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a b s t r a c t

The Internet of Things (IoT) is the latest web evolution that incorporates billions of devices that are owned
by different organisations and people who are deploying and using them for their own purposes. IoT-
enabled harnessing of the information that is provided by federations of such IoT devices (which are often
referred to as IoT things) provides unprecedented opportunities to solve internet-scale problems that have
been too big and too difficult to tackle before. Just like otherweb-based information systems, IoTmust also
deal with the plethora of Cyber Security and privacy threats that currently disrupt organisations and can
potentially hold the data of entire industries and even countries for ransom. To realise its full potential, IoT
must deal effectively with such threats and ensure the security and privacy of the information collected
and distilled from IoT devices. However, IoT presents several unique challenges that make the application
of existing security and privacy techniques difficult. This is because IoT solutions encompass a variety
of security and privacy solutions for protecting such IoT data on the move and in store at the device
layer, the IoT infrastructure/platform layer, and the IoT application layer. Therefore, ensuring end-to-end
privacy across these three IoT layers is a grand challenge in IoT. In this paper, we tackle the IoT privacy
preservation problem. In particular, we propose innovative techniques for privacy preservation of IoT
data, introduce a privacy preserving IoT Architecture, and also describe the implementation of an efficient
proof of concept system that utilises all these to ensure that IoT data remains private. Theproposedprivacy
preservation techniques utilise multiple IoT cloud data stores to protect the privacy of data collected
from IoT. The proposed privacy preserving IoT Architecture and proof of concept implementation are
based on extensions of OpenIoT - a widely used open source platform for IoT application development.
Experimental evaluations are also provided to validate the efficiency and performance outcomes of the
proposed privacy preserving techniques and architecture.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

‘‘Internet of Things’’ (IoT) is the latest Internet evolution that
involves (i) incorporating billions of internet-connected sensors,
cameras, displays, smart phones, wearable, and other smart
devices that communicate via the internet (which are collectively
referred to as IoT things), and (ii) harnessing their data and
functionality to provide novel smart services and products that
benefit our society. A recent forecast made by the Gartner projects
Internet of Things and the associated ecosystem to be a $1.7 trillion
market by 2020 and include 28.1 billion connected things [1]. IoT
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is fuelling a paradigm shift of a truly connected world in which
everyday objects become interconnected, able to communicate
directly with each another, and capable of collectively providing
smart services [2]. However, in many such applications [3] the
data collected by IoT is sensitive and must be kept private and
secure. Examples of sensitive IoT data include physiological data
collected by (in some cases wearable) biomedical sensors, energy
consumption data collected by smart meters, and location data
collected by mobile phones to name just a few. The disclosure of
such data may create opportunities for criminal activity, or result
in serious harm or even death. Therefore from such a perspective,
IoT presents a significant challenge for security, privacy and trust,
which are considered to be among the remaining main barriers in
IoT application development.
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Most of existing solutions for protection of privacy-sensitive
data in IoT focus on communication channels security and
authorisation. Littlework has been done to protect sensitive sensor
data after they are collected, integrated and stored. This creates
opportunities for both hackers and malicious administrators to
steal and disclose privacy-sensitive data collected and distilled
from IoT devices. To protect such privacy-sensitive data against
hacking, we need to develop an IoT platform/infrastructure that
ensure end-to-end privacy and security (i.e., starting from the
point of data collection from IoT devices thought the point of data
harnessing for delivering IoT applications and/or related services).

In this paperwe introduce anovel privacy-preserving technique
and a related IoT architecture that are designed to protect sensitive
IoT sensor data from disclosure and hacking [4,5]. The basic idea
in this technique involves two steps. First, each data item x that
is collected from an IoT device is randomly transformed to a sum
of n numbers, i.e., x = x1 + x2 + xn(n ≥ 2), and each addend
x1, . . . , xn is stored in a different data store. Therefore, our solution
requires the use of n data stores (in a server or/and the cloud)
and each data store Di keeps only the addend xi of x(n ≥ i ≥

1). Second, we also propose the introduction of a homomorphic
encryption scheme that allows access to the data collected from
IoT devices via the aggregation of their addends, and hencewithout
the risk of exposing sensitive data to hackers or to data store
administrators. Even in cases where all but one of the n data stores
are compromised, the IoT data remains private. Specifically, this
paper makes the following contributions:

• Introduces a privacy-preserving technique for controlling
access to sensitive IoT data via decomposing sensitive data
to addends that are stored in multiple data stores and then
(re)aggregating the IoT data when is requested by a user
without exposing any anything beyond meaningless addends.

• Proposes a blueprint for a privacy preserving IoT architecture
that provides end-to-end privacy based on the proposed
privacy-preserving data access scheme.

• Describes a proof-of-concept system prototype implementa-
tion and evaluates its efficiency.

The rest of the paper is organised as follows. In Section 2, we
present a survey of the current state-of-the-art in IoT security.
In Section 3, we propose and formulate the proposed security
technique. In Section 4, we present the blueprint architecture
the IoT system that implements the proposed security technique
implementation. In Section5,wepresent experimental evaluations
of the developed system. Section 6 concludes the paper.

2. Related work

IoT is an important new internet technology with great poten-
tial for developing smart buildings and cities, assisted living and
healthcare, precision agriculture and environmental monitoring,
manufacturing, as well as for security and defence [6]. IoT systems
and their applications must deal with malicious information dis-
closure and provide techniques that protect sensitive data, such as
patient data in healthcare, energy consumption data from smart
energy meters, and location data. IoT poses the following privacy
challenges that define the need for novel privacy and data protec-
tion techniques [7,8]:

• Lack of control over IoT devices,
• Inferences derived from collected data,
• Pattern extraction from anonymous data, and
• Privacy loss across IoT layers, e.g., devices, infrastructure

storage, applications, and related communications.
The need for security and privacy solutions is also highlighted by
IoT forensic researchers [9–11].

Existing techniques for protecting sensitive data in IoT have
mainly focused on securing the communication channel, as well
as user authentication and authorisation. However, there is a
significant gap in developing techniques that can ensure privacy
in the collection, storage, and retrieval (providing computed
aggregations without exposing the data) of IoT data.

2.1. Communication channel security mechanisms

To secure communication in IoT, it is important to encrypt data
communicated between IoT devices, gateways and other IoT in-
frastructure due to the public nature of the Internet. Keys for en-
cryption must be agreed upon by communicating nodes [12,13].
Due to resource constraints, key agreement in IoT is non-trivial.
Many key agreement schemes used in general networks, such as
Kerberos [14] and RSA [15], may not be suitable for IoT because
there is usually no trusted infrastructure in IoT. Pre-distribution
of secret keys for all pairs of nodes is not viable due to the large
amount of memory used when the network size is large. To over-
come this problem, a random key pre-distribution scheme [16]
was proposed, where each sensor node receives a random sub-
set of keys from a large key pool before deployment and any two
nodes can find one common key within their subsets and use that
key to secure the communication. Without requiring any key pre-
distribution, data sensed within IoT has been used to establish the
common secret key. For example, in [17], two sensors S1 and S2 in
a Body Sensor Network (BSN) use the common electrocardiogram
(EKG) signals of a patient to establish a secret key.

Roman et al. [18], Du et al. [19] and Camtepe et al. [20] analyse
the applicability of several link-layer oriented key management
systems (KMS), which establish keys for sensor nodes within the
same WSN using techniques such as linear algebra, combinatorics
and algebraic geometry. However, the authors mention not all
mathematical-based KMS protocols can fulfil the IoT context,
according to the analysis result, only [19,21] might be suitable
for some IoT scenarios. At the end of the paper, the authors
recommend to use a trusted third party to enable other key
management mechanisms.

OSCAR [22] is a more recent approach for end-to-end security
of IoT. It is based on the concept of object security and focuses
on securing the message payload to enable secure M2M commu-
nication. The novel aspect of OSCAR is the use of cryptography
techniques over CoAP protocol to ensure lightweight and scalable
encryption. Similarly in [23], the authors propose a lightweight
method using (Internet Protocol Security) IPsec for securing end-
to-end communication channel between unconstrained peers and
IoT devices (constrained). The proposed method makes it possible
for an unconstrained node to set up an IPsec-ESP Transport Mode
connection with an IoT device while moving the master session
key generation and authentication processes from the IoT device to
the trusted gateway. The ESP mode (that provides data encryption
and authentication) allows the setup of an end-to-end secure con-
nection between two peers by encrypting the payload, therefore,
the proposed method relieves the IoT devices from the computa-
tional burden associatedwith the generation of cryptographic data.
Under the proposed method, IoT devices can benefit from higher
level of cryptosystem without executing the intensive computa-
tion. In [24], the authors propose a novel secure and scaled IoT stor-
age system to tackle the aforementioned issues at both data and
system levels, which is based on Shamir’s secret sharing scheme.
There are mainly four components in the proposed system: client,
dispatcher, peer managers and regular peers, and the system
is organised into three layers: (1) file saving and restoration,
(2) connection setup and data transfer, and (3) share replication.
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They provide a secret sharing mechanism in order to eliminate
complex key management. Both [23,24] focus is on using encryp-
tion methods to protect the communication layer (device to cloud
and cloud to user).

2.2. Authorisation and access control

As a large amount of sensed data are stored in sensor
nodes or database, it is important to control access to the
data [25]. Attribute-based encryption (ABE) [26] has been used to
control access to sensor data in [27,28]. In traditional public-key
cryptography, a message is encrypted for a specific receiver using
the receiver’s public-key. Identity-based encryption (IBE) [29]
changed the traditional understanding of public-key encryption by
allowing the public-key to be an arbitrary string, e.g., the email
address of the receiver. ABE goes one step further and defines
the identity not atomic but as a set of attributes, e.g., roles, and
messages can be encrypted with respect to subsets of attributes
(key-policy ABE-KP-ABE) or policies defined over a set of attributes
(ciphertext-policy ABE-CP-ABE). The key issue is, that someone
should only be able to decrypt a ciphertext if the person holds a
key for matching attributes. User keys are issued by some trusted
party.

In CP-ABE, a user’s private-key is associated with a set of
attributes and a ciphertext specifies an access policy over a defined
universe of attributes within the system. A user will be able to
decrypt a ciphertext, if and only if his attributes satisfy the policy of
the respective ciphertext. Policies may be defined over attributes
using conjunctions, disjunctions. For instance, let us assume that
the universe of attributes is defined to be A = General, B = Nurse,
C = Doctor, D = Specialist and User 1 receives a key to attributes
A, B and User 2 to attribute D. If a ciphertext is encrypted with
respect to the policy (AC)D, then User 2 will be able to decrypt,
while User 1will not be able to decrypt. In KP-ABE, an access policy
is encoded into the users secret key, e.g., (AC)D, and a ciphertext
is computed with respect to a set of attributes, e.g., A, B. In this
example the user would not be able to decrypt the ciphertext but
would for instance be able to decrypt a ciphertext with respect
to A, C. Based on KP-ABE, a Fine-grained Distributed data Access
Control scheme, namely FDAC, was proposed for IoT in [27]. FDAC
is resistant against user collusion, i.e., the cooperation of colluding
userswill not lead to the disclosure of additional sensor data. Based
on CP-ABE, another fine-grained access control scheme for IoT was
proposed in [28]. This scheme allows AND-based policies only.

Hu et al. [30] propose an identity based system, which protects
location information of IoT devices during emergency situations. In
the approach, each user communicates with others using Virtual
Identity (VID), which does not contains any real information about
the user. Under this architecture, users’ privacy can be protected
well because they only send VID(s) to communicate, and VID is
anonymous and un-linkable to users. The location informationwill
finally be sent to the user making a request only after verification
of their identities. In IoT, verifying identities of IoT devices are
crucial to prevent unauthorised access to user’s private data, and
enable access to only legitimate users. Liu et al. [31] propose
an authentication protocol for IoT systems. Under the proposed
protocol, IoT devices are end nodes, and each node has a unique
global address for connecting over the Internet. To establish a
session key, both secrete-key cryptosystems (SKC) and public-key
cryptosystems (PKC) have been considered for IoT environments,
but they all suffers several problems, such as SKC requires large
memory to store key chains and PKC suffers from high energy
consumption. Kalra et al. [12] propose an ECC (Elliptic Curve
Cryptosystem) based key establishment method suitable for IoT
environment. The analysis results indicate the proposed protocol
can prevent eavesdropping,man-in-themiddle, key control attack,
and replay attacks.
2.3. Privacy preservation

In existing sensor network-based privacy solutions, such
as those provided by CodeBlue [32], ALARM-NET [33] and
MEDiSN [34], the sensitive data collected by IoT sensors is stored
in a database for users to access and analyse. All data is encrypted
during the transmission and decrypted in the data store. However,
such existing sensor network solutions require complete trust
of the data store and cannot guarantee privacy in cases where
malicious data store administrators and hackers compromise
privacy by disclosing such sensitive IoT data.

IoT devices using existing biometric-based key agreement
protocols, such as [17], establish cryptographic keys by using
unique biometric data, such as EKG data, obtained from the data
owner. So far, the security of such protocols has not been analysed
under any formal security model. It is currently unclear if there is
any security weakness in these protocols.

Existing authenticated broadcast protocols [35], require IoT
sensors authenticate the broadcast data with the key disclosed
by their gateway in next time interval. This causes a delay in the
authentication, and each sensor has to keep all unauthenticated
packets in its buffer. Even in case where a delay is acceptable, IoT
devices usually have limited buffer space. Furthermore, there is
no privacy protection for the broadcast messages and no formally
proven security model.

In the existing ABE-based access control scheme [27,28],
sensors need to encrypt IoT data with ABE schemes. The encrypted
data can be decrypted only by the user who meets the access
control policies. However, ABE schemes [26] typically produce
a high computation and are difficult to implement in wireless
sensors and IoT devices with limited power and computation
capabilities.

Interaction-based privacy preservation frameworks, e.g., [36],
are based on the strategies for restricting the non-authorised
operations, and neutralising the execution of non-authorised
operations. This privacy preservation approach uses privacy
protection levels in order to restrict access to sensitive data. This
prevents non-authorised operations on IoT data.

Utility-aware privacy preservation techniques, e.g., as proposed
in [37], are based on a negotiation approach where the consumer
and producer exchange privacy and utility preferences to jointly
ensure user’s privacy and utility of data for the producers. This
approach is particularly interesting as IoT data producers benefit
from negotiating a certain level of privacy with the users in order
to derive utility from the data.

Public key solutions, e.g., as in the system proposed described
in [38], enable data protection for IoT devices. They use IoT
gateways to collect data from sensors and apply appropriate
data encryption, user access control and secure transmission
techniques for establishing the essential privacy and security
required for sensitive data. Furthermore, there is also a growing
interest to support and integrate conceptual forensic-by-design as
reported in [39].

The privacy preservation technique proposed in this paper is
different as it provides both privacy-preserving IoT data storage
and access to such data for end-users without revealing the actual
data (in the worst case malicious administrators and hackers
can only get access of the meaningless addends that are used
to ‘‘reaggregate’’ sensitive IoT data). The proposed solution takes
advantage of the inherent characteristic of distributed computing
i.e. avoids single point of attack/failure as compared to the current
state-of-the-art presented earlier (which are primarily based on
centralised data and privacy-preserving architectures). Moreover,
to the best of our knowledge, none of the existing approaches
provide privacy preserving access to IoT data without exposing
the IoT data to a certain degree which is subject to user privacy
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Fig. 1. IoT data ingestion model.

Fig. 2. Data ingestion—random number generation scheme.

settings. On contrast, the proposed technique allow operations
such as aggregation, minimum,maximum, standard deviation etc.,
to be performed in a privacy-preserving way without exposing the
raw data to the end user. Finally, no working IoT system currently
uses any of the existing techniqueswediscussed above or currently
provides data security and privacy across all IoT layers.

3. Integrated privacy protection scheme for end-to-end secu-
rity

In our proposed approach [4,5], the IoT data store is composed
of multiple servers. We assume that all servers are semi-honest
and may try to learn about the data over time. The security
requirements of our technique include:

1. Secure connection between gateway and IoT server
2. Secure persistence of data into the IoT data store
3. Privacy-preserving access to IoT data for data analysis without

disclosing the data to other servers or the user.

3.1. Data ingestion scheme

Consider the IoT device produces a sequence of data (e.g. tem-
perature, humidity) d1, d2, d3 . . . dm. The proposed data ingestion
scheme splits the IoT data dj(j = 1 tom) into n (number of servers)
parts namely α1j, α2j, α3j . . . αnj termed data addends such that
dj =

n
i=1 αij. Assume, the total number of server n is 3, the sen-

sor produces a data point di and the three parts of the data are
α, β and γ respectively. First, the sensor generates a sequence of
random numbers r1, r2, r3 . . . (each has 40 bits) with SHA-3 (r =

40 and c = 160) where Key is the random number generation se-
cret key known only to the IoT device or the IoT gateway and the
IV includes the current time stamp. Both Key and IV are 80 bits. Let
|αi|(|βi|) be the first 32 bits of r1(r2). The sign of |αi|(|βi|) is positive
if r1(r2) is even and otherwise negative. The sensor then computes
γi = di − αi − βi for i = 1, 2 . . . . The proposed data ingestion
scheme is presented in Fig. 1 and the random number generation
is presented in Fig. 2.
Remark. The communication channel (constrained) can be pro-
tected using any lightweight encryption scheme such as DES or
approaches presented in [12]. The proposed data ingestion scheme
uses minimalistic computation on the sensor node or the gateway
node to split the data based on the server configuration. As long as
two in a three server configuration is not compromised, the privacy
of the IoT data is protected.

3.2. Data access control scheme

Thedata access control schemeuses a homomorphic encryption
scheme provided by the Paillier cryptosystem [40] to ensure
privacy-preserved access to IoT data. To access the data, the user
is required to provide a public and private key pair (pk, sk) for
the Paillier cryptosystem. The key could potentially be managed
and issued by a Certificate Authority (CA). To request the data,
the user sends a request that includes the identity of the user,
the query (including time window), operation to be performed
(aggregation) on the data and the public, private key pair. In our
proposed scheme the focus is to provide analysed data to the end-
user without exposing the actual data to both intermediate servers
and the end-user. The communication channel between the end-
user and the data access layer is assumed to be a secure channel
and the data access layer uses some form of access control similar
to [27,28]. If the user’s request passes the signature verification
andmeets the access control policies, the data access layer will run
Algorithm 1 to fetch the corresponding data.

Algorithm 1: Data access control scheme
Data: pk,identification,query
Result: E(ρ)-query result encrypted using users pk

1 The user provides pk to the data access layer
2 The data access layer will pass the pk to n servers
3 For each server Si where i = 1 to n
4 The server Si picks a random ri ∈ Z∗

N and computes
Ci = Encrypt(αi, pk) = gα

i r
N
i (modN2)

return Ci
5 End for
6 The data access layer will compute

E(ρ) = C1 ∗ C2 ∗ C3 . . . Ci where i = 1 to n
7 Return E(ρ) to user
8 User Decryption

ρ = Decrypt(E(ρ), sk)

Due to the homomorphic properties of the Paillier cryptosys-
tem,we have (assuming 3 servers andα, β, γ being the three parts
of the data to illustrate the homomorphic property)

C1C2C3 = E(α, pk)E(β, pk)E(γ , pk)
= (garN1 )(gbrN2 )(gγ rN3 )( mod N2)

= gα+β+γ (r1r2r3)N( mod N2)

= E(α + β + γ , pk).

Therefore, the result of this is,

ρ = Decrypt(C1C2C3, sk) = α + β + γ .

In order to perform statistical analysis on the IoT data, we
present a scheme that allows fast privacy-preserved computation
of average over collected IoT data. When the user queries the
average of collected IoT data d1, d2, d3 . . . dx where dj =

n
i=1 αij

where j = 1 tom via the data access layer from n servers, the data
access layer and the server will run Algorithm 2 to compute the
average. The user query will include the identification of the user
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Algorithm 2: Data access - average computation
Data: pk,identification,query (window)
Result: AVG (E(ρ))-query result encrypted using users pk

1 The user provides pk to the data access layer
2 The data access layer will pass the pk to n servers
3 For each server Si where i = 1 to n

The server Si picks a random ri ∈ Z∗

N
The server will query x data points based on the query
window
server computes
Ci = Encrypt(

n
i=1 k=1tox αik, pk)

= g
n

i=1 k=1→x αik rNi
return Ci

4 End for
5 The data access layer will compute
E(ρ) = C1 ∗ C2 ∗ C3 . . . Ci where i = 1 to n
AVG(E(ρ)) = E(ρ)/x

6 Return AVG(E(ρ))touser
7 User Decryption
x = Decrypt(E(ρ), sk)

and the query (e.g. average over the last 10 min). The query can be
over a single attribute or multiple attributes.

Due to the homomorphic properties of the Paillier cryptosystem
(assuming 3 servers and α, β, γ being the three parts of the data
to illustrate the homomorphic property), we have

C1C2C3 = (g


αkrN1 )(g


βkrN2 )(g


γkrN3 )( mod N2)

= g


(αk+βk+γk)(r1r2r3)N( mod N2)

= E


dk, |pk|


.

Therefore, the result of this is,

x = Decrypt(C1C2C3, sk)/n =

x
k=1

dx/n.

3.3. Security analysis

In the proposed privacy-preservation technique, there are four
parts of communication namely, (1) communication between the
IoT device and the gateway, (2) the communication between the
gateway and the data store, (3) the communication between the
data store and the data access layer and (4) the communication
between the user and the data access layer. We assume that the
communication between the IoT device, data store and the user
are through secure channels (e.g. DES or AES) that can use any of
the most recent light-weight key sharing schemes [24,23].

The security analysis of the proposed privacy-preserving
technique is into two stages namely (1) the data ingestion stage
and (2) the data access stage. In the data ingestion stage, the data
split across n servers are generated by a SHA-3 with a secret key
known only to the IoT device or the gateway as shown in Fig. 1.
Any inside attack on the data store cannot guess the other random
number to infer the actual data. The complexity to decode the
actual data increases with increasing number of servers.

In the data access scheme, all the data and the intermediate
data are encrypted by the user’s public key. Neither the data
access layer, the user nor the individual servers have access to the
actual data stored in the distributed Privacy-Preserving IoT system.
A more detailed analysis of the proposed approach is presented
in [5]. The common attack models namely eavesdropping,
impersonation, modification and data breach are addressed by the
use of the proposed privacy-preserving data ingestion and analysis
schemes.
4. Privacy preserving IoT architecture

To develop a Privacy Preserving IoT Architecturewewill extend
the blueprint IoT Architecture we designed for OpenIoT [41]
to incorporate the proposed privacy preservation techniques for
end-to-end IoT privacy. In the next section, we first provide an
overview of the OpenIoT platform [41]. We then present the
Privacy Preserving IoT Architecture IoT as an extension to the
OpenIoT platform.

4.1. Overview of OpenIoT

In this paper we consider OpenIoT [41] as a representative
of IoT platforms currently being available via the open source
community. OpenIoT is a first-of-kind, award-winning, open
source IoT platform that provide services for discovery and
integration of IoT devices, IoT data integration, and cloud-based
storage. OpenIoT also allows IoT application to request and process
IoT data as needed to provide IoT services and related products.
More specifically, OpenIoT’s Architecture is comprised by the
following components as depicted in Fig. 3:

• Sensor Middleware: collects filters and combines data streams
from virtual sensors or physical devices. It acts as a hub
between the OpenIoT platform and the physical world. The
sensor middleware uses an extension of the Global Sensor
Networks [42] namely x-GSN.

• Cloud Data Storage: is based on the Linked Sensor Middleware
Light (LSM-Light) and enables the storage of data streams
stemming from the Sensor Middleware thereby acting as
a cloud database. The cloud infrastructure stores also the
metadata required for the operation of the OpenIoT platforms
(functional data).

• Scheduler processes: all the requests for on-demand deploy-
ment of services and ensures their proper access to the re-
sources (e.g. data streams) that they require. This compo-
nent undertakes the following tasks: it incorporates seman-
tic discovery of sensors and the associated data streams that
can contribute to service setup; it manages a service and se-
lects/enables the resources involved in service provision.

• Service Delivery & Utility Manager (SDUM): performs a dual
role. On one hand, it combines the data streams as indicated
by service work flows in order to deliver the requested service.
On the other hand, this component performs service metering
to keep track of individual service usage.

• Request definition and Request Presentation: components
enable on-the-fly specification and visualisation of service
requests to the OpenIoT platform. The component selects
mashups from an appropriate library in order to facilitate
service definition and presentation.

4.2. System architecture

In our architecture, the sensor middleware component namely
x-GSN is responsible for communicating with the IoT device.
The data ingestion scheme is implemented as a wrapper in x-
GSN component that is responsible to send the sensed IoT data
to multiple (n) servers. The proposed privacy preserving IoT
architecture is presented in Fig. 3.

Remark. For illustration, we make the following assuming (1) we
have 3 lsm servers (n = 3) (2) x-GSN splits the data using the data
ingestion scheme into three parts namely α, β, and γ and (3) the
communication channels between the IoT device, x-GSN gateway,
user and the data access layer and other internal components are
through a secure challenges (all API access to the data is via HTTPS).
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Fig. 3. Privacy preserving IoT system architecture (depicted using 3 servers).
4.3. Authentication and access control

OpenIoT implements a central authentication and access con-
trol service namely CAS. CAS is based on the principles of the
OAuth authorisation framework [43]. The OAuth protocol de-
scribes methods for providing authorisation in a distributed en-
vironment, where distributed client applications get access to
owner’s resources using time-stamped tokens to avoid transmit-
ting credentials. In the proposed architecture the CAS plays the role
of the authorisation server, and all access to protected resources is
governed through its OAuth-based authorisation mechanism. Re-
sources could include IoT devices, IoT datasets, API services and
web applications. The access control mechanism in the proposed
architecture is based on RBAC (Role Based Access Control). A user
in our system could be a person, an application or another ser-
vice accessing services/data of the Privacy-Preserving IoT system
(e.g. API’s, data store etc.). The platform provides the flexibility to
define custom roles enabling access restriction to certain kind of
users/services. For example consider the users U = alice, bob and
permission P = ACCESS lsm&WRITE lsm. We can define roles such
as R = READlsm&READWRITE lsmwith the permission assignments

(ACCESS lsm, READlsm),

(WRITE lsm, READlsm)

(READWRITE lsm,WRITE lsm)

and define the user assignments as

(alice, READWRITE lsm), (bob, READlsm).

Then, alice will have the permission to both READ and WRITE
to LSM (cloud data store) while bob will have only READ access.
As depicted in Fig. 3, the authentication and access control is
integrated right from the IoT device layer to the application layer
(user/APIs).
4.4. Privacy preserving data storage and access

In this section, we describe the integration of the privacy
preservation technique presented in Section 3. As mentioned
earlier, x-GSN is responsible to implement the proposed data
ingestion scheme. Prior to data ingestion, x-GSN will register the
IoT device with the multiple LSM servers using the same sensor
ID generated by x-GSN. Instead of maintaining a centralised store
to keep track of sensor id, we introduce duplication of sensor id in
order to avoid a central point of attack at the registration layer. The
assumption is that x-GSN is generally not exposed to the internet
and employs schemes to enable protection from inside attacks. In
case of the LSM servers, x-GSNwill split the data using the random
number generation algorithm described in Section 3 into α, β&γ .
The sensor id, along with the split data points is ingested into LSM
(e.g. http://lsm.deri.ei/sensor/23456123,10). In order to facilitate
the computation of standard deviation and variance, we also store
the randomly split squared value of the data.

The privacy-preserving data access is performed by the
combination of Service Delivery and Utility Manager (SDUM) and
linked sensor middleware (LSM). We have built a component that
work with SDUM to integrate the proposed privacy-preserving
data access control scheme presented in Section 3.2. The key parts
of this component include:

• Request API: The request API is responsible for obtaining the
user’s request that includes the query (e.g. average temperature
in the living room over the last 30 min), the user identification
and the user’s Paillier public key.

• Access Control: This access control is an interface to the
OpenIoT access control mechanism. It is responsible for
checking the access permissions of the user over the requested
resources such as access to LSM, access to the IoT device
producing the data (e.g. some devices could be used only

http://lsm.deri.ei/sensor/23456123%2C10
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Fig. 4. Query processing (Average) performance with fixed key size and changing
window size.

Fig. 5. Query processing (Variance) performance when encrypting individual data
points.

Fig. 6. Query processing (Average)—encrypting every line of data.

for private purposes) and other permissions to access various
OpenIoT components (scheduler etc.).

• Data Acquisition: The data acquisition layer will either run
Algorithm 1 or 2 (described in Section 3.2) depending on the
type of query. The data acquisition is responsible to coordinate
the key exchange between the servers, pass the queries to
distributed LSM instances for execution and finally collect all
the response (encrypted statistical data).

• Analytics (privacy-preserving): This component work with the
data acquisition layer to compute the required statistics before
returning the final result to the user. At this step, all the data is
encrypted using the user’s public key. Hence the SDUM never
has access to the actual data.

The multiple LSM instances work independent of each other
and only know parts of the sensor data. As long as no two LSM
servers (in a three server configuration) are compromised, the
privacy of the IoT data is preserved. As mentioned earlier, the
higher the number of server, the higher the complexity to infer the
actual data.
4.5. Security analysis

In our proposed method, each data is split into n (n ≥ 3) parts
and stored in different LSM servers in plain-text. Each authorised
user owns a Paillier key pair, and public key and can use to retrieve
the data (provided he/she is authorised). The extended SDUM
and LSM provide a powerful computation layer between front-
end users and back-end servers, which handles all computation
and data transmission. When a user request a data, he/she can
simply sends his request and his public key to SDUM, and then
the layer broadcasts the public key to all LSM servers. Next, each
LSM server extracts specific data according to the request, and
returns encrypted data back to SDUM. The layer does the required
statistical computation on the cipher-texts by taking advantage of
the homomorphic properties discussed in Section 2. Finally, the
user (requester) receives a cipher-text result, which can only be
decrypted using his private key. As we use multiple servers to
store the split data, we do not store the data in an encrypted form.
Further all the servers are completely isolated from each other,
and eavesdroppers/hackers cannot reveal any actual data unless
all servers are compromised. Moreover, our approach allows the
Privacy-Preserving IoT system to be deployed on multiple cloud
platforms (e.g. a combination of Amazon and Windows Azure
running Linux and Windows).

Furthermore, since we split the data into n parts, the need
to encrypt individual data point is avoided which significantly
increases data processing speed. We assume the communication
channel between the IoT device, x-GSN and LSM are protected
using lightweight encryption approaches such asDES. This protects
the Privacy-Preserving IoT system from data breach. OpenIoT
uses an OAuth-based system for authentication and authorisation.
Hence, impersonation and modification of data is restricted as
users need to have the right set of permissions and roles to
access the Privacy-Preserving IoT system’s services. Further CAS
necessitates the need for a valid access token (with the correct
validity) used to authenticate legitimate users. By incorporating
access control across every component including SDUM, LSM,
scheduler and x-GSN, the proposed architecture further reduce the
risks of impersonation and data breach by allowing IoT application
users to have fine-grained access control (e.g. control at the
individual component level).

5. Experimental evaluations

In Section 3, we presented the proposed privacy-preserving
technique for IoT datas and in Section 4, we presented the archi-
tecture of the Privacy-Preserving IoT system that incorporated. In
this section, we present the result of our experiments evaluating
the performance of the proposed Privacy-Preserving IoT system
implemented by extending OpenIoT. In particular, we conducted
the following experiments in order to determine the overheads in-
troduced to the performance of a typical IoT systemwhile incorpo-
rating end-to-end privacy.

1. The performance of query processing using the Privacy-
Preserving IoT system incorporating the proposed scheme for
different aggregation operations (e.g. average and variance)

2. The impact on query processing performance when using
different Paillier key sizes to achieve privacy-preserving data
access.

5.1. Experimental setup

For experimental evaluation, we deployed 3 (n = 3) inde-
pendent containers of LSM server on amazon instances. We used
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Fig. 7. Query processing (Average) performance with varying key sizes and window sizes.
t2.large instances on Amazon Elastic Cloud Computing (EC2) plat-
form [44], runningUbuntu 14.04.4 LTS operating system. The hard-
ware configuration of the servers were two vCPU 3.3 GHz Intel
Xeon processors and 8 GiB of memory. The x-GSN instance was
connected to a synthetic IoT data source that produced tempera-
ture and humidity data. The dataset was collected over a period of
9 h allowing us to run window queries ranging from 2 min to 9 h.
For a givenquery, the following steps are performed (1) the query is
passed to the SDUMdata access layer, (2) SDUMpresents the query
with the user’s public Paillier key to the 3 LSM servers, (3) LSM
server execute the query, encrypt the data using the public key and
returns the encrypted data and (4) SDUM computes the statisti-
cal analysis as described in the query (Average and Variance) using
Paillier’s homomorphic properties and (5) SDUM returns the en-
crypted statistical results to the user. The query computation time
is computed as the sum of times required to perform steps 1–5. A
query window in our experiment is the amount of data requested
by the end-user/application. For example a typical query would be
average temperature for the past 30 min.

5.2. Query processing performance

In this experiment, we test the performance of the proposed
privacy-preserving data access scheme. The query provided by the
user was to compute the average of the sensor data over a given
window of time (2 min to 9 h). The result of this experiment is
presented in Fig. 4. As the results indicate, with a time window
of 9 h, the query response time is less than 1 s. This validates the
efficiency of the proposed scheme and it is a applicability for real-
world IoT applications.

To provide a benchmark of another common aggregation
operation namely variance, we modified our scheme to store both
the original sensor data di into three parts α, β, γ and the square
of the sensor data namely d2i into three parts namelyα,β,γ . The
result of this experiment is presented in Fig. 5.

In comparison, we conducted a similar experiment (Fig. 6)
to compute privacy-preserving average of IoT data using the
traditional approach i.e. encrypt every data point using Paillier key.
As it can bee seen, the computation time grows exponentially with
increasing amount of data. Given the plethora of IoT devices and
the huge amount generated, the traditional approach will fail or
will result in very poor query processing response time. However,
the proposed data ingestion scheme ensures privacy by splitting
the data into n parts while also handling large amounts of IoT
data. In summary, the proposed approach introduces very less
overheads with any significantly impact on the performance of the
IoT system while ensuring end-to-end privacy.
5.3. Impact of paillier key size

In this experiment, we tested the impact of using various
Paillier key sizes on the performance of the IoT system’s query
processing capability (while changing the query window size).
This experiment is relevant as in the proposed scheme, no prior
key exchange exists. Hence, the user is open to choose a Paillier
key combination of any size. The results of this experiment are
presented in Fig. 7. As noted from the experimental outcomes, the
change in key size has insignificant impact on the performance of
the query processing except when the key size is 2024. However
performance when using a 2024 key size is still within 1 s while
querying 9 h of sensor data.

The experimental evaluations clearly validate the feasibility
and applicability of the novel IoT privacy preserving techniques
and architecture for efficient support of IoT applications. Given
the ever increasing IoT (an ecosystem of billions of IoT devices)
and the amount of data contributed by these IoT devices, the
proposed approach is effective and efficient as it ensures privacy-
preserving storage and access to IoT data without compromising
on the overall performance of the IoT system. In particular,
the results presented in Fig. 6 indicate the exponential increase
in processing overhead when using the traditional approach of
storing individually encrypted IoT data. Given the nature of IoT
and the plethora of IoT devices/things, this approach is not
feasible to ensure security and privacy of large scale (in terms
of IoT devices used and data points managed) IoT application.
Moreover, note that our experimental results are based on floating
point data which introduces additional processing overheads
during the splitting, encryption and decryption process. However,
the proposed privacy-preserving techniques, architecture and
experimental system handles this very well without imposing any
significant impact as it is evident from these experimental results.

6. Conclusion

In this paper, we present a novel techniques for end-to-end pri-
vacy and security of next generation IoT systems. The proposed
techniques uses an innovative approach wherein each data item
x that is collected from an IoT device is randomly expressed as a
sumofmultiple numbers (data addends), such that x = x1+x2+xn
(n ≥ 2), and stored on n data stores that keep only one of the com-
ponents number xi. We also proposed a privacy-preserving data
access scheme that uses the homomorphic properties of the Pail-
lier cryptosystem to allow retrieval of analysed IoT data without
exposing the actual data to any of the servers or the users. We
implemented and demonstrated the feasibility and applicability
of novel IoT privacy preserving techniques and architecture using
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thewidely usedOpenIoT platform. Experimental evaluations of the
implemented Privacy-Preserving IoT system using data generated
from IoT devices show that the proposed techniques has insignifi-
cant impact on the overall performance of the IoT system.
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