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Abstract

Motivation: A tumor arises from an evolutionary process that can be modeled as a phylogenetic

tree. However, reconstructing this tree is challenging as most cancer sequencing uses bulk tumor

tissue containing heterogeneous mixtures of cells.

Results: We introduce Probabilistic Algorithm for Somatic Tree Inference (PASTRI), a new algo-

rithm for bulk-tumor sequencing data that clusters somatic mutations into clones and infers a

phylogenetic tree that describes the evolutionary history of the tumor. PASTRI uses an importance

sampling algorithm that combines a probabilistic model of DNA sequencing data with a enumer-

ation algorithm based on the combinatorial constraints defined by the underlying phylogenetic

tree. As a result, tree inference is fast, accurate and robust to noise. We demonstrate on simulated

data that PASTRI outperforms other cancer phylogeny algorithms in terms of runtime and accur-

acy. On real data from a chronic lymphocytic leukemia (CLL) patient, we show that a simple linear

phylogeny better explains the data the complex branching phylogeny that was previously reported.

PASTRI provides a robust approach for phylogenetic tree inference from mixed samples.

Availability and Implementation: Software is available at compbio.cs.brown.edu/software.

Contact: braphael@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumors develop through the accumulation of somatic mutations

during the lifetime of an individual in a process called clonal evolu-

tion (Nowell, 1976). Thus, many tumors are heterogeneous, con-

taining multiple populations of cells (or clones), each with its own

unique combination of somatic mutations. This intra-tumor hetero-

geneity complicates the diagnosis and treatment of cancer. Accurate

characterization of the process of clonal evolution, modeled by a

phylogenetic tree, is crucial to understanding cancer development,

and also important for comprehensive treatments that target mul-

tiple clones within a tumor. Recent studies have shown that metasta-

sis often occurs from clones present at minor proportion in the

tumor cell population; moreover, at time of diagnosis patients may

already have clones within their tumor that already possess resist-

ance to the therapy (Schmitt et al., 2016). For example, in a recent

study of an acute myeloid leukemia (AML) patient (Griffith et al.,

2015), a clone with a driver mutation in IDH2, present in less than

2% of the pre-treatment sample, was found to be the dominant

clone in the subsequent relapse.

The vast majority of cancer sequencing performed to date, includ-

ing in large scale projects such as The Cancer Genome Atlas (TCGA)

and the International Cancer Genome Consortium (ICGC), is

sequencing of bulk-tumor tissue, where each sequenced sample is

composed of a mixture of thousands-millions of tumor cells. This

complicates analysis of tumors, as we expect a high level of heterogen-

eity amongst individual tumor cells, and we do not observe the muta-

tional profiles of component clones directly. Instead, we observe a

mixed signal of all the genetic material present in the sample. Single-

cell sequencing presents an alternative approach to characterize tumor

evolution and there has been promising work in this direction (Jahn

et al., 2016; Wang et al., 2014). However, single-cell sequencing re-

mains error-prone and expensive (Navin, 2015). Thus, characterizing

intra-tumor heterogeneity and reconstructing tumor evolution from

bulk-sequencing data is an area of active development.

Like any evolutionary process, the somatic mutational process

giving rise to a tumor can be described by a phylogenetic tree, whose

leaves correspond to present clones, and whose edges describe the

ancestral relationships between clones. In classic phylogeny, we dir-

ectly observe the contents of the leaves, and use this information to

reconstruct the ancestral relationships between species. However,

with bulk-sequencing data, we do not directly observe the contents

of the leaves, but rather we observe mixtures of genetic material.
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In particular, for single-nucleotide variants (SNVs), the fraction of

reads covering the nucleotide containing the mutation allele provide

as estimate of the cell fraction, or fraction of cells in the mixture

containing the mutation. As such, specialized algorithms that decon-

volve bulk-sequencing data are needed to accurately characterize

tumor composition and reconstruct the process of clonal evolution.

We divide the task of characterizing the clonal structure of the

tumor from bulk-sequencing data into two problems: (1) clustering

mutations into clones, or groups of cells that have the same set of

somatic mutations, and (2) identifying the tree that relates clones.

Methods such as PyClone (Roth et al., 2014), SciClone (Miller et al.,

2014), and Clomial (Zare et al., 2014) focus on the first problem and

cluster mutations, without requiring that these clusters are generated

by a tree. These algorithms use a probabilistic model for the sequenc-

ing data to estimate the number of clones, the assignments of muta-

tions into clones, and the cell fraction of clusters of mutations. For the

second problem, a number of algorithms, including TrAP (Strino

et al., 2013), Rec-BTP (Hajirasouliha et al., 2014), LICHeE (Popic

et al., 2015), AncesTree (El-Kebir et al., 2015), CITUP (Donmez

et al., 2016; Malikic et al., 2015) and SPRUCE (El-Kebir et al., 2016)

use a combinatorial approach that relies on constraints that the under-

lying phylogenetic tree imposes on the cell fractions. Because these al-

gorithms exploit the combinatorial structure given by the tree, they

tend to be fast and also perform well when the clustering of mutations

into clones is straightforward. However, these algorithms may strug-

gle in more challenging cases of moderate-to-low coverage data due

to simplistic error models for allele frequencies, or reliance on muta-

tion clusters being given as input.

There is, however, a circular dependence between clustering and

tree inference. The cell fractions of clusters are used to construct the

tree, but the underlying phylogenetic tree constrains allowed cell

fractions. If a tree constraint is not accounted for in a clustering al-

gorithm, then the clustering algorithm may yield clones whose cell

fractions do not permit a tree. Thus, treating the problems of muta-

tion clustering and tree inference independently may produce poor

results, especially when there is high uncertainty in the cell fractions.

A few methods, including PhyloSub (Jiao et al., 2014),

PhyloWGS (Deshwar et al., 2015) and Canopy (Jiang et al., 2016),

cluster mutations and infer the tree simultaneously. These methods

combine a robust error model for sequencing data with a tree con-

straint on the clusters in the generative model. Thus, the resulting

clusters necessarily respect the tree constraint. These algorithms use

Markov Chain Monte Carlo (MCMC) to sample trees, cluster cell

fractions and cluster assignments in order to estimate the posterior

distribution over clusters and trees. However, in practice, on

instances of realistic size, the sample space is large and complex and

the sampling procedure may become stuck in local minima and fail

to converge in reasonable time. Thus, while the generative model

used by these methods effectively describes the data, the solutions

found by the algorithms may be suboptimal. Table 1 summarizes

the approaches cited above.

1.1 Contributions
In this article, we introduce Probabilistic Algorithm for Somatic

Tree Inference (PASTRI), an algorithm that uses importance sam-

pling to simultaneously cluster mutations into clones and infer a

phylogenetic tree that relates the clones. PASTRI exploits the condi-

tional independence of the observed read counts from the latent

phylogenetic tree given the cluster cell fractions, thus separating in-

ference into two parts. PASTRI first samples likely cluster cell frac-

tions from an informed proposal distribution determined by a

clustering algorithm without the tree constraint (e.g. (Miller et al.,

2014; Roth et al., 2014; Zare et al., 2014)), and calculates the data

likelihood given these cell fractions. Second, PASTRI uses a com-

binatorial algorithm described in Popic et al. (2015) and El-Kebir

et al. (2016) to enumerate exactly the set of possible trees for a given

set of cluster cell fractions. This procedure allows us to efficiently

compute the likelihood of all trees that respect the tree constraint,

under a realistic noise model for the data. Moreover, by sampling

from clusters obtained without a tree constraint, PASTRI focuses on

higher probability regions of the sample space and thus samples

more efficiently than MCMC approaches. Moreover, PASTRI sam-

ples only cell fractions, and forgoes sampling from the space of trees

and cluster assignments. As a result, PASTRI is faster and has better

convergence properties than previous MCMC approaches.

We show on simulated data that PASTRI outperforms both com-

binatorial and probabilistic methods in accuracy and runtime. We

then examine data from a chronic lymphocytic leukemia (CLL) pa-

tient from Rose-Zerilli et al. (2016). This patient was classified as

having a complex branching phylogeny, based on analysis by

PhyloSub. In contrast, PASTRI finds a higher likelihood tree with a

linear, rather than branching topology, suggesting that the clonal

evolution process in this patient was simpler than previously

described.

2 Materials and methods

We describe our PASTRI algorithm in the following three sections.

In Section 2.1, we introduce our model for tumor evolution and

Table 1. Methods for characterizing tumor heterogeneity from bulk-sequencing data

Problem Approach

Method Clustering Tree Inference Combinatorial Probabilistic

PyClone (Roth et al., 2014), SciClone (Miller et al., 2014), Clomial (Zare et al.,

2014)

Y Y

TrAP (Strino et al., 2013), LICHeE (Popic et al., 2015), AncesTree (El-Kebir

et al., 2015), SPRUCE*(El-Kebir et al., 2016), CITUP (Malikic et al., 2015;

Donmez et al., 2016)

Y Y

PhyloSub (Jiao et al., 2014), PhyloWGS* (Deshwar et al., 2015), Canopy* (Jiang

et al., 2016)

Y Y Y

PASTRI Y Y Y Y

We categorize a subset of previous work according to two problems: (1) clustering mutations into clones according to inferred cell fractions, and (2) tree infer-

ence. These methods take one of two approaches: a combinatorial model and algorithm, or a probabilistic model and inference. PASTRI performs both clustering

and tree inference. It uses a probabilistic model for observed allele counts, and integrates the combinatorial framework into inference. (*) indicates method

accounts for copy-number aberrations.
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sequencing mixtures. We conclude this section by describing the tree

constraint on cell fractions (Fig. 1). In Section 2.2, we describe a

generative probabilistic model for trees, clusters of mutations, and

observed read counts (Fig. 2). Finally, in Section 2.3, we describe the

importance sampling approach that we use to compute the posterior

distribution over phylogenetic trees (Fig. 3).

2.1 Model
We model tumor evolution using SNVs as phylogenetic characters,

leaving extension to other types of genomic aberrations (e.g. copy-

number aberrations) as future work. Following previous work

(Deshwar et al., 2015; El-Kebir et al., 2015; Hajirasouliha et al.,

2014; Jiang et al., 2016; Jiao et al., 2014; Malikic et al., 2015; Popic

et al., 2015; Strino et al., 2013), we assume that each locus mutates

at most once during the lifetime of the tumor, an assumption known

as the infinite-sites assumption (ISA). As such, we encode the state

of a locus in a cell as a binary character, with a 0 indicating the

germline state and a 1 indicating a somatic mutation. We model can-

cer evolution as a clone tree T ¼ ðVðTÞ;EðTÞÞ, a directed tree with j
VðTÞj ¼ k vertices (Fig. 1a). Vertex vi corresponds to a clone i in the

tumor, and a directed edge (vi, vj) encodes the evolutionary relation-

ship that clone j is a direct descendant of clone i. Equivalently, we

can represent a tree T as a k�k perfect-phylogeny matrix BT ¼ ½bij�
(Gusfield, 1991). Column i of matrix BT corresponds to the genome

of vertex vi, such that bij¼1 if vertex vj is on the unique path from

vi to the root, and 0 otherwise.

We use cluster to refer to the set of mutations that first occur in a

particular clone. We define the cluster assignment vector~c ¼ ðc1; . . . ;

cnÞ to be the vector mapping each mutation j to a clone v, such that

cj¼ v indicates that v is the first clone in which mutation j occurs. By

the ISA, the genomes of all descendant clones of vi also contain muta-

tion j. The genome of a clone vi is then defined by the set of mutations

assigned to vertices on the path from the root of the tree to vi.

We obtain DNA sequencing data from one or more samples

from a tumor, separated spatially or temporally (Fig. 1b). Each of

these samples contain mixtures of the k clones in the tumor, possibly

with varying proportions across the multiple samples. Let U ¼ ½ui;p�
be a k�m usage matrix of clone proportions, such that ui;p is the

proportion of cells in sample p belonging to clone i. For all clones i

and samples p, the entries of U are non-negative, i.e. ui;p � 0 for all

i, p, and the columns of U are on the ðk� 1Þ-simplex,
Pk

i¼1 ui;p ¼ 1

for all p. Let clone 1 correspond to normal (non-tumor) cells, such

that u1;p is the proportion of normal (non-cancerous) cells in sample

(a) (c)

(b)

Fig. 1. Tree constraint on cluster cell fractions. (a) We model the evolution of a tumor as a clone tree T, with k vertices corresponding to clones in the tumor. A mu-

tation (denoted here by a star) is assigned to the clone in which it originates. Under the infinite sites assumption, a mutation occurs once, and is never lost. Thus,

if a mutation occurs in clone vi, all descendent clones of vi will also contain that mutation. A clone tree T can be described by a binary perfect phylogeny matrix

BT. (b) We measure m samples from a heterogeneous tumor, each sample containing a mixture of clones. The usage matrix U describes the proportion of each

clone in each sample. The cell fraction matrix F describes the proportion of cells that contain a given cluster of mutations. For example, here the clone v1, contain-

ing the red mutation, occurs in u1;1 ¼ 40% of sample S1, but has a cell fraction of f1;1 ¼ 1, as the red mutation is present in all cells. (c) As the usage matrix U de-

scribes mixture proportions, the columns of U are constrained to be on the ðk � 1Þ-simplex. For a tree T, F and U are related by F¼BTU. Thus, the set of allowed

cell fractions for a tree T is a linear transformation of the ðk � 1Þ-simplex and is unique for every distinct tree T. This set can be described by the Sum Condition,

where dðvi Þ denotes the set of children of vi in T

Fig. 2. Generative model for variant allele counts A from DNA sequencing

data of a tumor. A latent (unobserved) clone tree T generates m samples,

each consisting of mixtures of cells with different mutations. Each mutation is

assigned to a cluster Cj . A cluster i of mutations occur in fraction Fi;p of cells

in sample p. Variant read counts A are generated for each mutation with a bi-

nomial likelihood model, given an observed total read counts D
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p. For a vertex vi and sample p, the cell fraction fi;p is the proportion

of the cells in the sample that contain the mutations assigned to vi.

As a result of the infinite sites assumption, all descendants of vi will

also contain any mutation that occurred at vi. Thus, we relate the

clone usage matrix U to the cluster cell fraction matrix F ¼ fi;p as

follows. Let dðviÞ be the set of children of vi in T, and let DðviÞ be

the set of all descendants of vi. Then, in sample p, fi;p ¼ ui;pþP
vj2DðviÞ uj;p ¼ ui;p þ

P
vj2dðviÞ fj;p. Thus, we have the following Sum

Condition that constrains the cell fractions given a tree T, as noted

in previous works (El-Kebir et al., 2015; Jiao et al., 2014; Malikic

et al., 2015; Popic et al., 2015; Strino et al., 2013).

fi;p �
X

v‘2dðviÞ
f‘;p for all vertices i and samples p: (1)

As clone 1 corresponds to normal cells and all tumor cells are des-

cendants of a normal cell, we also have the constraint that f1;p ¼ 1

for all samples p.

Equivalently, (as described in El-Kebir et al. (2015)), the cell

fraction matrix F is related to the tree T and usage matrix U accord-

ing to F¼BTU, where BT is the square binary perfect phylogeny ma-

trix corresponding to T. As BT is invertible, we have that U ¼ B�1
T F.

Allowed cell fractions F for a tree T are then those for which

U ¼ B�1
T F is a valid usage matrix, i.e. the entries are non-negative

and the columns are on the ðk� 1Þ-simplex. Figure 1c shows that

this constraint on the usage matrix U corresponds to the Sum

Condition, and the additional constraint that the cell fraction f1;p ¼ 1

in all samples p for germline variants in normal cells. As described in

El-Kebir et al. (2015), these constraints provide a necessary and suffi-

cient condition for a valid usage matrix (Fig. 1c).

For each mutation j identified in sample p, we measure the num-

ber aj;p of variant reads—reads that contain the somatic mutation—

and the total number dj;p of reads that align to the locus. Suppose

we observe data for n mutations across all samples. Let A and D be

n�m matrices corresponding to the observed number of variant

and total reads for each mutation. The variant-allele frequency aj;p=

dj;p of a mutation j in sample p is proportional to the fraction of cells

containing the variant in the mixture. Under the infinite sites as-

sumption with a diploid genome, this fraction is 1
2 fcj ;p, as each cell

containing the mutation has one mutated and one unmutated copy.

2.2 Probabilistic model
We model the observed data using a finite tree-constrained mixture

model (Fig. 2). We divide the model into three components: the tree

and cell fraction model (highlighted in blue), the cluster assignment

model (orange), and the observed data model (green).

We first describe the tree and cell fraction model. Let T be the

random variable corresponding to the latent unobserved clone tree.

We assume that T follows a categorical distribution which selects

tree T with weight cT. For the results in this paper, we set c such that

the probability of all trees is uniform. As the columns of a usage ma-

trix lie on the ðk� 1Þ-simplex, i.e. all entries are non-negative andPk
i¼1 ui;p ¼ 1 for all samples p, we model the usages for sample p

using a Dirichlet distribution, Up � Dirðl1; . . . ;lkÞ with vector of

hyperparameters l of length k.

Under this model, any matrix U whose columns are not on the

ðk� 1Þ-simplex will have a probability PrðU ¼ UjlÞ ¼ 0. This

implies that the cell fractions Fp for sample p are distributed as

Fp � BT �Dirðl1; . . . ;lkÞ, where BT is the perfect phylogeny matrix

corresponding to tree T. As described in Section 2.1, for a valid

usage matrix U, F ¼ BTU respects the Sum Condition for tree T.

Thus, a cell fraction matrix F will have non-zero probability PrðF
¼ FjT ¼ TÞ if and only if it respects the Sum Condition across all

samples.

As in a standard mixture model, the observed data is composed

of mixtures of k clusters. Let C ¼ ðC1; . . . ;CnÞ be the random vari-

able corresponding to cluster assignments where Cj follows a cat-

egorical distribution parameterized by weights x. Under this model,

the cluster assignments are conditionally independent given the fixed

hyperparameter x. This choice allows us to easily marginalize over

possible cluster assignments during inference, described below. Note

that this model differs from a Dirichlet process mixture models,

(a)

(c)

(b)

Fig. 3. Overview of PASTRI algorithm. (a) We observe variant-allele read counts A and the total number of reads D that align to the locus for n mutations across m

samples of the tumor. (b) A clustering algorithm that does not require that the data is generated by a phylogenetic tree gives an estimate QðFÞ of the posterior dis-

tribution over cluster cell fractions F. (c) PASTRI draws samples F from QðFÞ. For each sample F , PASTRI enumerates the set T
F

of trees T and assignments p of

cell fractions to vertices of of T that satisfy the Sum Condition. All trees/vertex-assignment pairs not in T F have a probability of 0. Algorithm estimates the poster-

ior probability of each tree using importance sampling
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where the number of clusters is not fixed, and the cluster assign-

ments have a complex dependence on each other.

Let A and D be the random variables corresponding to the num-

ber of variant and total reads across n mutations and p samples.

Under the infinite sites assumption, we expect the variant-allele fre-

quency Aj;p=Dj;p of a mutation j in sample p to be proportional to

the cell fraction FCi ;p of the cluster containing the mutation. That is

E½Aj;p=Dj;p� ¼ 1
2 FCj ;p in a diploid genome. We will use a binomial

model for allele counts in the present work, so that

Aj;p � BinðDj;p;
1
2 Fcj ;pÞ. However, the model described above allows

for more sophisticated models of read counts that involve additional

parameters H that can model sequencing error, over-dispersion,

copy-number aberrations, or other features. One example of such a

model, which includes probabilities of false positive and false nega-

tive mutations, is used in Section 3.2, and described in

Supplementary Section SB.3. A key feature of these models is that

the observed variant allele counts do not depend directly on the tree

T, only on the cell fractions F. This allows us to sample cell fractions

and compute the data likelihood and model parameter likelihoods

separately.

In summary, the complete data likelihood of our model is

PrðA;C; F;TjD;x; c;lÞ

¼ PrðAjC;F;DÞPrðFjT;lÞPrðTjcÞPrðCjxÞ

¼
Ym
p¼1

½DirðB�1
T FpjlÞ

Yn

j¼1

BinðAj;pjFcj ;p;Dj;pÞ�cT

Yn

j¼1

xCj
:

(2)

2.3 Tree inference
Given variant-allele counts A ¼ A and total read counts D ¼ D, we

want to compute the posterior probability of a tree T ¼ T given the

observed data and hyperparameters,

PrðT ¼ TjA ¼ A;D ¼ D;x; c;lÞ

/ PrðA ¼ AjT ¼ T;D ¼ D;x;lÞPrðT ¼ TjcÞ
(3)

In order to calculate this posterior probability from the complete

data likelihood given in Equation 2, we marginalize over latent clus-

ter assignments C and cluster cell fractions F,

PrðA ¼ AjT ¼ T;D ¼ D;x; lÞPrðT ¼ T; cÞ

¼
Ð
F

P
~c PrðA ¼ AjC ¼~c; F ¼ F;D ¼ DÞ

�PrðC ¼~cjxÞPrðF ¼ FjT ¼ T; lÞPrðT ¼ TjcÞdF

(4)

We first show how we marginalize over cluster assignments C, com-

puting the inner summand above. Then in Section 2.3.1, we will use

importance sampling to numerically integrate over cell fractions.

In Equation 2, the terms that depend on C are

PrðAjC; F;DÞPrðCjxÞ. By marginalizing over all vector assignments

C ¼~c such that ci 2 f1; . . . ; kg, we obtain a variant-allele count like-

lihood PrðAjF;D;xÞ that does not depend on C. Because the cluster

assignments are conditionally independent given x;A; F, we can

marginalize them independently for each mutation. Thus we obtain

the following.

Pr A ¼ AjF ¼ F;D ¼ D;xð Þ

¼
X
~c

Pr A ¼ AjC ¼~c;F ¼ F;D ¼ Dð ÞPr C ¼~cjxð Þ

¼
X
~c

Pr C ¼~cjxð Þ
Yn
j¼1

Ym
p¼1

Bin aj;pjfcj ;p; dj;p

� � (5)

¼
Yn
j¼1

Xk

i¼1

Pr Cj ¼ ijx
� �Ym

p¼1

Bin dj;pjfi;p;dj;p

� � !

¼
Yn
j¼1

Xk

i¼1

xj

Ym
p¼1

Bin aj;pjfi;p; dj;p

� � !

We refer to this term PrðA ¼ AjF ¼ F;D ¼ D;xÞ as the uncon-

strained data likelihood, as it does not depend on the tree T. Thus

we have

PrðT ¼ TjA ¼ A;D ¼ D;x; c;lÞ

/ cT

Ð
FPrðA ¼ AjF ¼ F;D ¼ D;xÞPrðF ¼ FjT ¼ T; lÞdF:

(6)

2.3.1 Importance sampling

We now describe how we compute the integral over cell fractions F

in Equation 6. Integrating, or marginalizing, over cell fractions is

more complicated that marginalizing over cluster assignments as F is

continuous, high-dimensional, and the entries of matrix F are not in-

dependent. Thus, we cannot analytically calculate this integral. In

this section, we describe how to calculate this integral using import-

ance sampling (Tokdar and Kass, 2010), using input from a cluster-

ing approach without a tree constraint, and a combinatorial tree

enumeration algorithm. Figure 3 shows an overview the PASTRI

algorithm.

Importance sampling uses a proposal distribution QðXÞ that ap-

proximates the distribution of interest PðXÞ over a random variable

or set of random variables X. We numerically calculate an integralÐ
PðXÞdX as follows. Let X1; . . . ;XN be samples from QðXÞ. Then,

ð
PðXÞdX ¼

ð
PðXÞ
QðXÞQðXÞdX ¼ EQ

PðXÞ
QðXÞ

� �
� 1

N

XN
i¼1

PðXiÞ
QðXiÞ

: (7)

In our case, the distribution of interest is

PðFÞ ¼ PrðA ¼ AjD ¼ D; F ¼ F;xÞPrðF ¼ FjT ¼ T;lÞ. We use a

clustering method, such as SciClone (Miller et al., 2014) or PyClone

(Roth et al., 2014), which gives an estimate of the posterior prob-

ability over F, without the tree constraint, QðFÞ ¼ PrQðF ¼ FjD ¼ D

;A ¼ A; •Þ / PrQðA ¼ AjD ¼ D; F ¼ F; •Þ PrQðF ¼ Fj•Þ where we

use PrQðXÞ to denote the probability under the model used by the

clustering method and where • indicates the distribution may de-

pend on a number of hyperparameters. Thus, QðFÞ and PðFÞ differ

primarily in the generative model for cell fractions: a tree constraint,

PrðF ¼ FjT ¼ T; lÞ versus no constraint PrQðF ¼ Fj•Þ. As there is an

underlying tree T that generated the data, the true F respects a tree

constraint on cell fractions, and thus, we expect a significant portion

of posterior probability mass respects the tree constraint for T.

Thus, using unconstrained QðFÞ is an effective approximation of

constrained PðFÞ.
When sampling from the unconstrained posterior QðFÞ, cell frac-

tions do not yet correspond to vertices of the tree. A permutation p
of the rows of a sampled cell fraction F corresponds to assignments

of cell fractions to vertices of the tree. We denote by p‘	F the ‘th per-

mutation of the rows of F. All permutations result in the same data

likelihood PrðA ¼ AjF ¼ F;D ¼ D;xÞ. However, not all permuta-

tions satisfy the Sum Condition (Fig. 4). For example, consider a lin-

ear tree T, as in Figure 4. There is a single permutation that satisfies

the Sum Condition: the frequencies must be in descending order. In

general, for a tree on k vertices, a relatively small fraction of the k!

total permutations will satisfy the Sum Condition. Since, cell frac-

tions F that do not respect the Sum Condition for a tree T have prob-

ability PrðF ¼ FjT ¼ T; lÞ ¼ 0, most of the k! permutations of a

sampled cell fraction F will have a probability of 0.
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Using insights from combinatorial approaches (as described in

Section 2.1), we can enumerate exactly the set of trees T and permu-

tations p for which p	F satisfy the Sum Condition. Indeed, given cell

fractions F, the problem of finding a tree T and an assignment p of

cell fractions to vertices of T satisfying the Sum Condition is the

problem investigated in several previous works (El-Kebir et al.,

2015, 2016; Malikic et al., 2015; Popic et al., 2015). El-Kebir et al.

(2015) and Popic et al. (2015) describe the solutions to this problem

as finding a constrained set of spanning trees of a particular graph.

Popic et al. (2015) and El-Kebir et al. (2016) use a specialized ver-

sion of the Gabow-Myers algorithm (Gabow and Myers, 1978) to

enumerate this specific set of trees.

We combine the above ideas into the PASTRI algorithm

whose steps are the following. (1) Generate N samples

F
ð2Þ
; . . . ;F

ðNÞ � QðFÞ. (2) For each sample F
ðiÞ

, enumerate the set

T
F
ðiÞ of tree/permutation pairs ðT;p‘Þ that respect the Sum

Condition across all vertices. (3) Calculate the posterior probability

of a tree T as follows:

PrðT ¼ TjA ¼ A;D ¼ D;x; c; lÞ / cT

ð
F

PrðA ¼ AjF ¼ F;D

¼ D;xÞPrðF ¼ FjT ¼ T;lÞdF (8)

� cT

N � k!

XN
i¼1

Xk!

‘¼1

PrðA ¼ AjD ¼ D; F ¼ F
ðiÞ
;xÞPrðF ¼ p‘	F

ðiÞjT ¼ T; lÞ
QðFðiÞÞ

(9)

¼ cT

N �k!

XN
i¼1

X
ðT;p‘Þ2T

F
ðiÞ

PrðA¼AjD¼D;F¼F
ðiÞ
;xÞPrðF¼p‘	F

ðiÞjT¼T;lÞ
QðFðiÞÞ

:

(10)

Note that any pair ðT; p‘Þ 62 T
F
ðiÞ will have a probability

PrðTjF ¼ p‘	F
ðiÞ
; lÞ ¼ 0. Thus, summing over just ðT; p‘Þ 2 T

F
ðiÞ

(Equation 10) is equivalent to summing over all permutations

(Equation 9). In practice, instead of calculating the likelihood for

each tree T separately, we use the same set of samples for all trees.

Thus, for each sample F
ðiÞ

, we only need to enumerate T
F
ðiÞ once.

In the results below, we report a single optimal cluster cell frac-

tions F
 and cluster assignments ~c
. We compute these optima as

follows. Let T
 be the optimal tree, the one with the highest poster-

ior probability. Then F
 is obtained as

F
 ¼ argmaxF maxðT
 ;pÞ2T
F

PrðA ¼ AjD ¼ D;F ¼ F;xÞ

�PrðF ¼ p	FjT ¼ T
; lÞ:
(11)

As cluster assignments are conditionally independent given x; F


and read counts A and D, we optimize each independently,

obtaining

c
j ¼ argmax
i2f1;...;kg

xi � PrðA ¼ AjD ¼ D;F ¼ F
Þ: (12)

In Supplementary Methods SA.1, we describe how we generalize im-

portance sampling to use multiple proposal distributions. This

allows us to sequentially adjust the proposal distribution to find

more samples that respect the Sum Condition, using the uncon-

strained posterior as a starting point.

3 Results

3.1 Benchmarking on simulated data
We compare PASTRI to three other methods for constructing tumor

phylogenies: PhyloSub (Jiao et al., 2014), Canopy (Jiang et al.,

2016) and AncesTree (El-Kebir et al., 2015). PhyloSub and Canopy

both employ a Bayesian non-parametric model to simultaneously

infer the number of clones, the most likely clusters and cluster cell

fractions, and the phylogeny. AncesTree is a combinatorial method

which takes as input clusters of SNVs and infers the largest tree with

these clusters. We used SciClone (Miller et al., 2014) to generate

clusters as input for both PASTRI and AncesTree.

We generate 50 instances each of 3, 4 and 5 vertex trees with 20

SNVs. All simulated instances contain 5 sequenced samples, each

with 200X coverage. PhyloSub and Canopy were both run using de-

fault parameters. PASTRI was run for 10, 000 iterations, with uni-

form priors over U, C and T. We compare the methods using three

metrics: accuracy in recovering ancestral relationships, accuracy in

cluster cell fractions, and runtime. Further details of the simulations

are in Supplementary Section SB.1.

3.1.1 Recovering the phylogenetic tree

To assess the ability of each method to recover the true phylogenetic

tree, we measured the proportion of ancestral relationships between

SNVs that were correctly reported in the best reported tree by each

method. A pair of SNVs c and d can have one of four relationships

in a tree: c and d may be in the same cluster, c may be ancestral to d,

d may be ancestral to c, or c and d may be on distinct branches of

the tree. For all pairs of distinct SNVs in each sample, we measure

whether the reported relationship matched the relationship in the

true tree. The results for 5 vertex trees are shown in Figure 5a, with

results for 3 and 4 vertex trees in Supplementary Figure S3. We see

that PASTRI outperforms the other three methods. On 5 vertex

trees, PASTRI correctly infers all ancestral relationships on 46% of

instances, while neither PhyloSub nor Canopy have a single instance

on which this happens.

3.1.2 Recovering cluster cell fractions

To assess each method’s ability to recover true cluster cell fractions,

we compare the true cluster cell fractions F to the reported cluster

cell fractions F
PT ; F
PS and F
CP, for PASTRI, PhyloSub and Canopy

respectively. We do not compare to AncesTree in this section since

we used SciClone clusters and cell fractions as input to AncesTree.

Fig. 4. Importance sampling. The data likelihood PrðA ¼ AjD ¼ D; F ¼ pi
	F ;xÞ

is the same for all permutations p of F for this tree T. However, p1
	F satisfies

the Sum Condition, and p2
	F does not. Thus p2

	F has a probability

PrðF ¼ p2
	F jT ¼ T ; lÞ ¼ 0
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Since an algorithm may return a different number of clusters than

the true number of clones, we use two different metrics to measure

accuracy Let dðfi; fjÞ ¼ 1
‘

Pm
‘¼1 jfi;‘ � fj;‘j be the average per-entry dis-

tance between two rows. Let k
 be the inferred number of clusters.

1. Metric 1 – A measure of sensitivity, matches the true clones to

the nearest reported clusters.

M1ðF; F
Þ ¼
Xk

i¼1

argmin
j2½1...k
�

dðfi; f


j Þ (13)

2. Metric 2 – A measure of specificity, matches the reported clus-

ters to the nearest true clones.

M2ðF;F
Þ ¼
Xk

j¼1

argmin
j2½1...k�

dðfi; f


j Þ (14)

Results using both metrics for 5 vertex trees are shown in Figure 5b.

Results with 3 and 4 vertex trees are in Supplementary Figure S4.

PASTRI consistently outperforms both PhyloSub and Canopy. Note

that in all cases, the median distance for PASTRI is less than the first

quartile of distances for both PhyloSub and Canopy.

3.1.3 Runtime

We compare the runtime of the four algorithms, using the combined

runtime of SciClone clustering and tree inference for PASTRI and

AncesTree. Figure 5c shows the results for 5 vertex trees. Note that

these results are shown on a log scale. Supplementary Figure S2

shows the results for 3 and 4 vertex trees. Note that both PhyloSub

and Canopy are sampling methods and the runtime is determined by

how many samples each method uses within their default param-

eters. As such, we expect increasing the number of samples improves

the accuracy of the methods. However, we see that PASTRI achieves

higher accuracy with significantly lower runtimes than either

PhyloSub or Canopy. Overall, runtimes ranged from on the order of

seconds for SciClone and AncesTree, minutes for PASTRI, and

hours for PhyloSub and Canopy.

3.1.4 Comparison to AncesTree

AncesTree and PASTRI rely on the same combinatorial structure for

tree inference, and differ primarily in the way they handle

uncertainty in variant allele frequencies. In particular, PASTRI uses

a probabilistic model for observed read counts, while AncesTree

relies on confidence intervals for cell fractions. Because of these sim-

ilarities, we performed additional comparisons to illustrate the dif-

ferences between these approaches. Since PASTRI uses a more

sophisticated error model, we expect that it would perform as good

as or better than AncesTree in recovering the true tree.

We generated trees with varying number of vertices (6–10), sam-

ples (2–10) and coverage (50X–500X). For these experiments, we

generated 50 trees, and the parameters that were not being varied

were fixed to k¼5 vertices, m¼5 samples, and coverage r ¼ 100X.

Each tree contained n¼50 mutations. Here we report the propor-

tion of ancestral relationships correctly inferred by AncesTree and

by the maximum likelihood tree found by PASTRI.

Figure 6a shows that as coverage increases, the performance of

both methods improves. Overall, PASTRI outperforms AncesTree

across all coverages, but we see the largest effect at high coverage.

At low coverage, there is considerable uncertainty in variant allele

frequencies, and thus, many trees are indistinguishable by likeli-

hood. While AncesTree reports a single tree, PASTRI provides a pos-

terior over all trees, reflecting the level of uncertainty in the

reconstruction. As the coverage increases, PASTRI sees larger gains

in performance. Interestingly AncesTree performance declines in the

highest coverage. This effect may be due to the error model for

AncesTree. As the coverage increases, confidence intervals over clus-

ter cell fractions become narrower. Thus small errors in the initial

clustering by SciClone may result in violations of the Sum Condition

(described in Section 2.1 and Fig. 1).

As the number of samples increases, the Sum Condition becomes

a stronger constraint. Thus, we expect a corresponding increase in

accuracy. Figure 6b shows that this is indeed the case for PASTRI.

However, for AncesTree, we see that after 4 samples, performance

begins to decline. This too is likely attributed to the simpler model

of uncertainty in cell fractions employed by AncesTree. For a clus-

ter, if the Sum Condition is violated in any sample, then that cluster

is not included in the tree. Thus, increasing the number of samples

results in a decline in performance for AncesTree.

To evaluate the performance of AncesTree and PASTRI on dif-

ferent size trees, we used parameters r¼100 and m¼5 where the

two algorithms showed similar performance for smaller trees. We

see a moderate decline in performance of both algorithms as the

(a) (b) (c)

Fig. 5. Comparison of phylogenetic reconstruction algorithms. We simulate 50 trees with 5 vertices, 5 samples and 20 mutations. (a) To quantify the accuracy of

the tree inference, we measure the proportion of ancestral relationships that the algorithms correctly recover. A pair of mutations c and d has four possible ances-

tral relationships: c is ancestral to d, d is ancestral to c, c and d are in the same cluster, or c and d are on separate branches. (b) To measure how accurately the al-

gorithms recover the true cell fractions, we report two metrics, given by Equations 13 and 14. Both metrics measure the average distance between the true

cluster cell fraction matrix F and the reported cluster cell fractions. Metric 1 penalizes for overestimating the number of clusters, and Metric 2 penalizes for under-

estimating. (c) We report the runtime in seconds of each method, where the x-axis is a logarithmic scale
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number of vertices grow. This is not surprising since the number of

possible trees grows exponentially with the number of vertices, but

the amount of observed data A and D remains fixed. PASTRI con-

sistently outperforms AncesTree on both average and worse case,

for nearly all size trees.

3.2 Chronic lymphocytic leukemia
Rose-Zerilli et al. (2016) sequenced 13 patients with chronic

lymphocytic leukemia (CLL). Each patient had 2–5 samples taken

longitudinally over the course of their disease and these were sub-

jected to a number of analyses including targeted deep sequencing.

The authors classify the patients into those with linear phylogenies

(4/13 patients) and those with complex branching phylogenies (9/13

patients) on the basis of PhyloSub (Jiao et al., 2014) analysis.

Branching phylogenies are used as evidence of subclonal competi-

tion prior to therapy.

Here we investigate Patient 5 in the study. This patient was clas-

sified as having a complex branching phylogeny (Fig. 7) using

PhyloSub analysis. For this patient, SciClone inferred 8 clusters of

mutations. Running PASTRI results in an optimal tree with 8 verti-

ces that is mostly linear. The fully linear tree was ranked third out of

115 trees. We calculate the likelihood of the data under both the

PASTRI read count observation model, and the PhyloSub read count

model, which allows for sequencing error (i.e. false positives and

negatives) in observations. Details on these models can be found in

Supplementary Section SB.3. Under both models, the likelihood for

both trees found by PASTRI are higher than the branching phyl-

ogeny reported in Rose-Zerilli et al. (2016). There are two possible

explanations for the discrepancy. First, it is possible that PhyloSub’s

sampling procedure never found either the optimal tree or the linear

tree. Second, the tree-structured stick breaking prior over trees used

by PhyloSub has hyperparameters that influence the width and the

depth of the trees. As a result, the branching phylogeny presented

may have been preferred to a linear phylogeny. However, if an in-

tention of a study is to classify patients by phylogenetic tree struc-

ture, it makes sense to use non-informative priors over trees.

We analyzed this same patient using AncesTree. AncesTree was

not able to find a tree relating all 8 clusters. Supplementary Figure

S6 shows the largest tree found by AncesTree, containing 6 clusters,

and 18/20 mutations.

4 Discussion

We introduced PASTRI, a new method that simultaneously clusters

mutations and infers tumor phylogenies from bulk-sequencing data.

PASTRI exploits the conditional independence of the observed read

counts from the latent phylogenetic tree given the cluster cell frac-

tions. Because of this conditional independence, we are able to ex-

ploit combinatorial constraints (El-Kebir et al., 2015; Jiao et al.,

2014; Malikic et al., 2015; Popic et al., 2015; Strino et al., 2013) to

Fig. 7. Patient 5 from Rose-Zerilli et al. (2016). This patient was classified as having a complex branching phylogeny using PhyloSub analysis (right). Running

PASTRI finds an optimal phylogeny that is mostly linear (left). Restricting to linear phylogenies results in the center tree, which was the third most likely phyl-

ogeny out of 115 possible. We calculate the likelihood of the data under both the PASTRI read count observation model, and the PhyloSub observation model

that also models sequencing error in observations. Under both models, the likelihood for both trees found by PASTRI are better than the reported branching

phylogeny

(a) (b) (c)

Fig. 6. The effect of coverage, number of samples, and number of vertices on performance of AncesTree and PASTRI. For every combination of parameters, we

generate 50 trees. Here we report the proportion of ancestral relationships that were correctly recovered. Overall, PASTRI has higher average performance for all

sets of parameters, but the magnitude of this effect differs. (a) As the coverage increases, and uncertainty in variant allele frequencies decreases, PASTRI’s accur-

acy increases. AncesTree’s accuracy increases initially, but declines at the highest coverages. (b) Similarly, as the number of samples increases and the problem

becomes more constrained, PASTRI’s accuracy increases, while AncesTree’s accuracy peaks with four samples, and then declines. (c) As the number of vertices

in the tree increase, both AncesTree and PASTRI see a similar moderate decline in performance, although PASTRI consistently outperforms AncesTree
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efficiently marginalize over cluster cell fractions, using a combina-

torial tree enumeration algorithm. At the same time, we utilize a

probabilistic model for the observed read counts that models errors

and uncertainty in sequencing data. By leveraging combinatorial

structure into the probabilistic inference, we obtain improved accur-

acy over prior combinatorial algorithms—due to better modeling of

uncertainty in the sequence data—and improved runtime over prob-

abilistic methods—due to more efficient inference.

By using importance sampling, we direct the computation toward

regions of the sample space with highest probability. As a result,

PASTRI will calculate more precisely the posterior probability of the

trees that have the higher probability versus trees that have low prob-

ability. In our application, this is an acceptable tradeoff, as we are

most interested in recovering the highest probability trees, and gener-

ally are not concerned with ranking highly unlikely trees. Note that

our importance sampling approach can use any algorithm that com-

putes a posterior distribution over clusters; we have used SciClone

(Miller et al., 2014) in this work, but PyClone (Roth et al., 2014),

Clomial (Zare et al., 2014) or other algorithms can also be used.

In Section 3.2, we examined data from a study that aimed to clas-

sify patients as having either a linear of a complex branching phyl-

ogeny. We showed a case where an existing algorithm failed to find a

linear phylogeny that had higher likelihood than the reported branch-

ing phylogeny. In cases with few samples or low coverage, there is sig-

nificant ambiguity in the tree structure, and many trees may have

similar likelihood. Reporting the single solution of highest likelihood

may not accurately recover the underlying phylogeny. In particular,

when distinguishing between linear and branching phylogenies, there

may be many branching trees, but only a single linear tree. Thus, it is

important to consider the posterior distribution over tree topologies,

particularly when correlating topology to other clinical features.

There are a number of directions for future work. First is to im-

prove the model selection problem of choosing the number of clones/

clusters. In this work, we relied on the model selection procedure per-

formed by the clustering algorithm. However, it is plausible that in

some scenarios the phylogenetic tree constraint would shift cluster cell

fractions in such a way to affect the choice of the number of clones.

Second, while we have demonstrated PASTRI using single-nucleotide

mutations, the hybrid combinatorial-probabilistic approach generalizes

to the analysis of copy-number aberrations (CNAs), which are wide-

spread in solid tumors. As CNAs affect the observed allele counts of

single-nucleotide mutations in a predictable way (as described in

Deshwar et al. 2015; El-Kebir et al. 2016), the interaction between

observed CNAs and allele counts can be modeled. Finally, the hybrid

inference algorithm presented here could generalize to other problems

where there is conditional independence between a combinatorial

structure (here a tree) and a probabilistic model.
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