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Abstract

Phylogenetic reconstruction of tumor evolution has emerged as a crucial tool for making sense of the
complexity of emerging cancer genomic data sets. Despite the growing use of phylogenetics in cancer
studies, though, the field has only slowly adapted to many ways that tumor evolution differs from
classic species evolution. One crucial question in that regard is how to handle inference of structural
variations (SVs), which are a major mechanism of evolution in cancers but have been largely neglected
in tumor phylogenetics to date, in part due to the challenges of reliably detecting and typing SVs
and interpreting them phylogenetically. We present a novel method for reconstructing evolutionary
trajectories of SVs from bulk whole-genome sequence data via joint deconvolution and phylogenetics,
to infer clonal subpopulations and reconstruct their ancestry. We establish a novel likelihood model for
joint deconvolution and phylogenetic inference on bulk SV data and formulate an associated optimization
algorithm. We demonstrate the approach to be efficient and accurate for realistic scenarios of SV mutation
on simulated data. Application to breast cancer genomic data from The Cancer Genome Atlas (TCGA)
shows it to be practical and effective at reconstructing features of SV-driven evolution in single tumors.
All code can be found at https://github.com/jaebird123/tusv

1 Introduction

Genomic methods have provided a wealth of information about mutational landscapes of developing cancers,
but have also created a great need for sophisticated computational models to make sense of the resulting
data. They have revealed extensive variation patient-to-patient (intertumor heterogeneity) as well as cell-
to-cell within single patients (intratumor heterogeneity) [17] and suggested a far more complex landscape of
somatic variations in cancer development than earlier mutational models [20, 11] had anticipated. Extracting
meaningful biological insight from such data nonetheless remains challenging. Much effort has focused on the
difficulty of identifying those variants relevant to tumorigenesis and progression, known as the drivers, from
the background noise of the many more chance mutations carried along with a developing tumor despite being
functional irrelevant, known as the passengers [18]. More recently, attention has shifted to understanding
what one can learn even from passengers regarding how a particular tumor’s mutational spectrum [1] shapes
its genome across stages of progression and how that knowledge can predict its future progression and help
improve prognosis. These remain substantively unsolved problems that must be better tackled if cancer
researchers are to make sense of enormous and ever-growing libraries of genetic variations in cancers.

One key advance in understanding tumor genomic data was the advent of tumor phylogenetics, i.e.,
the use of phylogenetic inference to reconstruct tumor progression. This field arose from the observation
that cancer progression is fundamentally the evolution of clonal cell populations and thus in principle inter-
pretable via algorithms for reconstructing evolutionary trees, i.e., phylogenetics. Tumor phylogenetics itself
has greatly evolved, from its initial use in making sense of intertumor heterogeneity via oncogenetic tree
models [7], through the advent of methods for interpreting variation between distinct tumor regions [15, 14],
between distinct cells in single tumors [22], and ultimately to recent variants that seek to explain whole-
genome evolution of numerous single-cells per tumor [24, 12, 33]. Single-cell genomic data is beginning to
become available in quantity, though, most studies of non-trivial patient populations are still limited to bulk
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sequence data, providing at best variant frequencies averaged across many single cells. Modern methods for
working with such data combine phylogenetic inference with a deconvolution step, in which one infers clonal
subpopulations from mixed genomic samples prior to or concurrent with inferring phylogenetic relationships
between those subpopulations [27]. Numerous tumor phylogeny methods now work on this basic model of
joint deconvolution and phylogenetics, with prominent examples including THeTA [21], Pyclone [25], Canopy
[13], PhyloWGS [6], SPRUCE [9], and CITUP [16]. See [2, 26] for recent reviews.

Despite many advances, though, key aspects of the problem of reconstructing tumor evolution from
variation data remain unresolved, an important one being the interpretation of structural variations (SVs).
SVs, along with the copy number aberrations (CNAs) they frequently induce, are the primary mechanism
of phenotypic adaptation in developing cancers [32]. Most tumor phylogeny methods until recently focused
primarily on single nucleotide variations (SNVs) (e.g., [10, 23]). SNVs are generally abundant and make for
computationally simpler analyses than other marker types but omit much of the functional mutation that
we often seek to understand with tumor phylogenetics. Some early methods did focus primarily on CNAs for
deconvolution [29] and phylogenetics [22, 3, 28], and several tools are now available for joint inference of SNVs
and CNAs (e.g., [6, 13, 9]). There is, to our knowledge, however, no method that handles phylogenetics of SVs
more comprehensively. Despite their importance, SVs introduce a number of technical challenges, including
difficulty of reliable detection leading to a high expected missing data rate, of reconstructing variants that
by their nature are associated with copy number variant regions of the genome, and of interpreting these
more complicated event types phylogenetically.

The goal of this paper is to address the lack of methods for tumor deconvolution and phylogenetics of
diverse classes of SVs at nucleotide resolution. Specifically, we develop a new method for simultaneously
deconvolving inferences of SVs, derived from the Weaver variant caller [30], and reconstructing the likely
evolution of clonal populations via these SV events. The method relies on a novel model extending prior
literature on SNV and CNA phylogenetics [9] to handle SVs. It depends on a model of joint likelihood of
genomic sequence data and clonal phylogenies, which we pose and solve through a combinatorial coordinate
descent inference strategy. We demonstrate, on simulated and Cancer Genome Atlas (TCGA [19]) samples
that these methods are practical and effective in inferring progression of major clones from bulk whole
genome sequence (WGS) data.

2 Methods

2.1 Breakpoint and Structural Variant Definitions

Let chrm:pos denote the position and chromosome for each base pair in a reference genome. For example,
7:501 represents the base pair at position 501 on chromosome 7. We define a breakpoint as any base pair
c:i that is found nonadjacent to either base pair c:i-1 or base pair c:i+1. If base pair c:i was found
nonadjacent to base pair c:i-1 we denote the breakpoint as [c:i[ as the intact chromatin extends to the
right while if base pair c:i was found nonadjacent to base pair c:i+1 we denote the breakpoint as ]c:i].
We define a structural variant (SV) as a pair of breakpoints found adjacent to one another in the cancer
genome but at non-adjacent positions in a reference genome. We call each such pair of breakpoints a mated
pair, or mates for short. For example, SV ]2:30],[5:10[ means that the segment on the reference genome
on chromosome 2 at position 30 extending to the left was found next to the segment on the reference genome
on chromosome 5 at position 10 in the cancer genome. This is specifically an example of a translocation SV,
as the rearrangement involves different chromosomes.

To relate SVs to CNAs, we assume the reference genome is partitioned into r segments, with breakpoints
positioned on the ends of segments excluding ends of chromosomes. (In practice, edges of segments are not
always supported by breakpoints as mated breakpoints cannot always be supported with a sufficient number
of reads). Each breakpoint is found in exactly one segment. Because of this, we can define both the number
of times a mated breakpoint appears in a genome (denoted cb for the copy number of breakpoint b) and the
copy number of the segments containing each breakpoint (denoted γb for the copy number of the segment
containing breakpoint b). A more in depth example for the appearance and copy number of breakpoints is
given in Figure 1.
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(a) Deletion (b) Duplication

Figure 1: Example genomes before and after segmental deletion and duplication. Top images are the reference
genome while bottom images are the genome after deletion / duplication. Each colored box represents a
single base pair and base pairs between two vertical orange lines represent segments. The letters below a
base pair identify the position of that base pair in the reference genome. Assume this is example holds for
any single chromosome labeled z. (1a) shows a deletion of segment 2 (base pairs B through C) producing
structural variant ]z:A],[z:D[. The copy number of each of the mated breakpoints (c]z:A] and c[z:D[)
and the copy number of each of the segments containing these breakpoints (γ]z:A] and γ[z:D[) are all 1
(c]z:A] = c[z:D[ = γ]z:A] = γ[z:D[ = 1). (1b) shows a duplication of segment 2 producing structural variant
[z:B[,]z:C]. The copy number of each of the mated breakpoints is 1 (c[z:B[ = c]z:C] = 1) while the copy
number of each of the segments containing breakpoints is 2 (γ[z:B[ = γ]z:C] = 2).

2.2 Problem Statement

Our method takes as input variant calls. We currently assume these calls are of the form produced by Weaver
[30], which calls SVs and CNAs from bulk genomic read data and estimates copy numbers for copy number
segments and breakpoints supporting the SVs. These variant calls are used to construct an m × (` + r)
mixed copy number matrix F , the rows of which represent tumor samples and columns of which represent
mutations. The first ` columns correspond to breakpoints and the next r to mixed segmented copy numbers.
The variant calls also provide a mapping of breakpoint positions to segments, which we code as an ` × r
binary matrix Q. We also use information mapping breakpoints to structural variants, encoded as ` × `
binary matrix G. From these inputs, we seek simultaneously to infer an integer copy number matrix C,
which describes copy numbers across the genome regions profiled for each inferred clonal cell population; a
mixture fraction matrix U , which describes how clonal populations are distributed among tumor samples;
and a phylogeny T , describing ancestral relationships among the clones. We assume the number of leaves n
in the phylogenetic tree containing N = 2n− 1 total nodes (clones) is known. More formally, given

F ∈ Rm×(`+r)
≥0 fp,s is the mixed copy number of variant s in sample p

Q ∈ {0, 1}`×r qb,s is 1 iff breakpoint b is in segment s

G ∈ {0, 1}`×` gs,t is 1 iff breakpoints s and t are mated pairs
n ∈ N number of leaves in the phylogenetic tree

cmax ∈ N>2 maximum allowed subclonal copy number for breakpoints and segments
λ1 ∈ R≥0 regularization term to weight total tree cost
λ2 ∈ R≥0 regularization term to weight breakpoint consistency cost

where
∑r

s=1 qb,s = 1 ∀ b ∈ {1, . . . , `},
∑`

b′=1 gb,b′ = 1 ∀ b ∈ {1, . . . , `}, we seek to determine

C ∈ ZN×(`+r)
≥0 ck,s is the integer copy number of segment or breakpoint s in clone k

U ∈ [0, 1]m×N up,k is the cell type k that makes up sample p
E ∈ {0, 1}N×N ei,j is 1 iff directed edge (vi, vj) exists in the inferred phylogeny T

and minimize the objective function

min
U,C

(|F − UC|+ λ1R+ λ2S) (1)

where |F − UC| describes the deviation between true and inferred mixed copy numbers, R is a phyloge-
netic cost, S is a cost capturing consistency between SVs and copy number segments, and λ1 and λ2 are
regularization terms (constants).
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2.3 Coordinate Descent Algorithm Overview

We solve for U , C, and T given F , Q, and G using coordinate descent [31]. We write two linear programs:
one solving for U given F and C and the other solving for C given U and F . We then iteratively alternate
between solving for U and for C while holding the other constant, either until convergence where U and C
remain unchanged between iterations, or until a maximum number of iterations is reached. To avoid local
minima, we run coordinate descent on multiple random initializations of U . Each row in U is independently
randomly uniformly initialized so

∑N
k=1 up,k = 1 ∀ p ∈ {1, . . . ,m} and samples independently distributed.

2.4 Estimating U

In solving for Eq. 1, we define the L1 distance |F − UC| as

f∆,p,s ≥ fp,s −
N∑

k=1

up,k · ck,s ∀ p ∈ {1, . . . ,m}, s ∈ {1, . . . , `+ r} (2)

f∆,p,s ≥ −fp,s +
N∑

k=1

up,k · ck,s ∀ p ∈ {1, . . . ,m}, s ∈ {1, . . . , `+ r} (3)

|F − UC| =
m∑

p=1

`+r∑
s=1

f∆,p,s (4)

Assume then that F and C are given. To ensure each element up,k ∈ U is a percentage of cell type k in
sample p and that percentages for a single sample sum to 1, we constrain up,k so

0 ≤ up,k ≤ 1 ∀ p ∈ {1, . . . ,m}, k ∈ {1, . . . , N} (5)

N∑
k=1

up,k = 1 ∀ p ∈ {1, . . . ,m} (6)

Since the regularization terms in our minimization (equation 1) do not depend on U , we can then simply
find U to minimize |F − UC| (equation 4) given F and C subject to constraints (2), (3), (5), and (6).

2.5 Estimate C

We then estimate C and T given F , U , Q, and G.

2.5.1 Binary Indicator Variables

Any variable x has an associated indicator variable x̄ defined as

bin(x) = x̄ =

{
1 x > 0

0 x = 0
(7)

This is used throughout the following sections. To linearly define x̄, we introduce temporary variable yb ∈
{0, 1} as the bit representation of x over q bits [31]. The values of temporary variable yb only apply to
equations (8) and (9). yb is then defined by

blog2 xmaxc+1∑
b=0

2b · yb = x (8)

and constrains x̄ as

0 ≤ yb ≤ x̄ ≤
blog2 xmaxc+1∑

a=0

ya ∀ b ∈ {0, . . . , blog2 xmaxc+ 1} (9)
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so x̄ is 0 if all bits b are 0 and 1 if any bit of x is 1. In this way, any integer variable x with a maximum
value xmax can be represented in binary form x̄. Binary indicator variables are noted with a bar on top x̄
or by bin(x).

2.5.2 Phylogenetic Constraints

Since the individual rows of C are not independent but instead share a phylogenetic history, we create a
tree structure T representing the inferred relationships between rows in C. We define a binary tree T using
a N ×N directed adjacency matrix E. To impose a tree structure on E, assume the first n clones are leaf
nodes and clones n + 1 through 2n − 1 = N are internal nodes, with node N as the root. We constrain
element ei,j as follows:

root, incoming edges ei,N = 0 ∀ i ∈ {1, . . . , N} (10)

non-root, incoming edges
N−1∑
i=1

ei,j = 1 ∀ j ∈ {1, . . . , N − 1} (11)

leaves, outgoing edges ei,j = 0 ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , N} (12)

internal nodes, outgoing edges
N∑
j=1

ei,j = 2 ∀ i ∈ {n+ 1, . . . , N} (13)

Equations (10) and (11) ensure the root has no in-edges and all other nodes have exactly one in-edge.
Equations (12) and (13) force leaves to have no out-edges and all internal nodes to have exactly two out-
edges.

2.5.3 Phylogenetic Cost

We next ensure all copy numbers are below some input maximum cmax and force the normal (non tumor)
root node to be diploid (each segment having copy number 2) and free of structural variants (copy number
of all breakpoints is 0):

ck,s ≤ cmax ∀ k ∈ {1, . . . , N}, s ∈ {1, . . . , `+ r} (14)

cN,b = 0 ∀ b ∈ {1, . . . , `} (15)

cN,s+` = 2 ∀ s ∈ {1, . . . , r} (16)

We next model a phylogenetic tree cost, using CNAs to estimate evolutionary distance ρi,j across each
tree edge (vi, vj) ∈ E. We approximate evolutionary distance by the L1 distance between the copy number
profiles of an edge’s endpoints

∑r
s=1|ci,s+` − cj,s+`|. While there are more sophisticated models of copy

number distance in the literature [5, 28, 4, 8], we use L1 distance as an approximation as it can be coded
and computed efficiently within the ILP framework. To linearly define ρi,j we use temporary variable
xi,j,s ∈ NN×N×r, defined as the absolute change in copy number of segment s on edge (vi, vj). Here, the
values of temporary variable xi,j,s only apply to equations (17) through (20).

0 ≤ xi,j,s ≤ cmax · ei,j ∀ i, j ∈ {1, . . . , N}, s ∈ {1, . . . , `+ r} (17)

xi,j,s ≥ ci,s+` − cj,s+` − cmax · (1− ei,j) ∀ i, j ∈ {1, . . . , N}, s ∈ {1, . . . , `+ r} (18)

xi,j,s ≥ −ci,s+` + cj,s+` − cmax · (1− ei,j) ∀ i, j ∈ {1, . . . , N}, s ∈ {1, . . . , `+ r} (19)

Equation (17) sets the cost to zero for any pair of nodes (vi, vj) where vi is not the parent of vj , while
equations (18) and (19) set the cost to be the absolute difference between copy number for of end nodes for
any edge (vi, vj). We then define the cost across edge (vi, vj) and total cost of tree as

ρi,j =
r∑

s=1

xi,j,s ∀ i, j ∈ {1, . . . , N} (20)

R =
N∑
i=1

N∑
j=1

ρi,j (21)
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2.5.4 Perfect Phylogeny on Appearance of Breakpoints

We next impose a perfect phylogeny on breakpoints. While the perfect phylogeny assumption is problematic
for other variant types, we argue that it is sufficiently unlikely for a base-resolution breakpoint to recur that
it can be neglected. Note that violations of the infinite site model due to allelic loss are handled separately by
treating a lost allele as having copy number zero. We therefore impose constraints to force each breakpoint to
appear across exactly one edge in T and for mated breakpoints to appear together. Define W ∈ {0, 1}N×N×`,
where each element wi,j,b is 1 if the copy number of breakpoint b goes from 0 to a positive integer across
edge (vi, vj) and 0 otherwise. To linearly define wi,j,b we define temporary variable xi,j,b ∈ {0, 1, 2, 3} to be

xi,j,b = 2 + c̄i,b − c̄j,b − ei,j ∀ i, j ∈ {1, . . . , N}, b ∈ {1, . . . , `} (22)

so xi,j,b is 0 iff the copy number of breakpoint b increases from 0 across edge (vi, vj). The value of temporary
variable xi,j,b only applies to equations (22) and (23). Using the binary representation x̄i,j,b of xi,j,b, define
wi,j,b and ensure wi,j,b is 1 for a single edge in the tree.

wi,j,b = 1− x̄i,j,b ∀ i, j ∈ {1, . . . , N}, b ∈ {1, . . . , `} (23)

N∑
i=1

N∑
j=1

wi,j,b = 1 ∀ b ∈ {1, . . . , `} (24)

Using breakpoint mate indicator gs,t ∈ {0, 1}, where gs,t is 1 iff breakpoints s and t are mates, we force
breakpoint indicators to be equal for mates.

wi,j,s − wi,j,t ≤ 1− gs,t ∀ i, j ∈ {1, . . . , N}, s, t ∈ {1, . . . , `} (25)

−wi,j,s + wi,j,t ≤ 1− gs,t ∀ i, j ∈ {1, . . . , N}, s, t ∈ {1, . . . , `} (26)

Note we extend the notation of breakpoint appearance indicator wi,j,b to have wj,b =
∑N

i=1 wi,j,b be 1 if
breakpoint b appears at node vj and 0 otherwise.

2.5.5 Ancestry Condition for Non-Disappearing SVs

We next impose the two-state perfect phylogeny ancestry condition as described in [10] for the appearance of
breakpoints. For any breakpoint s that appears as an ancestor to breakpoint t, the total fraction of cells with
breakpoint s must be larger than the fraction with breakpoint t so long as breakpoint s never subsequently
disappears. To enforce this, the fraction of cells φp,b containing breakpoint b in sample p is defined as

φp,b =
N∑

k=1

up,k · c̄k,b ∀ p ∈ {1, . . . ,m}, b ∈ {1, . . . , s} (27)

We then must define a few variables to force φp,s ≥ φp,t if breakpoint s appears before breakpoint t
and is never subsequently lost. Let vi be the ith node in the phylogeny and vi ≺ vj denote that node vi
is an ancestor of vj . We first define ancestor variables ai,j ∈ {0, 1} as 1 if vi ≺ vj and 0 otherwise for all
i, j ∈ {1, . . . , N}. Linearly define ai,j by

root vN is ancestor to all nodes aN,j = 1 ∀ j ∈ {1, . . . , N − 1} (28)

root vN has no ancestors ai,N = 0 ∀ i ∈ {1, . . . , N} (29)

any parent is an ancestor ai,j ≥ ei,j ∀ i, j ∈ {1, . . . , N} (30)

child gets parent’s ancestor profile ag,j ≥ ei,j + ag,i − 1 ∀ i, j ∈ {1, . . . , N}, g ∈ {1, . . . , i− 1, i+ 1, . . . , N}
(31)

ag,j ≤ 1− ei,j + ag,i ∀ i, j ∈ {1, . . . , N}, g ∈ {1, . . . , i− 1, i+ 1, . . . , N}
(32)
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Next, define the number of descendants to node vi with at least one copy of breakpoint b as di,b for all
i ∈ {1, . . . , N}, b ∈ {1, . . . , `}. To linearly define di,b, define temporary binary variables xi,j,b ∈ {0, 1} for
equations (33) through (36) for all i, j ∈ {1, . . . , N}, b ∈ {1, . . . , `} to be 1 if ai,j and c̄j,b and zero otherwise.

xi,j,b ≥ ai,j + c̄j,b − 1 ∀ i, j ∈ {1, . . . , N}, b ∈ {1, . . . , `} (33)

xi,j,b ≤ ai,j ∀ i, j ∈ {1, . . . , N}, b ∈ {1, . . . , `} (34)

xi,j,b ≤ c̄j,b ∀ i, j ∈ {1, . . . , N}, b ∈ {1, . . . , `} (35)

di,b =
N∑
j=1

xi,j,b ∀ i ∈ {1, . . . , N}, b ∈ {1, . . . , `} (36)

Define temporary binary variables ȳi,b ∈ {0, 1} for equations (37) through (39) to be 0 to be zero if all
descendants of node vi contain at least one copy of breakpoint b and 1 otherwise.

yi,b =
N∑
j=1

ai,j − di,b ∀ i ∈ {1, . . . , N}, b ∈ {1, . . . , `} (37)

ȳi,b = bin (yi,b) ∀ i ∈ {1, . . . , N}, b ∈ {1, . . . , `} (38)

Define temporary binary variable z̄i,j,s,t ∈ {0, 1} for equations (39) and (40) to be 0 only if breakpoint s
appears at node vi, breakpoint t appears at node vj , node vi is an ancestor to node vj , and breakpoint s
never disappears.

zi,j,s,t = 3− wi,s − wj,t − ai,j + ȳi,s ∀ i, j ∈ {1, . . . , N}, s, t ∈ {1, . . . , `} (39)

Finally, apply the condition that the fraction of cells φp,s containing breakpoint s in sample p must be larger
than the fraction of cells φp,t containing breakpoint t in sample p if breakpoint s appears in an ancestor to
the node where breakpoint t appears and breakpoint s is never lost in any descendant (no descendant has
copy number 0 for breakpoint s).

φp,s ≥ φp,t − 1 +

N∑
i=1

N∑
j=1

(1− z̄i,j,s,t) ∀ p ∈ {1, . . . ,m}, s, t ∈ {1, . . . , `} (40)

Note that
∑N

i=1

∑N
j=1 (1− z̄i,j,s,t) can only take on values 0 or 1 since breakpoint appearance indicator wi,s

and wj,s can only be both 1 at most once across all i, j. This means the condition φp,s ≥ φp,t only holds when
breakpoint s appears before breakpoint t and never subsequently disappears. Note the ancestry condition
is implied by but weaker than the sum condition described in [10], but can similarly be enforced by linear
constraints.

2.5.6 Structural Variant and Segment Consistency

Since each breakpoint belongs to exactly one segment, we define the copy number of each segment containing
a breakpoint b and constrain it so a breakpoint’s copy number never exceeds that of its containing segment:

ck,b ≤ γk,b =
r∑

s=1

qb,s · ck,s+` ∀ k ∈ {1, . . . , N}, b ∈ {1, . . . , `} (41)

where input qb,s ∈ {0, 1} is 1 if segment s contains breakpoint b.
∑r

s=1 qb,s = 1 as each breakpoint belongs
to a single segment. We similarly define ψp,b directly from the input to be the mixed copy number of the
segment containing breakpoint b.

ψp,b =
r∑

s=1

qb,s · fp,s+` ∀ p ∈ {1, . . . ,m}, b ∈ {1, . . . , `}

πp,b =
fp,b
ψp,b

∀ p ∈ {1, . . . ,m}, b ∈ {1, . . . , `}
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Intuitively, the ratio πp,b of the mixed copy number of a breakpoint to the mixed copy number of the segment
containing that breakpoint should be maintained in the integer output as this preserves the difference in
mutation types (duplication, deletion). To penalize for discrepencies between the inferred ratio of breakpoint
and its segment copy number given πp,b, we incorporate the following quantity into our objective function:∣∣∣∣∣πp,b −

∑N
k=1(up,k · ck,b)∑N
k=1(up,k · γk,b)

∣∣∣∣∣
To convert this from a ratio to units of copy numbers, we rearrange the expression and define S for the final
term in the objective function (1) to be

zp,b ≥ πp,b ·
N∑

k=1

(up,k · γk,b)−
N∑

k=1

(up,k · ck,b) ∀ p ∈ {1, . . . ,m}, b ∈ {1, . . . , `} (42)

zp,b ≥ −πp,b ·
N∑

k=1

(up,k · γk,b) +
N∑

k=1

(up,k · ck,b) ∀ p ∈ {1, . . . ,m}, b ∈ {1, . . . , `} (43)

S =
m∑

p=1

∑̀
b=1

zp,b (44)

In this way, increased emphasis is placed on the relationship between segments and breakpoints. The solution
for C and T is found by minimizing (1) subject to constraints (2) through (44).

3 Results

3.1 Simulated Data

To validate accuracy of the method on data of known ground truth, we assess accuracy in inference of
copy number profiles across clones. For each such test, we generate a copy number matrix Ctru containing
breakpoints and segments, mix this matrix with a mixture fraction matrix Utru to get the mixed copy number
matrix (Ctru ×Utru → F ), run our deconvolution algorithm, and compare the inferred copy number matrix
Cinf with the original true copy number matrix Ctru. We score our result as the L1 distance (|Ctru−Cinf |)
between copy number matrices after a maximum matching between copy number profiles (for clones).

To generate Ctru, we simulated mutation data varying the expected number of mutations l, number
of samples m, and number cell types n. For each triplet (l,m, n), five synthetic patients were generated.
Reported scores are averaged across those 5 patients. For each run of the simulation, we generated a binary
tree T with n leaves and a random topology. Mutations were assigned so that the expected numbers of
mutations across all edges in each tree are equal. We start with a genomic profile for the root (assumed
to be a normal diploid cell containing no structural variants) and progressively added a Poisson-distributed
number of mutations across each edge down to the leaves. Initially, the root node contains three pairs of
homologous chromosomes of the same lengths as human chromosomes 1-3. To generate mutations, a central
location is uniformly chosen across all chromosomes, then a mutation size is sampled from an exponential
distribution, with expectation equal to the mean structural variant size found across 59 TCGA samples. The
mutation type is uniformly randomly selected to be either a tandem duplication, deletion, or inversion. From
the generated tree, we obtain a copy number matrix Ctru. We then create a cell type mixture matrix Utru

by uniformly randomly assigning cell type fractions such that the fraction of all cell types in each sample
sums to 1. Utru and Ctru are subsequently multiplied to generate mixed copy number matrix F .

Since there is no method for validating how accurate the choice of regularization terms λ1 and λ2 are on
real data, we define empirical values for these terms based on each sample and show they perform well on
simulated data. We choose regularization terms λ1 and λ2 empirically from the data to be λ1 = `+r

` ·
m
N and

λ2 = `+r
` . This allows the maximum error in the |F−UC| term in the minimization, which is m·(`+r)·cmax,

to equal the maximum errors in λ1R and λ2S terms, which are ` ·N · cmax and ` ·m · cmax respectively. To
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show these empirical definitions do as well as iteratively choosing the hyperparameters, we test on simulated
data generated for n = 3 leaves, m = 3 samples, and l = 50 mutations as this produces approximately 100
breakpoints, a value comparable to the average number of breakpoints found in real, TCGA samples. Figure
2 shows that emperically selecting hyperparameters λ1 and λ2 (solid green curve) performs reasonably well
as compared to other hyper parameter values (dotted blue curve). Both outperform the algorithm when
excluding the regularization terms (dashed red curve) indicating the usefulness of including phylogenetic
cost and breakpoint-segment consistency into the model.

Figure 2: Score on simulated data for varying hyperparameters λ1 and λ2. Score is the L1 distance between
the true Ctru and inferred Cinf copy number matrices after maximum matching (lower means better perfor-
mance). Dotted blue line is score when λ2 = 0 is held constant and λ1 varies from 0.01, 0.05, 0.25, 1.25, 6.25
across the x-axis. Solid green line shows the score when hyperparameters are automatically chosen based on
the number of SVs and CNAs in the data set while dashed red line shows score for when only a single term
in the optimization expression is used.

3.2 TCGA Data

We next apply the methods to a selection of TCGA breast cancer (BRCA) samples [19], restricting analysis to
a subset of 59 samples for which WGS data was available. Of these, 31 ran successfully within our prescribed
run time limit, while 28 with the highest SV counts timed out before completion or required more memory
than was available to us (we have access to 128Gb of RAM). Since there is no known ground truth for these
samples, we cannot assess their individual accuracy. Nonetheless, they provide some basis for analysis of
trends across samples. Space does not permit us to display all observed trees, so for purposes of illustration
we classify them into seven observed topologies (A-G), shown in Fig. 3, with frequencies of occurrence shown
in Fig. 4. None of the inferred trees are purely linear, consistent with a model of significant subclonal
heterogeneity rather than a simple sequential model of clonal progression. Quantitation by several measures
of heterogeneity, as shown in Fig. 5, likewise suggests a wide diversity among samples. The data is suggestive
of a possible clustering into distinct low-diversity and high-diversity subclusters, but with substantial overlap
between clusters.

9

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/257014doi: bioRxiv preprint first posted online Jan. 30, 2018; 

http://dx.doi.org/10.1101/257014
http://creativecommons.org/licenses/by-nc/4.0/


(a) Topology A (b) Topology B (c) Topology C
(d) Topology D (e) Topology E (f) Topology F (g) Topology G

Figure 3: Tree topologies observed across 31 TCGA BRCA samples, grouped into seven categories (A–G).

Figure 4: Histogram of occurrences of tree topologies across 31 TCGA BRCA samples.

(a) (b) (c)

Figure 5: Violin plots quantifying heterogeneity of the 31 TCGA trees. (a) Number of unique clones. (b)

Diversity, defined in terms of the clonal frequency vector up,k as 1−
∑N

k=1 up,k. (c) Number of breakpoints.

4 Discussion

We have developed a new method for automated joint deconvolution and phylogeny inference of tumor
genomic data designed to address the important unsolved problem of describing progression via SVs. We
specifically learn a model encompassing CNAs and SVs of major clones, mixture fractions of these clones
across samples, and phylogenetic tree relating the clones. We pose the model inference problem to balance
the likelihood of sequence read data with respect to copy numbers and observed breakpoints against the
evolutionary cost of the phylogenetic tree. We solve the resulting model via a coordinate descent algorithm
posed as a pair of MILPs. We demonstrate that the method can accurately and efficiently reconstruct
clonal populations and phylogenetic histories from both simulated tumor data. Application to WGS data
from the TCGA shows the method to be effective on real data supportive of a range of tree topologies and
complexities.

This work provides a proof-of-concept demonstration of the feasibility of more comprehensively modeling
the important role of SVs in tumor evolution, but also suggests a number of avenues for future work.
Our methods currently rely on a sometimes costly and potentially suboptimal model fitting algorithm, and
further algorithmic advances might plausibly lead both to greater efficiency and improved solution quality.
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In particular, there are currently practical limits on the total SNV counts the method can handle without
excessive run time and memory usage. While most of the TCGA breast cancers considered fell within those
limits, a significant minority did not. Furthermore, our work focuses only on the subproblem of handling SVs
(and associated CNAs), and will likely benefit from incorporating other variant types, most notably SNVs
but also potentially expression, methylation, or other markers of cell state. Furthermore, biotechnology for
data generation is continuing to advance, with growing numbers of computational methods taking advantage
of single cell sequence or long read technologies that can provide direct single-cell readouts of SNV or CNA
data. SV detection is problematic for all current single-cell technologies, and we can anticipate value in
combining single-cell methods with bulk deconvolution methods such as ours for SVs. Finally, the present
work has focused only on the development of the new technology and its validation. The ultimate value
of the work will lie in bringing SV-aware phylogenetics to diverse patient cohorts, to begin to develop a
comprehensive understanding of the landscape of SV variation in tumor progression and its implications for
patient prognosis and treatment.

Acknowledgments: We thank Ashok Rajaraman and Jian Ma for helpful discussions and assistance with
Weaver. Portions of this work have been funded by the U.S. National Institutes of Health via award
R21CA216452 and Pennsylvania Dept. of Health Grant GBMF4554 4100070287. The Pennsylvania De-
partment of Health specifically disclaims responsibility for any analyses, interpretations or conclusions. This
work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575. Specifically, it used the Bridges system, which is
supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). The re-
sults published here are in whole or part based upon data generated by The Cancer Genome Atlas managed
by the NCI and NHGRI. Information about TCGA can be found at http://cancergenome.nih.gov.

References

[1] L. B. Alexandrov and M. R. Stratton. “Mutational signatures: the patterns of somatic mutations
hidden in cancer genomes”. In: Curr. Opin. Genet. Devel. 24 (2014), pp. 52–60.

[2] N. Beerenwinkel et al. “Cancer evolution: mathematical models and computational inference”. In: Syst.
Biol. 64.1 (2015), e1–e25.

[3] S. A. Chowdhury et al. “Phylogenetic analysis of multiprobe fluorescence in situ hybridization data
from tumor cell populations”. In: Bioinformatics 29.13 (2013), pp. i189–i198.

[4] S.A. Chowdhury et al. “Inferring models of multiscale copy number evolution for single-tumor phylo-
genetics”. In: Bioinformatics 31.12 (2015), pp. i258–i267.

[5] Salim Akhter Chowdhury et al. “Algorithms to model single gene, single chromosome, and whole
genome copy number changes jointly in tumor phylogenetics”. In: PLoS computational biology 10.7
(2014), e1003740.

[6] A. G. Deshwar et al. “PhyloWGS: Reconstructing subclonal composition and evolution from whole-
genome sequencing of tumors”. In: Genome Biol. 16 (2015), p. 35.

[7] R. Desper et al. “Inferring tree models of oncogenesis from comparative genomic hybridization data”.
In: J. Comput. Biol. 6.1 (1999), pp. 37–51.

[8] M. El-Kebir et al. “Complexity and algorithms for copy-number evolution problems”. In: Algorithms
for Molecular Biology 12.1 (2017), p. 13.

[9] M. El-Kebir et al. “Inferring the mutational history of a tumor using multi-state perfect phylogeny
mixtures”. In: Cell Systems 3.1 (2016), pp. 43–53.

[10] M. El-Kebir et al. “Reconstruction of clonal trees and tumor composition from multi-sample sequencing
data”. In: Bioinformatics (2015).

[11] E. Fearon and B. Vogelstein. “A genetic model for colorectal tumorigenesis”. In: Cell 61.5 (1990),
pp. 759–767.

11

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/257014doi: bioRxiv preprint first posted online Jan. 30, 2018; 

http://dx.doi.org/10.1101/257014
http://creativecommons.org/licenses/by-nc/4.0/


[12] K. Jahn, J. Kuipers, and N. Beerenwinkel. “Tree inference for single-cell data”. In: Genome Biol. 17
(2016), p. 96.

[13] Y. Jiang et al. “Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolu-
tionary history by next-generation sequencing”. In: Proc. Natl. Acad. Sci. USA (2016), p. 201522203.

[14] L. Khalique et al. “The clonal evolution of metastases from primary serous epithelial ovarian cancers”.
In: Int. J. Cancer 124.7 (2009), pp. 1579–1586.

[15] C. C. Maley et al. “Genetic clonal diversity predicts progression to esophageal adenocarcinoma”. In:
Nat. Genet. 38.4 (2006), pp. 468–473.

[16] S. Malikic et al. “Clonality inference in multiple tumor samples using phylogeny”. In: Bioinformatics
31.9 (2015), pp. 1349–1356.

[17] A. Marusyk and K. Polyak. “Tumor heterogeneity: causes and consequences”. In: Biochim. Biophys.
Acta (BBA)-Rev. Cancer 1805.1 (2010), pp. 105–117.

[18] N. McGranahan et al. “Clonal status of actionable driver events and the timing of mutational processes
in cancer evolution”. In: Sci. Transl. Med. 7.283 (2015), 283ra54.

[19] Cancer Genome Atlas Network et al. “Comprehensive molecular portraits of human breast tumours”.
In: Nature 490.7418 (2012), pp. 61–70.

[20] P. C. Nowell. “The clonal evolution of tumor cell populations”. In: Science 194.4260 (1976), pp. 23–28.

[21] L. Oesper, G. Satas, and B.J. Raphael. “Quantifying tumor heterogeneity in whole-genome and whole-
exome sequencing data.” In: PubMed (2014). THetA 2.

[22] G. Pennington et al. “Reconstructing tumor phylogenies from heterogeneous single-cell data”. In: J.
Bioinform. Comput. Biol. 5.2a (2007), pp. 407–427.

[23] V. Popic et al. “Fast and scalable inference of multi-sample cancer lineages”. In: Genome Biol. 16
(2015), p. 91.

[24] E. M. Ross and F. Markowetz. “OncoNEM: inferring tumor evolution from single-cell sequencing data”.
In: Genome Biol. 17.1 (2016), p. 69.

[25] A. Roth et al. “PyClone: statistical inference of clonal population structure in cancer”. In: Nat. Meth.
11.4 (2014), pp. 396–398.
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