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Abstract—Wireless sensor and actuator networks (WSANs) are
heterogeneous networks composed of many different nodes that
can cooperatively sense the environment, determine an appro-
priate action to take, then change the environment’s state after
acting on it. As a natural extension of Wireless Sensor Networks
(WSNs), WSANs inherit from them a variety of research chal-
lenges and bring forth many new ones. These challenges are
related to dealing with imprecise and vague information, solving
complicated optimization problems or collecting and processing
data from multiple sources. Computational Intelligence (CI) is an
overarching term denoting a conglomerate of biologically and
linguistically inspired techniques that provide robust solutions
to NP-hard problems, reason in imprecise terms and yield
high-quality yet computationally tractable approximate solutions
to real-world problems. Many researchers have consequently
turned to CI in hope of finding answers to a plethora of
WSAN-related challenges. This paper reviews the application
of several methodologies under the CI umbrella to the WSAN
field. We describe and categorize existing works leaning on
fuzzy systems, neural networks, evolutionary computation, swarm
intelligence, learning systems and their hybridizations to well-
known or emerging WSAN problems along five major axes:
actuation, communication, sink mobility, topology control and
localization. The survey offers informative discussions to help
reason through all the studies under consideration. Finally, we
point to future research avenues by (a) suggesting suitable CI
techniques to specific problems, (b) borrowing concepts from
WSNs that have yet to be applied to WSANs or (c) describing
the shortcomings of current methods in order to spark interest
on the development of more refined models.

Index Terms—wireless sensor and actuator networks, compu-
tational intelligence, fuzzy systems, neural networks, evolutionary
computation, localization, sink mobility, topology control

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony
ACO Ant Colony Optimization
AES Artificial Endocrine System
AFSA Artificial Fish School Algorithm
AIS Artificial Immune System
ANN Artificial Neural Network
AOI Area of Interest
AOA Angle of Arrival
ART Adaptive Resonance Theory
BA Bees Algorithm
BBA Biogeography-based Optimization Algorithm
BFA Bacterial Foraging Algorithm

CHNN Competitive Hopfield Neural Network
CI Computational Intelligence
CRNDP Constrained Relay Node Deployment Problem
CS Cuckoo Search
DE Differential Evolution
DL Deep Learning
DSS Decision Support System
EA Evolutionary Algorithm
FA Firefly Algorithm
FIS Fuzzy Inference System
FL Fuzzy Logic
GA Genetic Algorithm
GPS Global Positioning System
GSO Glowworm Swarm Optimization
HS Hybrid System
HaS Harmony Search
IEEE Institute of Electrical and Electronic Engineers
LS Learning System
MDP Markov Decision Process
MLE Maximum Likelihood Estimation
MOEA Multi-Objective Evolutionary Algorithm
MOO Multi-Objective Optimization
MOPSO MultiObjective Particle Swarm Optimization
MOVNS MultiObjective Variable Neighbourhood Search
MRTA Multi-Robot Task Allocation
NP Non-Polynomial
NSGA-II Non-Dominated Sorting Genetic Algorithm II
PC-TSP Prize-Collecting Traveling Salesman Problem
PSO Particle Swarm Optimization
QoS Quality of Service
RL Reinforcement Learning
RSN Robotic Sensor Network
RSSI Received Signal Strength Indication
SCX Sequential Constructive Crossover
SI Swarm Intelligence
SIA Swarm Intelligence Algorithm
SOM Self-Organizing Map

SVM Support Vector Machine
TOA Time of Arrival
TSP Traveling Salesman Problem
TSP-N Traveling Salesman Problem with Neighborhoods
TSP-TW Traveling Salesman Problem with Time Windows
UAV Unmanned Aerial Vehicle
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WRSN Wireless Rechargeable Sensor Network
WSAN Wireless Sensor and Actuator Network
WSARN Wireless Sensor, Actuator and Robot Network
WSN Wireless Sensor Network

I. INTRODUCTION

W IRELESS sensor and actuator networks (WSANs) are a
natural extension of wireless sensor networks (WSNs)

[1] [2]. While WSNs usually consist of numerous, often
weak computational and low-energy nodes, WSANs integrate
a small number of resource-rich sinks and actuators into their
topology. These sinks and actuators are able to change the
state of the environment with their actions, hence closing the
control loop on the underlying monitoring system. This allows
for greater potential for computations in the network.

WSANs have witnessed many successful applications, from
agricultural [3] to industrial cyber-physical systems [4], crit-
ical infrastructure protection [5] [6], smart homes [7] and
autonomous animal control, such as the bull breeding paddock
example reported in [8]. However, a growing potential for
research and development is still largely untapped. While
today’s WSANs are limited in their actuation, reasoning, and
sensing abilities, the WSANs of the future will likely have
even more heterogeneous nodes and be deployed on a massive
scale.

In order to achieve this, several challenges must be tackled
and resolved. Many of the optimization problems found in
WSANs are quite difficult to solve and their optimal solution
cannot be identified within a reasonable amount of time. To
make matters worse, WSANs have inherited the problems of
WSNs, thus making communication unreliable. Additionally,
WSANs exhibit a more complex and heterogeneous topology
with different types of nodes. Overcoming these challenges
requires a departure from classical problem-solving methods.

Computational Intelligence (CI) is another vibrant research
field [9] [10] that encompasses a broad range of intelligent
techniques such as fuzzy systems, neural networks, evolu-
tionary computation, swarm intelligence, granular computing
and other learning and optimization paradigms. The common
denominator behind all the methodologies under the CI um-
brella is their ability to process imprecise information and
seek approximate yet good-enough solutions to these problems
while ensuring their robustness and computational tractability.
Another distinctive feature behind CI techniques is that they
are often inspired by biological processes. For instance, evolu-
tionary algorithms mimic natural evolution to converge to near-
optimal solutions in an optimization problem, and artificial
neural networks borrow inspiration from the brain’s massively
parallel architecture for processing their input data. All these
CI techniques are suitable for WSANs given their robustness
and tolerance for imprecision; therefore, many researchers
have started applying them with great promise.

This survey has three main objectives. First, it will introduce
key concepts such as CI, WSAN, and relevant WSAN problem
definitions along five major axes: actuation, communication,
sink mobility, topology control and localization. Then, an ex-
tensive list of CI techniques applied to these WSAN problems
is unveiled and discussed to provide an overview of the status

quo in this exciting research area. A final important objective
will be to identify future trends and research opportunities to
better guide subsequent research endeavors.

The works discussed here have been gathered from relevant
journals, workshops, and conference proceedings. Some of
them are thesis works. The survey does not aim to give an
exhaustive view of the field, as we found that the pace of the
emerging developments is quite astonishing. Instead, we seek
to outline representative studies offering different perspectives
on WSAN problems tackled by CI methods. Most of the
referenced works are very recent, which helps visualize the
directions and trends current research efforts are pursuing.

The rest of the paper is organized as follows: we justify
the need for this review article in Section II by comparing
it with several other relevant survey papers. Core definitions
pertaining to the CI and WSAN worlds are respectively
introduced in Sections III and IV to contextualize the rest of
the survey. Then, the problems plaguing WSANs are unveiled
in Section V. Section VI elaborates on the surveyed works
and categorizes them along five major axes corresponding to
the WSAN problems they attempt to solve. Section VII offers
informative discussions on the problems and works reported,
again categorized per WSAN problem. Similarly, Section VIII
sheds light on some future trends and opportunities under
each problem category while Section IX formulates some
concluding statements.

II. RELATED SURVEY PAPERS

The purpose of this survey is to provide a broad overview of
the application of CI techniques to problems that are inherently
found in WSANs. Although both CI and WSANs are quite
vibrant research fields, they are rarely mentioned together
in a holistic manner. To the best of our knowledge, this is
the first time that CI applications to the WSAN realm are
systematically dissected, categorized and put together in a
review article, hence bridging the gap between these two
seemingly disconnected yet highly complementary paradigms.
There exist, however, several published works that cover in
depth multiple niche areas found in our survey. This section
will provide an overview of some of those relevant studies.

Survey papers or books devoted to WSANs [11] [12] [13]
[14] [15] are relatively scarce compared to those dedicated
to WSNs as a whole [16] [17] [18] or to a particular WSN
problem [19] [20] [21] [22] [23] [24]. In these studies, CI
is not the focus of attention even if some of the solutions
discussed therein hinge on any method under the CI canopy.

Some researchers have published valuable studies high-
lighting the utilization of several CI methods in a particular
context/problem pertaining to WSNs [25] [26]. Others have
reported on the applications of a certain CI technique to
numerous problems revolving around WSNs [27] [28] [29]
[30] [31] [32] [33] [34]. While useful in constructing the
present survey, these works have a narrower scope than ours
and are not geared towards WSANs.

In 2011, Kulkarni et. al. surveyed CI applications to the
WSN field [35]. This well-cited paper gave an excellent
overview of key WSN problems such as design and deploy-
ment, localization, routing and clustering, among others. It
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also breaks down the family of CI techniques into neural
networks, fuzzy logic, evolutionary algorithms, swarm intelli-
gence, artificial immune systems, and reinforcement learning.
The influence of this survey is visible throughout our article.
However, WSANs pose a unique set of challenges (such as
actuation, sink mobility or topology control via mobile actors)
and call for the redefinition of typical WSN problems (such
as routing and clustering). CI applications to these novel and
challenging scenarios were beyond the scope of the survey in
[35] and hence left unhandled. Additionally, the CI field is
being constantly reshaped by numerous contributions and our
survey aims to present a fresher look at the categorization of
the CI techniques [10].

Along the same lines, Abraham et. al. [36] published a
Springer volume on CI applications to WSNs in 2017. This
book is not as comprehensive as the survey in [35] but offers
a variety of solution approaches to important WSN problems
such as attack detection, cost-sensitive control, traffic state
estimation and information security.

In summary, this survey attempts to give a top-down view of
the state-of-the-art regarding CI usage in WSANs. The review
is centered around a plethora of problems brought forth by
WSANs instead of WSNs, how CI techniques have succeeded
in tackling them, and provides a more recent view of the CI
discipline. Our paper is an ambitious effort to capture the
interplay between CI and WSANs, instead of delving into one
particular CI technique or one WSAN problem exclusively.
The motivation behind this survey is to provide both CI and
WSANs researchers a glance of the intersection between these
two fields at a higher level.

III. COMPUTATIONAL INTELLIGENCE TECHNIQUES

The definition of CI is still not well agreed upon but some
concepts are understood to be fundamental to the discipline.
The methods are nearly always heuristic in nature, meaning
they provide solutions that may be inexact, not always optimal,
or imprecise. CI algorithms are often, if not always, inspired
by nature, drawing some ideas but not precisely replicating
the mechanism seen in nature. The Institute of Electrical
and Electronics Engineers (IEEE) Computational Intelligence
Society defines CI in their constitution, Article I, Section 5 as
“the theory, design, application, and development of biolog-
ically and linguistically motivated computational paradigms
emphasizing neural networks, connectionist systems, genetic
algorithms, evolutionary programming, fuzzy systems, and
hybrid intelligent systems in which these paradigms are con-
tained” [10].

This definition will be the default guideline of this survey.
The authors in [10] elaborate on six CI categories, but they
consider three of them to be foundational, viz evolutionary
computation, artificial neural networks and fuzzy logic. The
following survey will consider five categories: Evolutionary
Algorithms (EAs), Swarm Intelligence (SI), Fuzzy Logic (FL),
Learning Systems (LS), and a fifth category for Hybrid Systems
(HS). Table I outlines several important characteristics of these
techniques in the CI family. The rest of this section elaborates
on these techniques and showcases their applications to the five

major categories of WSAN problems described in this survey.
Figure 1 illustrates all CI methods found in the reviewed
papers at a glance.

A. Evolutionary Algorithms

Evolutionary algorithms attempt to mimic natural evolution
to discover appropriate solutions to an optimization problem
[42]. A typical EA maintains multiple individuals in its
population, where each individual (a.k.a chromosome) is a
series of genes. This population changes over time, with
operators working at the individual or group levels to create
new individuals or change the existing ones. One iteration
of such an algorithm usually performs the following actions:
first, the population is modified by the genetic operators,
typically mutation and crossover; the former alters existing
chromosomes into new ones and the latter generates new
chromosomes from at least two existing ones. Then, the
individuals in the current population are evaluated in terms of
their fitness function(s), with only the fittest individuals sur-
viving to form the population in the next iteration. The fitness
function could be either maximized or minimized depending
on the problem at hand. This leads to a population of high-
quality (elite) solutions. The previous steps are repeated until a
predefined stopping criterion is met, e.g., reaching a threshold
in the maximum number of iterations, fitness function value
or execution time. The best individual in the population as
defined by the fitness function is then adopted as the solution
for the optimization problem. Other aspects often taken into
consideration are diversity preservation in the population and
what to do with infeasible individuals that emerge throughout
the search process.

From a mathematical perspective, this is analogous to
searching for the best combination of values that will optimize
the fitness function, making them apt for combinatorial and nu-
merical optimization problems. In consequence, it is possible
and often likely that these fitness values drive the algorithm
towards a local, and not global, optimum. These solutions may
only escape such local optima through the genetic operators
that often include problem-specific knowledge. While there is
an expectation that the quality of the discovered solutions will
improve over time, there is no guarantee whatsoever in terms
of the optimality of the final solution.

This definition is vague and not all-encompassing. There can
be more components to this, such as constraints on individuals,
making them not unable to be part of the population, or
modifications of the steps in the iteration. The following will
quickly review the EA applications that have been uncovered
in this survey.

1) Genetic Algorithms: (GAs) are one of the first and
most prominent EA manifestations. Though they are not
confined to optimization problems [43], they are usually used
in this context. A typical GA will follow the iterative process
described above, usually starting with a randomly generated
population. The mutation operator slightly modifies existing
solutions whereas the crossover operator generates offspring
solutions that may be part of the next generation. There are
many variants of these operators that are tailored to produce
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TABLE I
OVERVIEW OF DIFFERENT TYPES OF CI TECHNIQUES

Type of Computational Application Example
CI Technique Complexity Scenarios
Fuzzy Logic Low Reasoning with vague and imprecise concepts Fuzzy controller for a plant irrigation system [37]

Learning Systems Medium Learning relationships among objects Learning foraging behaviors in a robotic swarm [38]
Evolutionary Medium Finding approximate solutions Calculating near-optimal path for data collection
Algorithms to challenging optimization problems by a mobile sink [39]

Swarm Intelligence Medium Finding approximate solutions Minimizing localization error of the sensors
Algorithms to challenging optimization problems via a mobile anchor node [40]

Hybrid Systems High Combining the strengths of complementary techniques Improve QoS metrics in a WSAN [41]

Fig. 1. CI techniques used in the surveyed WSAN papers

better individuals for particular situations. Finally, a single
fitness function that must be optimized is used to evaluate the
individuals. The best individual is returned as the best solution
found.

A GA’s performance is largely influenced by several factors,
such as its parametric configuration. Additionally, there may
exist hard or soft constraints that must be taken into considera-
tion during the evolution. For example, a chromosome’s genes
ought not exceed certain bounds. Such individuals are deemed
infeasible and must be either repaired or discarded. GAs are
the most commonly found and popular type of EAs.

2) Multi-Objective Evolutionary Algorithms: (MOEAs) are
an extension of EAs (particularly GAs) aimed at finding
approximate solutions that are evaluated according to multiple,
often conflicting objectives. The immediate difference between
these techniques and classical, single-objective GAs is the fact
that a single solution can rarely be given since an individual
that optimizes a certain decision objective could worsen the
others. Consequently, a tradeoff must be considered when
optimizing one objective versus another. The solutions that
do not strictly dominate each other form the Pareto-optimal
front [44]. As such, MOEAs return a set of solutions that are
part of this front, with another selection mechanism in place
afterwards to make the final choice. One very popular MOEA
is the Non-Dominated Sorting Genetic Algorithm II (NSGA-

II) [45].

B. Swarm Intelligence Algorithms

Similar to EAs, Swarm Intelligence Algorithms (SIAs) are
a branch of nature-inspired algorithms based on the interaction
between living organisms [10]. If EAs are inspired by the bi-
ological phenomenon of evolution, SIAs’s chief motivation is
the collective behaviour of large animal groups, often referred
as swarms. There are many commonalities between SIAs and
EAs, for example they both maintain one or more populations
of individuals and carry out an iterative optimization process
guided by one or more fitness functions. However, SIAs work
under the assumption that many individuals acting separately,
but cooperatively, may be able to achieve a higher goal
together (i.e., finding a good solution faster than on their own).

Like EAs, SIAs are not driven by gradient-based optimiza-
tion principles. Instead they use other methods to explore
the solution space. These algorithms are mainly exploited to
discover combinations of values that optimize a certain fitness
function in both combinatorial and numerical optimization
problems.

Many algorithms that embody the SI principles have been
put forth. Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO) are two of the landmark SIA techniques
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that will be presented in the sequel, along with Artificial Bee
Colony (ABC).

1) Particle Swarm Optimization: PSO is based on the
collective behavior of bird flocks and fish schools. First, a
population of particles is created. Then, for each iteration, a
particle’s position and speed are updated relative to the posi-
tion and speed of other elite solutions, namely the particle’s
own best position and that reported in its neighborhood. This
algorithm attempts to explore the solution space by having
groups of particles “swarm” towards high-value positions,
hence discovering better solutions in terms of their fitness
function. This process is repeated until some stopping criterion
holds true. Similar to GA, the PSO algorithm has been adapted
to cope with multi-objective optimization (MOO) problems.

2) Ant Colony Optimization: (ACO) is another well-known
and representative SIA. This method emerged after the forag-
ing behaviour of ant colonies. As the ants explore their envi-
ronment, they deposit a chemical substance named pheronome
on the ground. Upon encountering a food source, they head
back to the nest while depositing pheromones in proportion to
the quality of the food source. ACO was originally proposed
for combinatorial (discrete) optimization problems. It first
defines a set of solution components and pheromone values
(the pheromone model). ACO works by probabilistically and
iteratively assigning higher pheromone values to good solution
components. These higher pheromone concentrations help the
algorithm converge to promising regions of the underlying op-
timization graph. By varying the pheromone model, numerous
ACO versions have been developed.

3) Artificial Bee Colony: (ABC) is another SIA technique
that came about after observing the foraging behaviour of bee
colonies [10], [46]. Individuals are categorized as employee
bees, onlooker bees, and scout bees. When good food sources
are discovered, employee bees stay at the food source while
onlooker bees search near the source. Finally, scout bees
explore the entire space. If no other food source is found near
it, the employee bee switches to scouting mode. The technical
details behind ABC can be found in [46]. Another algorithm
based on the social behaviour of bees, the Bees Algorithm
(BA), is discussed in [47].

4) Bacterial Foraging Algorithm: (BFA) is an optimization
algorithm based on colonies of escherichia coli. The BFA
algorithm is rather complex, and the details are available
in [48]. It can be summed up as follows: a set of random
individuals are generated. For each individual, chemotaxis as
defined in [48] is carried out. Chemotaxis is the process by
which an organism moves along the gradient of a substance
concentration. Afterwards, the individuals will reproduce and
split. A final step named elimination-dispersion is performed.
A number of random individuals are eliminated, while a
number of new individuals are randomly generated.

5) Artificial Fish Swarm Algorithm: (AFSA) is based on
the social interaction of fish. The technical details are available
in [49]. The algorithm follows five states with corresponding
operations: preying, moving, swarming, leaping and following.
Each of these steps attempt to either guide solutions towards
high-value spaces, disperse to explore near local optima, or
randomly explore the rest of the solution space.

Fig. 2. Glass example - crisp logic

Fig. 3. Glass example - fuzzy logic

6) Cuckoo Search: (CS) [50] attempts to simulate the
egg laying behaviour of cuckoo birds. Three main steps are
performed in one CS iteration. First, an individual is created
by modifying an existing individual, for instance via a Lévy
flight [50]. The fitness of the newly generated individual is
evaluated. This individual then replaces one of the individuals
in the population. Next, some of the worst individuals are
removed from the population. Finally, the best solutions are
kept and ranked by their fitness function values. When a
stopping criterion is reached, the best solution is kept and
returned.

C. Fuzzy Logic

Fuzzy logic (FL) is a mechanism to reason in presence of
vague and imprecise concepts [51]. Fuzzy logic imposes a
membership degree of an object to a concept instead of simply
concluding that an element either belongs to a concept or not,
as done in classical set theory. A membership function maps
elements in the universe of discourse to membership degrees
between 0 and 1. FL is useful to quantify the vagueness
permeating many real-world environments, which is a common
trait of human reasoning. A half-empty, half-full glass will
neither belong to the “full” or “empty” concepts in the crisp
sense as shown in Figure 2 but will belong to both concepts
with 50% membership degree under the FL interpretation.

In FL, we would have to first define the membership
function for the “empty” and “full” linguistic terms of the
“glass contents” fuzzy variable. A membership function is any
function that assigns a membership value between 0 and 1 to
an arbitrary input value in the domain of discourse. Popular
membership function types are the Gaussian, triangular and
trapezoidal functions. For the glass example, two triangular
membership functions could be defined as shown in Figure 3.

It is now easy to see that both assertions are true. FL plays
a pivotal role in many control systems and has been widely
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Fig. 4. Mamdani-type Fuzzy Inference System

hybridized with other Soft Computing techniques. Below we
explain how a crisp value can be inferred from another set of
crisp values by using FL.

D. Fuzzy Inference Systems

(FIS) are reasoning models that are able to infer a crisp
value from a set of inputs, their fuzzy sets and membership
functions, and a set of inference rules [52]. The two most
commonly found FIS models are the Mamdani [53] and the
Takagi-Sugeno FIS model [52]. The rules of an FIS are
usually set via expert knowledge or automatically learned
from available data. Such a system is generally built as
follows: first, the system inputs (domain variables such as
temperature or pressure) are fuzzified via the membership
functions associated with the predefined fuzzy sets. The fuzzy
sets are labelled by linguistics terms. The inference rules then
use these linguistic terms as antecedents and/or consequents.
The firing strength of each rule is then calculated, meaning that
some rules could be more important than others in arriving at
the conclusion. The firing strengths of all rules are aggregated
and weighted, thus producing a fuzzy value. Finally, this value
is defuzzified through appropriate methods like the centroid
method for the Mamdani FIS, or the weighted average of the
output values from the rules for the Sugeno model. A Mamdani
FIS is portrayed in Figure 4.

E. Learning Systems

Learning Systems (LS) or Machine Learning is the pro-
cess of uncovering relationships between a set of nomi-
nal/numerical features and states or objects [54], as living
organisms do. This relationship is not known a priori by the
system and must be “learned” from the available data. Three
major LS avenues are generally recognized: unsupervised,
supervised, and reinforcement learning. Each of these methods
attempts to learn a model that infers the correct state of an
entity as described by its set of features/actions. In supervised
learning, a set of input features is mapped to one or more
discrete object states (class labels). A supervised LS’ task
is then to discover this mapping between features and states
from data. During the learning phase, the system is fed with
a training set consisting of examples for which this feature-
to-state mapping is known. The system attempts to optimize
its internal model to have the highest number of correct
inferences. When a satisfactory performance is attained, the
system is used to infer the state of yet unseen objects.
These systems are widely used for classification purposes. In

Fig. 5. Simple Artificial Neural Network

unsupervised learning, the system does not know the class
labels (system state), but attempts to determine the relationship
among certain features (association rule mining), and create
states itself (clustering). Finally, in reinforcement learning,
the system is fed with features, an inference is made, then
the system is given a value proportional to the error in the
inference. The system then attempts to minimize this error
over time.

In the following we describe the two most prominent types
of LSs that have been applied to WSANs.

1) Artificial Neural Networks: (ANNs) are loosely inspired
by the brain, in which a set of neurons is able to process
signals into the various outputs that regulate the body. A
simple neural network is typically composed of interconnected
neurons grouped into layers, e.g., the input layer, the output
layer, and one or more hidden layers. Each neuron processes
the incoming information from other neurons and applies
an activation function, with the Sigmoid function, the Tanh
function, and the Rectified Linear Unit (ReLU) function being
some of the most popular choices. All edges between layers
are weighted. A typical example of neural network is given in
Figure 5.

These systems can be used in classification problems with
the output being the set of class labels, in reinforcement
learning as the policy function, in adaptive controllers where
the outputs correspond to the control signals, and many more
applications. The ANN research field quite vibrant and many
breakthroughs, particularly in the Deep Learning arena, are
being reported.

2) Reinforcement Learning: (RL) [55] [56] is a type of
LS that determines an optimal policy dictating which actions
to take at certain states in order to achieve the highest
possible reward. The problem is often formulated as a Markov
Decision Process (MDP), where there is a set of states and
actions. The problem lies in discovering the optimal action-
state associations, referred to as the policy function. A typical
RL environment is given in Figure 6.

The interactions are as follows: the agent is in a given state
and chooses an action from the set of actions, then receives
a reward and transitions to a new state, where it chooses
another action, and so on. Upon receiving a reward, the
agent updates its action-choosing policy as per some learning
function. In order to avoid continuously greedy yet suboptimal
actions, the agent’s policy usually integrates possible future
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Fig. 6. Typical Reinforcement Learning Model

rewards for choosing an action. Finally, in order to avoid
falling immediately into local optima, an exploration function
must be defined, thus allowing the agent to efficiently explore
the state/action joint space. Common RL algorithms are Q-
learning and SARSA, with ongoing intensive research on new
methods based on ANNs and Deep Learning [57].

Reinforcement learning algorithms are suitable in multi-
agent systems where individual nodes do not communicate
at all, or the social learning of all the individuals can be
integrated to help these agents perform better.

F. Hybrid Systems

Hybrid Systems (HS) combine two or more types of elemen-
tary CI techniques in order to make up for the shortcomings
of any one of the methods. For example, FIS rules require
expert knowledge, but the task of finding rules that will
yield the appropriate outputs is essentially an optimization
problem. EAs and SIAs are suitable to solve such optimization
problems. Consequently, many researchers employ EAs or
SIAs to automatically learn the FIS structure (e.g, fuzzy rule
base) [58].

Due to the similarity between EAs and SIAs, these two are
often combined for greater synergy. Similarly, Fuzzy Logic
and Neural Networks are sometimes combined, with fuzzy
Adaptive Resonance Theory (ART) [59] being one example.
We noticed a surge in the number of recent hybrid algorithms
applied to WSAN scenarios.

IV. WIRELESS SENSOR AND ACTUATOR NETWORKS

Wireless Sensor Networks (WSNs) [60] are collections of
static sensor nodes and one or more sink nodes. The often
numerous sensor nodes are composed of one or more sensing
modules, an energy source and a wireless communication
device. The sensor nodes in these networks usually have
limited computational power, thus requiring multihop chains
to transmit their messages across the network to the sink
nodes. WSNs are prone to node failure due to malfunction,
energy depletion, malicious attacks or harsh environmental
conditions. An extension of such networks is called Wireless
Sensor and Actuator Networks (WSANs), which are made
up of heterogeneous nodes capable of performing distributed
computations and actuation tasks [11].

There are four key components to these networks: (1) the
physical environment, (2) the sensor nodes, (3) the actuator
nodes and (4) the sink node(s). Figure 7 gives a conceptual
representation of a WSAN with these four components. Every
WSAN will be acting within a bounded physical environment

Fig. 7. Wireless Sensor and Actuator Network

of some sort, often called the Area of Interest (AOI). Then
we have the sensor nodes, which are able to monitor the
environment but not change its state. The nodes assuming this
role could range from resource-rich mobile robots to cheap,
static, resource-constrained sensors that are commonly found
in typical WSN implementations. The actuator nodes represent
the actionable network elements. Nodes assuming this role
have actuation capabilities such as the ability to move, to pick
up other nodes, or to act in a way that can change the state of
the physical environment (e.g., a mobile robot, a light switch
or a pressure valve). These nodes are typically resource-rich,
computationally endowed, and more autonomous. They make
either individually take or jointly coordinate their actions from
sensor data (i.e., without any external input). Finally, the role
of the sink nodes is to collect data from sensor nodes and to act
as an interface to external agents that need to access/control
the network. Similar to the actuator nodes, sink nodes usually
have more computational power and energy, but may not act
directly upon the environment. Nodes will be referred to as
actuators, sensors, or sinks henceforth with the actual term
depending on the context.

An important aspect of a WSAN is that a node may take on
multiple roles at any time, if it is able to do so. For example,
a node may perform both as an actuator and a sink, meaning
that sensor nodes would forward data to it and some actions
on the environment will be taken by this node. In other cases,
a node might act both as a sensor and a sink, where a sensor
is able to generate and preprocess data and send commands
directly to the actuator nodes. Other joint roles are definitely
possible depending on the application domain. A node may
have all three roles, and be able to sense and act upon the
environment without any external incentive. However, to be
considered a WSAN, there must be many of these nodes
that coordinate with each other. These types of networks are
sometimes referred to as Robotic Sensor Networks (RSNs) [61]
[62] or Wireless Sensor and Robot Networks (WSRNs) [5] [13]
[14] [63], the latter implying that all the actuator nodes are
exclusively robotic agents. A recently coined term is Wireless
Sensor, Actuator and Robot Networks (WSARNs) [15], where
other types of actuators co-exist with mobile robots.

There are many problems to be addressed in WSANs. For
example, the communication task is harder than that in WSNs
since the environment, and consequently the network topology,
can not be deemed static. The task of controlling the topology
to achieve a certain task (e..g, achieving a certain degree of
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sensor coverage) is in itself a difficult problem not found in
WSNs since their topology is mostly considered static.

Five major types of problems have been identified as
pertaining to WSANs, namely actuation, communication, sink
mobility, topology control and localization. Each of these
problems could be formulated in a variety of ways or may be
further decomposed into several subproblems. We will study
them in more detail in the next section.

V. WSAN RESEARCH PROBLEMS

This section discusses the main research problems for-
mulated around WSANs that have been tackled through CI
techniques. Figure 8 provides an overview of these challenges
and their sub-problems. Some of these sub-problems have been
already discussed in [11] [12] [13] [14] [15] but not from a
CI perspective.

A. Actuation

The actuation problem is what separates WSANs from
WSNs [64]. The actuation control loop must be closed, with
data from sensors converted into actions upon the environment
via the sink node(s). This conversion process itself can be
relatively simple and rooted on traditional concepts from
control systems theory or can also be complex and governed
by advanced predictive abilities. The series of steps below will
attempt to define the actuation control loop.

1) Task Creation: The first step in this process is task
creation (TC). A task is a given action that must be taken
by one or more actuators upon the environment, sometimes
over an extended period of time. Task creation is concerned
with the generation of proper tasks in a given scenario that
allows for efficient actuation upon the environment. A task
can be created either after an event has happened and been
sensed by the sensors (reactive task creation) or an event could
be predicted before it happens and tasks created accordingly
(proactive task creation). This step often does involve data
fusion. A task could be modified at a later time, given new
information, though this substantially complicates the rest of
the process. Task allocation is generally a context-dependent
problem and hence cannot be placed neatly within a class of
problems, though it must usually consider the unreliability of
sensor data.

2) Actuator Selection: Following TC, actuators must be
selected to enact them. Actuator selection (AS) is the problem
of choosing the best subset of actuators that can solve a set of
tasks. This step is often coupled with task allocation since it is
generally more efficient to consider combinations of tasks and
actuators together. However, it is sometimes better to perform a
priori actuator selection to help reduce the number of possible
actuator-task pairs, or to solve some of the constraints or
objectives before trying to allocate the tasks. The interaction
between actuators in the chosen subset and with the rest of
the network should be considered; for that reason, this process
is usually modeled as a combinatorial optimization problem.
Information from sensors about the environment and related
to actuators is not always reliable or even available, so these
aspects should also be taken into account.

Fig. 9. Actuation control loop example

3) Task Allocation: Task allocation (TA) is the process
of allocating one or more tasks to a subset of all actuators.
A task may be allocated to one or multiple actuators, and
any given actuator may by assigned zero or more tasks. The
allocation should execute tasks with the goal of optimizing a
certain objective and in a timely fashion. The problem is often
called Multi-Robot Task Allocation (MRTA) [65]. Intuitively,
this problem resembles that of finding an efficient assignment
of tasks to actuators, and consequently is formulated as a
combinatorial optimization problem. It is easy to see how the
AS step can be integrated within the TA step.

4) Actuator Coordination: Following TA, agents work to
resolve their tasks. Actuators may need the help of the network
to accomplish their tasks, or they may need to coordinate
with other actuators that have been assigned the same task.
This is referred to as the actuator coordination (AC). The
coordination problem is required throughout task resolution in
order to avoid conflicts, and to have the most efficient process.
This problem highly depends on the given task, therefore a
domain-agnostic generalization cannot be guaranteed.

5) Event Prediction: A final step that is not always ad-
dressed is event prediction (EP). This is often conducted
in parallel with the other steps. This problem requires the
prediction of events that will influence the rest of the WSAN.
For example, from sensor data, sink nodes may have systems
that can predict when an event will happen. A task can then
be created beforehand to mitigate this event. Prediction is a
central concept of proactive systems. Predictions can be solved
by LS and to a lesser degree via FL.

Any actuator or sink node may be carrying out one or more
of these steps at any given time. For example, a sink node
may be creating tasks, allocating previously created tasks, and
predicting new ones, all in parallel. Similarly, an actuator may
be executing one of its tasks while being allocated new ones
simultaneously. An actuator may even create new tasks from
one of its allocated tasks in order to accomplish it, hence
spawning another nested process. Figure 9 shows an example
of a sink node collecting data from multiple sensors, then
creating a task to explore a certain region of the AOI. It
selects two of the three actuators, and allocates each the task
of exploring the monitoring region.

B. Communication

Communication issues are one of the major challenges in
WSNs, with many attempts to mitigate them being the focus



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2850220, IEEE
Communications Surveys & Tutorials

MANUSCRIPT SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 9

Fig. 8. A taxonomy of research problems in WSANs

of active research [66]. WSNs are usually self-configuring
systems, meaning that the network must configure itself ef-
ficiently to be able to route messages to the sink node. This
is a hard problem to solve for a WSN since such a network is
generally composed of lightweight, energy-constrained nodes.
Consequently, any communication protocol must take this into
consideration. For example, there is a cost associated with
the repeated use of a communication route since it drains the
energy of those nodes on that route.

As in many other cases, this problem is exacerbated in
WSANs due to the mobility of the actuator nodes. As the
network often exhibits a dynamic behaviour, pre-existing com-
munication protocols are not always applicable, especially in
the case of a mobile sink. The addition of actuators is not
bad at all, since it integrates nodes with higher additional
computation and actuation resources. Moreover, the actors’
capabilities may be leveraged directly, such as relocation
of sensor nodes to restore connectivity, or an actor moving
itself to act as a bridge between two otherwise disconnected
subnetworks.

The WSAN communication problem is quite broad and
many sub-problems have been identified over the years. The
following subsections will elaborate on the three main sub-
problems, namely routing, clustering and Quality of Service
management in WSANs.

1) Routing: The routing problem in WSANs shares many
commonalities with the traditional routing problem in WSNs.
However, it is more constrained due to some of the nodes’ lim-
ited abilities and resources. An important problem in WSNs,
named the sinkhole problem, happens when many messages
are routed to the sink node. Since these messages end up
overusing some of the multi-hop communication routes, a few
nodes closer to the sink get rapidly depleted of their energy,
thus leading to the sink node being unable to communicate
with the rest of the network. This type of situation may happen
anywhere in the network, so a good routing protocol must take

the residual energy into consideration [67] [68].
Additionally, sink nodes may move through the network,

with previously used network routes not being relevant any-
more. In fact, one of the solutions to the sinkhole problem
is the use of a mobile sink. However, as this sink makes
its way through the network, existing communication routes
must be re-established without incurring in significant latency,
energy expenditures or throughput degradation. Finally, as
actors may behave as sink nodes themselves in some WSAN
implementations, and given that there might be multiple actors,
the routing protocols are not limited to routing to one sink
node, as they may choose any actor to route the information
to.

2) Clustering: Another approach is to create structures in
the network for more efficient communication [69]. The most
common structure is the cluster, i.e., a tree with the root node
being called the cluster head. These clusters create a hierarchy
in the network that simplifies other tasks such as routing, since
only cluster heads must handle routing protocols to discover
efficient routes to the sink node.

The choice of cluster heads must be carefully made. Since
the cluster heads will be frequently engaged in communication
tasks, their energy levels will deplete faster than the cluster
members. Consequently, clusters are ephemeral since once a
cluster head is low on energy, the clustering algorithm must
be rerun in order to elect another node as a cluster head,
most likely one that has enjoyed lower energy expenses due
to simply being a cluster member. When applicable, actors
make good cluster heads due to their higher energy availability,
computational power, and often longer communication ranges.

3) Quality of Service: Quality of Service (QoS) manage-
ment is the task of controlling the network resources so as to
ensure high throughput, low error rates, minimal number of
dropped packets, and low communication latency [41]. Such
network indicators are relevant to WSANs, where data gets
aggregated to actors, and actors must often coordinate among
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Fig. 10. Sink mobility example

themselves to solve complex tasks where a low latency is
required.

C. Sink Mobility

One of the earliest WSAN motivations was that of efficient
routing to the sink node for data collection. Since all data
is routed back to the sink node in WSNs, the nodes closer
to the sink would continuously be forwarding messages, thus
quickly depleting them of energy [70], the so-called sink
hole problem. Efficient routing algorithms that would generate
alternate routes were devised, while others developed WSNs
with mobile sink nodes, thus transitioning the network from a
static WSN to a WSAN with mobile nodes.

The traditional sink mobility problem in WSANs can be
formulated as follows: given a network of static sensors, find
the optimal data collection trajectory for a mobile sink that
is efficient in terms of communication, distance travelled, and
energy utilization. This means the sink node must travel the
shortest distance while visiting enough static nodes to gather
all information to be transmitted, and use a path that minimizes
energy usage. Most algorithms assume the sink node to be
powerful, therefore they concentrate on preserving the sensing
nodes’ energy efficiency. Figure 10 illustrates this traditional
problem.

Other variations of this problem include the presence of
multiple mobile sinks and the addition of locomotion to the
sensor nodes themselves, as will be discussed in Sections
VII-C and VIII-D.

D. Topology Control

Topology control is a fundamental WSAN problem [11].
Whereas WSNs exhibit static network topologies, actuators
in WSANs have the ability to improve sensor coverage by
relocating sensor nodes, deploying new nodes, or moving
themselves in case extra sensing capabilities are required. The
coverage-based topology control problem can be formulated
as follows: given a bounded n-dimensional space, and p n-
dimensional spaces already located within the bounded space,
relocate the p spaces or add additional n-dimensional spaces
in such a way to increase the proportion of the sum of all p
spaces over the bounded space. Note that n must be greater

than zero and p greater than or equal to zero. This is a rough
definition of coverage that attempts to optimize 1-redundant
coverage over the network. However, it could be extended to
k-redundant coverage as well.

Communication in a WSAN is known to be unreliable.
Modifying the underlying network topology is a direct factor
contributing to this unreliability. Consequently, the presented
methods must not only consider sensor coverage but also
the communication impact brought about by the topological
change. Similarly, mobile actuator nodes might drain static
nodes of their energy if frequent communication is established,
thus reducing the network lifespan and hence the amount
of time the network will be able to monitor the AOI. For
these reasons, topology control solutions often include some
aspect of communication or MRTA, hence bringing their own
challenges.

WSANs are made up of heterogeneous nodes that must
seamlessly interact with each other when reshaping the net-
work topology. Actuators with sensing capabilities (or the
sensor nodes themselves if they are mobile) may position
themselves at optimal locations to repair or augment coverage,
or they can either relocate or deploy static sensor nodes. Both
of these perspectives require careful planning from the sensor
nodes, the actuator nodes or both and each case must be
approached differently. We elaborate on them in the following
subsections.

1) Sensor Relocation: This refers to the task of moving one
or more sensors from one location to another in the WSAN
in order to serve a particular goal, e.g., restore/augment the
network coverage or better support data collection efforts.
Two avenues have been pursued within sensor relocation:
(a) self-relocation [11] and (b) actuator-assisted relocation
[13]. The former assumes that the sensor nodes are mobile
and hence may relocate themselves. This might result in
higher communication disruptions due to the topology of large
areas of the network changing simultaneously. Additionally,
relocation of mobile nodes is a more expensive solution since
many nodes, if not all, must be equipped with locomotion
capabilities, which also rapidly drains the nodes’ energy. This
brings about a trade-off among sensor coverage, network cost
and network lifespan. However, node self-relocation is one of
the quickest and easiest solutions developed to restore sensor
coverage, since the WSAN can effectively reorganize itself.
Figure 11 showcases this problem.

The alternative to sensor self-relocation is actuator-assisted
relocation. In this solution, the sensor nodes are generally
static and their relocation is entrusted to a few actuators that
may pick them up, carry them along the network and drop
them off at the intended positions. This solution is cheaper
and more realistic than mobile sensor relocation. Figure 12
illustrates the scenario where an actuator relocates a sensor
by picking it up and dropping it off at a new position.

2) Sensor Deployment: A second perspective is the de-
ployment of sensors by actuators [11]. The goal here is to
repair or augment sensor coverage by deploying new sensors
in the monitoring region. Contrary to sensor self-relocation,
the deployment strategy is entirely governed by the actuators,
which decide (either individually or corporately) if additional
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Fig. 11. Node self-relocation example

Fig. 12. Actuator-assisted sensor relocation example

sensors are needed, where to deploy them and which route
to pursue so as to achieve all network coverage goals. Most
of the studies assume that the actuators are able to carry an
unlimited number of sensors, which is clearly unrealistic.

Deploying sensors by actuators has the benefit of being
a less costly strategy due to the network topology remain-
ing fairly static and closer to that of a WSN. This makes
communication and energy usage less of a concern since
the actuators are deemed to be resource-rich. However, given
that the actuators must plan the best deployment strategy
considering the state of the rest of the sensors in a region,
the deployment of the new nodes might take some time. A
similar remark could be made about actuator-assisted sensor
relocation if the planning takes place in a centralized fashion.

3) Sensor Replenishment: This is a recently promising
topic in WSAN research that has seldom been explored from
a CI perspective. The idea is that one or more actuators are
able to replenish the energy source (oftentimes a battery) of
the static sensors they come in contact with [71] thanks to
the recent breakthroughs on wireless power transfer between
devices [72] [73]. This approach carries the potential to make
the WSNs immortal in a sense, for no sensor node will

Fig. 13. Localization example

ever run out of battery if the replenishment cycles are duly
planned [74]. The topological arrangement of the WSN in this
case is not about changing the location of the nodes but in
boosting their energy availability. The literature often refers
to this kind of WSAN as a Wireless Rechargeable Sensor
Network (WRSN) [75]. Militano et. al. [76] recently published
an interesting discussion on the advantages and limitations of
recharging versus replacing sensor nodes by mobile robots.

E. Localization

Knowing a node’s location in a WSAN is not always easy.
As with many problems in WSANs, the localization technique
must make a compromise between energy efficiency, cost and
accuracy [77] [78] [79]. The easiest solution is equipping
every node with a Global Positioning System (GPS) device,
though this is often too costly to be practical and would
quickly drain nodes of their limited energy, thus severely
limiting the lifespan of the network. Furthermore, GPS devices
are not always reliable if available at all, such as in indoor
environments or urban areas. Consequently, a better solution
must be devised. All solutions require some nodes to be aware
of their precise position in a given global reference frame, or
else it would be impossible to localize a WSAN. Such nodes
are often referred to as anchor nodes, and may be special
sensor nodes, actuator nodes, or the sink node. This problem
can then be formulated as such: provide an accurate and
efficient localization service to nodes, given that one or more
nodes know their precise location [80]. Figure 13 exemplifies
this problem, where a mobile actuator attempts to determine
its own location.

Anchor nodes know their position either via direct ini-
tialization or through GPS. The localization problem can
be approached from multiple angles. Some methods attempt
to gain meta-information from communication with other
nodes, such as time-of-arrival (TOA), angle-of-arrival (AOA),
or received-signal-strength (RSS/I); methods that use such
features are classified as range-based localization techniques.
The alternative, called range-free localization, localizes nodes
using the broadcast positions of the anchor nodes. This kind of
localization algorithms do not attempt in any way to determine
the range of the message.
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While some localization methods developed for WSNs may
be appropriate for WSANs, more refined schemes can be
devised for networks with actors, especially when the nodes
are mobile.

VI. CI TECHNIQUES APPLIED TO WSAN PROBLEMS

This Section break down the application of CI techniques
into the five major WSAN problem categories outlined in Sec-
tion IV and their sub-problems. It concludes by summarizing
the main research findings along each problem category.

A. Actuation

As depicted in Table II, most of the surveyed papers do
not cover the five actuation subproblems outlined in Section
V-A but focus on some and omit others depending on the
scope and characteristics of the problem they are trying to
solve. However, we do see two clearly differentiating groups
of CI-based actuation approaches in WSANs: those addressing
early actuation efforts such as task creation, actuator selection
and task allocation, and those concerned with late actuation
steps, which are mainly related to task execution (via actuator
coordination) and event prediction. It is worth mentioning that
we only highlighted those actuation subproblems that were the
main subject of attention in every reviewed paper.

1) Early Actuation - Focus on Task Allocation: The authors
of [81] first proposed a GA-based cluster creation algorithm,
then presented a PSO-based method to relocate this cluster
as an entity. The work focuses on task allocation, where a
given task would be to move the network to a certain area,
the allocation would assign tasks to nodes in the network in
such a way as to not lose cluster coherency. The method
is demonstrated by simulations but not compared to other
techniques.

An interesting WSAN application is unveiled in [114],
where the WSAN serves as a Decision Support System (DSS)
to guide occupants of a building towards the exits. In this
network, motion sensors are used as sensors and light switches
as actuators. The network leans on an ANN to allocate light
on or off tasks to the actuators, and learns to predict these
tasks during the training phase. The network also learns which
paths are optimal to the exits. Then, in emergency scenarios,
the light switches activate exit signs, hence guiding building
occupants towards the exits. The method is validated by a
simple simulation.

In [37], [100], [101], a WSAN for controlling an agricultural
environment such as a greenhouse is put forth. In these works,
sensors detect humidity levels, temperature, or other indicators
of the current environmental condition of the greenhouse. This
data is then fed into an FIS that translates it into applicable
tasks for the actuators that are made up of components that
can influence this environment, like ventilators or irrigation
control systems. The authors in [37] proposed an architecture
for automatic irrigation control. A simulation is presented in
[100], and a later work by the same authors [101] demon-
strated a physical implementation and then conducted tests
that showed the capabilities and feasibility of the system.

An auction-based protocol to select the best actuators is
presented in [61]. Following a task creation, an auction is
triggered, where actuators compute their bid from their energy
levels, distance to the event and current redundant coverage
via an FIS. Then, the top bidding actuators get selected and
allocated tasks to recover coverage. The task allocation process
is formulated in a multiobjective optimization (MOO) fashion
and driven by NSGA-II. The method is then validated via
simulations. This framework is used for Critical Infrastructure
Protection in [120].

The work of [62] builds upon [61]. It concentrates on
the actuator selection and task allocation stages. The authors
propose to first create a task that is related to coverage
restoration. Then, this step is optimized by the use of a
MOEA to determine sub-tasks through the use of an actuator
selection step. In the former, optimal positions for actuators
are determined, while in the latter, agents utilize an FIS
to determine their bid in an auction for task participation,
a market-based technique. The top bidding actuators then
become the subset of actuators that may get allocated a task. If
the MOEA divides the task into sub-tasks, an allocation step
is carried out, where robots bid on one of the sub-tasks by
using an FIS that determines the agent’s ability to accomplish
any given sub-task. If the original task was not subdivided, an
actuator subset is created. This subset, called the coalition,
is fed into a MOEA that allocates sub-tasks on the basis
of reducing energy usage and maximizing restored coverage.
Both techniques are presented and then simulated in various
network scenarios to demonstrate their effectiveness.

The authors in [102] described a WSAN application in
lighting control. This work focuses more on task creation.
Sensor data is sent to an FIS controller that creates tasks for
specific actuators. No simulation of the work was given.

In [83], a WSAN is used to track a target. The sensors
gather information about the target, then a prediction of its next
position is estimated. A GA is then used to select which mobile
sensors to relocate in order to cover the predicted path of
the target. This GA considers both actuator selection and task
allocation simultaneously, hence optimizing the time needed
to catch up with the tracked object, and the distance to the
tracked object. The work is validated by a simulation.

A MOEA-based task allocation protocol for sensor replace-
ment by multiple robots is brought forth in [88]. In this
work, sensor drop-off or pickup tasks get created and allocated
by the MOEA algorithm. The optimization considers four
conflicting objectives: (i) minimizing the total length of the
sensor relocation trajectories traveled by all robots; (ii/iii)
maximizing the robustness/lifetime of those trajectories and
(iv) minimizing the load balancing factor among all robots.
Multiple MOEA techniques are compared in the simulations.
This work is an extension of [86] and [87], which addressed
the single-robot case.

The authors of [84] elaborated on another interesting WSAN
application to automate lighting control in media production.
They developed a GA-based method where actuators appropri-
ately increased the luminosity for media production based on
sensor readings. They also identify positions where additional
sensors could be deployed to increase accuracy. The method
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TABLE II
APPLICATION OF CI TECHNIQUES TO THE ACTUATION PROBLEM IN WSANS

CI Technique Subproblems Algorithm Reference Validation Computation Distribution
Evolutionary TC,AS,TA GA [81], [82] Simulation Centralized
Algorithms TC,AS,TA GA [83]–[85] Simulation Centralized

TC,TA MOEA [86]–[88] Simulation Centralized
TC,AS,TA MOEA [89] Simulation Centralized

Swarm Intelligence EP ACO [90] Simulation Centralized
Algorithms TC,AS,TA PSO [91], [92] Simulation Centralized

TA PSO [93], [94] Simulation Centralized
TC,AS,TA PSO [95] N/A Centralized

AS,TA ACO [96] Implemented Centralized
TC,AS,TA ABC [97] Simulation Centralized
TC,AS,TA ACO [98] Simulation Centralized
TC,AS,TA PSO [99] Implemented Centralized

Fuzzy TC,AS,TA FIS [37], [100] Simulation Centralized
Logic TC,AS,TA FIS [101] Implemented Centralized

TC,AS,TA FIS [102] N/A Centralized
TC,AS,TA FIS [89] Simulation Centralized
AS,TA,AC FIS [103] Simulation Distributed

AS FIS [104]–[111] Simulation Distributed
TC,AS,TA,AC FIS [112] Simulation Distributed

AC FIS [77], [113] Simulation Centralized
Learning TC,AS,TA,EP ANN [114] Simulation Centralized
Systems EP competitive Hopfield ANN [115] Simulation Centralized

TC,AS,TA Artificial Endocrine System with ANN [38] Simulation Distributed
TC,AS,TA,AC ANN [116] Simulation Centralized
TC,AS,TA,AC ANN [117] Implemented Centralized

AC,EP RL [118], [119] Simulated Distributed
Hybrid TC,AS,TA FIS/MOEA [61], [62], [120] Simulation Centralized
System TC,AS,TA,EP FL/ANN [121] Simulation Centralized

AS,TA FIS/MOEA [87] Simulation Centralized
TC,AS,TA,AC,EP EA/SIA [122] Implemented Centralized/Distributed

TC,AS,TA FIS/PSO [95] N/A Distributed
TC,AS,TA FIS/PSO [112] Simulation Centralized

TA,TC FIS/ANN [113] Simulation Centralized
TC,AS,TA ACO/ANN [123] Simulation Centralized

is validated by simulation.
In [91], a TC-AS-TA method is described. When events

are triggered by an adaptive distributed event, a task is first
created, the number of actuators needed is then considered and
chosen, and the tasks are allocated by a modified PSO scheme.
The paper approaches these concepts from a mathematical
point of view grounded in control theory. Their method, called
ADET, significantly outperforms the non-adaptive version in
the simulation analysis.

An MRTA solution is presented in [93]. A PSO-based
method is used to allocate tasks to a heterogeneous set of
actuators. The method is simulated and demonstrates that it
can converge to an appropriate solution.

An approach to schedule time-delayed tasks is laid out in
[82]. More specifically, the authors employed a GA to generate
an actuator allocation schedule that reduces the peak electricity
use. The method is then validated by experimentation.

In [104]–[111], actuator selection is carried out through
an FIS. First, a state model for the actuator is defined by
taking into consideration the method’s ability to resolve the
task. Then, the FIS maps an actuator’s state onto a numerical
value indicating the actuator’s suitability to complete the
task. The most capable actuators are then selected for task
allocation purposes [105]. The study in [104] considers four
input variables to the FIS, namely, the type of required action,
the distance to event, the remaining power and the security

of the task request. The work in [106] is a continuation of
what was accomplished in [105], where the reliability of the
information was considered. In [107], a different model that
focuses on the actuator’s ability to efficiently and quickly
resolve a task is unveiled. Next, [108] actively considers the
actor-sensor coordination quality as an additional input to the
FIS for actor selection. The work in [109] replaces the latter
input variable with the failure of assigned task. Finally, [110]
and [111] investigate the effect of actor node density upon the
selection of the actor nodes. All these methods are validated
by a simple simulation analysis.

The authors of [38] disclosed a novel framework for WSAN
control based on an Artificial Endocrine System (AES) aug-
mented with ANNs. An AES is a control framework that
borrows concepts from endocrine systems found in humans
and animals. Goals are defined in the context of the AES,
then the AES releases either positive or negative feedback that
influences the actuators, thus guiding the WSAN to complete
the defined goals.

A swarm navigation algorithm is presented in [95]. This
algorithm efficiently creates and allocates tasks to search for a
target in an AOI based on two CI techniques: a PSO algorithm
and an FIS whose rules have been optimized by PSO. The
paper does not include an end simulation but validates some
of its concepts.

An MRTA framework is put forward in [96]. The authors



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2850220, IEEE
Communications Surveys & Tutorials

MANUSCRIPT SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 14

define a base set of abstract tasks from which other tasks can
be constructed. Then, an adaptive ACO method is utilized to
discover an efficient TA method to a subset of actuators. The
scheme is validated through real experimentation that showed
its feasibility in real-world scenarios.

A target tracking method is presented in [97], [98]. This
approach first uses sensor data to predict future locations of
a target. Then, in [97], an ABC is used to allocate relocation
tasks to mobile nodes in order to cover the projected area
while [98] makes use of an ACO algorithm. The methods are
validated by simulations.

In [99], an AOI exploration method is researched. This
method is quite simple: it uses PSO literally, where each mo-
bile node corresponds to a particle. A real-world scenario was
devised to evaluate the method; it demonstrated its potential
and feasibility.

The AOI search method put forward in [85] envisions a GA
in charge of determining suitable search points and allocating
relocation tasks to a set of mobile nodes. The method is
validated by simulations.

Another search method was published in [92]. In this work,
the AOI is first split into a grid. Then, mobile nodes randomly
explore a cell. Once a cell’s search percentage goes above a
threshold, they move to another cell. When a mobile node
uncovers an object of importance, a PSO algorithm is run to
either instruct mobile nodes to stay in their current cell, move
to another area, or help the mobile node that uncovered the
object in searching its cell. The method is validated via a
simulation study.

An MRTA process is described in [123], where the proba-
bility of an actuator completing the given task is considered.
The MRTA process is embodied through a modified ACO
algorithm while the probabilities are estimated by an ANN.
The method is simulated with real robots and the empirical
results are provided.

The study in [77] is concerned with the task creation step.
In order to determine their next position while searching an
AOI, mobile sensors use an FIS whose inputs are the mobile
nodes’ positions and outputs the next optimal positions by
using Swarm Intelligence principles. The work is simulated
and shown to be more efficient than a gradient-based approach.

The authors of [94] present an MRTA for WSANs based
on a modification of binary PSO, a particular case of PSO
in which each particle encodes a sequence of bits. They
formulated task workload and connectivity as constraints while
optimizing task execution time, energy use, and network
lifetime. Their method was finally validated by simulations.

Primeau et. al. [89] envisioned a tight coordination between
a UAV network and a ground network of potential responders
in order to mitigate maritime smuggling operations. Upon
detection of a potential smuggling, the UAV network self-
organizes through a MOEA to corporately confirm the exis-
tence of such operation. The risk-driven analysis for smuggling
detection is powered by an FIS using the Risk Management
Framework in [124] [125]. Once the event has been confirmed,
the UAV network alerts the ground network, which proceeds
to decide how to best respond to this illicit activity, again by
leaning on different FIS and MOEA implementations.

2) Late Actuation - Focus on Task Execution and Event Pre-
diction: Many of the above control/actuation process steps are
found in [121], where a WSAN is used to detect abnormalities.
In this system, a Fuzzy Adaptive Resonance Theory (Fuzzy-
ART) neural network aims to detect abnormal behaviour based
on a Markov Chain model. A Fuzzy-ART system is a LS
that combines FL and ANN in an attempt to mimic human
reasoning. The system is first trained. Then, from sensor data,
the network predicts abnormal behaviour, therefore creating
the task of sampling a specific region for more information
on the abnormality. An actuator is selected and assigned the
task. This method is validated by experimentation.

First presented as a topology control problem, [90] actually
proposes a method for optimal path planning in WSANs, an
important part of task resolution and coordination. The method
is a modified ACO algorithm, with mobile nodes acting as the
ants. They present a simulation that shows nodes attempting
to find the shortest route to a point.

A target tracking problem in networks of multiple mobile
nodes is presented in [115]. This algorithm could be consid-
ered to be part of the prediction step, since it attempts to create
tracks for the tracked targets, which can be later used to create
efficient tasks. The proposed solution relies on a Competitive
Hopfield Neural Network (CHNN) to identify multiple targets
and build tracks from information sent by multiple mobile
sensors. The work is simulated and the results are discussed.

In [103], the authors investigated a coordination strategy for
mobile nodes. Positions are determined in order to create a
certain formation, then an FIS is used to ensure that nodes
do not collide with each other. This work falls within the
task execution through multi-agent coordination category. The
method is validated via simulations.

The study in [122] is a collection of ongoing efforts to
create a WSAN swarm that closely resembles their natural
inspiration at many levels. In the work, many concepts such
as self-organization of many nodes to act as an entity, task
allocation, and many more advanced ideas are solved by AIS,
complex EAs and ANNs. All mentioned works are in progress,
and [122] only gives a glimpse of what can be attained. There
are no experimental validations given, though many figures
demonstrate the intriguing yet promising concepts.

A control system for WSAN is defined in [112] for search
and exploration in the AOI. This work pitches two methods:
the first one based on a PSO engine augmented with FL, and
the second method rooted on an FIS. The first searches the
space guided by the fuzzy PSO, while in the second method,
mobile nodes evaluate their fitness, and nodes are attracted to
the node with the best fitness.

A coordination mechanism to resolve conflicting actuator
actions is found in [113]. An FIS is implemented in actuators
and is used to complete the task resolution process. The
method was tested on a real setting where nodes needed
to cooperate to push a box and the method enabled the
completion of the task.

In [116] [117], an intriguing behavioural system is pre-
sented. A method that allows for behaviour to emerge instead
of being rigorously defined is introduced. First, the objective
functions are defined. Then, the robots’ ANN-based controllers
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learn from interactions with the environment. The authors
proposed two methods of learning, namely individual and
social, where social learning allows nodes to learn from other
nodes’ experience. The goal is to have online emerging coop-
erative behaviour from a few simple objectives. The method is
demonstrated in a foraging or exploration/search scenario. The
actuator controllers are first trained through simulation, then
they are deployed on actual physical agents that show better
performance than a random controller. The paper in [117] is
an extension of [116], where the method is augmented and
tested on four different scenarios in an aquatic environment.

The authors in [118], [119] tackled event prediction and
agent behaviour in WSANs with some mobile nodes. Events
are first predicted individually by actuator nodes through a
maximum likelihood estimation (MLE) approach using spatial
correlation in the sensor data. An MDP is then defined to
control the behaviour of mobile actuator nodes, guiding it
towards the event. In this process, the actuators nodes must
decide which node within its communication range to visit.
The MDP can be solved using RL, with the actuator being
rewarded for moving to a node with a higher MLE estimate.
In [119], this method is enhanced by adding an exploration
behaviour inspired by desert ants. Both methods are validated
through a simulation analysis.

B. Communication
This section presents relevant work for all three sub-

categories of the WSAN Communication problem. Table III
outlines all surveyed works in this category. From a CI
perspective, this area is still a fairly untrodden territory.

1) Routing: All five uncovered approaches consider routing
to one or multiple mobile sinks. Most of them aim at optimiz-
ing one or more features of the routing paths. One approach
puts forth an interesting idea where the optimization applies
to the mobile sink trajectories and the ensuing routing paths
are a by-product of this step.

Routing Path Optimization
The authors of [134] introduce a routing algorithm to

discover communication paths to a mobile sink node. This
algorithm maintains routes through a hybrid AIS-ABC, where
ABC’s role is to find route solutions, and AIS is responsible
for generating new immunized solutions. This algorithm uses a
fitness function that takes into account signal strength, latency,
and energy use. The proposed approach is simulated and
compared to two non-CI methods.

In [127], the authors created a routing protocol for mobile
sinks termed SIMPLE by employing a modified PSO algo-
rithm. SIMPLE discovers routes with higher residual energy.
The authors then simulate their proposed method for a variety
of sink speeds and message bandwidths. They conclude that
sink speed does not have as big an effect on network lifetime as
message bandwidth. Two versions of the algorithms are com-
pared to two other routing protocols; the results corroborate
that SIMPLE performs better.

A routing protocol to multiple mobile sinks that optimizes
minimal delay, route distance and energy expenditures along
the route is put forth in [128]. The method uses a coop-
erative PSO algorithm enhanced with endocrine principles

to increase its convergence and exploration capabilities. The
proposed work was simulated and compared against two other
algorithms; the experimental evidence indicated that the new
algorithm outperforms its peers in some aspects. In other
indicators, like delay, the algorithm did not do as well in small
networks, but scaled much better.

Another routing protocol to multiple mobile sinks is de-
veloped in [129]. This protocol leans upon a modified PSO
algorithm that incorporates greedy techniques with a mem-
ory component. This memory component stores previously
searched solutions to avoid duplicating them, thus speeding
up convergence. The algorithm optimizes energy usage and
communication delay. The proposed algorithm is simulated
and compared against three other methods, one of them being
a similar PSO scheme, with the proposed work outperforming
the latter.

Mobile Sink Path Optimization
The study in [130] unveils a different routing algorithm for

mobile WSANs by having PSO optimize the mobile nodes’
trajectories in such a way to construct dynamic communication
backbones. Instead of uncovering appropriate routes through a
network, the network itself dynamically changes its topology
to construct the backbone. Such a method is demonstrated in
the work as a simulation of a UAV swarm shows how routing
bridges are formed.

2) Clustering: The clustering methods reviewed in this
section take into account the mobility of the nodes in the
WSAN and aim at optimizing the final clustering of the
network in terms of the number of cluster heads and other
performance metrics.

The method in [81] generates clusters in mobile WSANs
via an EA, then studies how to coordinate the movement of
clusters using PSO. Only the clustering aspect of this work is
considered here. The GA operates over the entire network and
tries to optimize a fitness function consisting of the number of
cluster heads and the distance to the cluster heads from other
cluster members. These two criteria are weighed to account
for their relative importance. The method is then simulated,
showing its effectiveness.

Srivastava and Sudarhan [135] elaborated on a two-step
process to determining clusters and cluster heads in mobile
WSANs. The first step is for each node to determine its
suitability to become a cluster head via an FIS whose inputs
are the distance to other nodes, the remaining energy, the
local node density, and the node mobility. Afterwards, a GA
is charged with making the final selection of cluster heads.
Each candidate solution is evaluated in terms of its number of
cluster heads, the mean communication energy required and
the speed of the cluster heads. The simulations demonstrate the
viability of the proposed method across different FIS settings.

The authors of [126] put forward a centralized GA-based
algorithm named GAROUTE that clusters WSANs while
taking the mobility of the nodes into consideration. The GA
determines the best cluster heads to form 1-deep clusters by
optimizing the mean communication energy, the number of
cluster heads, and the total cluster head speed. Whenever
a node exits a cluster, it forms its own cluster. Simulation
of the method in comparison to other clustering algorithms
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TABLE III
APPLICATION OF CI TECHNIQUES TO THE COMMUNICATION PROBLEM IN WSANS

CI Technique Subproblem Algorithm References Validation Computation Distribution

Evolutionary Clustering GA [81], [126] Simulation Centralized
Algorithm

Swarm Routing PSO [127]–[130] Simulation Centralized
Intelligence Algorithm

Fuzzy Clustering FIS [131] N/A Centralized
Logic

Learning QoS FIS [132] Simulation Distributed
Systems ANN/RL [133] Simulation Distributed
Hybrid Routing AIS/ABC [134] Simulation Centralized
System Clustering FIS/GA [135] Simulation Centralized

QoS FIS/GA [41] Simulation Distributed

demonstrates that GAROUTE does result in a lower energy
consumption.

Fuzzy-CEACH (Configurable, Energy-Efficient,
Application-Aware, Channel-Aware, Clustering based
Service for WSAN) is introduced in [131]. CEACH is a
communication middleware service that handles the task of
providing reliable QoS communication in Cyber-Physical
Systems, and WSANs in particular. One of the CEACH tasks
is cluster creation. An extension of this middleware, Fuzzy-
CEACH relies on an FIS to determine the appropriateness of
a particular node to become a cluster head. This is a function
of several indicators, including the node’s residual energy,
connectivity degree, in/out link reliability and hop-distance
from the sink. The authors do not provide any Fuzzy-CEACH
results though.

3) Quality of Service: In [132], Xia et. al. focus on pro-
viding a target QoS for sensor-to-actuator communication.
This scheme deals with the impact of unpredictable changes
in traffic load on the QoS of WSANs. It utilizes a fuzzy
logic controller inside each source sensor node to adapt
sampling period to the deadline miss ratio associated with data
transmission from the sensor to the actuator. This architecture
is generalized to WSANs in the sense that the underlying WSN
is not specified. The motivation is to provide reliable QoS for
sensor-to-actuator communication for timely task allocations
and situational awareness. The authors provided a good design
overview for the FIS, then simulated a WSAN with their
method and compared it against the same WSAN without it,
hence showing that their proposed algorithm has merit.

The study in [41] is an extension of [132], where fuzzy
rule extraction for the FIS is solved by means of a GA. The
authors provide a simulation study and discuss the results,
then compare their approach against the one in [132], thus
concluding that their technique yielded substantially better
results.

Oda et. al. [133] introduced a Deep Q-Network for control-
ling the mobility of the actor nodes in a WSAN so as to ensure
their connectivity. This will help the actors respond to events
in the field. The authors considered tasks in which an agent
interacts with an environment. In this case, the mobile actor
node moves step by step in a sequence of actions, observations
and rewards. The simulations were conducted on a synthetic

3D environment and using the Rust programming language.

C. Sink Mobility

The following are relevant works for the Sink Mobility
problem in WSANs. Table IV gives an overview of the
surveyed works. The CI-based solutions in this area fall along
two major groups: (i) optimization of the sink path without
network clustering and (ii) joint network clustering and sink
path optimization.

1) Sink Path Optimization: Zhong and Zhang [139] de-
scribed an algorithm that does not attempt to create clusters
of nodes. Instead, it tessellates the AOI into a grid, then
determines an optimal mobile sink trajectory with an ACO
algorithm in regards to the average residual energy in a cell,
the number of communication hops to reach the sink node for
all nodes, and the distance the sink node has to travel. The
algorithm is validated through simulations with a comparison
to two other non-CI methods.

Ho et. al. [140] approached the sink mobility problem by
determining the optimal trajectory that a UAV must take to
optimize travel time, energy use and communication bit-error.
They leaned on the PSO optimizer for this task. The authors
remarked that previous research has shown that communica-
tion errors are influenced by the UAV’s angle of approach,
hence they added it as one of the objective functions for the
PSO algorithm. A thorough simulation and empirical analysis
of their method against the LEACH-C [149] algorithm was
provided, thus showing the benefits of the proposed scheme.

Cai et. al. [137] consider the case of multiple mobile sink
nodes. This is then formulated as a TSP problem with multiple
agents and solved via a GA that optimizes the communication
energy costs. A simulation is given, and a comparison to two
other methods is provided.

Instead of pre-determining an ideal route, Sarvestani et. al.
[146] divided the AOI into regions, then assigned each cell a
value as per an FIS. The FIS inputs are: a region’s residual
energy, the average number of nodes in the region and the data
generation rate. The sink node then relocates to regions with
higher scores, thus dynamically creating the sink node’s path.
A simulation is provided to validate the method.

The work of [138] starts with predefined clusters. The
sink mobility problem is then reduced to a TSP with cluster
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TABLE IV
APPLICATION OF CI TECHNIQUES TO THE SINK MOBILITY PROBLEM IN WSANS

CI Technique Algorithm References Validation Computation Distribution

Evolutionary AIS [136] Simulation Centralized
Algorithm GA [39], [137], [138] Simulation Centralized

Swarm PSO [139]–[141] Simulation Centralized
Algorithm BA [142] Simulation Centralized

ABC [143] Simulation Centralized
ACO [144] Simulation Centralized
BFA [145] Simulation Centralized

Fuzzy Logic FIS [146] Simulation Centralized
Learning Systems SOM [147] Simulation Centralized

Bayesian classifier [148] Simulation/Real-world prototype Centralized/Distributed

heads as waypoints, for which a GA is then chosen as the
solver. The method optimizes the time needed to complete
the trajectory and the energy usage of the cluster heads. A
validation by simulation is given, including a comparison to a
static predetermined mobile sink path.

Comarela et. al. [144] consider sink mobility in sparse
networks. In such scenarios, there might not be enough nodes
to either create clusters or form reliable communication paths.
They then formulate the problem as a TSP-N instance and
solve it by using ACO to minimize the sink’s trajectory length.
Following the execution of the ACO method, another ACO
process is started, thus making this a continuous ACO process.
A simulation is given, along with a comparison to another
TSP-N solver.

Kavitha [145] put forward a BFA-based algorithm for data
collection with mobile sinks. This technique initially built an
optimal tour path through a TSP solver. Then, the generated
Hamiltonian paths are divided into multiple loops by means
of the BFA algorithm, where the fitness function takes into
account the average delay of each loop. Multiple loops are
formed such that the total delay is minimized. Moreover, the
proposed approach combines multiple aggregation tasks for
enhanced energy efficiency. Simulation results showed that
the proposed technique achieves better performance in terms
of packet drop, delay, delivery ratio and reduces the energy
consumption by 17%.

2) Joint Network Clustering and Sink Path Optimization:
Abo-Zahhad et. al. [136] proposed a system based on the AIS
metaheuristic algorithm to jointly optimize the sink path along
the WSAN and the number of cluster heads. The solution
is then evaluated on the required communication energy and
number of control messages. The method is validated by
comparing it to the well-known LEACH protocol [150].

Similar to [136], the study in [39] attempts to determine an
optimal sink path while creating node clusters and formulates
the problem as a Traveling Salesman Problem with Neigh-
bourhoods (TSP-N). The authors employed a single-objective
GA with a fitness function based on the shortest trajectory
and coupled with a clustering algorithm that creates node
clusters. They proposed two new operators, namely Sequential
Constructive Crossover (SCX) (to determine edges given a
vertex), and Modified-SCX (to select different edges than SCX
in certain cases). The proposed method is compared to a

random walk algorithm.
The studies in [141]–[143] again attempt to create optimal

clusters, where the cluster heads are waypoints. Saad et. al.
[142] first create 1-depth clusters, then utilize BA to solve
the TSP problem (i.e., finding the minimal-length path), while
[141] exploits PSO to determine node clusters as well as the
optimal sink path, thus optimizing the energy usage required
for the cluster heads. As for [143], a cluster creation algo-
rithm is used, then the ABC metaheuristic method solves the
underlying TSP problem associated with the optimal sink path
calculation, this time optimizing on the amount of collected
data, trajectory length and energy expenditures. A simulation
is provided for the proposed method. The authors in [143]
presented an extensive validation of their work by simulations,
and comparisons to a random walk trajectory and an ACO-
planned trajectory.

Faigl and Hollinger [147] studied the problem of finding a
cost-efficient path to collect data from a given set of sensors
(not necessarily from all of them). Their problem formulation
combines elements from the TSP-N and the Prize-Collecting
TSP (PC-TSP) in light of the fact that the data gathered by
some sensors is deemed more important than the data from
other sensors. The authors applied a Self-Organizing Map
(SOM), a very popular type of ANN, to simultaneously deter-
mine the sensing locations and the shortest path among them.
The SOM-based method is less computationally demanding
than the techniques based on combinatorial solutions to the
underlying TSP.

Uddin et. al. [148] developed a dynamic network clustering
algorithm for a UAV-assisted WSN responsible for crop health
monitoring. The dynamic clustering of the sensor nodes takes
into account several factors, including the UAV path for data
collection. A Bayesian classifier is run locally at each node to
determine whether it should become a clusterhead or not. The
authors validated their approach through simulations and built
a proof of concept with an Arduino microcontroller.

D. Topology Control

The following are relevant works addressing topology con-
trol in WSANs from several perspectives. Table V gives a brief
overview of these works.



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2850220, IEEE
Communications Surveys & Tutorials

MANUSCRIPT SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 18

TABLE V
APPLICATION OF CI TECHNIQUES TO THE TOPOLOGY CONTROL PROBLEM IN WSANS

CI Technique Subproblem Algorithm References Validation Computation Distribution

Evolutionary Sensor Self-Relocation MOEA [151]–[154] Simulation Centralized
Algorithm Sensor Self-Relocation MOEA [155] Simulation Centralized

Sensor Self-Relocation AIS [156]–[158] Simulation Centralized
Sensor Self-Relocation GA [159]–[161] Simulation Centralized
Sensor Self-Relocation GA [162] Simulation Distributed
Sensor Self-Relocation BBA [163] Simulation Centralized

Actuator-Assisted Sensor Relocation MOEA [86], [88] Simulation Centralized
Actuator-Assisted Sensor Relocation GA [164] Simulation Centralized
Actuator-Assisted Sensor Relocation GA [165] Simulation Centralized

Actuator-Assisted Sensor Deployment MOEA [166] Simulation Centralized
Relay Sensor Deployment GA [167], [168] Simulation Centralized
Relay Sensor Deployment MOEA [169], [170] Simulation Centralized
Relay Sensor Deployment MOVNS [171] Simulation Centralized

Actuator-Assisted Sensor Replenishment GA [71] Simulation Centralized
Swarm Sensor Self-Relocation AFSA [172] Simulation Centralized

Intelligence Sensor Self-Relocation ACO [173] Simulation Centralized
Algorithm Sensor Self-Relocation GSO [174] Simulation Centralized

Sensor Self-Relocation PSO [175]–[180] Simulation Centralized
Sensor Self-Relocation ABC [181] Simulation Centralized
Sensor Self-Relocation PSO [164], [182] Simulation Centralized

Actuator-Assisted Sensor Relocation BFA [182] Simulation Centralized
Actuator-Assisted Sensor Relocation ACO [183], [184] Simulation Centralized
Actuator-Assisted Sensor Relocation ACO [185] Simulation Localized

Actuator-Assisted Sensor Deployment PSO [186] Simulation Centralized
Fuzzy Sensor Self-Relocation FIS [187] Simulation Distributed
Logic
Hybrid Sensor Self-Relocation EA/PSO [188] Simulation Centralized
System Sensor Self-Relocation FIS/MOEA [61], [120] Simulation Centralized

Actuator-Assisted Sensor Relocation FA/HaS [189] Simulation Centralized
Actuator-Assisted Sensor Relocation FIS/MOEA [87] Simulation Centralized

1) Sensor Relocation: The two main avenues under this
category are sensor self-relocation and static sensor relocation
by mobile actuators.

Node self-relocation
The approaches listed in this subsection often consider

multiple aspects behind the optimization process, such as
energy expenses resulting from node mobility and the amount
of improved/restored coverage.

The authors of [172] propose a scheme where mobile nodes
move following a random deployment in order to augment
the coverage of the network. They employ a modified AFSA
algorithm to discover new positions that optimize the net-
work coverage. Their method is then simulated and compared
against an unmodified AFSA, thus demonstrating that it results
in higher network coverage.

Network reconfiguration with mobile nodes for optimal AOI
coverage is considered in [174] by using a modified Glow-
worm Swarm Optimization (GSO). This algorithm optimizes
the distance traveled by the nodes, the energy use of the
reconfiguration, and the redundant coverage of the solutions. A
simulation is presented that compares the GSO-based method
to another technique. This comparison is done for different
network densities and shows that the proposed method yields
superior results.

Ni et. al. [175] put forth another coverage optimization
method for mobile nodes based on a modified PSO. The
PSO determines appropriate positions for optimal coverage
and minimal moving distance. It is argued that Quality of

Service (QoS) is related to coverage, hence QoS is also taken
into account during the optimization. Finally, the method is
simulated and compared against a basic PSO and another
PSO-based coverage algorithm, where the proposed method
performed best.

Another algorithm leaning on PSO to increase the network
coverage is brought forth in [177], [188]. The goal is to
redeploy a set of mobile robots according to the network node
density for repairing sensing coverage holes after the initially
random sensor deployment. The method in [188] employs a
PSO with GA principles such as selection and mutation to fix
some PSO problems whereas [177] proposes an improved PSO
method. Both techniques are validated via simulation analyses.

In [151], a MOEA is used to search for optimal node
positions that lead to increased coverage while minimizing
the average distance traveled by the actuators. The method is
validated by simulation.

A modified PSO is again unveiled in [178], with a single de-
cision objective related to network coverage. Virtual forces are
first created to guide the PSO algorithm. Then, multiple PSO
algorithms are run in parallel, with the best solutions influ-
encing other iterations in an algorithm called co-evolutionary
PSO. The method is validated by experimentation.

Salehizadeh et. al. [179] designed a new PSO implemen-
tation, the Individual PSO [190], for the network coverage
problem. They argued that PSO is not fast enough to be used
in real-time scenarios while their Individual PSO algorithm is.
The algorithm reduces the population of the PSO algorithm
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to one individual and adds a chaotic coefficient based on
Logistic Map [191] to make up for the lack of group search
behaviour which forms the basis of PSO. The algorithm aims
to maximize coverage by relocating mobile nodes, where they
use a probabilistic detection model. A target has a probability
of detection in such a model, contrary to the binary detection
model, where an object will necessarily be detected if it is
within the sensor’s coverage. Their method is then simulated
and shown to outperform the classical PSO for the network
coverage maximization problem.

In [61], [120], nodes self-bid for their suitability to partake
in a network self-healing task after a node failure due to
e.g., battery depletion. The proposed approach is governed by
market-based task allocation principles where network nodes
make use of an FIS to compute their bids. Then, a MOEA
is used to determine optimal positions to augment coverage.
The FIS takes as inputs the node’s distance to the event’s
location (failed node’s position), the node’s battery level, and
a function of its coverage at its current location. The MOEA
then optimizes both restored coverage and energy usage. A
simulation is given where one [120] and multiple [61] areas
of reduced coverage are identified and the method proves
effective at having the network repair itself.

The authors utilized a single-objective AIS [157], then a
multiobjective AIS [156] scheme to repair coverage holes. In
[157], the algorithm maximized a fitness function based on
energy usage and restored coverage, while in [156], these are
treated as separate objectives. Both are compared against a
similar coverage-restoring algorithm based on a MOEA that
shows that the proposed algorithm performs better.

Katsuma et. al. [159] introduced a GA-based algorithm that
optimizes a fitness function based on energy expenses and
network coverage. The proposed method places a special focus
on communication problems by providing solutions that can
provide a connected tree to the sink node and k-node coverage
over certain areas. The method is experimentally validated.

In [95], a MOEA-based approach that maximizes coverage
and minimizes future energy expenses for communication is
considered. The algorithm determines ideal positions for node
relocation as well as clusters following the relocation. The
method is validated by simulation and compared to existing
algorithms.

In [181], the authors developed an ABC algorithm to
increase coverage using mobile nodes with no other objective
function. The method is validated by simulation.

Jiang et. al. [162] elaborated on a distributed way to increase
coverage using a GA. Each node first determines where it
could move. Then a solution is evolved as per the node’s
local information. The node then moves to that location,
and this process is repeated. The method is validated by
experimentation.

FL is used in [187] to determine the extent to which a
network node should move in order to improve the overall
coverage. Nodes input the distance to their neighbourhood
as well as the distance to borders and obstacles into an FIS.
The FIS then outputs a new position that slowly spreads the
network by repelling nodes from each other, hence increasing

the total coverage. The method was validated by a simple
simulation against other common approaches.

A MOEA-based approach that optimizes network lifetime,
moving costs, and coverage, while being constrained on com-
munication success rate is proposed in [153]. This method is
then validated by simulation.

While many authors only consider the binary sensing model
as the underlying sensing scheme, the authors of [154] con-
sidered a probabilistic sensing model and generated proba-
bilistic coverage from it. They then tried to determine optimal
coverage in this probabilistic model and aimed at minimizing
movement distance by comparing 2 MOEAs and 2 multi-
objective PSO algorithms. The method is thoroughly simulated
under several network densities with all four methods. The
experimental analysis confirms that MOEA/D [192] performs
better than all other optimization methods.

In [176], a coverage maximization method based on PSO
and Voronoi cells is investigated. First, Voronoi cells are
computed from the static sensor nodes. Then, a PSO algorithm
that attempts to increase coverage makes use of these cells
to reduce redundant coverage by deploying mobile nodes in
optimal positions. The method is validated by simulation.
Similarly, the approach in [160] also computes Voronoi cells
but utilizes a single-objective GA to determine the nodes’
optimal positions. The work in [176] is also validated by
simulations and the effect of the number of static nodes upon
the network coverage is studied.

Banimelhem et. al. [161] brought forward a GA-based
optimizer to determine the ideal number of nodes to deploy in
order to repair all network holes. The method is then validated
by simulation.

The authors of [180] employed the Quantum PSO method
to determine actuator placement in WSANs for optimal sensor
node coverage. This method enhances the exploration ability
of the normal PSO. They devised a fitness function that evalu-
ates the distance from actuators to sensors and the number of
actuators used, with the intention to minimize it. Their method
is validated by a brief simulation study.

The work in [163] instead approached the coverage prob-
lem by using a single-objective metaheuristic algorithm,
Biogeography-Based Optimization (BBO) [193]. The algo-
rithm works by simulating the migration of species in search of
better habitats. The method is simulated and compared against
ABC, Stud Genetic Algorithm (SGA) [194], and a method
based on PSO, the later version of [178]. It is shown that the
BBO-based method outperforms its peers.

Kuang and Cai [158] took a different approach. They first
computed optimal positions for coverage maximization. Then
they resorted to an AIS to assign these positions to nodes
accordingly, hence minimizing the distance moved. This can
be seen as a two-step optimization, first on coverage, then on
moving distance. The algorithm was simulated and shown to
beat an existing GA-based approach.

Yu et. al. [155] considered a hybrid sensor network (i.e.,
a network containing both static and mobile units) where
the mobile nodes self-relocate to heal coverage holes in the
network. The number of coverage holes and their size are first
detected by using a level set method. A bi-objective MOEA-
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based optimizer then decides where to dispatch the mobile
nodes in order to restore as much coverage on average as
possible while minimizing the average distance traveled by
the mobile nodes.

Actuator-assisted sensor relocation
Robot-assisted sensor relocation (RASR) is a challenging

optimization problem that emerged in WSRNs [13] [63]. Fal-
con et. al. [183] envisioned a mobile robot replacing damaged
sensors with spare ones (passive sensors) gathered from the
field. The optimal sensor relocation trajectory followed by the
robot that departs from and returns to the base station is NP-
hard to compute. The authors resorted to ACO algorithms,
in particular the Max-Min Ant System implementation, to
compute a high-quality suboptimal trajectory in a short time.
They studied the impact of six heuristic functions on the ACO
method and showed that it outperformed Simulated Annealing.
Later on, Mou and Dai [184] reported superior results over
[183] with another ACO approach: an Ant Colony System
using constrained neighborhood search and a special mutation
operator. A GA-based scheme that outperformed [183] was
vaguely described by Shams and Khan in [165].

The multi-robot case was analyzed in [189]. The problem
was formulated as a special case of the Vehicle Routing
Problem with Selective Pickups and Deliveries. A hybrid meta-
heuristic of Firefly Algorithm (FA) and Harmony Search (HaS)
was designed to calculate minimum-length sensor relocation
paths for all robots.

The above works only cared about optimizing the length of
the relocation path(s) to be followed by the mobile robot(s).
Desjardins et. al. [86] additionally considered the quality of
the relocated sensors as this aspect will impact the network
lifetime. A MOEA-based solution that minimizes the trajectory
length, maximizes the chance of reducing coverage holes and
maximizes the time for which the coverage is utilized was put
forward in this study. The method includes an operator that
repairs solutions with numerous damaged sensors. A variety
of MOEAs were tested in the simulations. This method was
further extended in [87] by incorporating a risk management
component, where nodes that are more at risk of being
damaged are flagged by an FIS as such. Two more MOEAs
are added to the simulation experiments. In [88], the authors
studied the multi-robot reliable sensor relocation scenario.
A fourth optimization objective was added to measure load
balancing, and the algorithm was reworked to consider all
the robots. This new technique was simulated with the same
MOEA algorithms reported in [86].

Wang et. al. [185] proposed an ACO-inspired localized
algorithm to help a team of robots relocate sensors and im-
prove their area coverage. This algorithm considered relocating
not only spare sensors but also active sensors whose area
coverage is mostly overlapped by neighboring nodes. Each
robot may carry at most one sensor and calculates pickup/drop-
off probabilities based on locally detected information. Two
variants of the localized scheme are put forth: one optimizing
the total area coverage and the other one optimizing the cost
of robot movement.

2) Sensor Deployment:
Static sensor deployment

Singh and Kumar [164] designed an algorithm for the
deployment of static sensors via an Unmanned Aerial Vehicle
(UAV). This UAV first takes pictures of the AOI, then segments
it. The authors relied upon a GA, then a PSO method to
identify optimal positions for coverage from the segmented
image by optimizing on coverage only, with the UAV accom-
plishing the task of relocating the nodes. Both CI techniques
are used and compared with the GA-based one producing
superior results.

Similarly, the authors of [182] described a method for sensor
deployment through a UAV. The UAV takes images of the
AOI and then segments them. PSO and BFA are then used
to optimize this segmentation that ultimately yields efficient
sensor deployment positions. The method is then validated by
simulation.

Saadallah [166] studied the scenario where mobile robots
deploy static sensors at pre-computed locations that guarantee
optimal network coverage and connectivity. She leaned on
NSGA-II as a multiobjective optimizer in order to minimize
the deployment latency while achieving good load balancing
among the robots. NSGA-II was afterwards seeded with the 2-
opt heuristic so as to improve its convergence and attain more
robust solutions.

Cheng et. al. [186] envisioned a mobile robot deploying ad-
ditional sensors to maintain the network coverage in presence
of node failures. Depending on their capacities (e.g., higher
energy reserves), these extra sensors are sometimes referred
to as relay nodes. A PSO implementation with a linearly
decreasing inertia weight optimized the network’s maintenance
cost, which consists of three factors: coverage rate, node
residual energy and node consumption energy. This method
achieved relatively higher coverage rate and a much longer
maintenance period than random and uniform redeployment
algorithms.

Relay node deployment
Unconstrained relay node deployment
Optimally deploying relay nodes with a mobile robot en-

tails NP-hard complexity. Lanza-Gutierrez and Gomez-Pulido
[171] investigated the use of two Multi-Objective Variable
Neighbourhood Search (MOVNS) algorithms to deploy relay
nodes in a single-tiered WSN with the goal of optimizing the
average energy consumption and the average sensitivity area
of the network. Peiravi et. al. [167] put forward a clustering
method powered by a GA in homogeneous two-tiered WSN;
their goal was to optimize the network lifetime with different
delay values. Azharuddin and Jana [168] aimed to minimize
the number of relay nodes and maximize network connectivity
by means of a GA in two-tiered WSNs. Perez et. al. [169]
employed a MOEA to optimize both the energy cost and
the number of routers in a single-tiered WSN. None of these
approaches imposes any constraint on the location of a relay
node in the monitoring region.

Constrained relay node deployment
The Constrained Relay Node Deployment Problem

(CRNDP) was solved in [170] via three well-known
multiobjective optimizers, viz NSGA-II, AbYSS (based on
Scatter Search) and MOPSO. They aimed at minimizing the
average energy consumption of the sensors while maximizing



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2850220, IEEE
Communications Surveys & Tutorials

MANUSCRIPT SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 21

the average network reliability. The performance of the
three algorithms was gauged in terms of hypervolume and
coverage of two sets. They concluded that NSGA-II is the
best performing technique followed by AbYSS and then
MOPSO.

3) Sensor Replenishment: Ye and Wang [71] designed a
GA-based solution for the calculation of a mobile robot’s
trajectory to replenish the energy source of multiple static
sensors in the WSAN. The problem is very similar to the TSP
with time windows (TSP-TW), for every static node must be
served within a certain time period (i.e., before it runs out
of energy). The authors created custom genetic operators and
a local search strategy for this problem. They validated their
approach via simulations on a 14-node network but did not
compare their results against those of any TSP-TW solver.

A similar situation is found in [173], but ACO is used
instead. The nodes’ energy is used as the pheromones, with
robots replenishing sensors on their paths. A simulation is
presented but no comparison with other methods is included.

E. Localization

The following are relevant works on the localization prob-
lem in WSANs (both range-based and range-free). CI tech-
niques are used to either directly infer possible locations or
to refine/optimize their estimates. Table VI presents a brief
overview of the surveyed works.

1) Range-Based Localization: Herrero and Martı́nez [201]
tackle localization as a fuzzy estimation problem, where the
position of the node and the sensor measurements can be
described by fuzzy sets. Fuzzy densities are then used over
all possible locations of a node, which are the vertexes of
a Voronoi-tessellated environment. These fuzzy densities are
then increased or decreased upon receiving packets from
anchor nodes by using RSS. This method explicitly focuses
on locating mobile nodes in WSANs in indoor spaces; the
authors chose FL to deal with the information uncertainty. The
proposed technique was tested in a real scenario with mobile
nodes and outperformed a Monte Carlo localization approach.

Similarly, the authors of [203], [204] harness metadata from
communications to determine a proper location for a mobile
node moving through a WSAN. Gholami et. al. [203] leaned
on the ToA from a particular node to each anchor node as the
input to an ANN, which then has two outputs: the X and Y
node coordinates in a two-dimensional localization problem.
Irfan et. al. [204], a predecessor of [203], employed RSSI
and Link Quality Indicator (LQI) as inputs to the ANN. LQI
denotes the quality of the link, i.e. its error rate. In [203],
the method is implemented on the sink node, though they
note that this scheme could also be run locally on each node.
A one-hidden-layer ANN, then a two-hidden-layer ANN, are
exploited for validation purposes in [203] by simulating and
comparing their approach to a trilateration-based localization
method. The empirical evidence indicates that the proposed
localization method performs better than the benchmark tri-
lateration technique. The algorithm in [204] is compared to
other existing localization methods, with [204] outperforming
them all.

Chan and Wen [78] again used FL and a range-based
method for localizing mobile nodes in WSANs. They relied
on the ToA to determine an approximate position, which is
refined afterwards with AoA data to train an FIS. This FIS
can then adjust the estimated position on the (X,Y) plane to
give a refined estimate. Their proposed method is simulated
along with two other methods, and the results indicate that the
proposed algorithm outdoes them both.

In [195], a node first estimates its position by using a
weighted centroid method fed by messages from a mobile
anchor node. The positions transmitted by the anchor nodes
are weighted in such a way that positions closer to the node
have a higher weight, with the distance to the node being
determined by RSSI. This estimate is then refined using a
GA. The proposed method is simulated and compared against
another localization method.

Karedla and Anuradha [196] put forth a two-step procedure
to localize mobile nodes. First, an estimate is calculated using
the weighted centroid algorithm. Then, a GA is responsible for
refining the position estimate by making use of the difference
between the estimated positions and the actual RSSI-inferred
distances to the anchor nodes as a fitness function. Their
proposed method is verified by simulations and compared to
two other algorithms.

Kulkarni and Venayagamoorthy [182] introduced an al-
gorithm for iterative localization in dynamically deployed
WSNs. The network contains three types of nodes: simple
sensor nodes, anchor nodes, and a UAV that deploys these.
When a node contains three or more localized nodes inside
its communication range, it will determine its distance to
them, create an estimated position for itself, then use either
BFA or PSO to optimize this estimate. Whenever new nodes
get deployed, the previously localized nodes can themselves
become anchors, thus iteratively localizing the network. This
method with both CI techniques is validated by simulation but
is not compared to other algorithms.

Guo and Tang [205] brought forward a localization method
for mobile nodes in WSANs. An SVM for each dimension is
first trained by using estimated distances to the other anchor
nodes in the respective dimensions, where a class is an interval
in the dimension space. They then used the trained SVMs to
help localize new mobile nodes, thus refining the estimate
through predictions of the next location based on simple
movement dynamics. Finally, a filtering step takes place to
remove possible invalid locations with the help of messages
from the anchor nodes. The proposed method is validated
through a simulation analysis and compared to two other
schemes.

2) Range-Free Localization: Bao et. al. [199] attempt to
localize nodes in WSNs with mobile anchors via a range-
free mechanism. The mobile anchors periodically broadcast
their locations. Upon receiving such a message, lost nodes
will retain it for future use and re-transmit it once to its 1-
hop neighbours. When enough of these messages are received,
a PSO algorithm kicks in, where each particle represents a
possible position for the node. This algorithm converges to
a position denoting the node’s best guess as to where it is
located. The proposed scheme is simulated and compared
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TABLE VI
APPLICATION OF CI TECHNIQUES TO THE LOCALIZATION PROBLEM IN WSANS

CI Technique Subproblem Algorithm Reference Validation Computation Distribution

Evolutionary Range-based GA [195], [196] Simulation Centralized
Algorithm Range-free GA [197] Simulation Centralized

Range-free DE [198] Simulation Centralized
Swarm Range-free PSO [199] Simulation Centralized

Intelligence Range-based PSO, BFA [182] Simulation Centralized
Algorithm Range-free PSO [197] Simulation Centralized

Range-free ACO [198] Simulation Centralized
Range-free ACO [200] Simulation Centralized
Range-free Cuckoo Search [40] Simulation Centralized

Fuzzy Range-based FL [201] Simulation Distributed
Logic Range-based FIS [78] Simulation Distributed

Range-free FIS [202] Simulation Distributed
Learning Range-based ANN [203], [204] Simulation Distributed
Systems Range-based SVM [205] Simulation Distributed

Hybrid System Range-free ABC/GA [206] Simulation Centralized

against a centroid-only variant.
The studies in [40] [198] [197] solved the localization prob-

lem by means of biologically inspired optimization methods:
CS, ACO, DE, GA, a GA-Simulated Annealing technique, and
PSO. They first prepared a set of estimated node positions
by having a mobile anchor node periodically broadcast its
location and triangulating the nodes’ locations. The first and
the last broadcast positions received by a node are assumed
to correspond to the communication range of this node.
Multiple possible locations can be eliminated with the help
of neighbours, though this is not done in [198], where the
multiple locations serve as a basis for the optimization algo-
rithm. This set of estimates is then refined using one of the
aforementioned optimization techniques. They simulate their
proposed methods and benchmark them against the unrefined
estimation algorithms, thus showing encouraging results.

The authors of [200] approached the localization problem
from another perspective. Instead of optimizing position esti-
mates, they proposed a method that determines ideal broadcast
locations that would give accurate triangulation positions. This
can then be formulated as a TSP for a mobile anchor node.
This problem is then solved by using ACO to determine an
ideal route. The proposed method is validated by simulation
and compared to a static route.

Similarly, Qi et. al. [206] formulated the localization prob-
lem as a TSP instance. The proposed localization method
is simple: the mobile anchor node essentially visits each
node that requires localization by passing within a distance
threshold of it. Then, it localizes the node by using its own
known position. The authors solve the TSP problem via a
hybrid ABC-GA algorithm. The proposed method is validated
by simulation.

Dutta et. al. came up with a coarse-grained localization
technique in [202]. The authors described a system where the
AOI has been tessellated into a grid and a mobile node can be
localized to one of the grid cells by using a FIS. First, the FIS
is trained with past data to recognize patterns in the node’s
movement. This trained FIS can then indicate which cell the
mobile node is presently in. The authors describe and define

their system, then validate it through simulations.

F. Summary

The WSAN Actuation problem category has been tackled
from many standpoints using CI techniques. Those approaches
that revolve around Task Allocation often resort to market-
based allocation techniques optimized via EAs/SIAs to satisfy
the overall system goal. There is plenty of room for the appli-
cation of MOO methods in this area. Another popular trend
is to employ FIS/ANN to design control systems for these
actuators that allow them to individually bid for certain tasks.
Regarding the subset of Actuation approaches concerned with
task execution via actuator coordination and event prediction,
FIS and FL are the main CI schemes employed to ensure a
smooth coordination among the actuators, although we see
an emerging interest in RL and MDP as LS representatives.
The optimization angle is still present via EAs/SIAs solving
different manifestations of actuator coordination problems
such as target tracking or path planning. A vast majority of
the proposed approaches rely on a centralized computation
architecture.

In the WSAN Communication category, the application
of CI techniques to the routing subproblem is confined to
solving optimization problems primarily via SIAs. The com-
munication routes are mainly static (i.e., do not change over
time) except [130] that envisions dynamic communication
backbones. Multiple aspects of these routes such as energy
consumption, signal strength or message latency are taken
into account during the optimization process. In the clustering
subproblem, the suitability of a WSAN node to become a
cluster head is modeled through an FIS and the selection of
potential cluster heads network-wise is entrusted to EA-based
optimizers. Finally, the QoS sub-problem is the least explored
by CI techniques. The few available works are related to fuzzy
control and genetic optimization at the node level to ensure
reliable sensor-actuator communication.

Concerning the Sink Mobility category, CI optimization
techniques have the upper hand as they try to derive the
best path for the mobile sink. Some studies simultaneously
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identify the most suitable cluster heads in the WSAN. A
few works depart from the traditional problem formulation
by considering special cases such as multiple mobile sinks or
a sparse network. Finally, an FIS to gauge the attractiveness
of the network regions for sink visitation was also put forth.
MOO methods as well as LS/HS schemes would be a great
addition to the repertoire of CI applications here.

The CI presence in the WSAN Topology Control category
is largely dominated by EA/SIA-based optimization methods
across all its subproblems, namely sensor deployment, relo-
cation and replenishment. This is quite understandable since
modifying the WSAN topology serves an ultimate goal, e.g.,
maximizing network lifetime or expanding/restoring network
coverage. We do see increasing evidence of the successful
synergy between FIS/DL and nature-inspired CI optimizers in
the sensor relocation arena. Sensor replenishment by mobile
actuators is an exciting and largely uncharted territory for new
CI applications.

Finally, in the WSAN Localization problem, we notice that
range-based methods have been slightly more studied through
CI techniques than their range-free counterparts. The need to
reason under imprecise information (coming from unreliable
distance estimates of the nodes) makes it an appealing choice
for the application of FL/FIS and LS (ANN/SVM) techniques,
with some genetic and swarm-inspired optimizers in the back-
ground to produce an accurate solution. The latter category
(range-free localization methods) hinges more heavily on
EA/SIA-based optimization given the rather reliable estimates
of the anchor nodes’ position that are broadcast to the rest of
the WSAN.

VII. DISCUSSION

This section discusses which CI techniques are suitable to
solve each WSAN problem, and whether they were found
in the surveyed works. Figure 14 unveils four of the prob-
lems together with their sub-problems, the most suitable CI
techniques, and the number of papers found in that category.
The actuation problem is not included since it is more of a
overarching process and can not be neatly separated from
the other problems. Furthermore, the most appropriate CI
technique is highly dependent on the approach taken to solve
the problem. More specifically, we elaborate on the main
findings drawn from Section VI along each type of WSAN
problem.

A. Actuation

The control process in WSAN is complex, with examples
ranging from controllers in sinks for simple actuation tasks to
complex coordination for exploration, foraging, or tracking.
Additionally, each paper touched on one step of the process,
while others described a more comprehensive behavioral con-
trol for the WSAN. As such, it is difficult to categorize each
one of them and compare them. It can be seen however that
many CI techniques are used to resolve each of the steps either
in combination or separately.

The task creation step is ripe with ambiguity and un-
certainty, and is closely related to data fusion and event

prediction. Consequently, LS and FL should increase their
presence here. If we look at the works, it can be seen that
they are in fact exploited in many works that concern task
creation, such as [121] and [77], or for prediction such as in
[118], [119]. Planning appropriate tasks is key for search or
exploration operations, and it can be noticed that the relevant
works with those goals could also employ techniques such as
those in [93], [112]. In fact, [82] presents one method based
on FL and another on SIAs, the two dominating CI techniques
used.

Actuator selection is also often conducted to provide a better
set of nodes for task allocation or to reduce the complexity
of the task allocation process, such as in [62], [105]–[107].
However, task creation, actuator selection, and task allocation
are often put together for greater synergy. All of these are
highly dependant on each other, and researchers exploit this
dependency by using EAs to directly discover the best com-
bination of created tasks, actuators, and allocation. This can
be witnessed in [62], [91]. The MRTA problem is known to
be a combinatorial optimization problem [207] so this is not
surprising.

As for coordination, it is highly dependent on the task
to solve. For example, ACO is used in [90] for optimal
and cooperative path planning, while FL is used in [103]
for a mobile node to position itself. Another example is the
conflicting behaviour resolution via an FIS found in [113].
Coordination requires fine cooperation and communication
among mobile nodes, hence implying unreliability, and may
be why FL is found more commonly in this area.

B. Communication
The routing problem must evaluate many candidate routes

in an attempt to find the best one according to some criteria,
hence EAs and SIAs best fit this problem. However, all
network node data may not be available to a given node
at all times. Previously used routes may have had greater
success, an idea that makes Machine Learning relevant here.
Node clustering could be cast as a combinatorial optimization
problem, where a subset of the nodes in a network must
be chosen per some constraints and predefined evaluation
functions, and consequently is solvable with EAs and SIAs.
Since communication in WSANs is fundamentally unreliable,
information accuracy and availability must be taken into
consideration. Consequently, FL and ANNs may be best suited
in this area.

In the routing case, most works used pure SIAs, with one
resorting to a hybrid algorithm in order to circumvent some
of the issues in SIAs. This was expected due to the reasons
explained above. However, none of them used route learning
[31], [208] and that fact leaves some research potential in
this area. As for the combinatorial optimization problem of
clustering, the most represented CI technique was GAs, with
some FL to determine the suitability of a node to become
a cluster-head. Finally, the QoS problem has not been fully
explored from a CI-WSAN perspective. Only one branch of
work for QoS in WSAN has been explored. More complex
QoS solutions, such as data transmission scheduling, have not
been addressed.
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Fig. 14. WSAN problems, suitability of CI techniques and their representation in the surveyed works

C. Sink Mobility

The traditional sink mobility scenario (i.e., mobile sink,
static sensors) is often formulated as a TSP instance, since it
is essentially a combinatorial optimization problem where the
sink must choose the best path to visit all static sensors as per
the underlying optimization criteria. This classical scenario is
also formulated as a TSP-N instance since the sink node does
not necessarily have to physically reach the static sensor nodes,
for it must only travel inside a node’s communication radius.
Furthermore, it might not be efficient to visit every node.
Many approaches in fact generate communication clusters
before determining an optimal trajectory. This complicates
the problem by needing to create the most efficient cluster
configurations that can yield the best path for the sink to
travel along. The CI techniques most suitable for solving
combinatorial optimization problems fall under the EAs and
SIAs categories. The relevant works surveyed confirm this
point, since all but one paper utilized either an EA or an SIA.

The sink mobility scenario where sensor nodes are also
mobile has not been considered in the surveyed works yet. This
problem formulation no longer follows the TSP assumptions,
hence another model has to be designed. We envision dynamic
optimization via EAs and SIAs as a fitting mechanism to
address this challenge.

D. Topology Control

While both coverage problems are unique, they can both be
shown to be essentially combinatorial or numerical optimiza-
tion problems. For sensor deployment/relocation, identifying
damaged sensors and replacing them with new sensors is es-
sentially a function mapping elements of the operational/active
node set to the unused/passive set. Determining an ideal route
that visits every element of the unused set can be solved by
any optimization method so long as the right solution encoding
and search operators are brought into effect. This problem can

be further complicated by adding a subset of the operational
node set to that of the unused set, with the goal to relocate
those operational sets. This problem is in fact a TSP variation
known as the TSP with Selective Pickup and Deliveries.

This formulation itself is compatible and directly relatable
to the nature of EAs and SIAs as nature-inspired optimizers.
For example, EAs consist of a population of individuals,
also called chromosomes, each containing one or more values
(genes). A fitness function maps the chromosome to a fitness
value that the EA aims to optimize. Using this value as the
key of a chromosome, and positions of nodes as genes, a
solution to the Sensor Deployment problem can be found. The
EA would simply explore some of the possible combinations,
ordering them, and keeping the best found yet. For coverage,
a fitness function must include coverage evaluation. Conse-
quently, it is expected that EAs and SIAs dominate in this
area.

Similarly, the coverage problem approached from the node
auto-relocation angle can also be shown to be a combinato-
rial optimization problem. The n-dimensional bounded spaces
contain infinite point possibilities. Luckily, digital computers
do not work with such continuous spaces, but with discrete
spaces that naturally convert the space into an n-dimensional
grid, with a finite set of cells. The problem then becomes
that of relocating the nodes to these cells in such a way
as to improve coverage without increasing the number of
nodes, or increasing it slightly. Note that this can also be
applicable to the previous Sensor Deployment problem. This
is fundamentally a combinatorial optimization problem, that of
finding the best combination of points as defined by a fitness
function. As previously seen, EAs and SIAs, especially PSO,
are ideal CI methods to tackle these problems.

A numerical optimization version of this coverage problem
can also be envisioned assuming that we are interested in the
real (x,y) coordinates of the nodes in the 2D plane.

As expected, it can be seen that EAs are used for both
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Node Deployment works, while EAs and SIAs represent the
overwhelming majority of CI techniques used in Node auto-
relocation. Many works also combine these categories to create
hybrid systems that aim to reduce/compensate for the flaws of
the other scheme.

Sensor replenishment by mobile actuators in WRSNs is
largely uncharted territory for the application of CI-based
optimizers, viz EAs and SIAs. The majority of the works
that solve the underlying NP-hard problem of deriving the
replenishing cycle do so by leaning on greedy heuristics and,
to a lesser extent, on exact methods that can only handle small
or medium-sized problem instances.

E. Localization

There are many perspectives on the localization problem. In
general, there seems to be three major localization approaches
that resort to CI methods.

The first one uses CI to directly determine a node’s position,
such as in [78], [199], [201]–[204]. The second approaches
the problem by first creating an estimate of the node’s location
and then refining it [40], [182], [195]–[198], [205]. Finally, an
attempt is made to optimize the trajectory of a mobile node
over appropriate locations for positional broadcasts [200],
[206].

The first method attempts to find positions directly without
estimates, therefore making CI techniques that can deal with
uncertainty more appealing, which explains the more common
uses of FL and LS. The second method searches the bounded
solution space given by the initial estimation, and makes EA
and SIA suitable to this kind of problem. Finally, the third
perspective formulates this problem as a TSP instance, and
consequently, EAs and SIAs are chosen as the fittest solvers.

Within the related works, FL and LS arise as the predomi-
nant CI techniques, as they attempt to reason with uncertainty
in inherently unreliable communication environments. EAs
and SIAs are largely utilized in the second category, since
they attempt to optimize the location estimates by reducing the
inconsistency between the estimated position and the available
information. Finally, in the third category, SIAs and EAs
also dominate as all of them formulate it as essentially TSP
instances.

VIII. FUTURE RESEARCH TRENDS

In this section we first review some statistics that point to
the status quo of the CI-WSAN interplay and discuss future
research trends along each kind of WSAN problem studied in
this survey.

A. The Status Quo

Figure 15 gives the distribution of each type of CI technique
applied to WSAN problems. The reader may notice that EAs
and SIAs are the two most representative categories of CI
algorithms across the five types of WSAN problems discussed
in this survey, which makes perfect sense owing to the
number of challenging optimization problems WSANs have
brought to light. This is particularly true for topology control

problems. FL is least explored for sink mobility purposes
but more heavily used within the actuation category, mainly
for actor selection. The same can be stated about HSs. As
this distribution reveals, the potential behind LSs has been
generally untapped across the communication, sink mobility
or topology control categories.

Fig. 15. Distribution of CI techniques per WSAN research problem in the
surveyed works

In general, the number of research contributions featuring
CI techniques to solve the WSAN problems considered in this
survey has gained momentum over time. Figure 16 portrays
the frequency of published CI-based works for each WSAN
problem per year. While this survey has concentrated on more
recent works, the figure represents the recent research trends.
It can be noticed that the CI-directed research efforts into
each WSAN problem are not uniform; there was a spike in
interest around 2009 for actuation, followed by a slight dip,
then evidence of renewed interest in 2015. Other problems
such as sink mobility seem to be increasingly important in
proportion.

The above findings are not surprising. Since actuation is the
first problem to be added by definition when actuators were
brought into the core of WSNs, it is logical that most research
studies initially focused on this area. Then, as solutions for the
actuation problem were found, other problems began to be
investigated. In the future, this trend is expected to continue,
with a growing use of CI techniques to increase the efficiency
and robustness of the proposed solutions.

Another interesting graph is the CI technique distribution
per year across all WSAN problems, as revealed in Figure 17.
It is clearly shown that SIAs represent the dominant technique
within the CI umbrella, with EAs perhaps as numerously
represented. This is a clear consequence of the number of
challenging and interesting optimization problems emerging
within the WSAN arena.

LSs are not very well represented though this is expected
to change as research into this type of technique applied to
WSANs intensifies. FL is also present throughout the years.
As these techniques are mastered, their particular shortcomings
may be fixed by integrating concepts from other methods,
thus resulting in the development of HS. These are available
mostly in 2009 and 2015. HSs are expected to be increasingly
important. Since combining different methods is in itself not
well researched, it is normal that HSs take a more prominent
role in WSANs as the research community identifies success-
ful mechanisms for achieving powerful synergies among their
constituent algorithms.
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Fig. 16. Yearly distribution of WSAN research problems solved via CI
techniques in the surveyed works

Fig. 17. Yearly distribution of the CI techniques applied to WSAN problems

The rest of this section elaborates on the authors’ forecasts
and thoughts on the future WSAN problems and the attempts
to resolve them. New research directions as well as underuti-
lized CI techniques are identified.

B. Actuation

The control process will only become more convoluted as
WSANs start to employ more advanced CI techniques. It
has already been shown that it is sometimes more efficient
to combine some of these steps into a wholesome approach.
In effect, CI techniques that can consider the entire process
and the intricate relationships among its building blocks might
perform better overall.

Another future trend is the use of systems which can handle
the uncertainty of information, the probability of achieving
a task, and learning the best task creation and allocation
strategies. While these concepts are encountered in some of
the works, they most certainly represent the future of actuation
control loops in WSANs. For example, a network that knows
that an event requiring resolution via actuator is likely to hap-
pen in a certain region of the AOI should be considered during
task allocation. This implies event prediction via advanced LS.

Finally, none of the surveyed works take into consideration
the continuous pouring in of relevant information. Once tasks
are created and allocated, nodes complete them regardless of
any new information that might change the task assignment
outcome. These task updating mechanisms are absent and
should be researched within a more robust task allocation
system that leans on EAs/SIAs for dynamic optimization
purposes.

C. Communication

As in other presented problems, the works considered here
showcase WSANs as a recent departure from WSNs, and
make assumptions that networks will be somewhat closer
to WSNs. For example, routing in multi-UAV networks has
been explored once. Additionally, many other assumptions are
made. Network information is not always known to determine
an optimal route, and consequently Machine Learning or other
type of techniques may be more suitable in some WSANs.
Finally, CI techniques are increasingly used, but the algorith-
mic methods remain simpler compared to other problems, thus
leaving room for more general and optimized algorithms.

Recent work has started to explore using Game Theory or
Reinforcement Learning elements in communication networks
[209], [210]. The Nash equilibrium has been shown to be
solvable by means of CI techniques [211]. The concept of
autonomous agent fits naturally within WSNs, and even more
into WSANs. Consequently, exploring how to leverage these
concepts for WSAN communications from a CI perspective is
a promising research avenue.

D. Sink Mobility

As networks become more dynamic, scale in size to higher
orders of magnitude and head towards heterogeneity, planning
a combination of static path and static clusters as seen in the
surveyed papers might not work too well. The mobility of the
sensor nodes themselves must also be considered when the
sink nodes determine the best path to follow.

In consequence, the future of the sink mobility problem
in WSANs may in fact be closer to optimization approaches
that dynamically react to the network status. In this con-
text, we envision dynamic optimization methods as valuable
tools to conduct this kind of approximate reasoning. These
methods will likely be driven by nature-inspired metaheuristic
algorithms such as EAs and SIAs as discussed in Sections
III-A and III-B. Of course, their solutions may not be optimal
but will show good-enough quality and high computational
efficiency. A balance between static planning and dynamic
optimization will have to be taken into consideration when
designing the sink mobility algorithms of the future.

Moreover, there is plenty of room for the application of
FL and FISs to manage the uncertainty of several elements
that influence the calculation of the optimal sink path, such
as the reported sensor locations, presence of obstacles, terrain
elevation and other relevant features.

E. Topology Control

The problem of Topology Control has not evolved consid-
erably during these works. All authors roughly agree on the
definition of coverage and nearly all surveyed works involves
either an EA or an SIA. However, all methods are reactive
to coverage failures, with some hints of proactiveness in the
second method of [87]. As a result, these methods start with
the premise that coverage has been impacted and must be
restored. Yet, if networks would be able to predict which
nodes are going to fail, they could reconfigure themselves
before their actual coverage is degraded. Prediction is one of
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the inherent problems behind LSs and as such it is expected
that more learning systems should be integrated into the LS
family. Additionally, predictions usually imply probabilities,
and probabilities imply uncertainty, so the use of FL and FIS
as seen in [87] can also be expected.

As WSANs grow in complexity, so will the numer-
ical/combinatorial optimization problems emanating from
topology control, with more constraints and objectives. For
example, the published studies generally do not consider the
effects that topology control will have on communication,
the future lifespan of the network, or even varying the k-
redundancy over the AOI. Better multi-objective optimization
methods must be researched. The authors of [179] explore
this topic, mentioning that PSOs are slow and can not be
used to achieve a quick resolution. It is thus expected that
more advanced MOO methods that bring together several
ways to improve convergence will be designed and applied
for topology control in WSANs. LSs may be also employed
to characterize different topological conditions in the WSAN
and derive optimal policies via RL or ANNs to appropriately
respond to these changes.

Finally, a third aspect to consider is the mobility of the
nodes needing replenishment, and their multi-factored impor-
tance. The work in [212] provides an example where mobile
nodes must determine which static nodes to replenish. An
algorithm to derive which mobile nodes to replenish while
considering their importance towards the current objectives of
the network would be a valuable contribution. This problem
involves reasoning in dynamic situations and in presence of
possibly conflicting objectives (i.e., multi-objective optimiza-
tion). Both of these situations can be successfully handled
by means of EAs and SIAs and more generally, through bio-
inspired optimizers.

F. Localization

As different types of highly mobile actuators give rise to
increasingly dynamic WSANs, localization techniques will
have to adapt to this new scenario. These methods do take
into account node mobility but they still essentially rely on
nodes being fairly slow relative to the localization method’s
positional estimation speed. In fact, in many of these methods
such as [40], [197], [198], it is shown that the reliability
of the estimation decreases with anchor nodes moving at
higher speeds. Consequently, there exists an untapped research
potential for localization methods that take into consideration
realistic aspects such as the occurrence of communication
network faults and the presence of highly mobile nodes.
Dynamic optimization methods fuelled by EAs and SIAs seem
a viable alternative in addition to the utilization of FIS and
FL to govern the internal control cycle of these mobile anchor
nodes.

IX. CONCLUSIONS

We have surveyed relevant applications of CI techniques
along five different problem categories pertaining to WSANs:
actuation, communication, sink mobility, topology control and
localization. The most common type of CI technique employed

in WSANs are EAs and SIAs given the overwhelming number
of optimization problems (mostly single-objective, a few deal-
ing with multiple conflictive objectives) that can be formulated
around these systems and the computational intractability of
finding the optimal solution save for small problem instances.

FL and ANNs also show evidence of having been success-
fully applied, although not as intensively as the aforemen-
tioned nature-inspired optimization schemes. As the impor-
tance of information uncertainty and WSAN state prediction
becomes more paramount, we foresee FL and LSs (ANNs in
particular) having a heavier presence in a number of future
WSAN papers. We expect to see success stories emerging
from the application of other CI methodologies (e.g., rough
set theory [213]) that are capable of handling other types of
uncertainty (e.g. information inconsistency). HSs should also
become more visible in this area.

Two of the techniques under the CI umbrella that have
been particularly underutilized are RL [55] [56] and Granular
Computing [214] [215]. The former provides adaptive learning
to changing environmental conditions (a crucial feature in real-
world WSANs) whereas the latter is a viable approach to
cope with Big Data and Internet of Things requirements by
transitioning from a numerically-driven information process-
ing paradigm to a more symbolic, human-centric one. There
is a lot of uncharted territory along these lines.

As an important note, it is worth mentioning that the
successful execution of these CI methods will depend on the
energy resources available in the WSAN. In centralized com-
putation scenarios, this is not a concern as the CI technique
will run in a resource-rich node, e.g., a sink or powerful
actuator. In localized/distributed computation scenarios, the
energy expenses incurred by a node will be a function of
several variables, including the complexity of the CI technique
itself (see Table I), the frequency with which it is executed
or its parametric configuration (e.g., population size for an
EA/SA). We are starting to witness a surge in the number of
reported applications of CI methods in resource-constrained
WSAN environments.

Another emerging research direction is the application of
Deep Learning (DL) methods to WSANs, in particular Deep
ANNs and Deep RL (hence, DL falls under the LS category in
the CI family). Deep Learning is a very vibrant and promising
subfield of Machine Learning that has brought groundbreaking
success to many application domains. Although some DL ap-
plications to WSNs have been recently compiled in [216], we
do not see that this disruptive and highly popular technology
has invaded the WSAN arena yet.

Finally, we want to point out that the challenges and
research opportunities brought about by WSANs share many
commonalities with those found in other communication sys-
tems, e.g., Cognitive Radio Sensor Networks [217] [218]. A
worthwhile and promising pursuit would be to investigate the
application of CI techniques to these related fields.

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor
networks: research challenges,” Ad Hoc Networks, vol. 2, no. 4, pp.
351–367, 2004.



1553-877X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2850220, IEEE
Communications Surveys & Tutorials

MANUSCRIPT SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS 28

[2] A. Nayak and I. Stojmenovic, Wireless sensor and actuator networks:
algorithms and protocols for scalable coordination and data commu-
nication. John Wiley & Sons, 2010.

[3] N. Sabri, S. A. Aljunid, R. Ahmad, M. Malek, A. Yahya, R. Ka-
maruddin, and M. Salim, “Smart prolong fuzzy wireless sensor-actor
network for agricultural application,” Journal of Information Science
and Engineering, vol. 28, no. 2, pp. 295–316, 2012.

[4] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,
no. 5, pp. 1013–1024, 2016.

[5] R. Falcon, X. Li, and A. Nayak, “Carrier-based focused coverage
formation in wireless sensor and robot networks,” IEEE Transactions
on Automatic Control, vol. 56, no. 10, pp. 2406–2417, October 2011.

[6] B. Desjardins, R. Falcon, R. Abielmona, and E. Petriu, “Reliable
multiple robot-assisted sensor relocation using multi-objective op-
timization,” in 2016 IEEE Congress on Evolutionary Computation
(CEC), Vancouver, Canada, July 2016, pp. 4476–4485.

[7] S. Dengler, A. Awad, and F. Dressler, “Sensor/actuator networks
in smart homes for supporting elderly and handicapped people,” in
Advanced Information Networking and Applications Workshops, 2007,
AINAW’07. 21st International Conference on, vol. 2. IEEE, 2007, pp.
863–868.

[8] T. Wark, C. Crossman, W. Hu, Y. Guo, P. Valencia, P. Sikka, P. Corke,
C. Lee, J. Henshall, K. Prayaga et al., “The design and evaluation
of a mobile sensor/actuator network for autonomous animal control,”
in Proceedings of the 6th international conference on Information
processing in sensor networks. ACM, 2007, pp. 206–215.

[9] R. C. Eberhart and Y. Shi, Computational Intelligence: concepts to
implementations. Morgan Kaufmann, 2007.

[10] J. Kacprzyk and W. Pedrycz, Springer handbook of Computational
Intelligence. Springer, 2015.

[11] A. Nayak and I. Stojmenovic, Wireless sensor and actuator networks:
algorithms and protocols for scalable coordination and data commu-
nication. Wiley, 2010.

[12] R. Verdone, D. Dardari, G. Mazzini, and A. Conti, Wireless sensor
and actuator networks: technologies, analysis and design. Academic
Press, 2010.

[13] R. Falcon, “Towards fault reactiveness in wireless sensor networks with
mobile carrier robots,” Ph.D. dissertation, University of Ottawa, 2012.

[14] N. Mitton and D. Simplot-Ryl, Wireless sensor and robot networks:
from topology control to communication aspects. World Scientific,
2013.

[15] D.-I. Curiac, “Towards wireless sensor, actuator and robot networks:
conceptual framework, challenges and perspectives,” Journal of Net-
work and Computer Applications, vol. 63, pp. 14–23, 2016.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wire-
less sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp.
393–422, 2002.

[17] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu,
“Wireless sensor networks: A survey on the state of the art and the
802.15. 4 and zigbee standards,” Computer communications, vol. 30,
no. 7, pp. 1655–1695, 2007.

[18] Y.-G. Yue and P. He, “A comprehensive survey on the reliability of
mobile wireless sensor networks: Taxonomy, challenges, and future
directions,” Information Fusion, 2018.

[19] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless
sensor networks: a survey,” IEEE wireless communications, vol. 11,
no. 6, pp. 6–28, 2004.

[20] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[21] M. Younis and K. Akkaya, “Strategies and techniques for node place-
ment in wireless sensor networks: A survey,” Ad Hoc Networks, vol. 6,
no. 4, pp. 621–655, 2008.

[22] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad hoc networks,
vol. 7, no. 3, pp. 537–568, 2009.

[23] M. Xie, S. Han, B. Tian, and S. Parvin, “Anomaly detection in
wireless sensor networks: A survey,” Journal of Network and Computer
Applications, vol. 34, no. 4, pp. 1302–1325, 2011.

[24] I. Khoufi, P. Minet, A. Laouiti, and S. Mahfoudh, “Survey of deploy-
ment algorithms in wireless sensor networks: coverage and connectivity
issues and challenges,” International Journal of Autonomous and
Adaptive Communications Systems, vol. 10, no. 4, pp. 341–390, 2017.

[25] A. M. Zungeru, L.-M. Ang, and K. P. Seng, “Classical and swarm
intelligence based routing protocols for wireless sensor networks: A

survey and comparison,” Journal of Network and Computer Applica-
tions, vol. 35, no. 5, pp. 1508–1536, 2012.

[26] F. Dressler and O. B. Akan, “A survey on bio-inspired networking,”
Computer Networks, vol. 54, no. 6, pp. 881–900, 2010.

[27] M. Stojmenovic, “Swarm intelligence for routing in ad hoc wireless
networks,” Security and routing in wireless networks, pp. 167–188,
2005.

[28] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimiza-
tion in wireless-sensor networks: A brief survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 41, no. 2, pp. 262–267, 2011.

[29] M. Saleem, G. A. Di Caro, and M. Farooq, “Swarm intelligence
based routing protocol for wireless sensor networks: Survey and future
directions,” Information Sciences, vol. 181, no. 20, pp. 4597–4624,
2011.

[30] S. Jabbar, R. Iram, A. A. Minhas, I. Shafi, S. Khalid, and M. Ah-
mad, “Intelligent optimization of wireless sensor networks through
bio-inspired computing: survey and future directions,” International
Journal of Distributed Sensor Networks, vol. 9, no. 2, p. 421084, 2013.

[31] M. A. Alsheikh, S. W. Lin, D. Niyato, and H. Tan, “Machine learning
in wireless sensor networks: algorithms, strategies, and applications,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996–
2018, 2014.

[32] M. Iqbal, M. Naeem, A. Anpalagan, A. Ahmed, and M. Azam, “Wire-
less sensor network optimization: multi-objective paradigm,” Sensors,
vol. 15, no. 7, pp. 17 572–17 620, 2015.

[33] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey
of multi-objective optimization in wireless sensor networks: Metrics,
algorithms, and open problems,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 1, pp. 550–586, 2017.

[34] A. Datta and S. Nandakumar, “A survey on bio inspired meta heuristic
based clustering protocols for wireless sensor networks,” in IOP
Conference Series: Materials Science and Engineering, vol. 263, no. 5.
IOP Publishing, 2017, p. 052026.

[35] R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy, “Compu-
tational intelligence in wireless sensor networks: a survey,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 1, pp. 68–96, 2011.

[36] A. Abraham, R. Falcon, and M. Koeppen, Computational Intelligence
in Wireless Sensor Networks: Recent Advances and Future Challenges.
Berlin-Heidelberg, Germany: Springer Verlag, 2017.

[37] X. Peng, Z. Mo, L. Xiao, and G. Liu, “A water-saving irrigation system
based on fuzzy control technology and wireless sensor network,” Pro-
ceedings of the International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1–4, 2009.

[38] J. Timmis, L. Murray, and M. Neal, “A neural-endocrine architecture
for foraging in swarm robotic systems,” Studies in Computational
Intelligence, vol. 284, pp. 319–330, 2010.

[39] J. S. Liu, S. Y. Wu, and K. M. Chiu, “Path planning of a data
mule in wireless sensor network using an improved implementation
of clustering-based genetic algorithm,” Proceedings of the IEEE Sym-
posium on Computational Intelligence in Control and Automation, pp.
30–37, apr 2013.

[40] S. Sivakumar and R. Venkatesan, “Error minimization in localization
of wireless sensor networks using modified cuckoo search with mobile
anchor positioning (MCS-map) algorithm,” International Journal of
Computer Applications, vol. 95, no. 6, 2014.

[41] M. Hamdy and H. El-Madbouly, “Improvement of QoS management
in wireless sensor/actuator networks using fuzzy-genetic approach,”
Proceedings of the International Conference on Networking and Media
Convergence, pp. 29–35, mar 2009.

[42] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[43] K. A. De Jong, “Genetic algorithms are not function optimizers,” in
Foundations of genetic algorithms. Elsevier, 1993, vol. 2, pp. 5–17.

[44] K. Deb and H. Gupta, “Searching for robust Pareto-optimal solutions
in multi-objective optimization,” in International Conference on Evo-
lutionary Multi-Criterion Optimization. Springer, 2005, pp. 150–164.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[46] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (ABC)
algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, 2007.

[47] D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, and M. Zaidi,
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