
0885-8969 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2017.2654271, IEEE
Transactions on Energy Conversion

1

Combined Active and Reactive Power Control of
Wind Farms based on Model Predictive Control

Haoran Zhao, Qiuwei Wu, Jianhui Wang, Zhaoxi Liu, Mohammad Shahidehpour and Yusheng Xue

Abstract—This paper proposes a combined wind farm con-
troller based on Model Predictive Control (MPC). Compared with
the conventional decoupled active and reactive power control,
the proposed control scheme considers the significant impact of
active power on voltage variations due to the low X/R ratio of
wind farm collector systems. The voltage control is improved.
Besides, by coordination of active and reactive power, the Var
capacity is optimized to prevent potential failures due to Var
shortage, especially when the wind farm operates close to its full
load. An analytical method is used to calculate the sensitivity
coefficients to improve the computation efficiency and overcome
the convergence problem. Two control modes are designed for
both normal and emergency conditions. A wind farm with 20
wind turbines was used to verify the proposed combined control
scheme.

Index Terms—Active power control, combined control, model
predictive control, reactive power control, wind farm.

I. INTRODUCTION

W IND power is the world’s fastest growing energy
source and is one of the most rapidly expanding

industries [1]. The increasing penetration of wind power and
growing size of wind farms have introduced new challenges
to the system operation [2]. Modern wind farms are required
to meet more stringent technical requirements specified by
system operators, which include active power regulation capa-
bility and voltage operating range at the Point of Connection
(POC) [3].

In the conventional wind farm control, there is no coupling
between the active and reactive power controller, and the
active and reactive power is controlled separately [4]–[6].
For active power control, by coordination of individual Wind
Turbine Generators (WTGs), a wind farm shall track the power
reference from a system operator [5]. In recent studies, the
reduction of fatigue loads experienced by WTGs is taken
as another control objective to extend their lifetime [6]–[9].
For reactive power control, besides WTGs, other fast Var
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regulation devices, such as Static Var Compensators (SVCs)
and Static Var Generators (SVGs), are coordinated to regulate
the voltage at the POC [10]–[12].

In wind farms, WTGs are connected through long Medium
Voltage (MV) feeders, whose X/R ratio is low (X/R ≤ 1).
Accordingly, besides the reactive power change, the active
power change has a significant impact on the voltage variation.
It is promising to involve the active power control to improve
the voltage control of wind farms by adjusting the active
power references of WTGs. Compared with the sole reactive
power compensation, the voltages are better controlled and the
recovery of the violated voltage is faster.

Moreover, the Var capability of modern WTGs (Type 3 and
Type 4) is constrained by the operating limits of the converters.
Its range is dependent on the terminal voltage and active
power production [13]. When WTGs operate close to their
full load, the Var capacity will significantly decrease, which
implies the decrease of voltage support capability. Therefore,
by optimally adjusting the active power references of WTGs,
the Var capacity of the whole wind farm can be optimized to
deal with potential voltage disturbances.

The main contribution of the paper is proposing a combined
active and reactive power control based on Model Predictive
Control (MPC) to improve the wind farm voltage control.
Compared to the existing methods, the advantages of the
proposed method are summarized as follows.
• Firstly, during normal operation, the impact of active

power on voltages in wind farms is considered and reac-
tive power is optimally coordinated to minimize voltage
deviations of the wind farm buses.

• Secondly, for emergency condition, i.e. a bus voltage
violates its constraint, the active and reactive power is
jointly controlled to accelerate the voltage recovery.

• Thirdly, the MPC can realize combined active and re-
active power control of devices with different time con-
stants.

In the implementation of the proposed Wind Farm Control
(WFC), a hysteresis control loop is applied to prevent chatter-
ing in the switch of the designed modes. An analytical method
is used to calculate the voltage sensitivity coefficients, based
on the model of the wind farm collector system.

The paper is organized as follows. Section II presents the
structure of the proposed WFC. The prediction models of the
controlled devices for the MPC are described in Section III.
The sensitivity coefficient calculation is introduced in Section
IV. Section V explains the formulation of the MPC problem
for the WFC. Case studies are presented and discussed in
Section VI, followed by conclusions.
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II. WIND FARM CONTROL STRUCTURE

Fig. 1 illustrates the typical configuration of a wind farm.
The buses within the wind farm include a bus at the POC, a
bus at the collection point (located at MV side of the main
substation transformer) and buses of WTGs.

1

01 02 03 04 05

06 07 08

09 10 11 12 13 14 15

16 17 18 19 20
SVC/SVG

Collection Point
(MV)

OLTC
(HV/MV)

POC

External Grid

Fig. 1. Configuration of a wind farm.

The proposed WFC structure is shown in Fig. 2. The
active power and voltage references at the POC of the wind
farm, P ref

wf and V ref
poc, are decided by the system operator and

delivered to the WFC. The measurements of individual WTGs
and SVCs/SVGs are sent directly to the WFC. Based on the
calculated voltage sensitivities (∂V∂P , ∂V

∂Q ) and the prediction
models of WTGs and SVCs/SVGs, the MPC problem is
formulated. By solving the MPC problem, the regulation
commands for all WTGs (P ref

wt , Qref
wt ) and SVCs/SVGs (V ref

s )
are determined and delivered to their local controllers.
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Fig. 2. Wind farm control structure.

According to different voltage conditions, the WFC has
two control modes. (1) Normal mode. In this mode, the
voltages of the wind farm are within the constraints. The
active power control (P control) plays the major role. By
optimal dispatch of P ref

wt , power reference P ref
wf is tracked

and the fatigue loads of WTGs are minimized. The impact
of Pwt on the bus voltages can be estimated based on the
voltage sensitivity. Accordingly, the reactive power control
(Q control) is coordinated by regulation of Qwt and Qs to
further minimize the deviation of bus voltages (Vpoc, Vwt)
from their references and maximize the fast Var reserve to

handle potential disturbances in the future. (2) Emergency
mode. In this mode, there exists a voltage violation. The
correction of the violated bus voltage is the primary control
objective. The P and Q controls are coordinated to explore
the maximum voltage support capability, by compromising the
active power control and the voltage control of other buses.
In other words, for the P control, the minimization of fatigue
loads is not considered. For the Q control, the deviation of
the violated bus voltage has a higher priority to be minimized,
compared with the other bus voltages.

Due to the fast development of power electronics technol-
ogy, modern WTGs are capable of tracking P ref

wt and Qref
wt . For

the P control, based on P ref
wt , the generator torque reference

T ref
g and pitch angle reference θref are generated in the

local WTG controller. For the Q control, Qref
wt is sent to the

converter’s constant-Q control loop. More details are described
in Section III-A.

The SVCs/SVGs can operate under either constant-V
mode or constant-Q mode. In this study, the constant-V
mode is adopted. Compared with the constant-Q mode, the
SVCs/SVGs can provide dynamic Var support to regulate the
voltage of the controlled bus (POC in this study) in time [11].
Based on the prediction model and V ref

s , the equivalent Var
reference Qref

s can be calculated and coordinated with the
WTGs. More details are described in Section III-B.

III. MODELING OF WTG AND SVC/SVG
The models of WTGs and SVCs/SVGs are described in this

section. The combined discrete system model is derived, which
is used as the prediction model for the MPC.

A. Modeling of WTG
In the WFC, a WTG is considered as an actuator, which

follows the assigned power commands P ref
wt and Qref

wt . The P
and Q control loops are decoupled.

1) P loop: The power-controlled WTG model was devel-
oped by National Renewalbe Energy Laboratory (NREL) to
represent a variable speed pitch-controlled wind turbine [15],
[16]. The model structure is shown in Fig. 3, which consists
of aerodynamics, a drivetrain, generator, pitch actuator, tower
and local WTG controller. 1
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Fig. 3. Single wind turbine system [15].

Since the sampling time of the WFC is normally in seconds,
the fast dynamics of the generator torque control and pitch ac-
tuator are neglected. The generator efficiency µ is compensated
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in the WTG controller. Accordingly, the active power output
Pwt is approximately equal to the power reference P ref

wt ,

Pwt ≈ P ref
wt . (1)

The nonlinear model can be linearized around the operating
points. In this study, a simplified WTG state space model,
introduced in [7] is adopted, which is expressed by,

ẋpwt = Ap
wtx

p
wt + Bp

wtP
ref
wt + Ep

wt, (2)

where xpwt refers to the state vector, defined by xpwt ,
[θ, ωr, ωf ]

′, θ is the pitch angle, ωr and ωf are the rotor speed
and the filtered generator speed ωg, respectively. The state
space matrices are,

Ap
wt =


0 −Kp θηg

τg

Kp θ

τg
−Ki θ

KθTr

Jt

KωrTr

Jt
+

1

Jt

P 0
wtηg

µω0
g
2 0

0
ηg
τg

− 1

τg

 ,

Bp
wt =

 0

− ηg
Jtµω0

g

0

 ,Ep
wt =


0

KvwTrv
0
w

Jt
0

 ,
where ηg is the gearbox ratio, Jt , Jr+η2gJg is the equivalent
inertia, τg is the time constant of the generator speed filter and
Tr is the rotor torque. P 0

wt, θ
0, ω0

g , and v0w denote the measured
power output, pitch angle, generator speed and wind speed
at the operating point, respectively. Kp θ, Ki θ denote the
proportional and integral gains of the pitch controller. KθTr

,
KωrTr , KvwTr are the coefficients derived from the Taylor
approximation of Tr at the operating point.

2) Q loop: The dynamic behaviour of the constant-Q
control of WTGs can be described by a first order function
[17]. The response time is in the range of 1 ∼ 10 s [18]. The
state space model is,

ẋqwt = Aq
wtx

q
wt + Bq

wtQ
ref
wt , (3)

where xqwt is the state variable, defined by xqwt , Qwt. The
state matrices are,

Aq
wt = − 1

τq
, Bq

wt =
1

τq
,

where τq is the time constant of the Q loop.

B. Modeling of SVC/SVG

The dynamics of the constant-Q control loop of SVC/SVG
can be described by a first order function [19],

Qs =
1

1 + sτs
Qref

s , (4)

where τs is the time constant, which is within milliseconds
(50 ∼ 200 ms for SVCs and 20 ∼ 100 ms for SVGs) [20].

As the control input, V ref
s is sent to the local PI controller

to adjust the Var output. The equivalent Var reference Qref
s

can be calculated by,

Qref
s = Q0

s +Kp s(V
ref
s − Vs) +Ki s

1

s
(V ref

s − Vs), (5)

where Q0
s is the reactive power at the operating point, Kp s and

Ki s are the proportional and integral gains of the PI controller,
respectively.

The voltage at the controlled bus (POC) Vs is dependent
on the changes of Pwt, Qwt and Qs. ∆ indicates the variable
change, i.e. ∆Pwt , Pwt−P 0

wt, ∆Qwt , Qwt−Q0
wt, ∆Qs ,

Qs −Q0
s . Vs can be derived by,

Vs = V 0
s +

∂|Vs|
∂Qs

∆Qs +
∂|Vs|
∂Pwt

∆Pwt +
∂|Vs|
∂Qwt

∆Qwt. (6)

By defining Vint as the integral of the deviation between
V ref
s and Vs,

Vint ,
V ref
s − Vs
s

, (7)

Equations (4)−(7) can be rewritten as the following state space
form,

ẋs = Asxs + BsV
ref
s + EsPwt + FsQwt + Gs, (8)

where xs is the state vector, defined by xs , [Qs, Vint]
′. The

state space matrices are,

As =

 −
1

τs
(1 +Kp s

∂|Vs|
∂Qs

)
Ki s

τs

−∂|Vs|
∂Qs

0

 ,Bs =

 Kp s

τs
1

 ,

Es =

 −Kp s

τs

∂|Vs|
∂Pwt

−∂|Vs|
∂Pwt

 ,Fs =

 −
Kp s

τs

∂|Vs|
∂Qwt

− ∂|Vs|
∂Qwt

 ,
Gs =

 −Kp s∆V
0
s

τs
+
Q0

s

τs
−∆V 0

s

 ,
where

∆V 0
s , V 0

s −
∂|Vs|
∂Qs

Q0
s −

∂|Vs|
∂Pwt

P 0
wt −

∂|Vs|
∂Qwt

Q0
wt.

More details of the derivation of (8) are presented in
Appendix.

C. Combined system model
The aforementioned P , Q loops of WTG and SVC/SVG

models can be merged. The combined system model, which
consists of Nwt WTGs and 1 SVC/SVG, can be formulated
as the following state space form,

ẋ = Ax+ Bu+ E, (9)

where x and u refer to the state vector and control input vector,
respectively, defined by,

x , [xpwt 1
′
, · · · , xpwt Nwt

′
, xqwt 1

′
, · · · , xqwt Nwt

′
, xs
′]′,

u , [upwt 1
′
, · · · , upwt Nwt

′
, uqwt 1

′
, · · · , uqwt Nwt

′
, us
′]′.

The state matrices are,

A =

 Ap set
wt 0 0

0 Aq set
wt 0

0 Fs As

 ,E =

 Ep set
wt

0
Gs

 ,
B =

 Bp set
wt 0 0

0 Bq set
wt 0

Es 0 Bs

 .
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where Ap set
wt , Bp set

wt and Ep set
wt are the diagonal matrices

whose diagonal entries are the corresponding state space
matrices of WTG model in (2). As, Bs, Es, Fs and Gs are
the state space matrices of SVC/SVG model in (8).

Based on the sampling time ts, the derived continuous
model (9) can be transformed into the discrete form,

x(k + 1) = Adx(k) + Bdu(k) + Ed, (10)

where k is the step index. The state space matrices (Ad, Bd,
Ed) can be calculated with the method in [21].

D. Local constraints

1) WTG: For WTGs, according to [16], the constraints
include,

θ(k) ∈ [θmin, θmax],∆θ(k) ∈ [−∆θlim,∆θlim], (11)
ωr(k) ∈ [ωmin, ωmax], (12)
P ref
wt (k) ∈ [0, P avi

wt (k)], (13)

where θmin and θmax are the minimum and maximum values
of θ, ∆θlim is the ramp rate limit, ωmin and ωmax are the
minimum and maximum values of ωr, and P avi

wt is the available
wind power.

Besides, for modern WTGs (Type 3 and Type 4), the Var
capacity is constrained by the operating limits of the converters
[13]. The range of Var capacity of full-converter WTGs is
larger due to the increased rating of the converter. A typical
PQ capacity curve of a full-converter WTG is illustrated in
Fig. 4. The Var constraint is,

Qref
wt (k) ∈ [Qmin

wt (k), Qmax
wt (k)], (14)

where Qmin
wt and Qmax

wt are the minimum and maximum values
of the Var capacity, which are dependent on the terminal
voltage and active power [13],

Qmin
wt = fmin

Q (Pwt, Vwt), Q
max
wt = fmax

Q (Pwt, Vwt). (15)

The functions fmin
Q and fmax

Q are nonlinear, which can be
either expressed as the piece-wise affine functions or look-up
tables. For the former case, Qmin

wt and Qmax
wt can be calculated

based on the explicit form of the functions. For the latter case,
Qmin

wt and Qmax
wt can be derived according to the interpolation.

In this study, the former case is used.
By defining Qmin 0

wt and Qmax 0
wt as the minimum and

maximum Var capacities at the operating point. Qmin
wt and

Qmax
wt at the kth step can be predicted based on the Taylor

approximation,

Qmin
wt (k) ≈ Qmin 0

wt +
∂fmin

Q

∂Pwt
∆Pwt(k) +

∂fmin
Q

∂Vwt
∆Vwt(k), (16)

Qmax
wt (k) ≈ Qmax 0

wt +
∂fmax

Q

∂Pwt
∆Pwt(k) +

∂fmax
Q

∂Vwt
∆Vwt(k).(17)

The calculation of the Var capacity sensitivities in (16)-(17)
are described in Section IV-B.
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Fig. 4. PQ capacity curve of a full-converter WTG.

2) SVC/SVG: For SVCs/SVGs, the constraints include,

Qmin
s ≤ ∆Qs +Q0

s ≤ Qmax
s , (18)

V min
s ≤ V ref

s ≤ V max
s , (19)

where Qmin
s and Qmax

s are the minimum and maximum Var
capacities of SVCs/SVGs, respectively, V min

s and V max
s are

the minimum and maximum feasible voltages.

IV. SENSITIVITY CALCULATION

In this section, the calculations of voltage sensitivities and
Var capacity sensitivities are described.

A. Voltage Sensitivity

Conventionally, the voltage sensitivity coefficients are cal-
culated through an updated Jacobian matrix derived from the
Newton-Raphson (NR) method for the load-flow solution.
However, sometimes, the low X/R ratio of the wind farm
network makes the NR method fail to converge in solving
the load-flow problem [22]. Moreover, the Jacobian matrix is
dependent on the operation conditions and needs to be rebuilt
and inversed for every change, which makes it impractical for
real-time controllers [23].

An analytical computation method for calculating the sen-
sitivity coefficients was developed in [23] to improve the
computation efficiency. It was initially applied in the radial
distribution system. Since the collector system of wind farms
has a similar network topology, this method is adopted in this
study.

Consider a wind farm with Nb buses, N is defined as the
bus set, N , {1, 2, · · ·Nb}. The apparent power injection S
can be calculated by,

Si = Vi
∑
j∈N

(Ybus(i, j)Vj), (20)

where i and j are the bus indices, Ybus is the admittance
matrix, S and V are the conjugates of S and V , respectively.
The partial derivatives of Si at Bus i ∈ N with respect to
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active power Pl and reactive power Ql at Bus l ∈ N can be
derived as (21) and (22), respectively,

∂Si
∂Pl

=
∂{Pi − jQi}

∂Pl
=
∂Vi
∂Pl

∑
j∈N

Ybus(i, j)Vj+ (21)

Vi
∑
j∈N

Ybus(i, j)
∂Vj
∂Pl

=

{
1, if i = l.
0, else.

∂Si
∂Ql

=
∂{Pi − jQi}

∂Ql
=
∂Vi
∂Ql

∑
j∈N

Ybus(i, j)Vj+ (22)

Vi
∑
j∈N

Ybus(i, j)
∂Vj
∂Ql

=

{
−j1, if i = l.

0, else.

The system of (21) is linear to the unknown variables ∂Vi

∂Pl
,

∂Vi

∂Pl
and (22) is linear to the unknown variables ∂Vi

∂Ql
, ∂Vi

∂Ql
.

According to the theorem in [23], (21) and (22) have a unique
solution for radial electrical networks.

Once ∂Vi

∂Ql
, ∂Vi

∂Ql
are obtained, the partial derivatives of the

voltage magnitude ∂|Vi|
Ql

can be calculated by,

∂|Vi|
∂Pl

=
1

|Vi|
Re(Vi

∂Vi
∂Pl

),
∂|Vi|
∂Ql

=
1

|Vi|
Re(Vi

∂Vi
∂Ql

). (23)

B. Var capacity sensitivity
If the analytical expressions of fmin

Q and fmax
Q are known,

the analytical equation of the sensitivities (
∂fmin

Q

∂Pwt
,
∂fmin

Q

∂Vwt
,
∂fmax

Q

∂Pwt

and
∂fmax

Q

∂Vwt
) can be derived. If the lookup table of the PQ curve

is available, the sensitivities can be approximately derived
according to the interpolation, such as,

∂fmin
Q

∂Pwt
=
fmin(P 0

wt + ∆Pwt, V
0
wt)− fmin(P 0

wt, V
0
wt)

∆Pwt
. (24)

The other sensitivity coefficients can be calculated in a
similar way.

V. MPC PROBLEM FORMULATION

In this section, the cost functions and the constraints of the
MPC are formulated for the two designed control modes.

The sampling period of the WFC is ts and the prediction
period is tp. Compared with the time constants of the fast
Var devices, ts is larger, which is normally in seconds. In
order to capture the fast dynamics, the sampling period of the
prediction should be smaller. Thus, ts is further divided into
ns steps. Accordingly, the total number of prediction steps can
be calculated by np =

tp
ts
ns.

A. Normal mode
If all the measured bus voltages of the wind farm are

within their thresholds, i.e. ‖ V 0
poc − V ref

poc ‖≤ V th
poc and

‖ V 0
wt − V ref

wt ‖≤ V th
wt , the WFC will operate in this mode.

V 0
poc is the measured voltages at the POC. V 0

wt is the vector of
the WTG bus voltages, defined as V 0

wt , [V 0
wt 1, V

0
wt 2, · · · ]′.

V ref
poc is the reference value from the system operator (typically

1.0 p.u.) and V ref
wt is the nominal voltage of each WTG

(typically 1.0 p.u.). V th
poc and V th

wt refer to the thresholds of
Vpoc and Vwt, respectively. V th

poc differs according to different
requirements of grid codes.

1) Cost function: The control objective of this mode is
threefold. Firstly, the fatigue loads of WTGs are minimized. In
this study, only the fatigue load of the drivetrain is considered.
The shaft torque Ts is transferred through the gearbox. Since
the gearbox is a vulnerable component, the oscillation of
Ts may create micro-cracks in the material and lead to the
component failure. The load alleviation can be realized by
reducing the deviation of Ts, i.e.

Obj1 =

np∑
k=1

‖ ∆Ts(k) ‖2WTs
, (25)

where ∆Ts(k) , Ts(k)−T 0
s and WTs is the weighting factor.

Based on (2), Ts can be derived by,

Ts = Cp
wtxwt + Dp

wtP
ref
wt + F p

wt, (26)

Cp
wt =

[
ηgJgKθTr

Jt

η2gJgKωrTr

Jt
− η2gJrP

0
wt

Jtµ(ω0
g)2

0

]
,

Dp
wt =

1

µω0
g

, F p
wt =

η2gJgKvwTr
v0w

Jt
.

Secondly, the deviation between the measured voltages of
the wind farm and their references (∆Vpoc, ∆Vwt) shall be
minimized, i.e.

Obj2 =

np∑
k=1

(‖ ∆Vpoc(k) ‖2Wpoc
+ ‖ ∆Vwt(k) ‖2Wwt

), (27)

where Wpoc and Wwt are their weighting factors. Since Vpoc
is more concerned in this study, Wpoc > Wwt. ∆Vpoc(k)
and ∆Vwt(k) are affected by the active and reactive power
injection of SVCs/SVGs and WTGs, which can be calculated
by,

∆Vpoc(k) = V 0
poc +

∂|Vpoc|
∂Pwt

∆Pwt(k) +
∂|Vpoc|
∂Qwt

∆Qwt(k)

+
∂|Vpoc|
∂Qs

∆Qs(k)− V ref
poc, (28)

∆V pre
wt (k) = V 0

wt +
∂|Vwt|
∂Pwt

∆Pwt(k) +
∂|Vwt|
∂Qwt

∆Qwt(k)

+
∂|Vwt|
∂Qs

∆Qs(k)− V ref
wt . (29)

Thirdly, the fast dynamic Var support capabilities shall be
maximized to deal with potential disturbances. It is imple-
mented by minimizing the Qs to its middle level of the
operating range Qmid

s = 0.5(Qmax
s +Qmin

s ). The Var shortage
will be compensated by the slower Var devices (WTGs) for
maintaining the voltage of buses throughout the wind farm,
i.e.

Obj3 =

np∑
k=1

‖ Qpre
s (k)−Qmid

s ‖2Ws
, (30)

where Ws refers to its weighting factor.
According to (25), (27) and (30), the cost function is

expressed by,

min
u

(Obj1 + Obj2 + Obj3), (31)
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To be noticed, since all the measured voltages of the
wind farm are within the thresholds, it is not necessary to
compromise the active power control performance to support
voltage. Therefore, in order to guarantee the active power
control performance, the term Obj1 for the fatigue load
minimization has a higher priority, WTs

should be set large
enough. The reactive power is mainly used to minimize the
voltage deviation (∆Vpoc,∆Vwt).

The weighting factors can be decided by the sensitivity
analysis. In this study, the priority ranking is Obj1 > Obj2 >
Obj3. Accordingly, the weighting factors can be selected by,

(
∂Ts
∂u

)2WTs
> (

∂Vpoc
∂u

)2Wpoc > (
∂Vwt

∂u
)2Wwt > (

∂Qs

∂u
)2Ws.

2) Constraints: Besides the local operation constraints of
WTGs and SVCs/SVGs in (11)-(19), P ref

wf specified by the
system operator shall be tracked which can be implemented
as an equality constraint,

nwt∑
i=1

P ref
wt i = P ref

wf . (32)

Moreover, the control inputs u can only be updated at the
sampling point. Therefore, the values within the sampling
period are kept constant,

u(i · ns + k) = u(i · ns), (33)
i ∈ [0, np − 1], k ∈ [0, ns − 1].

B. Emergency mode

If any measured bus voltage violates its threshold, i.e. ‖
V 0
poc − V ref

poc ‖> V th
poc or ‖ V 0

wt − V ref
wt ‖> V th

wt , the WFC will
operate in this mode.

1) Control objective: The control objective of this mode is
correcting the violated bus voltage within the limits to avoid
potential cascading failures. The cost function is expressed by,

min
u

np∑
k=1

(‖ ∆Vpoc(k) ‖2Wpoc
+ ‖ ∆Vwt(k) ‖2Wwt

). (34)

Compared with the cost function of the normal mode, it is
necessary to compromise the active power control performance
to support the voltage. Therefore, the fatigue load minimiza-
tion term (Obj1) and the fast Var reserve maximization term
(Obj3) are removed from the cost function to relax the
constraints of the active and reactive power. In that case, the
active and reactive power can be fully explored to contribute
to voltage support.

Different from (27), the weighting factors in (34) have two
value settings according to the voltage condition. The larger
value is set to the weighting factor if the corresponding voltage
violates its limit, which accelerates the recovery of the voltage.

2) Constraints: The constraints of the emergency mode are
identical to these of the normal mode.

The formulated MPC problem can be transformed to a stan-
dard Quadratic Programming (QP) problem. By commercial
QP solvers, it can be efficiently solved in milliseconds which
is suitable for online optimizations [24].

C. Hysteresis loop

When the WFC switches between these two modes, chatter-
ing may occur. In order to efficiently suppress the chattering,
a hysteresis loop is used in this study. The hysteresis loop
is realized by setting different voltage thresholds according
to the mode switching conditions. Considering the protection
configuration of WTGs (typically 0.9 ∼ 1.1 p.u.) and opera-
tion margins, the threshold value settings are listed in Table I.

TABLE I
THRESHOLD VALUES

Nomral⇒Emergency Emergency⇒Normal

V th
poc 0.02 p.u. 0.01 p.u.

V th
wt 0.08 p.u. 0.07 p.u.

The control block diagram for the implementation is shown
in Fig. 5. The voltage deviations within the wind farm,
‖ V 0

poc−V ref
poc ‖ and ‖ V 0

wt−V ref
wt ‖, are fed into the hysteresis

loops. Based on the hysteresis rules and the thresholds in
Table I, the switch signals Smod1 and Smod2 can be derived.
According to the mode definition, the mode switch signal
Smod can be decided: (1⇒Normal, 0⇒Emergency). 1

Hysteresis for V th
poc

0.01 0.021

0

Hysteresis for V th
wt

0.07 0.081

0

AND

‖ V 0
poc − V ref

poc ‖

‖ V 0
wt − V ref

wt ‖

1⇐⇒Normal
0⇐⇒Emergency

Smod1

Smod2

Smod

Fig. 5. Block diagram of the hysteresis loop.

VI. CASE STUDY

A wind farm, comprised of 20 × 5 MW full-converter
WTGs and 1×±5 MVar SVG, is used for the case study. Its
configuration is shown in Fig. 1. The wind farm is integrated
into the IEEE 14 bus system and the connected bus is Bus 03,
which is located at the terminal of the grid, as shown in Fig.
6. The wind field modeling considering turbulences and wake
effects for the wind farm was generated from SimWindFarm
[15], a toolbox for dynamic wind farm model, simulation and
control.

In order to smooth out the wind power variation, the wind
farm is required to limit the power production ramp rate by
many system operators [25]. In this paper, the ramp rate
control is applied in the WFC. The maximum ramp rate is
set 10% of the installed capacity per minute (10 MW/min).

Two case scenarios are defined to test the efficacy of the
proposed WFC, which represent the low and high power
production operations, respectively. In both scenarios, the
results of the optimal controller, where the active and reactive
power are decoupled and controlled separately (‘SEP’), are
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Fig. 6. IEEE 14 bus system with wind farm.

compared with those of the proposed combined MPC based
WFC (‘COM’). For the SEP, the active power references, P ref

wt ,
are derived by solving the optimal problem,

min
P ref

wt

(Obj1).

The reactive power references, including Qref
wt and V ref

s , are
derived by solving the optimal problem,

min
Qref

wt ,V
ref
s

(Obj2 + Obj3).

Here, the definitions of Obj1, Obj2, and Obj3 are the same
with these in (25), (27), and (30). The coupling parts, such as
∂|Vpoc|
∂Pwt

in (28) and ∂|Vwt|
∂Pwt

in (29), are neglected.
The sampling period ts is set as 1 s, which is further divided

into 5 small steps: ns = 5. The prediction horizon tp is set as
5 s. The simulation time is 240 s.

A. Case Scenario 1: Low power production

In Case 1, the simulation period is 0 ∼ 120 s. The power
production of the wind farm Pwf for both controllers (SEP and
COM) and the available wind power P avi

wf are shown in Fig.
7. It can be observed that Pwf of both controllers are almost
identical, which strictly track the specified ramp rate limit and
increases from 65 MW to 87 MW within the range of P avi

wf . 1

0 20 40 60 80 100 120

70

80

90

100

Time (s)

P
w
f

(M
W

)

P avi
wf

SEP
COM

Fig. 7. Power production of the wind farm for Case 1.

Due to the low Pwf , from the whole wind farm point of
view, the Var capacities of WTGs are large, which implies
more Var reserves and voltage support capability. The voltages
at two representative buses are used to illustrate the voltage
condition of the wind farm, including Vpoc and Vwt 15, which
is located at WT15, the furthest bus along the feeder (see Fig.
1). As shown in Fig. 8, all the voltage deviations are within
their thresholds and the WFC operates in the normal mode. 1
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.)

(b)

SEP
COM

Fig. 8. Voltages at POC and WT15 for Case 1.

The Damage Equivalent Load (DEL) based on Miner’s rule
is used to evaluate the fatigue load minimization. By means of
the toolbox MCrunch [26], the DELs of the whole wind farm
for both controllers are calculated and listed in Table II, which
are almost the same. It implies the same control performances
of the load minimization for both controllers.

TABLE II
DEL OF WIND FARM

SEP COM

DEL in MNm 43.08 43.10

Since Wpoc > Wwt, Vpoc of both controllers are regulated
quite close to its reference value V ref

poc = 1 p.u., as shown
in Fig. 8(a). Comparably, the voltage deviation with COM
is smaller. Even for a sudden change due to the power
fluctuation, the recovery of Vpoc to V ref

poc is faster. Due to
the power increase, the voltage Vwt 15 increases. The increase
rate of COM is smaller. Therefore, considering the impact
of active power on the voltage, COM shows better voltage
controllability.

The Var output of the SVG Qs for both controllers are
shown in Fig. 9. In this case, Qmid

s = 0. As the slow Var
reserve of WTGs is enough for the voltage support, only small
Qs is detected for both controllers. Qs of COM is smaller,
which means more fast Var capacity is reserved.
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Fig. 9. Var output of the SVG Qs.

B. Case Scenario 2: High power production

In Case 2, the simulation period is 120 ∼ 240 s. The
available wind power P avi

wf and Pwf for both controllers (SEP
and COM) are shown in Fig. 10. It can be observed that Pwf

of both controllers are almost identical, which ranges from
87 MW to 100 MW, close to the capacity limit. 1
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90
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100

Time (s)

P
w
f
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W

)

P avi
wf

SEP
COM

Fig. 10. Power production of the wind farm for Case 2.

Since Pwf is high, the active power of several WTGs is
high, which may significantly affect their Var capacities. By
defining,

Qsum
wt ,

Nwt∑
i=1

Qwt, Q
s min
wt ,

Nwt∑
i=1

Qmin
wt , Q

s max
wt ,

Nwt∑
i=1

Qmax
wt ,

where Qsum
wt denotes the total Var production of WTGs, Qs min

wt

and Qs min
wt are the lower and upper limits of the total Var

capacity of WTGs, respectively. Their simulation results are
shown in Fig. 11. It can be observed that the Var capacity
range of COM is larger than that of SEP, especially during the
periods t1 = 201.3 s ∼ 207.6 s and t2 = 232.2 s ∼ 236 s. For
SEP, due to the decoupled active and reactive power control,
Qmin

wt and Qmin
wt can’t be predicted. There are sudden decreases

of the total Var capacity in t1 and t2. Accordingly, the voltage
support capability are reduced in these periods. For COM,
Qmin

wt and Qmin
wt can be predicted based on the predictions of

Pwt and Vwt. The possible Var shortage is considered in the
MPC. Therefore, the total Var capacity is kept stable for the
whole period.

The voltage results are shown in Fig. 12. For SEP, Vpoc
is often beyond its operation limits [0.98 p.u., 1.02 p.u.] (Fig.

1
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Range for SEP Range for COM SEP COM

Fig. 11. Var capacity of WTGs. 1
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Fig. 12. Voltages at POC and WT15 for Case 2.

12(a)). Due to the shortage of the Var reserve, Vwt 15 breaks
the protection limit (1.1 p.u.) during t1 and t2, which will
trigger the protection devices in real operation and may cause a
cascading failure (Fig. 12(b)). For COM, the voltage deviations
are smaller. Vpoc is always regulated within its limit. Vwt 15

is never beyond the protection limit.

C. Case Scenario 3: Different X/R ratios

Due to the low X/R ratio, the active power change has an
impact on the voltage variation. In this study, X/R = 0.65.
The significance of the impact is largely dependent on the
X/R ratio. In this case, the control performances between SEP
and COM for different X/R ratios are compared. The standard
deviation of the voltage at the POC, σ(∆Vpoc), is used as
a representative index to quantify the control performance.
The results are listed in Table III. It can be observed that
with the decrease of X/R ratio, the impact becomes more
significant. The σ(∆Vpoc) of SEP increases from 0.0025 p.u.
to 0.0117 p.u.. Compared with SEP, COM can significantly
reduce the σ(∆Vpoc). The reduction ranges from 28.0 % to
38.6 %.
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TABLE III
COMPARISON OF σ(∆Vpoc)

σ(∆Vpoc) SEP COM Reduction

X/R = 1.50 0.0025 p.u. 0.0018 p.u. -28.0 %

X/R = 1.00 0.0101 p.u. 0.0068 p.u. -32.7 %

X/R = 0.65 0.0114 p.u. 0.0070 p.u. -38.6 %

X/R = 0.50 0.0117 p.u. 0.0084 p.u. -28.2 %

VII. CONCLUSION

In this paper, the MPC based combined WFC is developed
to optimally coordinate the active and reactive power regula-
tion devices with different time constants for better voltage
control. Two control modes are designed according to the
voltage conditions. For the normal mode, without disturbing
the active power control performances, including tracking the
power reference of the wind farm and minimizing the fatigue
loads, the active and reactive power is optimally coordinated
to minimize the voltage deviation of the buses, especially the
voltage of the POC, and maximize the fast Var capacity to
handle the potential disturbance. For the emergency mode, the
regulation of the violated voltages back to their limits is the
only control objective. The potential of the active and reactive
power for the voltage support is fully utilized. The case studies
show the proposed combined scheme can efficiently coordinate
the power regulation devices and significantly improve the
voltage controllability and stability of the wind farm. The
practical concerns for the application of a real wind farm
system, including the communication delay and on-line model
identification, will be studied in the future work.

APPENDIX

The derivation of the state space model of SVC/SVG for
the proposed WFC, (8), can be divided into three steps.
Step 1: Calculation of Qref

s .
Substitute (6) and (7) into (5), (5) can be transformed into,

Qref
s =Q0

s +Kp s(V
ref
s − V 0

s −
∂|Vs|
∂Qs

∆Qs −
∂|Vs|
∂Pwt

∆Pwt

− ∂|Vs|
∂Qwt

∆Qwt) +Ki sVint. (35)

By defining

∆V 0
s , V 0

s −
∂|Vs|
∂Qs

Q0
s −

∂|Vs|
∂Pwt

P 0
wt −

∂|Vs|
∂Qwt

Q0
wt,

Equation (35) can be transformed into,

Qref
s =Q0

s +Kp s(V
ref
s − ∂|Vs|

∂Qs
Qs −

∂|Vs|
∂Pwt

Pwt −
∂|Vs|
∂Qwt

Qwt)

−Kp s∆V
0
s +Ki sVint. (36)

Step 2: Derivation of the differential equation of Qs.
Equation (4) can be transformed into the following differ-

ential equation,

Q̇s = − 1

τs
Qs +

1

τs
Qref

s , (37)

Substitute (36) into (37),

Q̇s =− 1

τs
(1 +Kp s

∂|Vs|
∂Qs

)Qs +
Ki s

τs
Vint +

Kp s

τs
V ref
s

− Kp s

τs

∂|Vs|
∂Pwt

Pwt −
Kp s

τs

∂|Vs|
∂Qwt

Qwt +
Q0

s

τs
− Kp s

τs
∆V 0

s .

(38)

Step 3: Derivation of the differential equation of Vint.
Equation (7) can be transformed into the following differ-

ential equation,

V̇int =(V ref
s − Vs). (39)

Substitute (6) into (39),

V̇int =(V ref
s − Vs) (40)

=V ref
s − V 0

s −
∂|Vs|
∂Qs

∆Qs −
∂|Vs|
∂Pwt

∆Pwt −
∂|Vs|
∂Qwt

∆Qwt

=V ref
s − ∂|Vs|

∂Qs
Qs −

∂|Vs|
∂Pwt

Pwt −
∂|Vs|
∂Qwt

Qwt −∆V 0
s .

Based on (38) and (40), the state space model of SVC/SVG
can be derived,[

Q̇s

V̇int

]
= As

[
Qs

Vint

]
+ BsV

ref
s + EsPwt + FsQwt + Gs,

with

As =

 −
1

τs
(1 +Kp s

∂|Vs|
∂Qs

)
Ki s

τs

−∂|Vs|
∂Qs

0

 ,Bs =

 Kp s

τs
1

 ,

Es =

 −Kp s

τs

∂|Vs|
∂Pwt

−∂|Vs|
∂Pwt

 ,Fs =

 −
Kp s

τs

∂|Vs|
∂Qwt

− ∂|Vs|
∂Qwt

 ,
Gs =

 −Kp s∆V
0
s

τs
+
Q0

s

τs
−∆V 0

s

 .
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