is given as follows and the microphone 1 is
chosen as the reference sensor for all the arrays. The setup
of the four-element non-uniform linear array is illustrated
in Fig. 5. The inter-sensor spacing for the non-uniform
linear array is d, 2d and 3d. The array manifold of the non-
uniform linear array is given as

aðθkÞ ¼ 1; e� j2πfd sin ðθkÞ=c; e� j2πf3d sin ðθkÞ=c; e� j2πf6d sin ðθkÞ=c
n o

;

ð19Þ

where c denotes the sound speed. The setup of the L-shape
array uses five sensors (the minimum number of sensors
required to identify 6 sources stated in [13]) and it is
illustrated in Fig. 6. The inter-sensor spacing between
neighboring sensors is d. The array manifold of the
L-shape array is given as

aðθk;ϕkÞ ¼ f1; e� j2πfd cos ðθkÞ sin ðϕkÞ=c; e� j2πf2d cos ðθkÞ sin ðϕkÞ=c;

e� j2πfd sin ðθkÞ sin ðϕkÞ=c; e� j2πf2d sin ðθkÞ sin ðϕkÞ=cg: ð20Þ

The setup of the triangular array uses four sensors and
it is illustrated in Fig. 7. The inter-sensor spacing bet-
ween neighboring sensors is d. The array manifold of the
triangular array is given as

aðθk;ϕkÞ ¼ f1; e� j2πfd cos ðθkÞ sin ðϕkÞ=c; e� j2πfd sin ðθkÞ sin ðϕkÞ=c;

e� j2πfd cos ðϕkÞ=cg: ð21Þ
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For all the above arrays, we used the sound speed
c¼346 m/s and set the value as d¼2.87 cm for avoiding
spatial aliasing. It is noted that the AVS array uses one
omni-directional sensor and three bi-directional sensors.
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Fig. 7. Triangular array geometry with four sensors for two-dimensional
DOA estimation.
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Fig. 8. One-dimensional DOA spectrum of the KR-linear approach using
four-element non-uniform linear array with six wideband real-speech
sources.

Fig. 9. Two-dimensional DOA spectrum of the KR-L-shape approach usin
There is no spacing requirement for the AVS array [5].
Compared to the above array geometries, the AVS array
aperture is much smaller. Consider that the non-uniform
linear array and the L-shape array have ambiguity between
front and back directions. In this simulation, we set
the six speech sources to the front directions as follows:
fðθ1;ϕ1Þ; …; ðθ6;ϕ6Þg ¼ fð801; �301Þ; ð101;101Þ; ð401;401Þ;
ð�601; 101Þ; ð�701; �601Þ; ð�201;801Þg. The SNR was
taken as 10 dB. The DOA spectrum results of all the com-
pared arrays using the KR-AVS criterion are shown in
Figs. 8–11. Here normalized DOA spectrum was taken for
a better visibility. It is seen that all the arrays produce
peaks on the directions of six sources. For the non-uniform
linear array, only the azimuth angles are identified
between [�901, 901]. Here θ¼01 is the front direction of
the broadside for the linear array. It can be observed that
the non-uniform linear array introduces bigger DOA esti-
mation errors when the sources are too close as seen for
the azimuth angles of �701 and �601. In addition, the
resolution of detection decreases when the source moves
towards the endfire as seen from the more flat peak at
θ¼801. Both the L-shape array and the triangular array
produce side peaks along the main peaks. For the two
sources that are at fðθ2;ϕ2Þ; ðθ4;ϕ4Þg ¼ fð101;101Þ; ð�601;
101Þg on the same plane, the resolution of DOA estimation
for both the L-shape array and the triangular array decreases.
By comparison, the AVS array only produces the main peaks
on the directions of sources. There is also no side peaks on
the DOA spectrum from the AVS array. Therefore, this
simulated evaluation demonstrated that the AVS array seems
more preferred for underdetermined 2D DOA estimation.

To evaluate the capabilities of the DOA estimation using
different array geometries, we compare the root mean
square error (RMSE) for various SNR conditions. The RMSE
is defined as

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1
K

∑
K

k ¼ 1
jθk� θ̂kj2þjϕk� ϕ̂kj2

� �( )vuut ; ð22Þ

where the parameters θ̂k and ϕ̂k are the estimates of θk and
ϕk. Here we matched the estimated angles with the actual
g five-element L-shape array with six wideband real-speech sources.



Fig. 10. Two-dimensional DOA spectrum of the KR-triangular approach using four-element triangular array with six wideband real-speech sources.

Fig. 11. Two-dimensional DOA spectrum of the KR-AVS approach using four-element AVS array with six wideband real-speech sources.

−5 0 5 10 15 20
1

2

3

4

5

6

7

8

9

10

SNR (dB)

R
M

S
E

 (d
eg

re
e)

KR−Non−uniform Linear Array
KR−L−shape Array
KR−Triangular Array
KR−AVS Array

Fig. 12. Comparison of RMSE for the DOA estimation with various array
geometries using the KR-AVS criterion versus SNR.
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source angles for the minimum RMSE for each trial. The final
RMSE values were taken from the ensemble average of 100
trials. For each trial, we randomly located six speech sources
at different directions. All sources were positioned in the
front directions and no sources were allowed to be on the
same plane. Fig. 12 shows the comparison of the RMSE for
various array geometries using the KR-AVS criterion given
in (10). We see that for all the array geometries, the RMSE
values decrease when the SNR values increase. For all the
SNR conditions, the proposed KR-AVS approach achieves
better RMSE than the other array geometries.

5. Conclusions

We have addressed the underdetermined 2D DOA esti-
mation of the quasi-stationary signals using the KR product



S. Zhao et al. / Signal Processing 100 (2014) 160–168168
and an AVS array. Our analysis for unique identification
indicates that the proposed approach is able to identify up
to six distinguishable sources in the full 2D space. The
experiment results have elaborated the validation of the
analysis. The performance evaluation shows that the RMSE
of the proposed AVS array approach is superior over the
geometries of the non-uniform linear array, the L-shape
array, and the triangular array. As the AVS has much smaller
aperture size and covers both the full horizontal and vertical
planes, the proposed KR-AVS approach is more preferred for
practical applications.
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