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a b s t r a c t 

The promising potential of the emerging Internet of Things (IoT) technologies for intercon- 

nected medical devices and sensors has played an important role in the next-generation

healthcare industry for quality patient care. Because of the increasing number of elderly

and disabled people, there is an urgent need for a real-time health monitoring infras- 

tructure for analyzing patients’ healthcare data to avoid preventable deaths. Healthcare

Industrial IoT (HealthIIoT) has significant potential for the realization of such monitoring.

HealthIIoT is a combination of communication technologies, interconnected apps, Things

(devices and sensors), and people that would function together as one smart system to

monitor, track, and store patients’ healthcare information for ongoing care. This paper

presents a HealthIIoT-enabled monitoring framework, where ECG and other healthcare data

are collected by mobile devices and sensors and securely sent to the cloud for seamless ac- 

cess by healthcare professionals. Signal enhancement, watermarking, and other related an- 

alytics will be used to avoid identity theft or clinical error by healthcare professionals. The

suitability of this approach has been validated through both experimental evaluation, and

simulation by deploying an IoT-driven ECG-based health monitoring service in the cloud.

© 2016 Elsevier B.V. All rights reserved.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

Today we are witnessing the increased use of smart de-

vices and communication apps in healthcare monitoring,

and their influence on the activities of healthcare profes-

sionals (doctors, nurses, and hospital administrators), pa-

tients, and the healthcare industry. According to Gartner

and Forbes, it is estimated that by 2020, the Internet of

Things (IoT) will contribute $1.9 trillion to the global econ-

omy and $117 billion to the IoT-based healthcare industry

[1] . Based on this estimate, it is expected that the Health-

care Industrial IoT (HealthIIoT) will be one of the main
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players in the Industrial Internet of Things (IIoT)-driven

healthcare industry. IIoT has had a remarkable influence

across many large and small healthcare industries. As a re-

sult, an increasing number of wearable IoT devices, tools,

and apps are being used for different monitoring appli-

cations (e.g., glucose monitors, ECG monitors, and blood

pressure monitors) to avoid preventable death due to hos-

pital or other related errors. The errors may occur before,

during, or after hospitalization. 

Currently, HealthIIoT is still in its preliminary stages

with regards to design, development, and deployment;

however, IoT-based solutions are presently displaying a

remarkable impact, and carving out a growing market

in today’s healthcare industry and tomorrow’s emerging

IIoT-based healthcare monitoring solutions. IIoT has the

potential to save 50,0 0 0 people each year in the US by

avoiding preventable deaths due to hospital error [2] . It
isted Industrial Internet of Things (IIoT) – Enabled frame- 
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promises patient well-being and safety by coordinating 

critical patient information and synchronizing related 

resources (e.g., healthcare staff, facilities, wearable smart 

devices to capture real-time patient data such as vital 

signs, and patient-related electronic information) instantly 

through interconnected devices and sensors. Research 

reveals that IoT in the healthcare industry can facilitate 

better care with reduced costs, reduced direct patient- 

healthcare staff interaction, and ubiquitous access to qual- 

ity care [3] . Mohammed et al. developed a remote patient 

monitoring system using web services and cloud comput- 

ing [4] . Hassanalieragh et al. discussed the opportunities 

and challenges of health monitoring and management 

using IoT [5] . To date, however, no comprehensive study 

has been published about cloud-assisted IIoT-driven health 

monitoring. 

Safe and high-quality healthcare service is of 

paramount importance to patients. Accordingly, healthcare 

data security and patients’ privacy are important issues 

that will have a great impact on the future success of 

HealthIIoT [17] . One of the major issues in the IIoT-based 

healthcare system is the protection of privacy. In gen- 

eral, a healthcare service provider receives data from its 

users (such as patients) and shares them with registered 

clinics or healthcare professionals. The provider may 

also distribute the data to health insurance companies 

and pharmaceutical companies. Moreover, patient data 

can be vulnerable to hackers during cloud transfer or 

synchronization with interconnected devices. 

Therefore, we need to protect this information from 

unauthorized access, which may result in the posting 

of personal information in the public domain, or in in- 

terference with essential medical equipment, such as a 

pacemaker. A security breach of a patient’s monitoring 

devices and data may cause the patient social embarrass- 

ment, mental disorders, or adverse physical effects such as 

a fatal heart attack. Hence, data protection in the form of 

watermarking and authentication is very important in an 

IIoT-based healthcare system. 

To this end, this paper describes an IIoT-based health 

monitoring framework, where health monitoring signals 

are authenticated. As a case study, we have used electro- 

cardiogram (ECG) monitoring, as ECG is an important as- 

sessment tool. By continuously monitoring an ECG signal, 

a healthcare professional can diagnose disease and pre- 

scribe medications to avoid preventable death. ECG sig- 

nals are recorded via portable ECG recording devices at 

home or outdoors, and sent to smartphones or desktops 

via Bluetooth technology. On the client side, a smartphone 

app or desktop software removes unwanted noise from the 

recorded signal, and embeds a watermark for security and 

authentication purposes; heartbeat is also monitored using 

a simple algorithm. The watermarked ECG signal is then 

transmitted to a cloud server, where temporal and spectral 

features are extracted and classified using a one-class sup- 

port vector machine classifier. The classification decision, 

along with the watermarked ECG, is passed to the desired 

healthcare professional for analysis. The professional then 

sends back a decision and prescription to the cloud server. 

The cloud then notifies the patient. The contributions of 

the paper are as follows: 
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-as
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• the introduction of a watermark into the ECG signal on

the client side, to avoid a security breach in the cloud

• the introduction of a user identification code to provide

customized protection of data

• the introduction of a one-class support vector machine

classifier in the cloud

The rest of this paper is organized as follows. Section 2 

reports some related studies. Section 3 outlines the 

HealthIIoT ecosystem, followed by a high-level data flow 

architecture for the HealthIIoT monitoring value chain, and 

the details of a cloud-supported HealthIIoT-enabled mon- 

itoring framework. Section 4 describes a proposed health 

monitoring approach by considering ECG as healthcare 

data. Section 5 presents the experimental results and eval- 

uations. Section 6 concludes the paper. 

2. Related studies

The IIoT is an innovative technology, directly intercon- 

necting a set of sensors and devices (such as smartphones) 

to collect, record, transmit, and share data for possible 

analysis. The IoT has a wide range of emerging applications 

[4–16] . Among them, the most revolutionary potential ap- 

plication is healthcare monitoring, where patient health- 

care data are collected from a number of sensors, analyzed, 

delivered through a network and shared with healthcare 

professionals for evaluation of patient care [4–6,10,11,13] . A 

more comprehensive survey of IoT for healthcare applica- 

tions can be found in [7] . IoT-enabled healthcare applica- 

tions, including IoT-driven ECG monitoring, are discussed 

in the following studies [6,10] . Li et al. [10] . presents a 

health monitoring service as a platform for ECG monitoring 

using adaptive learning analysis model to detect abnormal- 

ities. 

Mohammed et al. developed a remote patient monitor- 

ing system using web services and cloud computing [4] . 

In particular, they designed an Android application for ECG 

data monitoring and analysis. Data can be further analyzed 

by third-party software if needed; however, there is no op- 

tion for the cloud server to extract features and classify 

the signal to assist the health professional at the time the 

signal is received. In our proposed framework, the cloud 

server extracts features and classifies the signal, so that a 

preliminary analysis decision from the cloud can be sent to 

the healthcare professionals to facilitate good patient care. 

Hassanalieragh et al. discussed the opportunities and 

challenges of health monitoring and management using IoT 

[5] . Some challenges include slow processing, handling big 

data, presence of too much heterogeneous data, and data 

integrity. In our proposed framework, the ECG signal is wa- 

termarked on the client side before transmitting through 

the Internet to authenticate against any attacks. Data pro- 

cessing is also distributed between the client side and the 

cloud side to make the overall processing faster. 

Jara et al. [8] present a remote monitoring framework 

using IoT by proposing a protocol, called YOAPY, to cre- 

ate a secure and scalable fusion of multi-modal sensors to 

record vital signs. A cloud-based speech and face recogni- 

tion framework was developed to monitor a patient’s state 

remotely [26] . Xu et al. [9] developed a ubiquitous data 
sisted Industrial Internet of Things (IIoT) – Enabled frame- 
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Fig. 1. Conceptual illustration and scenario for HealthIIoT ecosystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accessing method in an IoT-based system for emergency

medical scenarios. They proposed a semantic data model

to store data, and a resource-based data access method to

gain control of the data ubiquitously, concluding that their

method could be significant to assist decision-making in

emergency medical situations. 

Zhang et al. [12] introduced an architecture of mobile

healthcare networks, incorporating privacy-preserving data

collection and secure transmission. The privacy-preserving

data collection was achieved using cryptography with se-

cret keys and private keys. Secure transmission was gained

using attribute-based encryption, where only authorized

users would have access to the data. These methods are

generally worthwhile; however, the main problem is com-

putation complexity. 

Granados et al. [14] proposed web-enabled gateways for

IoT-based eHealth with an option for wired or wireless ser-

vices. To take advantage of wired gateways in terms of

power-efficiency and low cost, the authors used the wired

gateways in a small room or building, where movement

is restricted. Radio frequency identification (RFID)-based

eHealthcare systems were proposed in [15,16] . In [15] , the

authors proposed a system that would capture the pa-

tient’s environmental conditions, such as temperature and

humidity, by RFID, and transmit them to the cloud for a

more detailed understanding of ambient conditions. Catar-

inucci et al. [16] proposed an IoT-aware architecture to

monitor and assess a patient’s situation automatically by

integrating ultra-high-frequency RFID functionality. 

Sawand et al. [18] identified three types of threats in an

eHealthcare monitoring system. These are identity threat,

where the identity of the patient is lost or stolen, ac-

cess threat, where an intruder can access the system il-

legally, and disclosure threat, where confidential medical

data are opened via malware or file sharing tools inten-

tionally or unintentionally. They offered some solutions to

these threats, including biometric cryptography and an ad-

vanced signal processing scheme; however, the authors did

not implement these solutions in their paper. 

In [19,21] , emotion-aware or affective mobile comput-

ing frameworks have been proposed, and the authors in-

vestigated an architecture named “emotion-aware mobile

cloud” (EMC) for mobile computing. Authors in [20] pro-

posed another framework, affective interaction through

wearable computing and cloud technology (AIWAC). Re-

cently, Hu et al. [6] introduced the Healthcare Internet of

Things (Health-IoT), attempting a bridge between intelli-

gent health monitoring and emotional care of the patient. 

To date, we have found no comprehensive study on

cloud-assisted IIoT-driven ECG monitoring, where (i) the

ECG signal is watermarked on the client side before trans-

mission through the Internet to the cloud, and (ii) the

cloud server extracts features and classifies the signal to

assist healthcare professionals in providing quality patient

care. 

3. Proposed cloud-assisted HealthIIoT-enabled 

monitoring framework 

HealthIIoT can revolutionize today’s healthcare industry

with affordable and quality patient care by adopting a
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-ass
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large number of interconnected machines, wearable things

(devices and sensors), and cloud-computing technologies

to collect patient data in a seamless manner. This HealthI-

IoT technology will play an important role in a number

of health monitoring applications, to form a Healthcare

Industrial IoT ecosystem. Fig. 1 describes a comprehensive

IIoT-driven healthcare ecosystem. As shown in Fig. 1 ,

one type of stakeholder (e.g., patient with IoT devices

and sensors, healthcare professional, hospital or medical

research center, social media and family) is connected

to another type of stakeholder (e.g., emergency response

services, drug industries and pharmacies, smart medical

devices and ‘Things’ industries, environmental and home

control services) to form a complex HealthIIoT ecosystem.

It also dispatches emergency services to the patient when

needed, and orders pharmacy refills. In this ecosystem,

interconnected ‘Things’ (medical devices and sensors) are

coordinated. It allows fast transfer of patient information

among the stakeholders in a secured manner, such that

specific patient data are available only to a designated

authorized healthcare team. Finally, cloud-based big data

analytic enables analyzing, storing, closely monitoring, and

securely sharing the data for further review and medical

recommendations, aimed towards fulfilling the promise of

Industrial IoT in regard to quality patient care, real-time

patient monitoring, and avoiding hospital error. 

The Industrial IoT is the combination of big data, IoT,

Machine to Machine (M2M) communication, cloud com-

puting, and real-time analysis of data from interconnected

sensor devices [22] . The success of HealthIIoT largely

depends on the advancement of the cloud-computing

technology and big data analytics. It creates a platform for

interconnected smart medical devices to operate with large

amounts of data (big data) from anywhere at any time. The

data are actually generated by a myriad of interconnected

smart devices, communication apps, and their usage in

healthcare monitoring applications. Data are gathered

and analyzed from e-health records, imaging equipment,

medical sensors, devices, and smartphones over the cloud.

This analysis augments the decision-making power of
isted Industrial Internet of Things (IIoT) – Enabled frame- 
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Fig. 2. Data flow architecture for HealthIIoT monitoring value chain. 

Fig. 3. The proposed HealthIIoT architecture for an ECG monitoring. 
healthcare professionals, and helps patients have an active 

role in managing their personal health. 

Fig. 2 outlines how the flow of a patient’s healthcare 

data (e.g., ECG signals) is captured securely; how it is 

transferred seamlessly through a connection gateway to 

the cloud data centers for further analysis and processing, 

such as feature extraction, classification, verification, work- 

load measurement, and big data management. After being 

processed and securely stored in the cloud, the chain of 

collected data is either accessed by healthcare profession- 

als, or delivered to external systems for further industry- 

specific healthcare IoT solutions. 

Fig. 3 shows the cloud-assisted IIoT-enabled health 

monitoring framework. First, the patient’s ECG signal is 

recorded through the connected devices and sensors, and 

then after possible signal reconstruction, enhancement, 
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-as
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and watermarking, it is sent to the cloud-based system us- 

ing network connections. The cloud system validates this 

information to check that the patient’s information is cor- 

rect, and then extracts some features, classifies the signal, 

and redirects it to the assigned healthcare professionals 

and providers for possible patient care. 

The major components of the framework are described 

below. 

Healthcare staff and other related stakeholders: Pa- 

tients upload their ECG readings through an ECG interface, 

which is connected to the Internet. After some process- 

ing, the ECG reading is stored in the cloud database, where 

healthcare professionals can access it and review it for pos- 

sible action based on the uploaded ECG readings. 

ECG signal capturing and recording service: This ser- 

vice is used to record and store the ECG signal from differ- 

ent devices and smartphones. 

Secure transmission service: The service enables a se- 

cure and authenticated transmission of the ECG signal 

through Internet. To accomplish this, watermarking is em- 

bedded into the signal, and later, is extracted to verify the 

authenticity. 

Resource allocation manager: Manages virtual ma- 

chine (VM) resources and web services. 

Cloud system manager: Controls all VMs and allocates 

suitable resources through the resource allocation manager 

for each service, such as ECG signal and things collection 

and record service manager, ECG monitoring session man- 

ager, feature extraction and classification manager, and fi- 

nally, signal reconstruction, enhancement and watermark- 

ing manager. 

(1) ECG signal and things collection and record service 

management : This web service is responsible for 

managing the users’ data and their related health in- 

formation, and storing them in the database. 
sisted Industrial Internet of Things (IIoT) – Enabled frame- 
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Fig. 4. Overall work flow of the ECG monitoring system in the cloud. 

Fig. 5. Effect of low-pass filtering and moving average filtering: (a) the 

recorded ECG signal, (b) the low-pass filtered signal, and (c) the moving 

average filtered signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) ECG monitoring (analysis and communication alerts)

session management : Responsible for managing and

controlling the sessions, in addition to locating,

tracking, and evaluating the activities. 

(3) Feature extraction and classification management : This

web service extracts collected data upon running the

ECG apps on smartphones, and stores them in a

MySQL database before sending them to the HealthI-

IoT cloud. 

(4) Signal reconstruction, enhancement, and watermark-

ing : This web service generates, records, and tracks

the performance of the monitoring function. 

HealthIIoT manager: Manages all health-related IIoT

data by assigning data to different replicated data centers,

after verifying the authenticity of the data. 

Monitoring and analytics: Analyzes the data by ex-

tracting features and applying classification techniques.

Calculates and monitors the workload of the framework,

such as storage and bandwidth. 

Replica service: Because of the growing demand for in-

terconnected medical devices with heterogeneous connec-

tivity, HealthIIoT systems handle large numbers of data re-

quests for accessing patient healthcare. Therefore, datasets

need to be replicated in multiple sites and data centers to

offer faster data access times. If one or more sites (data

centers) are down, healthcare data can be accessed from

other nearby sites. Generating replicas also enables the

healthcare professionals’ ECG file requests to distribute the

workload through the replica servers, and avoid perfor-

mance degradation due to network congestion. Moreover,

this ensures faster access, scalability, and a reduction in re-

sponse time. 

IIoT-driven healthcare service directory: Records and

stores data from the ECG capturing devices. It also regis-

ters and publishes different participating services. It facili-

tates continuous care for the patients by recording the ECG

signal in portable ECG recording devices at home or out-

doors, and sends them to smartphones or desktops. Some

major elements in this directory are the ECG capturing ser-

vice, feature extraction and ECG classification service, se-

cure transmission service, and payment service. Healthcare

professionals can get access to the ECG data from this di-

rectory without visiting the patient. 

4. Proposed health monitoring approach 

Our proposed health monitoring approach consists of

some processing steps, which are signal enhancement, wa-

termarking, feature extraction, ECG analysis, and signal re-

construction. Signal enhancement and watermarking are

done on the client side. The work flow of the proposed

framework is shown in Fig. 4 . 

4.1. Signal enhancement 

An ECG monitoring system based on the cloud was pro-

posed by Pandeya et al. [23] . In their system, ECG data

were collected by mobile devices and were sent to the

cloud for analysis. The system was just a prototype, and

therefore, problems remained in its fully practical usage in
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-ass

work for health monitoring, Computer Networks (2016), http://d
term of data collection and transmission. The first issue is

to ensure the effectiveness of ECG data collection through

mobile devices. Physiological artifacts can be caused by

muscular activities that result in small spikes, and by hu-

man motion that results in large swings in the recorded

data. Non-physiological artifacts can be produced by elec-

trical interference and electrode malfunction. Electrode

malfunction is initiated by loose connections, electrode

misplacement, low amount of electrode gel, wrong filter

setting, fractured wires, etc. Of them, electrode misplace-

ment is a major source of malfunction of ECG data acquisi-

tion [24] . Cable misplacement can even result in ECG that

resembles cardiac abnormalities like ectopic rhythm [25] . 

Therefore, in the proposed framework, the recorded

ECG signals are enhanced before processing to get rid of

some of the common artifacts. In the enhancement stage,

the recorded ECG signal is passed through a low-pass fil-

ter to suppress the high frequency components that are re-

ferred to noise. A 25-point moving average filter is then

applied to the output of the low-pass filter to smooth the

signal. Fig. 5 shows the effect of low-pass filtering and

moving average filtering of a recorded ECG signal. From the

figure, we see that the signal looks ‘clear’ after applying

these two filters. This preprocessing step is necessary to

correctly detect electrical waves in the ECG signal, which

is critical for subsequent online analysis and monitoring. 

4.2. Peak R detection 

To process the ECG signal, determining peak R is

required. These two attributes in ECG signal are very

important for ECG signal analysis. To detect R, we use

analytical wavelet transform (AWT) [28] . A complex AWT
isted Industrial Internet of Things (IIoT) – Enabled frame- 
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Fig. 6. Detected peak R. 

 

w 
can be expressed by Eq. (1) . 

φ(ω) = ω 

n e −ω , ω ≥ 0 

= 0 , ω < 0 

(1) 

The above equation is obtained by combining a Hilbert 

transform and a wavelet transform. In Eq. (1) , n is the 

derivative order. The advantage of using the above equa- 

tion is that it combines the time-frequency location of a 

wavelet transform with the local slope information of the 

Hilbert transform. 

After applying complex AWT, we apply thresholding 

and look for persistent lines. The local maximums are 

identified in the wavelet transform signal to find R (see 

Fig. 6 ). 

4.3. ECG watermarking 

The next stage is to watermark the signal to protect it 

from forgery. Watermarking is a procedure to embed some 

information in a signal without distorting the visibility 

or credibility of the signal for ownership claim. It has 

mainly two parts: watermark embedding and watermark 

extraction for verification. Embedding watermark in the 

ECG signal will ensure the authenticity of the ECG signal 

transmitted over the cloud. We adopt a simple yet effi- 

cient strategy of watermarking that has rarely been used 

for ECG signals. The watermarking is based on discrete 

wavelet transform (DWT)-singular value decomposition 

(SVD) [25,27] . The study in [25,27] did not use DWT-SVD 

watermarking scheme in ECG signals, e-healthcare or 

cloud-based systems. DWT is a multi-resolution technique 

that decomposes a signal into different levels of time and 

frequency. In the proposed step, we use a two-level DWT 

that decomposes the signal into three subbands: approx- 

imation subband L2, second-level detail subband H2, and 

first-level detail subband H1. SVD is a matrix factorization 

technique that decomposes a matrix into three matrices. If 

a rectangular matrix A of size I × J is the input, the output 

will be two orthogonal matrices and one diagonal matrix 

as follows ( Eq. (2) ): 

A I×J = U I×I S I×J V 

T 
J×J (2) 

where U 

T U = I I×I and V T V = I J×J , which means that U 

and V are orthogonal. S is a diagonal matrix, whose diago- 

nal entries are singular values and arranged in descending 
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-as
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order. These singular values are always real numbers. The 

computation of SVD is stable against round-off errors. The 

fact that a slight variation in the values of S matrix does 

not affect the perception of an ECG signal, watermark bits 

can be added to the singular values of S to get a robust 

watermarking. 

The watermark is an image consisting of the client’s 

registered ID in image format of size I × J , where I > J .

The detailed procedure is described as follows. 

Step 1. Normalize the watermark image matrix by 255. 

Im i, j = 

{
water mar k i, j / 255 ; 0 ≤ i ≤ I, 0 ≤ j ≤ J 

}
Step 2. Apply SVD on the normalized matrix. The resul- 

tant S w 

is a square matrix of size I × I . 

Im = U w 

· S w 

· V 

T 
w 

Step 3. Multiply S w 

by a watermark intensity factor, α. 

S wα = α · S w 

Step 4. Store U w 

, V w 

T , and α for watermark extraction. 

Use S w αfor watermark embedding. 

Step 5. Divide the ECG signal into N number of beats. The 

beat duration is 0.6 s and peak R is located at 40% 

of the duration. 

Step 6. Step 6: Apply two-level DWT on each beat. Take 

H2 (detail coefficients at level 2) for watermark 

embedding. Store L2 (approximation coefficient) 

and H1 (detail coefficients at level 1) for recon- 

struction of watermarked ECG signal. 

Step 7. Form a matrix G using H2 of all the frames. The 

number of rows corresponds to the number of 

beats of the signal. 

Step 8. Apply SVD on matrix G . The resultant S s is a 

square matrix of size N × N . 

G = U s · S s · V 

T 
s 

Step 9. A new matrix, S new 

, of size N × N is formed by 

using matrices S w 

α and S s . 

S new 

= 

{
S wα(n, n ) + S s (n, n ) , ≤ n ≤ I 

S s (n, n ) , (I + 1) ≤ n ≤ N 

Step 10. Using U s , V s 
T , and S new 

, perform inverse SVD to 

get matrix G 

′ . 

G 

′ = U s · S new 

· V 

T 
s 

Step 11. Using L 2, G 

′ , and H1, perform inverse DWT to get 

watermarked ECG signal. 

The watermark image can be reconstructed by using 

the following steps. 

Step 1. Subtract S s from S new 

to get S im 

. S im 

should be 

equal to S w 

if the watermarked speech signal is 

not under attack. 

S im 

= S new 

(n, n ) − S s (n, n ) , 1 ≤ n ≤ I 

Step 2. Apply inverse SVD to get the normalized water- 

mark. 

Im 

′ = U w 

· S im 

· V 

T 
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Fig. 7. ECG signal modules on the client side and the cloud side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3. Get the watermark image by multiplying the val-

ues by 255 and dividing by α. 

I m 

′ 
i, j = 

{
I m 

′ 
i, j × 255 /α; 0 ≤ i ≤ I, 0 ≤ j ≤ J 

}
If there is no attack, Im 

′ 
i , j will be the same as the

watermark image. 

The enhancement stage and the watermark stage are

performed on the client side. Once the ECG signal is wa-

termarked signal is transmitted to the cloud, where it is

processed to extract features and to analyze. 

4.4. Feature extraction 

Several features are extracted from the ECG signal in

the cloud server. The features include heartbeat rate (HBR),

durations of P wave, PR interval, QRS complex, and QT in-

terval, and the shape (inverted or not, and peaked or not)

of T wave. These are total of seven features. 

The HBR is determined by the inverse of the time dif-

ference between RR intervals and expressed as beats per

minutes (bpm) as expressed by Eq. (3) . 

HBR (bpm ) = 

60 

RR intervals (s) 
(3)

An unusual p-wave may represent ectopic atrial pace-

maker. p-wave longer than 80 ms can indicate atrial en-

largement. A PR interval smaller than 120 ms may be

a cause of Wolf–Parkinson–White syndrome, while larger

than 200 ms may indicate a first degree of atrioventricu-

lar block. QRS complex wider than 120 ms suggests a dis-

ruption of the heart’s conduction system, or sever hyper-

kalemia. A prolonged corrected QT interval ( > 440 ms)

risks for ventricular tachyarrhythmia, while an unusual

short interval may indicate severe hypercalcemia. For a

corrected QT interval, QT interval should be normalized by

the square root of the RR interval. Inverted T waves may

be syndromes of myocardial ischemia, or high intracranial

pressure, while a peaked (determined by the variance of

the wave) T wave may indicate hyperkalemia or early my-

ocardial infarction. 

Spectral features are also calculated by applying the

Fast Fourier Transform (FFT) to each beat. A 512-point FFT

is used and first half of the magnitude output is retained.

The 256 bins are linearly resampled to F number of bins,

where F is varied to 10, 20, 30, and 40. These F number

of features are appended to previously mention seven fea-

tures for classification. 

4.5. One-class support vector machine (OCSVM) classification 

OCSVM is a one-class classification technique, where

the feature space is mapped to a higher dimensional space

so that a hyperplane maximizes the distance between the

hyperplane and the origin. In a typical SVM, there are two

classes, while in OCSVM, there is only one class in the

training. OCSVM is used in this framework, because it can

detect the personal ECG as abnormal or not. For the exper-

iments, MIT-BIH database was used [29] . The first group of

48 records are divided into two sets: first set comprises of

first 3 min of data in each record for training, while second
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-ass
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set consists of remaining 27 min of data in each record for

testing. 

Fig. 7 shows the separation of the modules in the client

side and the cloud side. 

5. Experimental results and evaluation 

Several experiments were performed to validate the

proposed IoT-enabled ECG signal monitoring. They are de-

scribed in details in the followings sections. 

5.1. Watermarking performance 

The performance of the ECG watermarking was mea-

sured in terms of imperceptibility, and robustness against

attacks [30] . Imperceptibility is a measure of how much

the signal is distorted perceivably. To measure impercepti-

bility, we used signal-to-noise ratio (SNR), which is an ob-

jective measurement. SNR is defined by Eq. (4) . 

SNR dB = 10 log 10 

P s 

P s − P ′ s 

(4)

where, P s and P s are the power of original ECG sig-

nal and the watermarked ECG signal, respectively. Another

closely related metric is peak SNR or PSNR. In PSNR, the

numerator of logarithm in Eq. (4) is replaced by the square

of the maximum value of the pixel in the original water-

mark image. 

With regard to robustness against attack, we considered

two common attacks, which are additive white Gaussian

noise (AWGN), and filtering of type low-pass, high-pass,

and band-pass. The measurement were obtained by using a

correlation factor, η, which is computed by using Eq. (5) . 

η(w, w 

′ ) = 

∑ N 
i =1 w i w 

′ 
i √ ∑ N 

i =1 w i 
2 
√ ∑ N 

i =1 w 

′ 
i 
2 

(5)

where, w and w ’ are the original and extracted water-

mark, respectively, N is the number of pixels in the water-

mark image. η takes the value between 0 (no relation) and

1 (perfect relationship). 

Fig. 8 shows the obtained SNR and PSNR in dB using

the proposed DWT-SVD based watermarking. The proposed

scheme was compared with another popular method,
isted Industrial Internet of Things (IIoT) – Enabled frame- 
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Fig. 8. PSNR (dB) and SNR (dB) using the proposed DWT-SVD based wa- 

termarking, which is compared with DWT-DCT based watermarking. 

Fig. 9. Correlation factor after different types of attack. 

Fig. 10. Classification accuracy of the proposed framework. 

Fig. 11. Time requirement of the proposed framework. 

Table 1 

Storage configurations. 

Config. Node capacity Total storage Relative 

(GB) (TB) storage (%) 

1 [50–10 0 0] 20 .75 80 

2 [50–500] 15 60 

3 [50–200] 12 46 .75 

4 [20–50] 4 .5 18 

5 [10–20] 3 .5 15 
which is DWT-DCT (discrete cosine transform)-based [31] . 

From the figure, we see that the proposed watermarking 

has a very good SNR and PSNR, and it outperforms the 

DWT-DCT based method. 

Fig. 9 shows correlation factor, η, after different types 

of attacks. The attacks were applied in the cloud server. 

The attacks included band-pass filtering with passband be- 

tween 8 Hz and 40 Hz, high-pass filtering with cutoff fre- 

quencies of 40 Hz, low-pass filtering with cutoff frequen- 

cies of 8 Hz, and 4 Hz, and AGWN of 20 dB, 15 dB, and 

10 dB. From the figure, we see that almost in all the cases 

the correlation factor was 1, which indicates the robustness 

of the proposed watermarking algorithm. For a compari- 

son with DWT-DCT based method, the correlation factor of 

DWT-DCT based watermarking is 0.98 for AWGN 20 dB at- 

tack. 

5.2. Classification performance 

Two types of classification experiments were per- 

formed: one with the MIT-BIH database as mentioned in 

the classification section, and the other with actual data 

recorded through the proposed framework. Fig. 10 shows 

the average classification accuracy using the two databases. 

Seven features correspond to features without spectral fea- 

tures. With 37 features, the accuracy reached up to 87.7% 

with MIT-BIH database and 90.4% with private database. 

Fig. 11 shows the time spent from transmitting the data 

to the cloud, extracting features, to classifying the data. 

One instance, three instances, and fives instances of servers 
Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-as
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were used in the cloud. With five instance server, only 

around two seconds were needed while using 37 features. 

5.3. Workload of the IIoT-enabled health monitoring service 

To evaluate the proposed IIoT-based for health mon- 

itoring, we used a Java-based simulator program. The 

simulation environment includes cloud topology and an 

ECG data access pattern by a healthcare professional. To 

reduce overhead and latency, ECG files are replicated so 

that healthcare professionals can get access to the desired 

data for a specific patient from neighboring data centers. 

We have used a similar multi-tier cloud topology structure 

[32] with multiple data centers using the following storage 

configurations of replica servers as shown in Table 1 , 

where the capacity of relative storage ranges from 15% to 

80%. While submitting a task, a number of ECG files are 

requested for access to patient data. The sequence of file 

request is handled by three access patterns, such as Zipf 

distribution, random distribution, and Gaussian distribu- 

tion. The framework is evaluated in terms of ECG data 

access by healthcare professionals. The access time refers 

to the time of completion of all tasks for the ECG file 
sisted Industrial Internet of Things (IIoT) – Enabled frame- 
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Fig. 12. ECG data access time using relative storage capacity 80%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

requests. The objective is to reduce ECG data access time.

In the simulation, constant data access rate is considered.

The total data access time is a summation of time needed

by the disk to find a replica of an ECG file from the replica

data center disk and network communication latency for

replica transmission. The data access time, Access ( R ), is
Fig. 13. ECG data access time comparison for all storage configuration. 

Please cite this article as: M.S. Hossain, G. Muhammad, Cloud-ass
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calculated using the following model, Eq. (6) : 

Access (R ) = 

∑ 

v ∈ G 
f (v , n ) · D latency (v , r) + G network (v , r) (6)

where, G = (V, L ) is undirected tree structure of the

cloud, R is a set of replica data centers, n is an ECG file

or sample, f (v , n ) is data access frequency by a healthcare

professional (v) for an ECG file (n), r is lowest ancestor of v

in R, D latency is disk access latency, and G network is network

communication latency. 

We compared ECG data access time by integrating

replication and without considering replication approaches

to the proposed framework. Fig. 12 compares the ECG data

access times by considering replication and non-replication

strategies for the first storage configuration, as shown in

Table 1 . In the majority of cases, a storage configuration

with replication resulted in a shorter ECG data access

time than a configuration without replication. Replicated

datasets in several data center locations decrease the

data access time because healthcare professionals have

access to the required ECG data for a particular patient

from a nearby site. Moreover, the storage capacity of the
Fig. 14. Workload for ECG monitoring. 
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data centers favors using the replication approach. With 

a reduced storage capacity, the ECG data access times for 

both approaches (i.e., with and without replication) are 

increased, but by different magnitudes. Fig. 13 shows the 

execution times for Zipf and Gaussian distributions for all 

the storage configurations listed in Table 1 . Shorter access 

times for all storage configurations are correlated with 

using the replication approach. 

Fig. 14 shows the workload of the main services used 

for health monitoring of the proposed HealthIIoT frame- 

work. We have concentrated on three key services: ECG 

capturing service, transmission service, and extraction or 

classification service. To understand the features of those 

workloads as they relate to ECG monitoring, the run-time 

characteristics of those workloads are collected by running 

the proposed health monitoring prototype on the Ama- 

zon Elastic Computing Cloud (EC2). For this purpose, we 

rented a VM with an Intel®Core TM 2 Duo, DDR3 ECC RAM 

at 2.53 GHZ, 1 Gbps bandwidth, and 4.0GB memory, run- 

ning Windows Server 2010. The performance monitor of 

Windows has been used to record the resource consump- 

tions of those workloads for memory, CPU, and network 

bandwidth utilizations. 

6. Conclusion 

IIoT-driven healthcare monitoring is an emerging 

healthcare service that may potentially revolutionize the 

healthcare industry in terms of improving access to patient 

information, and offer quality patient care through con- 

tinuous monitoring from anywhere at any time, through 

a multitude of devices. With HealthIIoT, healthcare profes- 

sionals may be able to access patient information, store it, 

and analyze it in a real-time manner to monitor and track 

the patient. However, interconnected wearable patient de- 

vices and healthcare data (such as ECG signals) are subject 

to security breaches. To this end, this paper describes a 

cloud-integrated HealthIIoT monitoring framework, where 

healthcare data are watermarked before being sent to the 

cloud for secure, safe, and high-quality health monitoring. 

Future work will involve testing the proposed HealthIIoT 

monitoring framework for data security and notification 

functions, as well as implementing a test trial with real- 

world patients and health professionals. 
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