
Fuzzy Miner
A Fuzzy System for Solving Pattern Classification Problems

Nikos Pelekis1,2, Babis Theodoulidis1, Ioannis Kopanakis1
1Center of Research in Information Management

Department of Computation, UMIST†
URL: http://www.crim.org.uk

E-mail: pele@ath.forthnet.gr, babis@co.umist.ac.uk,
kopanak@csd.uoc.gr

2Department of Informatics
University of Piraeus

Athens, Hellas
URL: http://www.unipi.gr
E-mail: npelekis@unipi.gr

Abstract. The purpose of this paper is to study the problem of pattern classification as this is
presented in the context of data mining. Among the various approaches we focus on the use of
Fuzzy Logic for pattern classification, due to its close relation to human thinking. More
specifically, this paper presents a heuristic fuzzy method for the classification of numerical
data, followed by the design and the implementation of its corresponding tool (Fuzzy Miner).
The initial idea comes from the fact that fuzzy systems are universal approximators of any real
continuous function. An approximation method coming from the domain of fuzzy control is
appropriately adjusted into pattern classification and an “adaptive“ procedure is proposed and
developed for deriving highly accurate linguistic if-then rules. Extensive simulation tests are
performed to demonstrate the performance and advantages of Fuzzy Miner, as well as its
potential commercial benefits over a real world scenarion.

1. Introduction
Recently, our capabilities of both generating and collecting data have increased rapidly.
Consequently, data mining has become a research area with increasing importance. Data
mining also referred to as knowledge discovery in databases [2], deals with problems such
as characterization, comparison, association, classification, prediction and clustering. This
paper elaborates with the problem of classification. Broadly speaking, pattern
classification (or recognition) is the science that concerns the description or classification
of measurements. More technically, pattern classification is the process that finds the
common properties among a set of objects in a database and classifies them into different
classes, according to a classification model.

Classical models usually try to avoid vague, imprecise or uncertain information, because
it is considered as having a negative influence in an inference process. This paper accepts
the challenge to deal with such kind of information, by introducing a fuzzy system, which
deliberately makes use of it. The main idea of fuzzy systems is to extend the classical two-
valued modelling of concepts and attributes like tall, fast or old in a sense of gradual truth.
This means that a person is not just viewed as tall or not tall, but as tall to a certain degree
between 0 and 1. This usually leads to simpler, more suitable models, which are easier to
handle and are more familiar to human thinking. This paper, after providing a brief

† PO Box 88, Sackville Street, Manchester, M60 1QD, UK
Tel: +44 161 200 3309, Fax: +44 161 200 3324

http://www.crim.org.uk
mailto:pele@ath.forthnet.gr
mailto:babis@co.umist.ac.uk
mailto:kopanak@csd.uoc.gr
http://www.unipi.gr
mailto:npelekis@unipi.gr

comparative overview of pattern classification approaches (section 2), follows the above
paradigm and proposes an effective heuristic fuzzy method for the classification of
numerical data (section 3). The initial idea comes from the fact that fuzzy systems are
universal approximators [4] of any real continuous function. Such an approximation
method [8] coming from the domain of fuzzy control systems is appropriately adjusted in
order to produce a powerful working solution in the domain of pattern classification. An
“adaptive“ process is also introduced, developed and incorporated into the previous
mechanism for deriving automatically highly accurate linguistic if-then rules. The
description of the methodology is combined with the illustration of the design and the
implementation issues of the corresponding tool (Fuzzy Miner). The current work is
evaluated (section 4) by extensive simulation tests. Finally, the paper concludes (section
5) and identifies promising directions for future work pointed to by this effort.

2. Comparative Overview of Pattern Classification systems
Already, when the field was still in its very infancy, it was realized that statistics and
probability theory had much to offer to pattern classification [11]. The question of
whether or not a given pattern “belongs” to some pattern class may naturally be treated as
a special case of the statistical decision theory problem. Effective though as it is, the
statistical approach has built-in limitations. For instance, the theory of testing statistical
hypotheses entails that a clear-cut yes or no answer should always decide upon the
membership of a pattern in a given class. Clearly, not all of the real life patterns admit of
such coarse decisions. Sometimes information in a pattern is not simply in the presence or
the absence of a set of features, but rather the interconnection of features contains
important structural information. Indeed this relational information is difficult or im-
possible to be quantified by a feature vector form. This is the underlying basis of
structural pattern classification. Structural based systems assume that pattern structure is
quantifiable. As such, complex patterns can be decomposed recursively in simpler
subpatterns in almost the same way that a sentence can be decomposed in words. The
analogy directed researchers toward the theory of formal languages. The process that
results in an answer to a classification question is called syntax analysis or parsing.

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle
the concept of partial truth (values between “completely true” and “completely false”)
[17]. Fuzzy Pattern Classification is one way to describe systems and the behaviour of
systems. A system can be described by using adjectives like “high”, “mid”, “low”. Pattern
Classification using fuzzy logic [6, 15], partitions the input space into categories (pattern
classes) w1, …, wn and assigns a given pattern v = (v1, v2, …, vn) to one of those
categories. If v does not fit directly within a category, a “goodness of fit” is reported. By
employing fuzzy sets as pattern classes, it is possible to describe the degree to which a
pattern belongs to one class or another. By viewing each category as a fuzzy set and
identifying a set of fuzzy IF-THEN rules as assignment operators, a direct relationship
between the fuzzy set and pattern classification is realized. The main advantage of the
approach is the close relation to the human thinking. On the other hand, the disadvantages

are the fact that a fuzzy system cannot learn from data, and that there is no formal method
to tune the membership functions.

Fuzzy, statistical and structural approaches are valid approaches to the classification
problem. The point is that probability (statistical approach) involves crisp set theory and
does not allow for an element to be a partial member in a class. Probability is an indicator
of the frequency or likelihood that an element is in a class. On the other hand, formal
grammars (structural approach) have a difficulty in learning structural rules. Finally fuzzy
set theory deals with the similarity of an element to a class. As such, if we were to classify
someone as "senior", fuzzy membership makes much more sense than probability. On the
contrary, if we were to classify the outcome of a coin flip, probability is preferable.

The course of argumentation followed so far puts the pattern classification theme into a
technical-mathematical framework. Since pattern classification is an ability of intelligent
natural systems, it is possible to imitate the neuron - the basic unit of the brain - by an
analogue logical processing unit, which processes the inputs and produces an output,
which is either on or off. Thus by extension, a simple neuron can classify, the input in two
different classes by setting the output to “1’, or “0”. The neuron is very good to solve
linearly separable problems, but fails completely to solve apparently simple problem such
as the XOR one. This issue is easily overcome by multilayer neurons that use more than
one neuron and combine their outputs into other neurons, which would produce a final
indication of the class to which the input belongs [1].

Among the above-mentioned solutions, fuzzy logic and neural networks can be an answer
to the vast majority of classification problems. Both approaches attempt to determine the
transfer function between a feature space and a given class and can be automatically
adapted by the computer in an attempt to optimize their classification performance. One
difference between the two methods is that the membership functions of a fuzzy classifier
can be initialized in a state close to the correct solution. What this means is that a fuzzy
classifier can be set up by a skilled designer to do a pretty good job of classification even
before the classifier is adjusted by the computer. A neural network, however, can only
learn from scratch, and as such, can only be initialized in a random state. But their
learning capabilities are significant as different learning algorithms are available and they
have great potential for parallelism, since the computations of the components are largely
independent of each other. But drawbacks are, the impossibility to extract rules from
neurons for interpretation, and that prior knowledge cannot be used to initialize the
system. As such, the training of the computer to optimize the classifier is usually much
faster with a fuzzy classifier than a neural network. Consequently, combining fuzzy logic
and neural networks (neuro-fuzzy systems) we can avoid the drawbacks of each method.
While the learning capability is an advantage from the viewpoint of a fuzzy system, from
neural network side, there are additional advantages to a combined system. We can
initialize the system by establishing rules and membership functions and thus shorten the
learning process. The result is obtained by modification of the rule base or the
membership functions, allowing its interpretation as a fuzzy system.

Finally, in many applications of fuzzy rule-based systems, fuzzy if-then rules have been
obtained from human experts. Recently, various methods were proposed for automatically
generating fuzzy if-then rules from numerical data. Most of these methods have involved
iterative learning procedures or complicated rule generation mechanisms such as gradient
descent learning methods [7], genetic-algorithm-based methods [5], [9], least-squares
methods [12], a fuzzy c-means method [13] and a neuro-fuzzy method [14]. In [16], an
efficient rule generation method with no time-consuming iterative procedure is proposed
and its high performance is demonstrated.

3. Description of Fuzzy Miner
Fuzzy rule-based systems have as theoretical base the theory of Fuzzy Logic. Fuzzy set
theory [17] provides a strict mathematical framework in which vague conceptual
phenomena can be precisely and rigorously studied. In this section, we describe a simple
but powerful fuzzy system for solving pattern classification problems and we provide the
reader with a brief description of the components of the Fuzzy Miner, their internal
processes and their interrelationships. The reader interested in a detailed description of the
design and implementation issues of Fuzzy Miner is referred to [10]. The preliminary
work has mainly been focused on the study and understanding of a method proposed in
[8], which is heuristic method for automatically generating fuzzy if-then rules from
numerical data. Fuzzy if-then rules with nonfuzzy singletons (i.e., real numbers) in the
consequent parts are generated by the proposed heuristic method. The main advantage of
these fuzzy if-then rules is the simplicity of a fuzzy reasoning procedure because no
defuzzification step is required. In the proposed heuristic method, the consequent real
number of each fuzzy if-then rule is determined as the weighted mean value of given
numerical data. Thus, the proposed heuristic method does require neither time-consuming
iterative learning procedures nor complicated rule generation mechanisms.

3.1. Design & Architecture of the fuzzy rule-based system
Fuzzy rule-based systems are also known as fuzzy inference systems, fuzzy models, fuzzy
associative memories (FAM) or fuzzy controllers. Basically, such fuzzy rule-based
systems are composed of four principal components: a fuzzification interface, a
knowledge base, a decision-making logic and a defuzzification interface. Fuzzy Miner
employs this architecture depicted in figure 1.

 Decision making logic

Knowledge Base

DataBase RuleBase

Fuzzification
interface

Defuzzification
interface

Non-fuzzy
input

Non-fuzzy
output

Figure 1 Architecture of Fuzzy Miner

The initial algorithm [8] considers a single-output fuzzy rule-based system in the n-
dimensional input space [0, 1]n, so just for simplicity reasons we keep for the moment
these assumptions. The actual algorithm implemented introduces a multiple-output fuzzy
rule-based system with optional task, the mapping of the input spaces to the [0, 1]n space
(normalization process). Of course, when normalization process is selected an appropriate
action is performed after the end of the algorithm to map reversely the normalized data to
their primitive spaces. Let us assume that the following m input-output pairs are given as
training data for constructing a fuzzy rule-based system:

 {(xp;yp) | p = 1, 2, …, m}, (3.1)

where xp = (xp1, xp2,…, xpm) is the input vector of the pth input-output pair and yp is the
corresponding output.

3.1.1. Fuzzification interface
The fuzzification interface performs a mapping that converts crisp values of input
variables into fuzzy singletons. Basically, a fuzzy singleton is a precise value and hence
no fuzziness is introduced by fuzzification in this case. This strategy, however, has been
widely used in fuzzy system applications because it is easily implemented. Here we
employ fuzzy singletons in the fuzzification interface.

3.1.2. Knowledge base
The knowledge base of a fuzzy rule-based system consists of two components, i.e., a
database and a rule base.

Database - There are two factors that determine a database, i.e., a fuzzy partition of the
input space and membership functions of antecedent fuzzy sets. Fuzzy Miner in order to
develop the appropriate infrastructure defines three corresponding objects, namely
Database, Fuzzy Partition and Membership Function. Database object provides a
complete set of functionalities upon the data (e.g. normalization/denormalization process)
that the algorithm needs in order to operate effectively. Someone can think of a Database
object as the realization of a real database, which enables us to store, retrieve, update and
generally manipulate data. Database object is defined as a 2D array, where the first
dimension corresponds to the row of a database table and the second dimension
corresponds to the column (input-output space).

We assume that the domain interval of the ith input variable xi is evenly divided into Ki
fuzzy sets labelled as Ai1, Ai2, …,

iiKA for i = 1, 2,…,n. Then the n-dimensional input space
is divided into K1K2 . . . Kn fuzzy subspaces:

 ()
nnjjj AAA ,...,,

21 21 , j1=1, 2,…, K1; …; jn=1, 2,…, Kn. (3.2)

For example, in the case of a two-dimensional input space, the fuzzy subspace ()
21 21 , jj AA

corresponds to the region shown in figure 5(a). Figure 5(b) shows an example of the fuzzy

partition for K1 = 5 and K2 = 5 in the case of a two-input single-output fuzzy rule-based
system.

Membership Function object can be perceived as the mean to measure the degree of
compatibility of a data value to a fuzzy set, or as the probability that this data value
“belongs” to a fuzzy set. Because we wanted to be able to use more than one membership
functions, we adopted a generic representation that enables the definition of different
kinds of membership functions. As such, the user of the fuzzy classifier can use not only
triangular membership functions, but also trapezoidal and bell-shaped. In order to
represent a triangular fuzzy membership function, three parameters are enough. However,
from a practical point of view, to use trapezoidal and/or bell-shaped (Gaussian)
membership functions, four parameters are necessary. Below we can see all the types of
membership functions that Fuzzy Miner supports.

x
0

1

μ(x)

p1

p3p2,

p4
x

0

1

μ(x)

p1

p3p2

p4

x

0

1

μ(x)

p1

p3p2,

p4
Figure 2 Triangular Figure 3 Trapezoidal Figure 4 Bell-shaped

Fuzzy Partition object supports the notion that input and output spaces should be
partitioned to a sequence of fuzzy sets. Each of these fuzzy sets has a description of its
membership function. Normally there should be one Fuzzy Partition object per input and
output space, but just for simplicity reasons we make the assumption that the object Fuzzy
Partition represents all the fuzzy partitions. We further assume that all the fuzzy partitions
are composed of the same number of fuzzy sets N. As such the object Fuzzy Partition is a
2-D array of Membership Functions (figure 6). The first dimension corresponds to the
input space number and the second dimension corresponds to the fuzzy set number. Note
that it is necessary to use a different fuzzy partition for each input space because the
domain intervals of the input variables may be different.

The main functionality that Fuzzy Partition object offers to Fuzzy Miner is taking place
by the time of its construction and it is the actual fuzzy partitioning. Analytically, in order
to create the object Fuzzy Partition, the domain intervals of the input and output variables
are needed. The domain interval of a variable xi is taken as [ximin, ximax], where ximin and
ximax are the minimum and maximum of the variable in the training data set. Furthermore,
although the fuzzy partition of an input space is only supposed to cover the domain
interval of the input variable, the case of input values lying outside the domain interval
must be taken into account. As shown in figure 7, where we present the partitioning in the
case of triangular membership function, by assigning the value ∞− to the two first
parameters of the first fuzzy set and the value ∞+ to the two last parameters of the last
fuzzy set, the fuzzy partition corresponding to an input variable x covers ℜ .

fuzzy
subspace

input space

(a) (b)
x1

x2

A1j1

A
2j

2

A11 A12 A13 A14 A15

A2
1

A2
2

A2
3

A2
4

A2
5

Figure 5 (a) Fuzzy subspace and (b) Fuzzy

partition for K1 = 5 and K2 = 5

...

partition

name
parameter1
parameter1
parameter1
parameter1

FunctionType

partition[0]

partition[3

partition[2]

partition[1]

...

Membership
Function

partition[1][2]

in
pu

t s
pa

ce

fuzzy set

 8- 8+
Partition step

...
1 2 3 N

ximin ximax

xi

Figure 6 Fuzzy partition structure Figure 7 Fuzzy partitioning for triangular MF

Rule base - The rule base consists of a set of fuzzy if-then rules in the form of ‘IF a set of
conditions is satisfied, THEN a set of consequences can be inferred”. We assume that the
rule base is composed of fuzzy if-then rules of the following form:

Rule
ni jjR ... : If x1 is

11 jA and … and xn is
nnjA then y is

njjb ...1
, j1=1, 2,…, K1;

…; jn=1, 2,…, Kn,
(3.3)

where
ni jjR ... is the label of each fuzzy if-then rule and

njjb ...1
is the consequent real

number. These fuzzy if-then rules are referred to as simplified fuzzy if-then rules and have
been used in [3], [7] and [9]. For determining the consequent real number

njjb ...1
 of the

fuzzy if-then rule
ni jjR ... in (3.3), let us define the weight of the pth input-output pair

(xp;yp) as

() (){ } ,...... 11

a
pjjpjj xxW

nn
µ= (3.4)

where a is a positive constant. The role of the positive constant a will be demonstrated by
computer simulations. Using the weight ()pjj xW

n...1
 of each input-output pair, we propose

the following heuristic method (the weighted mean value of yp’s) for determining the
consequent real number:

() ()∑∑
==

⋅=
m

p
pjj

m

p
ppjjjj xWyxWb

nnn
1

...
1

...... 111
 (3.5)

Rulebase is the main component of the application and supports all the functionality that
we need, in order to implement the various aspects of Fuzzy Miner. It generates the fuzzy
rules from training data and furthermore is responsible for the decision making part of the
algorithm (see section 3.1.3). An additional task that is supported by our rule generation

method is that of an adaptive procedure, which expands a given rulebase, during the
processing of testing data when the inference engine (decision making) of the algorithm is
running. A Rulebase object is implemented mainly as an array of Rules that in its turn is
represented as an array of integers, corresponding to the conditional part and an array of
Then Part objects, corresponding to the consequent part, one element per output space.
Then Part objects are needed in order to calculate the consequent parts of a fuzzy rule (the
relatively complex fraction (nominator / denominator) of equation 3.5). The
computational development of the above mathematically described process for inferring
fuzzy rules, after given learning data and information concerning the number of inputs
and outputs of these data is presented in figure 8:

Adaptive procedure - Before illustrating how the decision-making method has been
implemented, we introduce a simple procedure with which we expand the initial
approach, for updating a rule base, which is called “adaptive” procedure. This procedure
takes place concurrently with the decision making process, namely when testing data are
examined, inferred output are calculated and are mapped to classes. The approach is based
on an advantage of the fuzzy-numerical methods, which is the facility to modify a fuzzy
rulebase, as new data become available. More specifically, when a new data pair becomes
available, one rule is created for this data pair and is either added to the rule base, or, if a
similar rule (same conditional part) already existed in the rule base, the existing rule is
updated. By this we mean that the consequent part of the existed rule is improved, by
applying the generation method one more time for this specific conditional part. Thus, by
using this “adaptive” procedure, which gives to Fuzzy Miner incremental characteristics,
all available information is used, so decision making on testing data has better results.

Generate rules(numberOfInputs, numberOfOutputs, startOfLearnData, endOfLearnData)
{
 currentRule = 0;
 allocate memory for rulebase[currentRule];
 for all learning data pairs f
 usedData[f] = false;
 create temporary rule;

 for (i = startOfLearnData; i <= endOfLearnData; i++)
 {
 if (!usedData[i])
 {
 construct rulebase[currentRule];
 set IF part of rulebase[currentRule];
 set THEN part of rulebase[currentRule];
 calculate weight of rulebase[currentRule];
 for all outputs j
 numerator[j] = weight * (THEN part of rulebase[currentRule]);
 denominator[j] = weight;
 for (j = i + 1; j <= endOfLearnData; j++)
 {
 set IF part of temporary rule;
 set THEN part of temporary rule;
 calculate weight of temporary rule;
 if (!usedData[j] & currentRule has same IF part as temprule)
 {
 for all outputs
 update numerator[k];
 update denominator[k];
 usedData[j] = true;
 }
 }
 for all outputs
 set THEN part of ruleBase[currentRule];
 currentRule++;
 }
 }
}

Figure 8 Rule Generation Method

Linguistic representation –In real-world applications, it may be desired that linguistic
rules are generated from numerical data. In [13] an approach in proposed for deriving
linguistic rules from fuzzy if-then rules with fuzzy sets in the consequent parts. Here
another similar approach is followed for translating fuzzy if-then rules with consequent
real numbers into rules, whose “then” part is a linguistic label and corresponds to the
classification of the respective data pairs. In this connection, this approach can derive
classification rules from fuzzy if-then rules with consequent real numbers, which may be
generated by other rule generation methods as well as the described heuristic method. Let
us assume that fuzzy if-then rules in (3.3) are given. To translate consequent real numbers
into linguistic labels, suppose that the domain interval of an output y is divided into N
fuzzy sets (i.e., linguistic labels) B1,B2,…,BN, which are associated with the membership
functions

NBB µµ ,...,
1

, respectively. For example, these fuzzy sets may have linguistic
labels such as S: small; MS: medium small; M: medium; ML: medium large and L: large.
In this method, the given fuzzy if-then rules in (3.3) are transformed to the following
fuzzy if-then rules:

Rule ni jjR ...
* : If x1 is

11 jA and … and xn is
nnjA then y is njjB ...

*
1 , with *

...1 njjCF ,

 j1=1, 2,…, K1; …; jn=1, 2,…, Kn,
(3.6)

where njjB ...
*

1 is the consequent fuzzy set characterized by the following membership
function:

() (){ }Nibb
ninnjj jjBjjB ,...,2,1 | max 11...1

* == µµ (3.7)

and *
...1 njjCF is the degree of certainty defined as

()
nnjjn jjBjj bCF ...

*
... 1...1

*1
µ= (3.8)

3.1.3. Decision making logic
The decision-making logic is the kernel of a fuzzy rule-based system, which employs
fuzzy if-then rules from the rule base to infer the output by a fuzzy reasoning method. In
this paper, we employ the following fuzzy reasoning method to calculate the inferred
output of the fuzzy rule-based system. Given an input vector xp = (xp1, xp2,…, xpn) the
inferred output y(xp) is defined by

() () ()∑ ∑∑ ∑
= == =

⋅=
1

1

1

1

1

11
1 1

...
1 1

......
K

j

K

j
pjj

K

j

K

j
jjpjjp

n

n

n

n

n

nn
xbxxy µµ (3.9)

where ()pjj x
n...1

µ is the degree of compatibility of the input vector xp = (xp1, xp2,…, xpn)

to the fuzzy if-then rule
ni jjR ... in (3.6), which is given by

() () ()....11... 11 nnn pnjpjpjj xxx µµµ ××= (3.10)

From (3.9), we can see that the inferred output y(xp) is the weighted average of the
consequent real numbers

njjb ...1
‘s of the K1K2 ... Kn fuzzy if-then rules.

This method, given a testing data set, calculates the outputs of the Fuzzy Miner and
performs a mapping from the inferred consequent real number to the respective fuzzy set
(classification result) that this real number belongs to. Subsequently, this method stores
both the original outputs and classifications of the testing data pairs and the inferred
outputs with the resulted classifications to an output Database. What is more, in order to
have better results, it utilizes the adaptive procedure, which is an embedded process and
not a autonomous one. Finally, in order to evaluate the algorithm for the given testing
data, decision-making method estimates the mean square errors, between the desired
output yp and the inferred output y(xp). This Performance Index (PI) (see equation 4.1) and
the number of unpredicted results are returned as results of the whole process.

3.1.4. Defuzzification interface
Basically, the defuzzification interface performs a mapping from the fuzzy output of a
fuzzy rule-based system to a crisp output. The fuzzy rule-based system employed in this
paper, however, does not require a defuzzification interface.

4. Evaluation of the Fuzzy Miner
This section focuses on examining the reliability and the validity of Fuzzy Miner. The
process of classification is deterministic, meaning that the same input data will always
produce the same result. As such, in order to measure the performance of the methods
used to implement Fuzzy Miner, several experiments took place on all the different
parameters that can lead in useful conclusions. For the experiments, we used the data set
from the Athens Stock Exchange (ASE) market. The ASE data set keeps a vast amount of
information concerning the daily transactions of the stock market of Greece. As has been
already mentioned, the algorithm works with numerical data and fuzzy systems are
universal approximators of any real continuous function. In order to take advantage of this
important feature of fuzzy systems, and for the purposes of the evaluation, we design a
classification task based upon the prediction/inference of a function that estimates a real
number, which represents the degree of fluctuation of a stock price during a day. For
further details the interested reader is referred to [10]. The primitive data set is restricted
to those tuples from the database that concern transactions of banks stocks. In the
following experiments, 3.000 input-output data pairs are used to assess the forecasting
ability of the system. The sampling factor used to split these patterns was fifty percent, so
the first 1.500 tuples are used for learning and the last 1.500 tuples for testing. Note that,
since the fuzzy rule-based system can employ the “adaptive” approach, test data may also
be learning data, although they do not participate in the creation of the initial fuzzy rule
base.

Fitting & generalization ability for training and testing data - In order to evaluate the
algorithm the summation of square errors is calculated, between the desired output yp and
the inferred output y(xp) for each input-output pair (xp; yp). This performance index (PI)
for Fuzzy Miner is given by the following equation:

(){ }∑
=

−=
m

p
pp yxyPI

1

2 2 (4.1)

The two most important parameters of the fuzzy rule-based system are the value of factor
alpha and the size of the fuzzy partitions. In order to understand the influence of these
parameters on the PI, the algorithm has been invoked with different values of alpha
varying from 0.1 to 50 and a fuzzy partition size varying from 2 to 25. The results of the
simulations are not fully presented here due to space limitations (the reader can find them
in [10]), but one can draw some conclusions that could be useful for someone that wishes
to utilize Fuzzy Miner and obtain from it highly accurate results. The most obvious
conclusion that someone could infer from these simulations is that larger sizes of fuzzy
partition lead to better fitting (smaller PI) to the given input-output data pairs. The PI for
both the original method and the method using the adaptive approach has been plotted
against the number of fuzzy sets per fuzzy partition. Figure 9 depicts that Fuzzy Miner
performs much better when it uses the adaptive approach and this is reasonable, as
adaptive procedure is made to improve the approximation of the desired output. However,
when α is bigger than one, the PI sometimes is becoming worse, due to the phenomenon
of overfitting. What is more, when the number of fuzzy sets is high, the PI decreases very
slowly, whereas for a small number of fuzzy sets, the PI is much more sensitive to the
variation of the fuzzy partition size. Finally, the PI tends asymptotically towards the same
limit as the fuzzy partition size increases. A second observation is that for each specific
fuzzy set the PI decreases or increases depending on the value of alpha. More specifically,
when α is less than five the PI is improving, but when it exceeds that limit the PI starts
decreasing. The best fitting is presented when α is 5. As such, the PI of Fuzzy Miner can
be improved by choosing an appropriate value of α . Figure 10 shows the desired output
and two inferred outputs by the system, for two different values of α . When α is 5, is
self-evident that the approximation of the formula is much better than when α is 0.1.

0

0.005

0.01

0.015

0.02

0.025

0.03

2 3 4 5 6 7 8 9 10 13 15 20 25

Fuzzy sets

Pe
rf

or
m

an
ce

 in
de

x

Normal
Adaptive

0

0.2

0.4

0.6

0.8

1

1.2

1 171 341 511 681 851 10211191 1361

Input patternrs

N
or

m
al

iz
ed

 o
ut

pu
t

Desired output
Alpha = 0.1
Alpha = 5

Figure 9 PI against size of fuzzy partitioning Figure 10 Fluctuation against alpha

Classification success - From the same simulations, one can infer some useful
conclusions for the usage and the classification power of Fuzzy Miner. First of all, when
the number of fuzzy sets is fixed, then for values of alpha lower than five, the percentage
of classification success increases as alpha approximates five. When it exceeds five the
trend is either to stabilize or to decrease. This conclusion does not stand so strongly, as in
the case of the PI. This is reasonable because, due to the vagueness that is introduced by
the fuzzy sets, the PI of the classifier can be improved without a corresponding
improvement of the classification success. Table 1 presents the trend of the classifier for
the case of two fuzzy sets (classes).

Table 1 Classification accuracy against alpha

Alpha 0.1 0.5 1 5 10 50
Classification Accuracy 93% 94% 96% 97% 95% 93%

The previous reason is also the explanation why the percentage of success is the same for
both the case of using the adaptive approach or not. Except for those few situations where
the two percentages are identical, the general trend that is followed, is that for number of
classes less than five, the adaptive approach gives higher classification results than the
respective approach that is not using it. Unfavourably for fuzzy partition sizes more than
five the phenomenon of overfitting does not allow to the adaptive procedure to provide
always better performances. By overfitting in this situation, we mean that there are
situations where the updating of the consequent parts of the fuzzy rules should not be
performed if a predefined performance index is reached. Finally the strongest inference
that someone can make is that the increment of the number of the classes, results in
decrement of the percentage success of the classifier. This conclusion is described
diagrammatically in figure 11, from where one can see that for low fuzzy partition sizes
the classification success is reduced rapidly. On the contrary, for high number of fuzzy
sets we observe stabilization in the rate of reduction of the classifier.

50
55
60
65
70
75
80
85
90
95

100

2 3 4 5 6 7 8 9 10

Fuzzy sets

C
la

ss
ifi

ca
tio

n
su

cc
es

s

0
50

100
150
200
250
300
350
400
450
500

0.0
13

04

0.0
05

06

0.0
03

73

0.0
03

1

0.0
02

73

0.0
02

51

0.0
01

81

Performance index

Fu
zz

y
ru

le
s

0
50

100
150
200
250
300
350
400
450
500

Fu
zz

y
ru

le
s

2 3 4 5 6 7 8 9 10 13 15 20 25

Fuzzy partition size

Figure 11 Classification success
against size of fuzzy partitioning

Figure 12 Size of rule base
against PI

Figure 13 Rule base against
fuzzy partition size

Optimizing the size of the Rule Base - Another interesting observation is the variation of
the performance index with respect to the rule base size. More specifically, figure 12
shows that when the PI decreases the number of the produced fuzzy rules is augmented in
a stable rate. Using this graphical representation, it is possible to determine the “optimum”

number of rules with respect to a performance requirement. Then, assuming a linear
relation between the number of rules and the fuzzy partition size, the “optimum” number
of fuzzy sets can also be determined. The relation between the fuzzy partition size and the
inferred fuzzy rules is shown in figure 13. The fact that the number of the produced rules
is more or less a linear combination of the number of fuzzy sets used to partition the input
space, could also be inferred from table 2, where someone can see the number of rules for
different sizes of fuzzy partition. Table 2 has an extra column containing the number of
rules when the adaptive approach is applied. As expected in this situation the size of the
rule base is bigger, as new rules are added during the decision making stage, where the
testing data are processed.
Table 2 Produced rules for different numbers of fuzzy sets

Fuzzy set 2 3 4 5 6 7 8 9 10 13 15 20 25
Rules 9 17 37 49 71 81 106 124 147 209 254 367 470

Adaptive rules 9 20 41 61 81 94 136 161 190 293 355 532 716

Selecting the right type of membership function - All aforementioned experiments were
performed by selecting as the type of the membership function that the fuzzy sets follow,
the trapezoidal one. A question arises whether the other two types of membership function
that Fuzzy Miner supports, provide better performances upon the classification task. In
order to answer this question the following two tables are provided, where in each column
there is the mean value of the performance index (table 3) and the classification success
(table 4) respectively. These averages are upon all the possible fuzzy partition sizes and
they have been calculated for two values of alpha, where Fuzzy Miner presents relatively
stable behaviour.

Table 3 Average PI vs membership functions Table 4 Average CS vs membership functions

 Triangular Trapezoidal Gaussian
α =1 0.00556 0.0051 0.0040
α =5 0.00446 0.0042 0.0038

 Triangular Trapezoidal Gaussian
α =1 76.17 79.28 82.33
α =5 78.36 80.46 83.04

From the above tables, we draw the conclusion that the lowest performance index and the
higher classification success occur when using the Gaussian membership function. The
second best fitting is accomplished with the trapezoidal function. There is a logical
explanation for the differences in the performances of these functions. First of all, the
trapezoidal membership function is better than the triangular because trapezoidal function
gives the maximum degree of compatibility (which is one) in more attribute values than
the triangular function, which gives this maximum membership value just in those whose
their value corresponds to the centroid of the triangular shape. As such, trapezoidal
membership function gives higher degrees of compatibility in average, so the
approximation of the desired output is becoming an easier task. Finally bell-shaped
function is performing better than trapezoidal because it demonstrates a smoother
transition between its various parts. Furthermore there is the possibility when using a
trapezoidal membership function that some attributes are assigned the maximum degree of

compatibility when they should be assigned lower degrees. This problem can be solved
either by widening the big base or by narrowing the small base of the trapezoidal shape.

Missing rules - There is the possibility that Fuzzy Miner will not be able to predict an
output for all input data pairs. This may occur if there is no rule in the rule base that
corresponds to that input data pair. In the case of the simulations mentioned above, this
problem occurred only for some specific parameter values, and particularly for large fuzzy
partition sizes. The number of unpredicted outputs was very low (rarely more than 2).
Nevertheless, this is also a criterion that must be taken into account when trying to
optimize a fuzzy rule-based system.

5. Conclusions & Future work
This paper studies the pattern classification problem as this is presented in the context of
data mining. More specifically, a fast heuristic fuzzy approach for classification of
numerical data is described, followed by the design and the implementation of its
corresponding tool (Fuzzy Miner). The approach does not need a defuzzification process;
it can be utilized as a function approximator, while by slight changes can be used as a
predictor rather as a classifier. The framework is highly flexible in that its components are
configurable to meet various classification objectives. Linguistic representation of the
produced fuzzy rules makes the classifier interpretable by native users, whereas the
introduction of the adaptive procedure enables expanding and improving the rulebase
while examining unseen, testing patterns. Fuzzy Miner was evaluated using the Athens
Stock Exchange (ASE) data set. The strategy followed by Fuzzy Miner was proved
successful and the results of the created classifier were shown.

Additional future work is planed in various aspects of Fuzzy Miner. To start with, pruning
strategies could be used to improve the interpretability of the classifier. These pruning
strategies can be either automatic or some control could be given to the user over the
pruning process. Secondly, we have already started designing an algorithm for training the
initially created fuzzy sets, by changing the length of the base or the height of a
membership function, so representing the reality with greater precision. Additionally, in
adaptive procedure, we can correct or discard some of the new rules, according to our
pruning strategies. As such, it won’t be necessary to execute the pruning module for the
whole rulebase from scratch, every time adaptive approach is used to improve the
classifier. Furthermore, a potential expert user should be given the capability to initialize
externally the rulebase, or to change existing rules produced by the algorithm and which
do not agree with his domain knowledge. We can further help the expert by providing
some statistics on the training data, before processing them. Another idea is to attach to
the system an algorithm to automatically determine the number of fuzzy sets for each
variable and a clear criterion of how “good” are the produced fuzzy sets. New GUI that
supports graphical and textual displays (e.g. of the fuzzy sets) would be beneficial for
interpreting the results of Fuzzy Miner. Finally, we plan to integrate Fuzzy Miner with a
neural network and to propagate the outcome to a genetic algorithm that would extract the
optimum solution upon a specific classification task.

Acknowledgements: This research was partially supported by the Greek Government,
Ministry of National Education and Religious Affairs, under the EPEAEK II – Pythagoras
Programme (2004-06).
References
[1] M. W. Craven and J. W. Shavlik, “Using neural networks in data mining”, Future

Generation Computer Systems, 13:211-229, 1997.
[2] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann

Publishers, 2001.
[3] H. Ichihashi and T. Watanabe, “Learning control system by a simplified fuzzy reasoning

model”, Proc. IPMU’90 (1990) 417 – 419.
[4] B. Kosko, “Fuzzy systems as universal approximators”, Proc. FUZZ-IEEE ’92 (1992) 1153

– 1162.
[5] M. Mitchel, “An Introduction to Genetic Algorithms”, Cambridge, MA: MIT Press, 1996.
[6] V.S. Manoranjan, A. de Sam Lazaro, D. Edwards, and Aathalye, “A Systematic approach to

obtaining fuzzy sets for control systems”, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 25, No 1, Jan. 1995.

[7] H. Nomura, I. Hayashi and N. Wakami, “A learning method of fuzzy inference rules by
descent method”, Proc. FUZZ-IEEE ’92 (1992) 203 – 210.

[8] K. Nozzaki, H. Ishibuchi, H. Tanaka, “A simple but powerful heuristic method for
generating fuzzy rules from numerical data”, Fuzzy Sets and Systems 86 (1997) 251 – 270.

[9] H. Nomura, I. Hayashi and N. Wakami, “Α self tuning method of fuzzy reasoning by genetic
algorithm”, Int. Fuzzy Systems and Intelligent Control Conf. (1992) 236 – 245.

[10] N. Pelekis, “Fuzzy Miner: A Fuzzy System for Solving Pattern Classification Problems”,
M.Sc. Thesis, UMIST, 1999.

[11] R J. Schalkoff, “Pattern recognition: statistical, structural and neural approaches”, John
Wiley and Sons 1992.

[12] M.Sugeno and G.T. Kang, “Structure identification of fuzzy model”, Fuzzy Sets and
Systems 28 (1998) 15 – 33.

[13] M.Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling”, IEEE
Trans. Fuzzy Systems 1 (1993) 7 – 31.

[14] H. Takagi and I. Hayashi, “NN-driven fuzzy reasoning”, Approximate reasoning 5 (1991)
191 – 212.

[15] T. Takagi and M.Sugeno, “Fuzzy identification of systems and its applications to modeling
and control”, IEEE Trans. Systems, Man Cybernet. 15 (1985) 116 – 132.

[16] L.X. Wang and J.M. Mendel, “Generating fuzzy rules by learning from examples”, IEEE
Trans. Systems, Man Cybernet. 22 (1992) 1414 – 1427.

[17] Zimmermann, H.-J., Hans-Jürgen, “Fuzzy set theory – and its applications”, H.-J.
Zimmermann – 3rd ed. – Boston, Mass.; London: Kluwer Academic, 1996.

