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Abstract. The purpose of this paper is to study the problem of pattern classification as this is 
presented in the context of data mining. Among the various approaches we focus on the use of 
Fuzzy Logic for pattern classification, due to its close relation to human thinking. More 
specifically, this paper presents a heuristic fuzzy method for the classification of numerical 
data, followed by the design and the implementation of its corresponding tool ( Fuzzy Miner). 
The initial idea comes from the fact that fuzzy systems are universal approximators of any real 
continuous function. An approximation method coming from the domain of fuzzy control is 
appropriately adjusted into pattern classification and an “adaptive“ procedure is proposed and 
developed for deriving highly accurate linguistic if-then rules. Extensive simulation tests are 
performed to demonstrate the performance and advantages of Fuzzy Miner, as well as its 
potential commercial benefits over a real world scenarion. 

1. Introduction 
Recently, our capabilities of both generating and collecting data have increased rapidly. 
Consequently, data mining has become a research area with increasing importance. Data 
mining also referred to as knowledge discovery in databases [2], deals with problems such 
as characterization, comparison, association, classification, prediction and clustering. This 
paper elaborates with the problem of classification. Broadly speaking, pattern 
classification (or recognition) is the science that concerns the description or classification 
of measurements. More technically, pattern classification is the process that finds the 
common properties among a set of objects in a database and classifies them into different 
classes, according to a classification model.  

Classical models usually try to avoid vague, imprecise or uncertain information, because 
it is considered as having a negative influence in an inference process. This paper accepts 
the challenge to deal with such kind of information, by introducing a fuzzy system, which 
deliberately makes use of it. The main idea of fuzzy systems is to extend the classical two-
valued modelling of concepts and attributes like tall, fast or old in a sense of gradual truth. 
This means that a person is not just viewed as tall or not tall, but as tall to a certain degree 
between 0 and 1. This usually leads to simpler, more suitable models, which are easier to 
handle and are more familiar to human thinking. This paper, after providing a brief 
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comparative overview of pattern classification approaches (section 2), follows the above 
paradigm and proposes an effective heuristic fuzzy method for the classification of 
numerical data (section 3). The initial idea comes from the fact that fuzzy systems are 
universal approximators [4] of any real continuous function. Such an approximation 
method [8] coming from the domain of fuzzy control systems is appropriately adjusted in 
order to produce a powerful working solution in the domain of pattern classification. An 
“adaptive“ process is also introduced, developed and incorporated into the previous 
mechanism for deriving automatically highly accurate linguistic if-then rules. The 
description of the methodology is combined with the illustration of the design and the 
implementation issues of the corresponding tool (Fuzzy Miner). The current work is 
evaluated (section 4) by extensive simulation tests. Finally, the paper concludes (section 
5) and identifies promising directions for future work pointed to by this effort. 

2. Comparative Overview of Pattern Classification systems 
Already, when the field was still in its very infancy, it was realized that statistics and 
probability theory had much to offer to pattern classification [11]. The question of 
whether or not a given pattern “belongs” to some pattern class may naturally be treated as 
a special case of the statistical decision theory problem. Effective though as it is, the 
statistical approach has built-in limitations. For instance, the theory of testing statistical 
hypotheses entails that a clear-cut yes or no answer should always decide upon the 
membership of a pattern in a given class. Clearly, not all of the real life patterns admit of 
such coarse decisions. Sometimes information in a pattern is not simply in the presence or 
the absence of a set of features, but rather the interconnection of features contains 
important structural information. Indeed this relational information is difficult or im-
possible to be quantified by a feature vector form. This is the underlying basis of 
structural pattern classification. Structural based systems assume that pattern structure is 
quantifiable. As such, complex patterns can be decomposed recursively in simpler 
subpatterns in almost the same way that a sentence can be decomposed in words. The 
analogy directed researchers toward the theory of formal languages. The process that 
results in an answer to a classification question is called syntax analysis or parsing. 

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle 
the concept of partial truth (values between “completely true” and “completely false”) 
[17]. Fuzzy Pattern Classification is one way to describe systems and the behaviour of 
systems. A system can be described by using adjectives like “high”, “mid”, “low”. Pattern 
Classification using fuzzy logic [6, 15], partitions the input space into categories (pattern 
classes) w1, …, wn and assigns a given pattern v = (v1, v2, …, vn) to one of those 
categories. If v does not fit directly within a category, a “goodness of fit” is reported. By 
employing fuzzy sets as pattern classes, it is possible to describe the degree to which a 
pattern belongs to one class or another. By viewing each category as a fuzzy set and 
identifying a set of fuzzy IF-THEN rules as assignment operators, a direct relationship 
between the fuzzy set and pattern classification is realized. The main advantage of the 
approach is the close relation to the human thinking. On the other hand, the disadvantages 



 
 

are the fact that a fuzzy system cannot learn from data, and that there is no formal method 
to tune the membership functions. 

Fuzzy, statistical and structural approaches are valid approaches to the classification 
problem. The point is that probability (statistical approach) involves crisp set theory and 
does not allow for an element to be a partial member in a class. Probability is an indicator 
of the frequency or likelihood that an element is in a class. On the other hand, formal 
grammars (structural approach) have a difficulty in learning structural rules. Finally fuzzy 
set theory deals with the similarity of an element to a class. As such, if we were to classify 
someone as "senior", fuzzy membership makes much more sense than probability. On the 
contrary, if we were to classify the outcome of a coin flip, probability is preferable.  

The course of argumentation followed so far puts the pattern classification theme into a 
technical-mathematical framework. Since pattern classification is an ability of intelligent 
natural systems, it is possible to imitate the neuron - the basic unit of the brain - by an 
analogue logical processing unit, which processes the inputs and produces an output, 
which is either on or off. Thus by extension, a simple neuron can classify, the input in two 
different classes by setting the output to “1’, or “0”. The neuron is very good to solve 
linearly separable problems, but fails completely to solve apparently simple problem such 
as the XOR one. This issue is easily overcome by multilayer neurons that use more than 
one neuron and combine their outputs into other neurons, which would produce a final 
indication of the class to which the input belongs [1]. 

Among the above-mentioned solutions, fuzzy logic and neural networks can be an answer 
to the vast majority of classification problems. Both approaches attempt to determine the 
transfer function between a feature space and a given class and can be automatically 
adapted by the computer in an attempt to optimize their classification performance. One 
difference between the two methods is that the membership functions of a fuzzy classifier 
can be initialized in a state close to the correct solution. What this means is that a fuzzy 
classifier can be set up by a skilled designer to do a pretty good job of classification even 
before the classifier is adjusted by the computer. A neural network, however, can only 
learn from scratch, and as such, can only be initialized in a random state. But their 
learning capabilities are significant as different learning algorithms are available and they 
have great potential for parallelism, since the computations of the components are largely 
independent of each other. But drawbacks are, the impossibility to extract rules from 
neurons for interpretation, and that prior knowledge cannot be used to initialize the 
system. As such, the training of the computer to optimize the classifier is usually much 
faster with a fuzzy classifier than a neural network. Consequently, combining fuzzy logic 
and neural networks (neuro-fuzzy systems) we can avoid the drawbacks of each method. 
While the learning capability is an advantage from the viewpoint of a fuzzy system, from 
neural network side, there are additional advantages to a combined system. We can 
initialize the system by establishing rules and membership functions and thus shorten the 
learning process. The result is obtained by modification of the rule base or the 
membership functions, allowing its interpretation as a fuzzy system. 



 
 

Finally, in many applications of fuzzy rule-based systems, fuzzy if-then rules have been 
obtained from human experts. Recently, various methods were proposed for automatically 
generating fuzzy if-then rules from numerical data. Most of these methods have involved 
iterative learning procedures or complicated rule generation mechanisms such as gradient 
descent learning methods [7], genetic-algorithm-based methods [5], [9], least-squares 
methods [12], a fuzzy c-means method [13] and a neuro-fuzzy method [14]. In [16], an 
efficient rule generation method with no time-consuming iterative procedure is proposed 
and its high performance is demonstrated. 

3. Description of Fuzzy Miner 
Fuzzy rule-based systems have as theoretical base the theory of Fuzzy Logic. Fuzzy set 
theory [17] provides a strict mathematical framework in which vague conceptual 
phenomena can be precisely and rigorously studied. In this section, we describe a simple 
but powerful fuzzy system for solving pattern classification problems and we provide the 
reader with a brief description of the components of the Fuzzy Miner, their internal 
processes and their interrelationships. The reader interested in a detailed description of the 
design and implementation issues of Fuzzy Miner is referred to [10]. The preliminary 
work has mainly been focused on the study and understanding of a method proposed in 
[8], which is heuristic method for automatically generating fuzzy if-then rules from 
numerical data. Fuzzy if-then rules with nonfuzzy singletons (i.e., real numbers) in the 
consequent parts are generated by the proposed heuristic method. The main advantage of 
these fuzzy if-then rules is the simplicity of a fuzzy reasoning procedure because no 
defuzzification step is required. In the proposed heuristic method, the consequent real 
number of each fuzzy if-then rule is determined as the weighted mean value of given 
numerical data. Thus, the proposed heuristic method does require neither time-consuming 
iterative learning procedures nor complicated rule generation mechanisms. 

3.1. Design & Architecture of the fuzzy rule-based system 
Fuzzy rule-based systems are also known as fuzzy inference systems, fuzzy models, fuzzy 
associative memories (FAM) or fuzzy controllers. Basically, such fuzzy rule-based 
systems are composed of four principal components: a fuzzification interface, a 
knowledge base, a decision-making logic and a defuzzification interface. Fuzzy Miner 
employs this architecture depicted in figure 1. 

 Decision making logic 

Knowledge Base 

DataBase RuleBase 

Fuzzification 
interface 

Defuzzification 
interface 

Non-fuzzy 
input 

Non-fuzzy 
output 

 
Figure 1 Architecture of Fuzzy Miner 

 



 
 

The initial algorithm [8] considers a single-output fuzzy rule-based system in the n-
dimensional input space [0, 1]n, so just for simplicity reasons we keep for the moment 
these assumptions. The actual algorithm implemented introduces a multiple-output fuzzy 
rule-based system with optional task, the mapping of the input spaces to the [0, 1]n space 
(normalization process). Of course, when normalization process is selected an appropriate 
action is performed after the end of the algorithm to map reversely the normalized data to 
their primitive spaces. Let us assume that the following m input-output pairs are given as 
training data for constructing a fuzzy rule-based system:  

    {(xp;yp) | p = 1, 2, …, m},                        (3.1) 

where xp = (xp1, xp2,…, xpm) is the input vector of the pth input-output pair and yp is the 
corresponding output. 

3.1.1. Fuzzification interface 
The fuzzification interface performs a mapping that converts crisp values of input 
variables into fuzzy singletons. Basically, a fuzzy singleton is a precise value and hence 
no fuzziness is introduced by fuzzification in this case. This strategy, however, has been 
widely used in fuzzy system applications because it is easily implemented. Here we 
employ fuzzy singletons in the fuzzification interface. 

3.1.2. Knowledge base 
The knowledge base of a fuzzy rule-based system consists of two components, i.e., a 
database and a rule base. 

Database - There are two factors that determine a database, i.e., a fuzzy partition of the 
input space and membership functions of antecedent fuzzy sets. Fuzzy Miner in order to 
develop the appropriate infrastructure defines three corresponding objects, namely 
Database, Fuzzy Partition and Membership Function. Database object provides a 
complete set of functionalities upon the data (e.g. normalization/denormalization process) 
that the algorithm needs in order to operate effectively. Someone can think of a Database 
object as the realization of a real database, which enables us to store, retrieve, update and 
generally manipulate data. Database object is defined as a 2D array, where the first 
dimension corresponds to the row of a database table and the second dimension 
corresponds to the column (input-output space). 

We assume that the domain interval of the ith input variable xi is evenly divided into Ki 
fuzzy sets labelled as Ai1, Ai2, …, 

iiKA for i = 1, 2,…,n. Then the n-dimensional input space 
is divided into K1K2 . . . Kn fuzzy subspaces: 

  ( )
nnjjj AAA ,...,,

21 21 , j1=1, 2,…, K1; …;  jn=1, 2,…, Kn. (3.2) 

For example, in the case of a two-dimensional input space, the fuzzy subspace ( )
21 21 , jj AA  

corresponds to the region shown in figure 5(a). Figure 5(b) shows an example of the fuzzy 



 
 

partition for K1 = 5 and K2 = 5 in the case of a two-input single-output fuzzy rule-based 
system. 

Membership Function object can be perceived as the mean to measure the degree of 
compatibility of a data value to a fuzzy set, or as the probability that this data value 
“belongs” to a fuzzy set. Because we wanted to be able to use more than one membership 
functions, we adopted a generic representation that enables the definition of different 
kinds of membership functions. As such, the user of the fuzzy classifier can use not only 
triangular membership functions, but also trapezoidal and bell-shaped. In order to 
represent a triangular fuzzy membership function, three parameters are enough. However, 
from a practical point of view, to use trapezoidal and/or bell-shaped (Gaussian) 
membership functions, four parameters are necessary. Below we can see all the types of 
membership functions that Fuzzy Miner supports.  
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Fuzzy Partition object supports the notion that input and output spaces should be 
partitioned to a sequence of fuzzy sets. Each of these fuzzy sets has a description of its 
membership function. Normally there should be one Fuzzy Partition object per input and 
output space, but just for simplicity reasons we make the assumption that the object Fuzzy 
Partition represents all the fuzzy partitions. We further assume that all the fuzzy partitions 
are composed of the same number of fuzzy sets N. As such the object Fuzzy Partition is a 
2-D array of Membership Functions (figure 6). The first dimension corresponds to the 
input space number and the second dimension corresponds to the fuzzy set number. Note 
that it is necessary to use a different fuzzy partition for each input space because the 
domain intervals of the input variables may be different. 

The main functionality that Fuzzy Partition object offers to Fuzzy Miner is taking place 
by the time of its construction and it is the actual fuzzy partitioning. Analytically, in order 
to create the object Fuzzy Partition, the domain intervals of the input and output variables 
are needed. The domain interval of a variable xi is taken as [ximin, ximax], where ximin and 
ximax are the minimum and maximum of the variable in the training data set. Furthermore, 
although the fuzzy partition of an input space is only supposed to cover the domain 
interval of the input variable, the case of input values lying outside the domain interval 
must be taken into account. As shown in figure 7, where we present the partitioning in the 
case of triangular membership function, by assigning the value ∞− to the two first 
parameters of the first fuzzy set and the value ∞+  to the two last parameters of the last 
fuzzy set, the fuzzy partition corresponding to an input variable x covers ℜ . 
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Rule base - The rule base consists of a set of fuzzy if-then rules in the form of ‘IF a set of 
conditions is satisfied, THEN a set of consequences can be inferred”. We assume that the 
rule base is composed of fuzzy if-then rules of the following form:  

Rule 
ni jjR ... : If x1 is 

11 jA and … and xn is 
nnjA then y is 

njjb ...1
, j1=1, 2,…, K1; 

…;  jn=1, 2,…, Kn, 
(3.3) 

where 
ni jjR ... is the label of each fuzzy if-then rule and 

njjb ...1
is the consequent real 

number. These fuzzy if-then rules are referred to as simplified fuzzy if-then rules and have 
been used in [3], [7] and [9]. For determining the consequent real number 

njjb ...1
 of the 

fuzzy if-then rule 
ni jjR ...  in (3.3), let us define the weight of the pth input-output pair 

(xp;yp) as 

( ) ( ){ } ,...... 11

a
pjjpjj xxW

nn
µ=  (3.4) 

where a is a positive constant. The role of the positive constant a will be demonstrated by 
computer simulations. Using the weight ( )pjj xW

n...1
 of each input-output pair, we propose 

the following heuristic method (the weighted mean value of yp’s) for determining the 
consequent real number: 

( ) ( )∑∑
==

⋅=
m

p
pjj

m

p
ppjjjj xWyxWb

nnn
1

...
1

...... 111
 (3.5) 

Rulebase is the main component of the application and supports all the functionality that 
we need, in order to implement the various aspects of Fuzzy Miner. It generates the fuzzy 
rules from training data and furthermore is responsible for the decision making part of the 
algorithm (see section 3.1.3). An additional task that is supported by our rule generation 



 
 

method is that of an adaptive procedure, which expands a given rulebase, during the 
processing of testing data when the inference engine (decision making) of the algorithm is 
running. A Rulebase object is implemented mainly as an array of Rules that in its turn is 
represented as an array of integers, corresponding to the conditional part and an array of 
Then Part objects, corresponding to the consequent part, one element per output space. 
Then Part objects are needed in order to calculate the consequent parts of a fuzzy rule (the 
relatively complex fraction (nominator / denominator) of equation 3.5). The 
computational development of the above mathematically described process for inferring 
fuzzy rules, after given learning data and information concerning the number of inputs 
and outputs of these data is presented in figure 8: 

Adaptive procedure - Before illustrating how the decision-making method has been 
implemented, we introduce a simple procedure with which we expand the initial 
approach, for updating a rule base, which is called “adaptive” procedure. This procedure 
takes place concurrently with the decision making process, namely when testing data are 
examined, inferred output are calculated and are mapped to classes. The approach is based 
on an advantage of the fuzzy-numerical methods, which is the facility to modify a fuzzy 
rulebase, as new data become available. More specifically, when a new data pair becomes 
available, one rule is created for this data pair and is either added to the rule base, or, if a 
similar rule (same conditional part) already existed in the rule base, the existing rule is 
updated. By this we mean that the consequent part of the existed rule is improved, by 
applying the generation method one more time for this specific conditional part. Thus, by 
using this “adaptive” procedure, which gives to Fuzzy Miner incremental characteristics, 
all available information is used, so decision making on testing data has better results. 

Generate rules(numberOfInputs, numberOfOutputs, startOfLearnData, endOfLearnData) 
{ 
 currentRule = 0; 
 allocate memory for rulebase[currentRule]; 
 for all learning data pairs f 
  usedData[f] = false; 
 create temporary rule; 
 
 for (i = startOfLearnData; i <= endOfLearnData; i++) 
 { 
  if (!usedData[i]) 
  { 
   construct rulebase[currentRule]; 
   set IF part of rulebase[currentRule]; 
   set THEN part of rulebase[currentRule]; 
   calculate weight of rulebase[currentRule]; 
   for all outputs j 
    numerator[j] = weight * (THEN part of rulebase[currentRule]); 
    denominator[j] = weight; 
   for ( j = i + 1; j <= endOfLearnData; j++) 
   { 
    set IF part of temporary rule; 
    set THEN part of temporary rule; 
    calculate weight of temporary rule; 
    if (!usedData[j] & currentRule has same IF part as temprule) 
    { 
     for all outputs 
        update numerator[k]; 
      update denominator[k];  
     usedData[j] = true; 
    } 
   } 
   for all outputs 
    set THEN part of ruleBase[currentRule]; 
   currentRule++; 
  } 
 }   
}  

Figure 8 Rule Generation Method 

 



 
 

Linguistic representation –In real-world applications, it may be desired that linguistic 
rules are generated from numerical data. In [13] an approach in proposed for deriving 
linguistic rules from fuzzy if-then rules with fuzzy sets in the consequent parts. Here 
another similar approach is followed for translating fuzzy if-then rules with consequent 
real numbers into rules, whose “then” part is a linguistic label and corresponds to the 
classification of the respective data pairs. In this connection, this approach can derive 
classification rules from fuzzy if-then rules with consequent real numbers, which may be 
generated by other rule generation methods as well as the described heuristic method. Let 
us assume that fuzzy if-then rules in (3.3) are given. To translate consequent real numbers 
into linguistic labels, suppose that the domain interval of an output y is divided into N 
fuzzy sets (i.e., linguistic labels) B1,B2,…,BN, which are associated with the membership 
functions 

NBB µµ ,...,
1

, respectively. For example, these fuzzy sets may have linguistic 
labels such as S: small; MS: medium small; M: medium; ML: medium large and L: large. 
In this method, the given fuzzy if-then rules in (3.3) are transformed to the following 
fuzzy if-then rules: 

Rule ni jjR ...
* : If x1 is 

11 jA and … and xn is 
nnjA then y is njjB ...

*
1 , with *

...1 njjCF , 

                                         j1=1, 2,…, K1; …;  jn=1, 2,…, Kn, 
(3.6) 

where njjB ...
*

1  is the consequent fuzzy set characterized by the following membership 
function: 

( ) ( ){ }Nibb
ninnjj jjBjjB ,...,2,1 | max ...... 11...1

* == µµ  (3.7) 

and *
...1 njjCF  is the degree of certainty defined as 

( )
nnjjn jjBjj bCF ...

*
... 1...1

*1
µ=  (3.8) 

3.1.3. Decision making logic 
The decision-making logic is the kernel of a fuzzy rule-based system, which employs 
fuzzy if-then rules from the rule base to infer the output by a fuzzy reasoning method. In 
this paper, we employ the following fuzzy reasoning method to calculate the inferred 
output of the fuzzy rule-based system. Given an input vector xp = (xp1, xp2,…, xpn) the 
inferred output y(xp) is defined by 

( ) ( ) ( )∑ ∑∑ ∑
= == =

⋅=
1

1

1

1

1

11
1 1

...
1 1

...... ......
K

j

K

j
pjj

K

j

K

j
jjpjjp

n

n

n

n

n

nn
xbxxy µµ  (3.9) 

where ( )pjj x
n...1

µ  is the degree of compatibility of the input vector xp = (xp1, xp2,…, xpn) 

to the fuzzy if-then rule 
ni jjR ... in (3.6), which is given by 



 
 

( ) ( ) ( )....11... 11 nnn pnjpjpjj xxx µµµ ××=  (3.10) 

From (3.9), we can see that the inferred output y(xp) is the weighted average of the 
consequent real numbers 

njjb ...1
‘s of the K1K2 ... Kn fuzzy if-then rules. 

This method, given a testing data set, calculates the outputs of the Fuzzy Miner and 
performs a mapping from the inferred consequent real number to the respective fuzzy set 
(classification result) that this real number belongs to. Subsequently, this method stores 
both the original outputs and classifications of the testing data pairs and the inferred 
outputs with the resulted classifications to an output Database. What is more, in order to 
have better results, it utilizes the adaptive procedure, which is an embedded process and 
not a autonomous one. Finally, in order to evaluate the algorithm for the given testing 
data, decision-making method estimates the mean square errors, between the desired 
output yp and the inferred output y(xp). This Performance Index (PI) (see equation 4.1) and 
the number of unpredicted results are returned as results of the whole process.  

3.1.4. Defuzzification interface 
Basically, the defuzzification interface performs a mapping from the fuzzy output of a 
fuzzy rule-based system to a crisp output. The fuzzy rule-based system employed in this 
paper, however, does not require a defuzzification interface. 

4. Evaluation of the Fuzzy Miner 
This section focuses on examining the reliability and the validity of Fuzzy Miner. The 
process of classification is deterministic, meaning that the same input data will always 
produce the same result. As such, in order to measure the performance of the methods 
used to implement Fuzzy Miner, several experiments took place on all the different 
parameters that can lead in useful conclusions. For the experiments, we used the data set 
from the Athens Stock Exchange (ASE) market. The ASE data set keeps a vast amount of 
information concerning the daily transactions of the stock market of Greece. As has been 
already mentioned, the algorithm works with numerical data and fuzzy systems are 
universal approximators of any real continuous function. In order to take advantage of this 
important feature of fuzzy systems, and for the purposes of the evaluation, we design a 
classification task based upon the prediction/inference of a function that estimates a real 
number, which represents the degree of fluctuation of a stock price during a day. For 
further details the interested reader is referred to [10]. The primitive data set is restricted 
to those tuples from the database that concern transactions of banks stocks. In the 
following experiments, 3.000 input-output data pairs are used to assess the forecasting 
ability of the system. The sampling factor used to split these patterns was fifty percent, so 
the first 1.500 tuples are used for learning and the last 1.500 tuples for testing. Note that, 
since the fuzzy rule-based system can employ the “adaptive” approach, test data may also 
be learning data, although they do not participate in the creation of the initial fuzzy rule 
base. 



 
 

Fitting & generalization ability for training and testing data - In order to evaluate the 
algorithm the summation of square errors is calculated, between the desired output yp and 
the inferred output y(xp) for each input-output pair (xp; yp). This performance index (PI) 
for Fuzzy Miner is given by the following equation: 

( ){ }∑
=

−=
m

p
pp yxyPI

1

2 2  (4.1) 

The two most important parameters of the fuzzy rule-based system are the value of factor 
alpha and the size of the fuzzy partitions. In order to understand the influence of these 
parameters on the PI, the algorithm has been invoked with different values of alpha 
varying from 0.1 to 50 and a fuzzy partition size varying from 2 to 25. The results of the 
simulations are not fully presented here due to space limitations (the reader can find them 
in [10]), but one can draw some conclusions that could be useful for someone that wishes 
to utilize Fuzzy Miner and obtain from it highly accurate results. The most obvious 
conclusion that someone could infer from these simulations is that larger sizes of fuzzy 
partition lead to better fitting (smaller PI) to the given input-output data pairs. The PI for 
both the original method and the method using the adaptive approach has been plotted 
against the number of fuzzy sets per fuzzy partition. Figure 9 depicts that Fuzzy Miner 
performs much better when it uses the adaptive approach and this is reasonable, as 
adaptive procedure is made to improve the approximation of the desired output. However, 
when α  is bigger than one, the PI sometimes is becoming worse, due to the phenomenon 
of overfitting. What is more, when the number of fuzzy sets is high, the PI decreases very 
slowly, whereas for a small number of fuzzy sets, the PI is much more sensitive to the 
variation of the fuzzy partition size. Finally, the PI tends asymptotically towards the same 
limit as the fuzzy partition size increases. A second observation is that for each specific 
fuzzy set the PI decreases or increases depending on the value of alpha. More specifically, 
when α  is less than five the PI is improving, but when it exceeds that limit the PI starts 
decreasing. The best fitting is presented when α  is 5. As such, the PI of Fuzzy Miner can 
be improved by choosing an appropriate value of α . Figure 10 shows the desired output 
and two inferred outputs by the system, for two different values of α . When α  is 5, is 
self-evident that the approximation of the formula is much better than when α  is 0.1. 

0

0.005

0.01

0.015

0.02

0.025

0.03

2 3 4 5 6 7 8 9 10 13 15 20 25

Fuzzy sets

Pe
rf

or
m

an
ce

 in
de

x

Normal
Adaptive

 

0

0.2

0.4

0.6

0.8

1

1.2

1 171 341 511 681 851 10211191 1361

Input patternrs

N
or

m
al

iz
ed

 o
ut

pu
t

Desired output
Alpha = 0.1
Alpha = 5

 
Figure 9 PI against size of fuzzy partitioning Figure 10 Fluctuation against alpha 

 



 
 

Classification success - From the same simulations, one can infer some useful 
conclusions for the usage and the classification power of Fuzzy Miner. First of all, when 
the number of fuzzy sets is fixed, then for values of alpha lower than five, the percentage 
of classification success increases as alpha approximates five. When it exceeds five the 
trend is either to stabilize or to decrease. This conclusion does not stand so strongly, as in 
the case of the PI. This is reasonable because, due to the vagueness that is introduced by 
the fuzzy sets, the PI of the classifier can be improved without a corresponding 
improvement of the classification success. Table 1 presents the trend of the classifier for 
the case of two fuzzy sets (classes). 

Table 1 Classification accuracy against alpha 

Alpha 0.1 0.5 1 5 10 50 
Classification Accuracy 93% 94% 96% 97% 95% 93% 

The previous reason is also the explanation why the percentage of success is the same for 
both the case of using the adaptive approach or not. Except for those few situations where 
the two percentages are identical, the general trend that is followed, is that for number of 
classes less than five, the adaptive approach gives higher classification results than the 
respective approach that is not using it. Unfavourably for fuzzy partition sizes more than 
five the phenomenon of overfitting does not allow to the adaptive procedure to provide 
always better performances. By overfitting in this situation, we mean that there are 
situations where the updating of the consequent parts of the fuzzy rules should not be 
performed if a predefined performance index is reached. Finally the strongest inference 
that someone can make is that the increment of the number of the classes, results in 
decrement of the percentage success of the classifier. This conclusion is described 
diagrammatically in figure 11, from where one can see that for low fuzzy partition sizes 
the classification success is reduced rapidly. On the contrary, for high number of fuzzy 
sets we observe stabilization in the rate of reduction of the classifier. 
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Figure 11 Classification success 
against size of fuzzy partitioning 

Figure 12 Size of rule base 
against PI 

Figure 13 Rule base against 
fuzzy partition size 

Optimizing the size of the Rule Base - Another interesting observation is the variation of 
the performance index with respect to the rule base size. More specifically, figure 12 
shows that when the PI decreases the number of the produced fuzzy rules is augmented in 
a stable rate. Using this graphical representation, it is possible to determine the “optimum” 



 
 

number of rules with respect to a performance requirement. Then, assuming a linear 
relation between the number of rules and the fuzzy partition size, the “optimum” number 
of fuzzy sets can also be determined. The relation between the fuzzy partition size and the 
inferred fuzzy rules is shown in figure 13. The fact that the number of the produced rules 
is more or less a linear combination of the number of fuzzy sets used to partition the input 
space, could also be inferred from table 2, where someone can see the number of rules for 
different sizes of fuzzy partition. Table 2 has an extra column containing the number of 
rules when the adaptive approach is applied. As expected in this situation the size of the 
rule base is bigger, as new rules are added during the decision making stage, where the 
testing data are processed.  
Table 2 Produced rules for different numbers of fuzzy sets 

Fuzzy set 2 3 4 5 6 7 8 9 10 13 15 20 25 
Rules 9 17 37 49 71 81 106 124 147 209 254 367 470 

Adaptive rules 9 20 41 61 81 94 136 161 190 293 355 532 716 

Selecting the right type of membership function - All aforementioned experiments were 
performed by selecting as the type of the membership function that the fuzzy sets follow, 
the trapezoidal one. A question arises whether the other two types of membership function 
that Fuzzy Miner supports, provide better performances upon the classification task. In 
order to answer this question the following two tables are provided, where in each column 
there is the mean value of the performance index (table 3) and the classification success 
(table 4) respectively. These averages are upon all the possible fuzzy partition sizes and 
they have been calculated for two values of alpha, where Fuzzy Miner presents relatively 
stable behaviour. 

Table 3 Average PI vs membership functions Table 4 Average CS vs membership functions 

 Triangular Trapezoidal Gaussian 
α =1 0.00556 0.0051 0.0040 
α =5 0.00446 0.0042 0.0038  

 Triangular Trapezoidal Gaussian 
α =1 76.17 79.28 82.33 
α =5 78.36 80.46 83.04  

From the above tables, we draw the conclusion that the lowest performance index and the 
higher classification success occur when using the Gaussian membership function. The 
second best fitting is accomplished with the trapezoidal function. There is a logical 
explanation for the differences in the performances of these functions. First of all, the 
trapezoidal membership function is better than the triangular because trapezoidal function 
gives the maximum degree of compatibility (which is one) in more attribute values than 
the triangular function, which gives this maximum membership value just in those whose 
their value corresponds to the centroid of the triangular shape. As such, trapezoidal 
membership function gives higher degrees of compatibility in average, so the 
approximation of the desired output is becoming an easier task. Finally bell-shaped 
function is performing better than trapezoidal because it demonstrates a smoother 
transition between its various parts. Furthermore there is the possibility when using a 
trapezoidal membership function that some attributes are assigned the maximum degree of 



 
 

compatibility when they should be assigned lower degrees. This problem can be solved 
either by widening the big base or by narrowing the small base of the trapezoidal shape.  

Missing rules - There is the possibility that Fuzzy Miner will not be able to predict an 
output for all input data pairs. This may occur if there is no rule in the rule base that 
corresponds to that input data pair. In the case of the simulations mentioned above, this 
problem occurred only for some specific parameter values, and particularly for large fuzzy 
partition sizes. The number of unpredicted outputs was very low (rarely more than 2). 
Nevertheless, this is also a criterion that must be taken into account when trying to 
optimize a fuzzy rule-based system. 

5. Conclusions & Future work 
This paper studies the pattern classification problem as this is presented in the context of 
data mining. More specifically, a fast heuristic fuzzy approach for classification of 
numerical data is described, followed by the design and the implementation of its 
corresponding tool (Fuzzy Miner). The approach does not need a defuzzification process; 
it can be utilized as a function approximator, while by slight changes can be used as a 
predictor rather as a classifier. The framework is highly flexible in that its components are 
configurable to meet various classification objectives. Linguistic representation of the 
produced fuzzy rules makes the classifier interpretable by native users, whereas the 
introduction of the adaptive procedure enables expanding and improving the rulebase 
while examining unseen, testing patterns. Fuzzy Miner was evaluated using the Athens 
Stock Exchange (ASE) data set. The strategy followed by Fuzzy Miner was proved 
successful and the results of the created classifier were shown.  

Additional future work is planed in various aspects of Fuzzy Miner. To start with, pruning 
strategies could be used to improve the interpretability of the classifier. These pruning 
strategies can be either automatic or some control could be given to the user over the 
pruning process. Secondly, we have already started designing an algorithm for training the 
initially created fuzzy sets, by changing the length of the base or the height of a 
membership function, so representing the reality with greater precision. Additionally, in 
adaptive procedure, we can correct or discard some of the new rules, according to our 
pruning strategies. As such, it won’t be necessary to execute the pruning module for the 
whole rulebase from scratch, every time adaptive approach is used to improve the 
classifier. Furthermore, a potential expert user should be given the capability to initialize 
externally the rulebase, or to change existing rules produced by the algorithm and which 
do not agree with his domain knowledge. We can further help the expert by providing 
some statistics on the training data, before processing them. Another idea is to attach to 
the system an algorithm to automatically determine the number of fuzzy sets for each 
variable and a clear criterion of how “good” are the produced fuzzy sets. New GUI that 
supports graphical and textual displays (e.g. of the fuzzy sets) would be beneficial for 
interpreting the results of Fuzzy Miner. Finally, we plan to integrate Fuzzy Miner with a 
neural network and to propagate the outcome to a genetic algorithm that would extract the 
optimum solution upon a specific classification task. 
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